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Abstract: We describe the GLn(F ) -invariant functions on Mn(G) (where G is the infinite dimensional Grassmann
algebra) and show that not all of them are trace polynomials, if n ≥ 3
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1. Introduction

This paper is dedicated to Vesselin Drensky on the occassion of his seventieth birthday. We have admired
Drensky’s work ever since the time we were a graduate student and discovered that Drensky had already
published some of the results of our thesis (in a slightly different form), although at the time our admiration
was mixed with some less generous feelings.

Throughout this paper, we will be working over a field F of characteristic zero. We will denote by G
the infinite dimensional Grassmann algebra over F . The algebra G will be taken to be generated by letters ei

which anticommute and have square 0. The Grassmann algebra has a natural Z2 -grading in which the degree
zero part is spanned by products of even numbers of vectors and the degree one part is spanned by odd numbers
of them.

In [3] Domokos studied two-by-two matrices over G . For such a matrix A, let tr(A) be the sum of
the diagonal elements of A . Although this function does not satisfy all of the usual properties of traces it
does satisfy tr(A) = tr(gAg−1) for all g ∈ GL2(F ) . Likewise, the functions A 7→ tr(Ak) are invariant under
conjugation by GL2(F ) , as well as all products and sums of such functions. Domokos proved that the algebra of
invariant functions on M2(G) , polynomial in the entries, is generated by these trace polynomials. He concludes
the paper by mentioning that the case of Mn(G) for n ≥ 3 remains open. It is our intention in this paper to
describe the ring of GLn(F ) -invariant functions on Mn(G) , and more generally on Mn(G)k , and to use this
description to construct one which is not in the algebra of functions generated by powers of traces for n ≥ 3 .

In the next section, we describe some relevant related results in invariant theory and in the last section,
we prove our theorem and construct our example.
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2. Related results
2.1. The classical case
The touchstone for all major applications of invariant theory to p.i. theory is the invariant theory of Mn(F )

studied by Procesi in [5]. Let t
(α)
ij be the functional on Mn(F )k which takes a k -tuple of matrices to the (i, j)

entry of the α -th matrix in the k -tuple. Elements of the polynomial ring F [t
(α)
ij ]i,j,α are then identified with

functions Mn(F )k → F . These functions are said to be polynomial in the entries. Let Tα be the n×n generic

matrix with entries t
(α)
ij . There is a trace map from the algebra of generic matrices F [T1, . . . , Tk] = F [Tα] to

F [t
(α)
ij ] (from this point on we will mostly be supressing the subscripts on the right hand brackets, e.g., F [Tα]

will mean F [Tα]α ) whose image is not a ring, but it does generate one, denoted TR(t
(α)
ij ) called the generic

trace ring of Mn(F ) . More explicitely, elements of TR(t
(α)
ij ) are linear combinations of terms of the form

tr(Ti1 · · ·Tia) · · · tr(Tj1 · · ·Tjb), 1 ≤ i1, . . . , jb ≤ k.

Keeping in mind the identification of elements of F [t
(α)
ij ] with functionals on Mn(F )k , it is not hard to see that

elements of TR(t
(α)
ij ) are invariant under conjugation from GLn(F ) . Namely, if φ ∈ TR(t

(α)
ij ) is considered as

a functional on Mn(F )k , then φ(A1, . . . , Ak) = φ(gA1g
−1, . . . , gAkg

−1) for all A1, . . . , Ak ∈ Mn(F ) and all

g ∈ GLn(F ) . The converse is a deeper theorem, namely that TR(t
(α)
ij ) gives all invariant maps from Mn(F )k

to F , polynomial in the entries.

2.2. Super traces
The infinite dimensional Grassmann algebra has a natural Z2 -grading in which G0 is spanned by products of
even numbers of generators and G1 is spanned by products of odd numbers of them. With respect to this
grading G is supercommutative, meaning that if a, b ∈ G are homogeneous of degrees i, j , then ab = (−1)ijba .

The matrix algebra Mn(G) inherits a Z2 -grading from G , which also permits the construction of a
supertrace map. For A ∈ Mn(G) , let str(A) be the sum of the diagonal elements. Then for all homgeneous
A,B ∈ Mn(G) of degrees i, j we have

str(AB) = (−1)ijstr(BA) and str(A)str(B) = (−1)ijstr(B)str(A). (2.1)

This, together with linearity is the general definition of a supertrace.

Now consider maps Mn(G)k to G . Let t
(α)
ij be the map that takes the k -tuple (A1, . . . , Ak) to the degree 0

part of the (i, j) entry of Aα , and let e
(α)
ij be the map that takes it to the degree 1 part. These maps generate

a supercommutative algebra F [t
(α)
ij , e

(α)
ij ] . Elements of this ring should be thought of as polynomial functions

on Mn(G)k , considered as a superalgebra; as opposed to x
(α)
ij = t

(α)
ij + e

(α)
ij which picks out the (i, j) entry of

the αth matrix, which is a polynomial map on Mn(G)k considered as an algebra only. In this section, we will
be interested in superalgebraic polynomial maps invariant under conjugation by GLn(F ) , namely ones coming

from F [t
(α)
ij , e

(α)
ij ] such that (A1, . . . , Ak) and (gA1g

−1, . . . , gAkg
−1) always take the same value. Again, there

is a notion of supertrace polynomials and a theorem that says that they give all invariant functions Mn(G) → G .
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Analogously to the classical case, we define generic homogenous matrices Tα = (t
(α)
ij ) and Eα = (e

(α)
ij ) .

Let F [Tα, Eα] be the algebra generated by T1, . . . , Tk and E1, . . . , Ek . There is a supertrace map from F [Tα, Eα]

to F [e
(α)
ij , t

(α)
ij ] . The image is not a ring, but it generates a ring STR[t

(α)
ij , e

(α)
ij ] . In [1], we proved that

STR[t
(α)
ij , e

(α)
ij ] , identified with polynomial maps on Mn(G)k , is precisely the set of GLn(F ) -invariant maps,

polynomial in the components of the entries. Before stating this formally, we now turn to the general definition
of supertace polynomials.

2.3. Supertrace polynomials

Let x1, . . . , xk be even (degree 0) variables and let y1, . . . , yk be odd (degree 1). The algebra they generate
F [xα, yα] is a Z2 -graded algebra, which we now use to construct the algebra of supertrace polynomials. This is
the supercommutative algebra generated by the symbols str(u) for u ∈ F [xα, yα] subject to the relations that
str is linear and

str(uv) = (−1)ijstr(vu) and str(u)str(v) = (−1)ijstr(v)str(u) (2.2)

for all u, v homogeneous of degrees i and j . We denote the algebra generated by these supertraces STR[xα, yα] .
More generally, any function on a superalgebra satisfying these properties will be said to be a supertrace.
Elements of F [xα, yα] are called supertrace polynomials and they satisfy the expected universal property. In
particular, given f(x1, . . . , yk) ∈ STR[xα, yα] we can substitute for the xα and yα the generic graded matrices

Tα and Eα . The resulting f(T1, . . . , Ek) is an element of F [t
(α)
ij , e

(α)
ij ] . Since the latter are identified with

functions Mn(G)k → G we can state the results of the previous section in this language.

Theorem 2.1 The space of GLn(F )-invariant functions Mn(G)k → G , polynomial in the components of the
entries equals the space of evaluations of supertrace polynomials on the generic graded matrices, i.e. the space
of all f(T1, . . . , Ek) , where f(x1, . . . , yk) is a supertrace polynomial.

Before turning to the situation studied by Domokos, we will be so self-serving as to mention that in [2]
we found the GL(G) invariants of Mn(G)k , in case the reader is interested.

3. The counterexample
3.1. Volichenko’s polynomials

Let F [ti, ei] be a free supercommuative algebra in which the ti are commuting, degree 0 elements and the ei

are anticommuting, degree 1 elements. The subalgebra F [ti + ei] generated by the sums ti + ei is a universal
p.i. algebra for the Grassmann algebra G in the sense it satisfies all of the polynomial identities of G and
that given any elements ai ∈ G there is a unique homomorphism F [ti + ei] → G that takes each ti + ei to
ai . Volichenko characterized F [ti + ei] as a subalgebra of F [ti, ei] using two maps from F [ti, ei] to itself.
One is π1 , the projection to the degree one component. The other is the unique superderivation δ such that
δ(ti) = ei and δ(ei) = 0 . A superderivation is an F -linear map that satisfies δ(ab) = δ(a)b + (−1)αaδ(b) for
all a homogeneous of degree α and for all b . Note that

π1(ti + ei) = δ(ti + ei) = ei.

Volichenko proved that this equality characterizes elements of F [ti + ei] .
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Theorem 3.1 (Volichenko) u ∈ F [ti, ei] lies in the subalgebra F [ti + ei] if and only if π1(u) = δ(u) .

Volichenko’s theorem can be found in [6]. A summary can also be found in Appendix 3 of [4].

This theorem will be important for us in the case that the variables come from the alphabets {t(α)ij } and

{e(α)ij } . These variables generate the functions Mn(G) polynomial in the graded components of the entries, and

the subalgebra generated by the sums t
(α)
ij + e

(α)
ij , with all indices the same, generate the functions polynomial

in the entries themselves, so it is important to have a critereon to tell when an element of F [t
(α)
ij , e

(α)
ij ] lies in

F [t
(α)
ij + e

(α)
ij ] .

The key tool is to generalize Volichenko’s functions to the generic super algebras F [xα, yα] and STR[xα, yα] .
Since each is Z2 -graded there is no problem in defining π1 to be the projection onto the odd components. On
F [xα, yα] , we can define δ to be the superderivation that takes each xα to yα and each yα to zero. To extend
this map to the supertrace algebra, we use δ(str(u)) = str(δ(u)) . That they are well defined on STR(xα, yα)

follows from the definition of a superderivation and the relations (2.2). We let the interested reader have the
fun of checking this. We also will need the fact that δ2 = 0 which we now prove.

Lemma 3.2 The superderivation δ has square zero on both F [xα, yα] and STR(xα, yα) .

Proof
By linearity, it suffices to prove that δ2 is zero on monomials in F [xα, yα] and supertrace monomials

in STR(xα, yα) , and we use induction on the degree, the case of degree one being trivial. First consider a
monomial in F [xα, yα] . If the degree in every xα is zero, then δ automatically sends it to zero and so we can
dismiss this case. Let uxiv be a monomial in which u ∈ F [yα] has degree a . Then

δ(δ(uxiv)) = δ((−1)auyiv) + δ((−1)auxiδ(v))

= (−1)α(−1)a+1uyiδ(v) + (−1)a(−1)auyiδ(v) + (−1)a(−1)auxiδ
2(v)

The first two terms cancel and the third will be zero by the induction hypothesis.
For the STR(xα, yα) , again δ will vanish on monomials unless they have at least one element xα , and to

save notation we will take α = 1 and take the monomial to be str(x1u)v where u is a monomial in F [xα, yα]

of degree a in the odd variables, and v is a monomial in STR(xα, yα) . We first compute

δ(str(x1u)v) = str(y1u)v + str(x1δ(u))v + (−1)astr(x1u)δ(v),

and then we compute δ of each of the three terms on the right. The first term is

δ(str(y1u)v) = −str(y1δ(u))v + (−1)a+1str(y1u)δ(v).

The second term is

δ(str(x1δ(u))v) = str(y1δ(u))v + str(x1δ
2(u))v + (−1)a+1str(x1δ(u))δ(v)

= str(y1δ(u))v + (−1)a+1str(x1δ(u))δ(v)
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And the third term is (−1)aδ(str(x1u)δ(v)) which equals

(−1)astr(y1u)δ(v) + (−1)astr(x1δ(u))δ(v) + (−1)a(−1)astr(x1u)δ
2(v)

= (−1)astr(y1u)δ(v) + (−1)astr(x1δ(u))δ(v)

It is now easy to see that all the terms cancel. 2

We let T1, . . . , Tk, E1, . . . , Ek be generic n × n matrices, the former in t
(α)
ij and the latter in e

(α)
ij , as

in the previous section. Also let STR(Tα, Eα) ⊂ F [t
(α)
ij , e

(α)
ij ] the space of all specializations of elements of

STR(xα, yα) via xα 7→ Tα and yα 7→ Eα . The following two diagrams commute

STR(xα, yα)
δ,π1−−−−→ STR(xα, yα)y y

F [t
(α)
ij , e

(α)
ij ]

δ,π1−−−−→ F [t
(α)
ij , e

(α)
ij ]

Honoring Volichenko, we define V [xα, yα] , and V [t
(α)
ij , e

(α)
ij ] to be the elements in STR[xα, yα] and F [t

(α)
ij , e

(α)
ij ] ,

respectively, for which π1(u) = δ(u) and call them Volichenko polynomials and supertrace Volichenko polynomi-
als. Because of the commuting diagram, if f(x1, . . . , yk) is in V (xα, yα) , then the specialization f(T1, . . . , Ek)

will be in V (t
(α)
ij , e

(α)
ij ) . Here is a partial converse.

Lemma 3.3 Let f(x1, . . . , xk, y1, . . . , yk) ∈ STR(xα, yα) be such that the specialization f(T1, . . . , Ek) is an

element of V (t
(α)
ij , e

(α)
ij ) . Then f equals g(T1, . . . , Ek) for some g(x1, . . . , yk) in V (xα, yα)

Proof Setting f̄ := f(T1, . . . , Ek), we have f̄ = f̄0 + f̄1, and

f̄1 = π(f̄) = δ(f̄) = δ(f̄0) + δ(f̄1).

It follows that
f̄1 = δ(f̄0),

since δ(f̄1) is even or zero. Take now g := f0 + δ(f0). Clearly g0 = f0 and g1 = δ(f0) = δ(g0) , implying by
Lemma 3 that

π(g) = g1 = δ(g0) + δ2(g0) = δ(g0 + δ(g0)) = δ(g).

So g is a Volicenko element, and

g(T1, . . . , Ek) = (f0 + δ(f0))(T1, . . . , Ek)

= f0(T1, . . . , Ek) + δ(f0(T1, . . . , Ek))

= f̄0 + δ(f̄0)

= f̄0 + f̄1

which equals f(T1, . . . , Ek) . 2
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Combining Theorem 2.1 with Lemma 3.3, we can identify the GLn(F ) -invariant polynomial functions on
Mn(G)k . The former says that all invariant functions Mn(G)k → G which are polynomial in the homogeneous
components of the entries come from supertrace polynomials, STR(xα, yα) . This, of course, includes functions

polynomial in the entries themselves. And Lemma 3.3 identifies which elements in STR(t
(α)
ij , e

(α)
ij ) are such,

namely, specializations of Volichenko polynomials. Combining, we get this description of the invariant functions
on Mn(G) .

Theorem 3.4 The GLn(F )-invariant functions on Mn(G)k , polynomial in the entries, are the polynomials of
the form f(T1, . . . , Ek) where f ∈ V (xα, yα) is a supertrace Volichenko polynomial.

Proof By Theorem 2.1 an invariant function satisfying the weaker condition that it is polynomial in the com-

ponents of the entries must be of the form f(T1, . . . , Ek) , for some supertrace polynomial f ∈ STR(x
(α)
ij , y

(α)
ij ) .

By the previous lemma such a function will be polynomial in the entries themselves precisely when f is a
Volichenko polynomial. 2

3.2. The counterexample

Using Theorem 3.4, we can construct a GLn(F ) -invariant function Mn(G) → G , polynomial in the entries, but
not in the trace ring, for all n ≥ 3 . Let Φ : Mn(G) → G be the function str(T1E

2
1 + E3

1) . Since δ(T1) = E1

and δ(E1) = 0 it follows that δ(str(T1E
2
1 + E3

1)) = 0 and so by Lemma 3.3, Φ is a polynomial function in
the entries. Alternately, if A = (aij) ∈ Mn(G) the reader can verify that Φ(A) = 1

2

∑
i,j,k aij [ajk, aki] proving

directly that Φ is polynomial in the entries. Finally, we prove that Φ is not a trace map.
In [3], Domokos studied the function Mn(G) → G which sends a matrix to the sum of its diagonal

matrix. In keeping with that paper, we will call this map a trace and denote it tr although it does not satisfy
tr(ab) = tr(ba) . It might be of interest to investigate the general properties of this map and put it in a more
general context, but that is not our concern here.

Theorem 3.5 The map Φ : Mn(G) → G is polynomial in the entries, invariant under conjugation by GLn(F )

but is not a trace map.

Proof It remains only to show that Φ is not a trace map. Since it is degree 3, if it were a trace map we would
have

Φ(x) = Atr(x)3 +Btr(x2)tr(x) + Ctr(x)tr(x2) +Dtr(x3).

Taking x of degree 0, we get Φ(x) = 0 and so the left hand side of the equation is a trace identity for Mn(F ) .
It follows from the Razmyslov-Procesi theory that there is no such nontrivial identity. On a more elementary
level, taking x = e12 + e23 + e31 we have tr(x)3 = 3 but tr(x) = tr(x2) = 0 and so D = 0 . Also, taking
x to be a matrix with nonzero trace whose square has trace 0 will give A = 0 . One such example would be
e11+3e22+5e23−e32 . And, taking x = e11 gives B = −C implying that Φ(x) = B(tr(x2)tr(x)− tr(x)tr(x2)) .
On the other hand, take x = αe12 + βe23 + γe31 , where α, β, γ are degree one elements of G with nonzero
product. Then Φ(x) = tr(x3) = 3αβγ 6= 0 whereas tr(x2)tr(x)− tr(x)tr(x2) equals 0. 2
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