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Abstract: We deal with varieties of nonassociative algebras having polynomial growth of codimensions. We describe
some results obtained in recent years in the class of left nilpotent algebras of index two. Recently the authors established
a correspondence between the growth rates for left nilpotent algebras of index two and the growth rates for commutative
or anticommutative metabelian algebras that allows to transfer the results concerning varieties of left nilpotent algebras
of index two to varieties of commutative or anticommutative metabelian algebras.
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1. Introduction
Let F be a field of characteristic zero and F{X} the free nonassociative algebra on a countable set X =

{x1, x2, . . . } over F. Let A be a nonnecessarily associative algebra and Id(A) the T-ideal of F{X} of polynomial
identities of A. An effective way of measuring the polynomial identities satisfied by A is provided by its sequence
of codimensions {cn(A)}n≥1, that, in characteristic zero, gives an actual quantitative measure of the identities
satisfied by a given algebra. In particular, a general strategy in the study of Id(A) is that of studying the space of
multilinear polynomials in n fixed variables modulo the identities of the algebra A through the representation
theory of the symmetric group Sn on n symbols. Then one attaches to Id(A) a sequence of Sn -modules,
n = 1, 2, . . . , and studies the corresponding sequence of characters.

More precisely, for every n ≥ 1, let Pn be the space of multilinear polynomials in the variables x1, . . . , xn.

Since char F = 0 , Id(A) is determined by the multilinear polynomials it contains; hence the relatively free
algebra F{X}/Id(A) is determined by the sequence of subspaces {Pn/(Pn∩Id(A))}n≥1 . The symmetric group
Sn acts on Pn by permuting the variables: if σ ∈ Sn and f(x1, . . . , xn) ∈ Pn, then

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

The space Pn ∩ Id(A) is invariant under this action and one studies the structure of Pn(A) = Pn/(Pn ∩ Id(A))

as an Sn -module. The Sn -character of Pn(A) , denoted χn(A) , is the n -th cocharacter of A . By complete
reducibility one writes

χn(A) =
∑
λ⊢n

mλχλ,
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where χλ is the irreducible Sn -character corresponding to the partition λ ⊢ n of n and mλ ≥ 0 is the
corresponding multiplicity (see for example [15], [13] for the representation theory of the symmetric group).
The integer

cn(A) = dimPn/(Pn ∩ Id(A))

is called the n -th codimension of A and the growth function determined by the sequence of integers {cn(A)}n≥1

is the codimension growth of the algebra A.

In the language of varieties if V = var(A) is the variety generated by an algebra A , then the growth of
V is the codimension growth of the algebra A. Also we write Id(V) = Id(A) and cn(V) = cn(A).

Let us recall that a variety V = var(A) has polynomial growth if there exist α, t such that cn(V) = cn(A) ≤ αnt,

for all n ≥ 1 ; moreover V has exponential growth if there exist α, β > 0 and a, b > 1 such that αan ≤ cn(V) =
cn(A) ≤ βbn, for all n . The sequence cn(A), n = 1, 2 . . . , in general has overexponential growth. For instance,
if F{X} is the free (nonassociative) algebra on a set X , |X| ≥ 2 then cn(F{X}) = Cnn! where Cn = 1

n

(
2n−2
n−1

)
is the n -th Catalan number. Moreover, for the free associative algebra F ⟨X⟩ and the free Lie algebra L⟨X⟩
we have cn(F ⟨X⟩) = n! and cn(L⟨X⟩) = (n − 1)! , respectively. Nevertheless, there is a wide class of algebras
with exponentially bounded codimension growth.

The first result on the asymptotic behavior of cn(A) was proved by Regev in [31]. He showed that
if A is an associative algebra satisfying a nontrivial polynomial identity, then the sequence of codimensions
is exponentially bounded. Later, Kemer in [16] proved that for such algebras, the sequence cn(A) is either
polynomially bounded or grows exponentially.

In case V is a variety of nonassociative algebras, the sequence of codimensions has a much more involved
behavior and can have overexponential growth. This was first proved by Volichenko in [32] who showed that
the variety of Lie algebras satisfying the identity [[x1, x2, x3], [x4, x5, x6]] ≡ 0 has overexponential growth.

Along this line, Petrogradsky in [29] exhibited a whole scale of overexponential functions specifying the
overexponential behavior of the identities of polynilpotent Lie algebras. Moreover, by results of Drensky in [5]
and Giambruno and Zelmanov in [14], there exist varieties of Jordan algebras with overexponential growth.

If the sequence of codimensions cn(V) = cn(A) is exponentially bounded then one naturally defines,
exp(V) = exp(A), the exponent of the variety V = var(A). Let

exp(V) = lim sup
n→∞

n
√
cn(V), exp(V) = lim inf

n→∞
n
√

cn(V)

the upper and lower exponent respectively of the variety V. If exp(V = exp(V) then

exp(V) = exp(V) = exp(V).

In 1999 Giambruno and Zaicev in [11] and [12] showed that for an associative PI-algebra A the exponent exp(A)

exists and is an integer called the PI-exponent of the algebra A .
It is well known that finite dimensional nonnecessarily associative algebras have exponentially bounded

codimensions (see [1]) and in case of Lie algebras in [9], [10], [33] it was shown that their exponential growth is
an integer. This is not an expected behavior for Lie algebras, namely, Mishchenko and Zaicev in [34] constructed
a Lie algebra with exponential growth of the codimensions strictly between 3 and 4 . This result was extended
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in [28] to a simple infinite dimensional Lie algebra of Cartan type. On the other hand no intermediate growth
and no exponential growth between 1 and 2 is allowed ([18],[21]).

For general nonassociative algebras only few results have been proved so far. In [30], in the classes of
absolutely free algebras, free commutative and free anticommutative nonassociative algebras the exponential
generating functions are explicitly computed for solvable algebras of fixed length, completely solvable algebras
of fixed length, left nilpotent algebras of fixed index. One derives results for codimension growth sequences.
In particular, the exponential generating function for absolutely free metabelian algebras S2 is C(S2, z) =

z(1− z)/(1− 2z) which implies that cn(S
2) = n!(2 + o(1))n and the exponential generating function for 2-step

right nilpotent absolutely free algebras N2 is C(N2, z) = z/(1− z) which implies that cn(N
2) = n! .

In [8] for any real number α > 1 it was constructed an algebra whose sequence of codimensions has
exponential growth equal to α . Moreover, there exist examples of algebras with intermediate growth of the
codimensions. In fact, in [7] for any real number 0 < β < 1 an algebra was constructed whose sequence of

codimensions grows as nnβ . Anyway, in [7] it was proved that the codimensions of a finite dimensional algebra
A are either polynomially bounded or grow exponentially. So, no intermediate growth is allowed in the finite
dimensional case.

In this paper, first we present some results on varieties of algebras having polynomial growth. Then we
classify the growth of left nilpotent varieties of index 2, that are the varieties of algebras satisfying the identity
x(yz) ≡ 0, of at most cubic growth. Notice that modulo the identity x(yz) ≡ 0 all nonzero monomials of the
free algebra are left normed, i.e. are of the type (((x1x2)x3) . . . ). Since we shall be working modulo such identity
we shall omit the parenthesis in left normed monomials, hence we shall write (((x1x2)x3) . . . xn) = x1x2 . . . xn,

and xy2 for xyy. Finally we recall the correspondence between varieties of left nilpotent algebras of index two
and varieties of commutative or anticommutative metabelian algebras that allow us to transfer some results of
left nilpotent varieties of index 2 to varieties of commutative or anticommutative metabelian algebras.

2. Polynomial growth

In this section we describe the varieties V of associative, Lie and Leibniz algebras such that the sequence of
codimension is polynomially bounded. We recall that a Leibniz algebra over a field F is a nonassociative algebra
with a bilinear multiplication, satisfying the Leibniz identity (xy)z = (xz)y + x(yz).

In [16] Kemer characterized the varieties of associative algebras V such that cn(V) is polynomially
bounded in terms of their cocharacter sequence. A similar result was proved for varieties of Lie algebras in [2]
and for varieties of Leibniz algebras in [4].

Let λ = (λ1, λ2, . . . , λr) ⊢ n be a partition on n. The characterization obtained is the following

Theorem 2.1 For a variety of associative, Lie or Leibniz algebras V the following conditions are equivalent

1) cn(V) is polynomially bounded.

2) there exists a constant q such that

χn(A) =
∑
λ⊢n

|λ|−λ1≤q

mλχλ

for all n ≥ 1 .
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Theorem 2.2 Let V be a variety of associative or Lie algebras. If cn(V) < C(2− ε)n, for some constants C

and 0 < ε < 1 , then cn(A) is polynomially bounded.

Another characterization of varieties of associative algebras can be given in terms of the Grassmann
algebra G and the algebra UT2 of 2× 2 upper triangular matrices.

Theorem 2.3 (see [17]) A variety of associative algebras V is polynomially bounded if and only if G, UT2 ̸∈ V .

Let NtA denote the variety of Lie algebras defined by the identity

((x1, x2), . . . , (x2t+1, x2t+2)) ≡ 0 (2.1)

and by ÑtA the variety of Leibniz algebras determined by the same identity. Obviously, NtA ⊂ ÑtA.

For varieties of Lie algebras we have the following characterization

Theorem 2.4 (see [20]) A variety of Lie algebras V has polynomial growth if and only if

N2A ̸⊂ V ⊂ NtA

for some t ≥ 1.

An analogous result holds for varieties of Leibniz algebras. Let us denote by Ṽ1 the variety defined by
the identity

x1(x2x3)(x4x5) ≡ 0.

Theorem 2.5 (see [3]) Let V be a variety of Leibniz algebras. Then V has polynomial growth if and only if
there exists t ≥ 1 such that

N2A, Ṽ1 ̸⊂ V ⊂ ÑtA

3. The variety of left nilpotent algebras of index two
Let V = 2N be the variety of left nilpotent algebras of index two that is the variety determined by the identity
x(yz) ≡ 0.

The interest in this variety is motivated by the following

Remark 1 Let V be the variety of algebras satisfying the identity x(yz) ≡ α(xy)z, for some α ∈ R. Then
either

1. V is nilpotent, or

2. V is the variety of associative algebras, or

3. V = 2N .

Proof Clearly, if f α = 1 we obtain the variety of associative algebras and in case α = 0 we get the variety
2N . So suppose that α ̸= 0, 1. Then working modulo x(yz) ≡ α(xy)z, we obtain

(xy)(zt) ≡ α((xy)z)t ≡ (x(yz))t ≡ 1

α
x((yz)t) ≡ 1

α2
x(y(zt)) ≡ 1

α
(xy)(zt).
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Hence
(xy)(zt) ≡ 0.

Moreover, we have that

((xy)z)t ≡ 1

α
(xy)(zt) ≡ 0,

t((xy)z) ≡ 1

α
t(x(yz)) ≡ (tx)(yz) ≡ 0,

(z(xy))t ≡ 0,

t(z(xy)) ≡ 0.

It follows that V is a nilpotent variety and cn(V) = 0, for all n ≥ 4.

2

The asymptotic behavior of the codimensions of a unitary algebra was described by Drensky in [6]. He
proved the following

Theorem 3.1 Let A be an associative algebra or a Lie algebra or a Jordan algebra whose sequence of
codimension is polynomially bounded. Then

cn(A) = Cnk + O(nk−1),

for some integer k and for some rational number C .

It follows that for classical algebras (associative algebras, Lie algebras and Jordan algebras) there are no
varieties of fractional polynomial growth. This is not more true for the variety 2N , in fact Mishchenko and
Zaicev in [26] gave examples of varieties Vα ⊆ 2N with fractional polynomial growth. In particular they proved
the following

Theorem 3.2 For any real number α, 3 < α < 4, there exists a variety of algebras Vα ⊆ 2N , such that, for
sufficiently large n, the following condition holds

C1n
α < cn(Vα) < C2n

α,

where C1, C2 are positive constants.

Motivated by this result we tried to classify all possible growth of varieties V such that cn(V) < Cnα,

with 0 < α < 3 , for some constant C . We obtained the following (see [23], [22])

Theorem 3.3 Let V be a variety of algebras. If cn(V) ≤ Cnα for some constants C > 0 and 0 < α < 1, then,
for n large, cn(V) ≤ 1.

Theorem 3.4 Let V be a variety of commutative or anticommutative (nonnecessarily associative) algebras.
If cn(V) ≤ Cnα for some constant C > 0 and 1 ≤ α < 2, then either, for n large, cn(V) ≤ 1 or
limn→∞ logn cn(V) = 1 .

For the growth rates of the sequence of codimensions of the variety 2N , we reached the following
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Theorem 3.5 (see [24]) Let V be a variety of algebras satisfying the identity x(yz) = 0. If cn(V) ≤ Cnα for
some constant C > 0 and 1 ≤ α < 2, then cn(V) ≤ C1n for some constant C1 > 0.

Theorem 3.6 (see [24]) Let V be a variety of algebras satisfying the identity x(yz) = 0. If cn(V) ≤ Cnα for
some constant C > 0 and 2 ≤ α < 3, then cn(V) ≤ C1n

2 for some constant C1 > 0.

Recently in [25] we found a correspondence between varieties of left nilpotent algebras of index two and
varieties of commutative or anticommutative metabelian algebras that establish correlations between the growth
rates of these varieties. In particular, we constructed a metabelian commutative or anticommutative algebra
and a left nilpotent algebras of index two that share the same behavior of the sequence of codimensions. This
allow us to transfer the above results to varieties of commutative or anticommutative metabelian algebras.

4. Metabelian commutative or anticommutative algebra defined from a special left nilpotent
algebra

In this section, starting by A, a left nilpotent algebra of index two with some special condition, we construct a
metabelian commutative algebra A+ and a metabelian anticommutative algebra A− and we will give a relation
between the sequences of the codimensions cn(A) and cn(A

+) or cn(A
−).

Let A be a left nilpotent algebra of index two, that is an algebra satisfying the identity x(yz) ≡ 0. Let
A0 = {a ∈ A| ba = 0, ∀b ∈ A} be the right annihilator of A and let {a1, a2, . . .} be a basis of A0. We complete
this basis to a basis B = {a1, a2, . . . b1, b2, . . .} of the whole algebra A. Since ai ∈ A0 it follows that

aiaj = biaj = 0.

Let us assume that in A holds ”the special condition”

bibj = 0

for all i, j. Hence, from the identity x(yz) ≡ 0, it follows that

aibj =
∑
k

αk
ijak = cij .

Let A+ be the algebra with the same basis B = {a1, a2, . . . b1, b2, . . .} and with the following multipli-
cation table: for all i, j

aiaj = 0, aibj = bjai =
∑
k

αk
ijak = cij , bibj = 0.

The algebra A+ satisfies the identities (xy)(zt) ≡ 0, xy ≡ yx, and so is a metabelian commutative algebra.
In a similar way we can construct a metabelian anticommutative algebra.

Let A− be the algebra with basis B = {a1, a2, . . . b1, b2, . . . ...} and with the following multiplication
table, for all i, j

aiaj = 0, aibj = −bjai =
∑
k

αk
ijak = cij , bibj = 0.
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The algebra A− is a metabelian anticommutative algebra since satisfies the identities (xy)(zt) ≡ 0 and
xy ≡ −yx.

In [25, Theorem 1] we found a relation between the sequence of codimension of A+ or A− and the
sequence of codimensions of A. We obtained the following

Theorem 4.1
1

2
cn(A) ≤ cn(A

±) ≤ cn(A).

5. Left nilpotent algebra defined from metabelian commutative or anticommutative algebra

In this section, starting from a metabelian commutative algebra A+ (or a metabelian anticommutative algebra
A−) , we construct a left nilpotent algebra of index two and we will provide a relation between the sequences of
the codimensions cn(A

+) (or cn(A
−)) and cn(A).

Let A+ be a metabelian commutative algebra satisfying the identities

(xy)(zt) ≡ 0, xy ≡ yx.

Let A+
0 be the span of all products of two elements of A+ and {a1, a2, . . .} a basis of A+

0 . Let us complete this
basis to a basis B = {a1, a2, . . . b1, b2, . . . ...} of the whole algebra A+. Since A+ is metabelian it follows that

aiaj = 0

for any i, j and for the other products of the basis elements we have that

aibj = bjai =
∑
k

αk
i,jak = ci,j , bibj = bjbi =

∑
k

βk
i,jak = di,j .

Let A be the algebra with basis {a1, a2, . . . , b1, b2, . . .} and with the following multiplication table

aiaj = 0, aibj =
∑
k

αk
i,jak = ci,j , biaj = 0, bibj = bjbi =

∑
k

βk
i,jak = di,j .

Clearly the algebra A satisfies the identity x(yz) ≡ 0, and so is a left nilpotent algebra of index two.
Let us now denote by A− a metabelian anticommutative algebra, so A− satisfies the identities (xy)(zt) ≡

0, xy ≡ −yx . Let A−
0 be the span of all products of two elements of A− and {a1, a2, . . .} a basis of A−

0 . Let us
complete this basis to a basis {a1, a2, . . . b1, b2, . . .} of the whole algebra A−. As before we have that aiaj = 0

for any i, j, and

aibj = −bjai =
∑
k

αk
i,jak = ci,j , bibj = −bjbi

∑
k

βk
i,jak = di,j .

We construct a left nilpotent algebra of index two denoted again by A with basis {a1, a2, . . . , b1, b2, . . .}
and with the following multiplication table

aiaj = 0, aibj =
∑
k

αk
i,jak = ci,j , biaj = 0, , bibj = −bjbi =

∑
k

βk
i,jak = di,j .
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Also in this case we have a relation between the sequence of codimension of A and the sequence of
codimensions of A±.

Theorem 5.1 (see [25])
cn(A

±) ≤ cn(A) ≤ 2cn(A
±).

6. Consequences
As a consequence of the previous correspondence we obtain the following

Corollary 6.1 1. There are no varieties of commutative (or anticommutative) metabelian algebras such that
C1n

α ≤ cn(V) ≤ C2n
α with C1, C2 constants and 1 < α < 2,

2. There are no varieties of commutative (or anticommutative) metabelian algebras such that C1n
α ≤ cn(V) ≤

C2n
α with C1, C2 constants and 2 < α < 3.

Proof Let us assume that there exists a metabelian commutative (or anticommutative) algebra such that
cn(V) ≤ Cnα with 1 < α < 2 or cn(V) ≤ Cnα with 2 < α < 3. By Theorem 5.1 it follows that there exists
a left nilpotent algebra of index two with the same behavior of codimensions. This contradicts the results of
Theorems 3.5 and 3.6. 2

Contrary to what happens for varieties of associative or Lie algebras where no exponential growth between
1 and 2 and no intermediate growth is allowed, for the variety 2N the situation is different. In fact, in [8], for
any real number α > 1, the authors found a subvariety of 2N whose exponential growth is equal to α and in
[7] a sequence of subvarieties of 2N of intermediate growth was constructed. The results are the following

Theorem 6.2 (see [8]). For any real number α > 1, there exists a variety Vα ⊆ 2N such that exp(Vα) = α.

Theorem 6.3 (see [7]). For any real number α, 0 < α < 1, there exists a variety Vα ⊆ 2N such that

lim
n→∞

logn logn cn(Vα) = α,

i.e. the sequence cn(Vα) behaves like nnα

, n = 1, 2, . . . .

In [27] the same results have been proved for varieties of commutative or anticommutative metabelian
algebras. Since in the construction of the previous varieties were considered left nilpotent algebras of index
two satisfying the special condition of section 4 the results proved in [27] can be obtained as a consequence of
our correspondence. In fact, from the relation between cn(A

±) and cn(A) proved in Theorem 4.1 and from
standard arguments it follows that exp(A±) = exp(A). Hence we obtain the following

Corollary 6.4 For any real number α > 1, there exists a variety Vα of commutative (or anticommutative)
metabelian algebras such that exp(Vα) = α.

Corollary 6.5 For any real number α, 0 < α < 1, there exists a variety Vα of commutative (or anticommu-
tative) metabelian algebras such that

lim
n→∞

logn logn cn(Vα) = α,

i.e. the sequence cn(Vα) behaves like nnα

, n = 1, 2, . . . .
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Let us finish by giving an example of variety of commutative or anticommutative metabelian algebras
with fractional polynomial growth α, 3 < α < 4.

Recall that in case of associative algebras, or Lie algebras or Jordan algebras if a variety has polynomial
growth, then the sequence of codimensions asymptotically behaves like Cnk, for some constant C and for some
integer k, (see [6]). Anyway in [26] examples of varieties with fractional polynomial growth were constructed.

Using this result and Theorem 4.1 we can give the following
Example. Let w = w1w2 · · ·wm be an associative word over the alphabet {0, 1}. Let A(w) denote the

algebra with basis {a, b, z1, z2, . . . , zm+1} satisfying the following relations:

1. zia = ±azi = (1− wi)zi+1, i = 1, 2, . . . ,m;

2. zib = ±bzi = wizi+1, i = 1, 2, . . . ,m;

3. a2 = b2 = ab = ba = zizj = 0, ∀i, j.

For any m and s positive integers, with 1 ≤ s ≤
√
m+ 1, let w(m, s) be the word of length m such that

its s -th and m -th letters are units and all other letters are zeros. Let Vm = var(Am) be the variety generated
by the algebra A(m) = A(w(m, 1))⊕A(w(m, 2))⊕ · · · ⊕A(w(m, [

√
m+ 1])). Let V =

⋃
m>1 Vm.

This variety is a variety of commutative or anticommutative metabelian algebras and, as proved in [26],
it is possible to show that for any n ≥ 25

1

2
([
√
n ]− 2)

n(n− 1)(n− 5)

6
≤ cn(V) ≤ n3

√
n+ n2(2n+ 3

√
n) + n2.

In other words, the variety V has fractional polynomial growth between 3 and 4, more precisely limn→∞ logn cn(V) =
7
2 .
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