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Abstract: We show how to compute the explicit expansion of the plethysm p2[sλ] of the power symmetric function p2

and the Schur function sλ , where λ has either two rows or two columns, via the well known Littlewood–Richardson
coefficients which occur in the decomposition of s2λ .
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1. Introduction
Schur functions are symmetric polynomials introduced by Schur [15] as characters for irreducible polynomial
representations of the general linear group of invertible matrices and form a basis for the ring of symmetric
functions. Given two Schur functions sµ(x) and sλ(x) , where x = (x1, x2, . . .) is an infinite sequence of
variables, µ and λ are partitions of weight m and n , respectively, the plethysm sµ[sλ(x)] is the symmetric
function obtained by substituting the monomials of sλ(x) by the variables of sµ(x) . Littlewood [10] introduced
this operation in the context of the representations of the general linear group and showed that for any partition
µ of m ,

sµ[sλ(x)] =
∑

γ⊢mn

gγµ,λsγ(x)

where the sum runs over all partitions γ of mn and gγµ,λ are nonnegative integers.
The problem of computing the coefficients gγµ,λ is one of the fundamental open problems in the theory

of symmetric functions and has proved to be very difficult. Essentially there are explicit formulas for gγµ,λ in a
few special cases.
We say that the plethysm sµ[sλ(x)] is multiplicity-free if every coefficient in the resulting Schur function
expansion is 0,+1 .
A well known example of multiplicity-free plethysm was given by Littlewood in [11], where he proved the
following remarkably simple formulas:

s(2)[s(n)] =
∑

γ=(k,l)⊢2n
k,l even

sγ
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s(12)[s(n)] =
∑

γ=(k,l)⊢2n
k,l odd

sγ .

Later on, Carbonara, Remmel and Yang (see [2, 3]) generalized Littlewood’s formulas by replacing the
Schur function of a one row shape (n) by a Schur function of an arbitrary hook shape s(1a,b) and derived ex-
plicit formulas for the Schur function expansion of the multiplicity-free plethysms s(2)[s(1a,b)] and s(12)[s(1a,b)] .
Other examples of multiplicity-free plethysms are s(2)[sλ] and s(12)[sλ] where sλ is the Schur function indexed
by a rectangular partition. In fact, in case λ = (nk) is a rectangle, surprisingly simple formulas for the Schur
function expansion of the plethysms s(2)[sλ] and s(12)[sλ] were shown in [5]. Also explicit formulas for the
expansion of the plethysms s(2)[sλ] and s(12)[sλ] , where λ has either two rows or two columns, have been
derived in [5] and subsequently reformulated in [8]. In 2020 Bessenrodt, Bowman and Paget [1] have classified
all multiplicity-free plethysms of Schur functions. In particular they have proved that s(2)[sλ] and s(12)[sλ] are
multiplicity-free if and only if λ is the partition (ab) , (ab−1, a+ 1) , (1, ab) , (a− 1, ab−1) or a hook. Their ap-
proach is based on Carré–Leclerc’s ”domino-Littlewood–Richardson tableaux” algorithm [6] for calculating the
decomposition of the products s(2)[sλ] and s(12)[sλ] . A different approach for computing the expansion s(2)[sλ]

and s(12)[sλ] makes use of the plethysm sλ[p2] = p2[sλ] of the Schur function sλ with the power symmetric
function p2(x) =

∑
i x

2
i and involve multiplication of Schur functions.

More precisely, the approach we use to calculate s(2)[sλ] and s(12)[sλ] is the following. First we expand s(2)

and s(12) in terms of the power symmetric function: s(2) = 1
2 (p

2
1 + p2) and s(12) = 1

2 (p
2
1 − p2) . However,

p1[sλ] = sλ so that p21[sλ] = s2λ .

Thus,

s(2)[sλ] =
1

2
(s2λ + p2[sλ])

s(12)[sλ] =
1

2
(s2λ − p2[sλ]).

If λ is a partition of n , then p2[sλ] =
∑

γ⊢2n c
γ
λsγ , where the sum runs over all partitions γ of 2n and

the coefficients cγλ are integers (see [7]). We say that the plethysm p2[sλ] of the power symmetric function p2

and the Schur function sλ is multiplicity-free if every coefficient in the resulting Schur function expansion is
0,+1,−1 . The multiplicity-free plethysms p2[sλ] have been studied in [4]. We would like to point out that,
for those partitions λ such that s(2)[sλ] and s(12)[sλ] are multiplicity-free, i.e. (ab) , (ab−1, a + 1) , (1, ab) ,
(a− 1, ab−1) or a hook, also p2[sλ] is multiplicity-free and s2λ has maximal multiplicity 2 .
Here we will show how to compute the explicit expansion of the plethysm p2[sλ] of the power symmetric function
p2 and the Schur function sλ , where λ has either two rows or two columns, directly from the expansion of s2λ

which can be done without too much difficulty via one of the existing versions of the Littlewood–Richardson
rule [12]. For the history of the rule, we refer the reader to [16, pp. 438].

2. Preliminaries
Throughout this paper, by partition λ of a positive integer n , denoted by λ ⊢ n , we mean a sequence of
nonnegative integers λ = (λ1, λ2, . . . , λk) such that
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• λ1 ≤ λ2 ≤ . . . ≤ λk ;

• λ1 + λ2 + . . .+ λk = n.

Each λi is called a part of λ . The length of λ , denoted by l(λ) = k is the number of parts of λ and |λ| , the
sum of entries, is called the weight of λ . We will also use the notation λ = (1m1 , 2m2 , . . . , nmn) to mean that
λ has m1 parts of size 1 , m2 parts of size 2 and so on. The conjugate partition, λ′ , is the partition obtained
by interchanging the rows and columns of λ . Going forward, we require the following terminology. We call the
partition λ of n linear if λ = (n) or λ = (1n) , a rectangle if λ is of the form λ = (ar) for some a, r ≥ 1 . A
hook (or proper hook) is a partition of the form (1n−a, a) . By a near rectangle we mean a partition λ obtained
from a rectangle by adding a single row or column.
Given a partition λ = (λ1, λ2, . . . , λr) , the diagram of λ is the collection of left-justified boxes (called cells) such
that there are λi boxes in the ith row from the top. This is known as the English convention for the diagram
of a partition. The French convention places λi left-justified boxes in the ith row from the bottom. In this
paper we will follow the French convention and we will interchangeably use greek letters to denote partitions or
diagrams.
Let Λn denote the space of homogeneous symmetric functions of degree n , sλ(x) the Schur function and
pλ(x) , the power symmetric function where λ ⊢ n and x = (x1, x2, . . .) is an infinite sequence of variables. For
u(x) ∈ Λn and γ ⊢ n , we use ⟨u(x), sγ(x)⟩ to denote the coefficient of sγ(x) in the expansion of u(x) . From
now on, we will write u instead of u(x) , for any u(x) ∈ Λn . Let u, v and w be symmetric functions. We will
make frequent use of the following properties for plethysm (see [9] or [13] ).
Distributivity:

• (u+ v)[w] = u[w] + v[w] and (uv)[w] = u[w]v[w] ;

commutativity with the power symmetric function:

• u[pk] = pk[u] ;

conjugation:

• (sµ[sλ])
′ = sµ[sλ′ ] if |λ| is even

• (sµ[sλ])
′ = sµ′ [sλ′ ] if |λ| is odd

where for any sum
∑

cνsν , (
∑

cνsν)
′ denotes the sum

∑
cνsν′ and ν′ is the conjugate partition of ν .

3. The computation of p2[s(a,b)]

Let λ and µ partitions of weight n and m , respectively.
The famous Littlewood–Richardson rule [12] gives a combinatorial interpretation for computing cγλ,µ where

sλsµ =
∑

γ⊢n+m

cγλ,µsγ

where the sum runs over all partitions γ of n+m and cγλ,µ are nonnegative integers.
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Let 0 ≤ a ≤ b , n = a+ b and λ = µ = (a, b) ⊢ n , then

s2(a,b) =
∑
γ⊢2n

cγ(a,b)sγ

where (a, b) ⊂ γ and cγ(a,b) = 0 if γ has more than four parts.

The coefficients cγ(a,b) have been explicitly computed in [5]. Given a partition γ = (γ1, γ2, γ3, γ4) ⊢ 2n

with four parts and 0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ γ4 , we say that γ1, γ2, γ3, γ4 have the same parity if either γ1, γ2, γ3, γ4

are all even or γ1, γ2, γ3, γ4 are all odd otherwise we say that γ1, γ2, γ3, γ4 have different parity. For example,
in the partition γ = (0, 2, 2, 6) ⊢ 10 , γ1 = 0 , γ2 = 2 , γ3 = 2 , γ4 = 6 have the same parity and also in the
partition γ = (1, 3, 3, 3) ⊢ 10 , γ1 = 1 , γ2 = γ3 = γ4 = 3 are all odd so they have the same parity. Instead the
four parts of µ = (0, 1, 2, 7) ⊢ 10 , have different parity.
We can derive the expansion p2[s(a,b)] directly from the expansion of s2(a,b) according to the following result:

Theorem 3.1 Let λ = (a, b) ⊢ n and s2(a,b) =
∑

γ⊢2n c
γ
(a,b)sγ .

Assume that P is the set of all the partitions γ = (γ1, γ2, γ3, γ4) ⊢ 2n such that cγ(a,b) is odd, A is the set

of partitions γ ∈ P where γ1, γ2, γ3, γ4 have the same parity and B is the set of partitions γ ∈ P where
γ1, γ2, γ3, γ4 have different parity.

Then

p2[s(a,b)] =
∑
γ∈A

sγ −
∑
γ∈B

sγ .

Proof. Let s(2)[s(a,b)] =
∑

γ⊢2n g
γ
(a,b)sγ , where the gγ(a,b) are nonnegative integers. By [4], p2[s(a,b)] is

multiplicity free, i.e. every coefficient in the resulting Schur function expansion is 0, 1,−1 . Therefore, it
follows from the formula s(2)[s(a,b)] =

1
2 (s

2
(a,b) + p2[s(a,b)]) that if, for a given γ , cγ(a,b) = ⟨s2(a,b), sγ⟩ is even,

then the coefficient ⟨p2[s(a,b)], sγ⟩ must be zero and ⟨s(2)[s(a,b)], sγ⟩ =
cγ
(a,b)

2 . If cγ(a,b) = ⟨s2(a,b), sγ⟩ is odd then

the coefficient ⟨p2[s(a,b)], sγ⟩ is either 1 or −1 and ⟨s(2)[s(a,b)], sγ⟩ is either equal to cγ
(a,b)

+1

2 or to cγ
(a,b)

−1

2 .
Thus if cγ(a,b) is odd, in order to compute the coefficient ⟨s(2)[s(a,b)], sγ⟩ , we only need to determine the sign of

⟨p2[s(a,b)], sγ⟩ . This sign has been computed in [5] via the SXP-algorithm by Chen, Garsia, and Remmel [7].
Let P be the set of all the partitions γ = (γ1, γ2, γ3, γ4) ⊢ 2n such that cγ(a,b) is odd, A the set of partitions
γ ∈ P where γ1, γ2, γ3, γ4 have the same parity and B the set of partitions γ ∈ P where γ1, γ2, γ3, γ4 have
different parity, then by Theorem 5 of [5], it follows that:

p2[s(a,b)] =
∑
γ∈A

sγ −
∑
γ∈B

sγ .

Example 3.2 Let λ = (1, 2) ⊢ 3 . Then

s2(1,2) = s(2,4) + s(1,1,4) + s(3,3) + 2s(1,2,3) + s(1,1,1,3) + s(2,2,2) + s(1,1,2,2).

p2[s(1,2)] = s(2,4) − s(1,1,4) − s(3,3) + s(1,1,1,3) + s(2,2,2) − s(1,1,2,2).
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Example 3.3 Let λ = (2, 4) ⊢ 6 . Then

s2(2,4) = s(4,8) + s(1,3,8) + s(2,2,8) + s(5,7) + 2s(1,4,7) + 2s(2,3,7) + s(1,1,3,7) + s(1,2,2,7)+

+s(6,6) + 2s(1,5,6) + 3s(2,4,6) + s(1,1,4,6) + s(3,3,6) + 2s(1,2,3,6) + s(2,2,2,6) + s(2,5,5)+

+s(1,1,5,5) + 2s(3,4,5) + 2s(1,2,4,5,) + s(1,3,3,5) + s(2,2,3,5) + s(4,4,4) + 2s(1,3,4,4) + s(2,2,4,4).

p2[s(2,4)] = s(4,8) − s(1,3,8) + s(2,2,8) − s(5,7) + s(1,1,3,7) − s(1,2,2,7) + s(6,6) + s(2,4,6)

−s(1,1,4,6) − s(3,3,6) + s(2,2,2,6) − s(2,5,5) + s(1,1,5,5) + s(1,3,3,5) − s(2,2,3,5) + s(4,4,4) + s(2,2,4,4).

Example 3.4 Let λ = (2, 5) ⊢ 7 . Then

s2(2,5) = s(4,10) + s(1,3,10) + s(2,2,10) + s(5,9) + 2s(1,4,9) + 2s(2,3,9) + s(1,1,3,9) + s(1,2,2,9)+

+s(6,8) + 2s(1,5,8) + 3s(2,4,8) + s(1,1,4,8) + s(3,3,8) + 2s(1,2,3,8) + s(2,2,2,8) + s(7,7)+

+2s(1,6,7) + 3s(2,5,7) + s(1,1,5,7) + 2s(3,4,7) + 2s(1,2,4,7) + s(1,3,3,7) + s(2,2,3,7) + s(2,6,6)+

+s(1,1,6,6) + 2s(3,5,6) + 2s(1,2,5,6) + s(4,4,6) + s(1,3,4,6) + s(2,2,4,6) + s(4,5,5) + s(1,3,5,5) + s(2,2,5,5).

p2[s(2,5)] = s(4,10) − s(1,3,10) + s(2,2,10) − s(5,9) + s(1,1,3,9) − s(1,2,2,9) + s(6,8) + s(2,4,8)

−s(1,1,4,8) − s(3,3,8) + s(2,2,2,8) − s(7,7) − s(2,5,7) + s(1,1,5,7) + s(1,3,3,7) − s(2,2,3,7)+

+s(2,6,6) − s(1,1,6,6) + s(4,4,6) − s(1,3,4,6) + s(2,2,4,6) − s(4,5,5) + s(1,3,5,5) − s(2,2,5,5).

Example 3.5 Let λ = (3, 5) ⊢ 8 . Then

s2(3,5) = s(6,10) + s(1,5,10) + s(2,4,10) + s(3,3,10) + s(7,9) + 2s(1,6,9) + 2s(2,5,9) + s(1,1,5,9)

+2s(3,4,9) + s(1,2,4,9) + s(1,3,3,9) + s(8,8) + 2s(1,7,8) + 3s(2,6,8) + s(1,1,6,8) + 3s(3,5,8)

+2s(1,2,5,8) + s(4,4,8) + 2s(1,3,4,8) + s(2,2,4,8) + s(2,3,3,8) + s(2,7,7) + s(1,1,7,7) + 2s(3,6,7)

+2s(1,2,6,7) + 2s(4,5,7) + 3s(1,3,5,7) + s(2,2,5,7) + s(1,4,4,7) + 2s(2,3,4,7) + s(3,3,3,7) + s(4,6,6)

+s(1,3,6,6) + s(2,2,6,6) + s(5,5,6) + 2s(1,4,5,6) + 2s(2,3,5,6) + s(2,4,4,6) + s(3,3,4,6) + s(1,5,5,5)

+s(2,4,5,5) + s(3,3,5,5).

p2[s(3,5)] = s(6,10) − s(1,5,10) + s(2,4,10) − s(3,3,10) − s(7,9) + s(1,1,5,9) − s(1,2,4,9) + s(1,3,3,9)

+s(8,8) + s(2,6,8) − s(1,1,6,8) − s(3,5,8) + s(4,4,8) + s(2,2,4,8) − s(2,3,3,8) − s(2,7,7)

+s(1,1,7,7) + s(1,3,5,7) − s(2,2,5,7) − s(1,4,4,7) + s(3,3,3,7) + s(4,6,6) − s(1,3,6,6) + s(2,2,6,6) − s(5,5,6)

+s(2,4,4,6) − s(3,3,4,6) + s(1,5,5,5) − s(2,4,5,5) + s(3,3,5,5).
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Conjecture

The previous examples show that the products s2(2,4) , s2(2,5) and s2(3,5) have maximal multiplicity 3 . By

some computer calculation it looks like that the only partitions λ such that the products s2λ have maximal
multiplicity 3 are: (2, b) where b ≥ 4 , (b − 2, b) where b ≥ 5 and their conjugates (2, b)′ = (1b−2, 22) and
(b− 2, b)′ = (12, 2b−2) . In fact, it follows from Theorem 2 of [5], that if either λ = (2, b) or λ = (b− 2, b) , then
s2λ has maximal multiplicity 3 . Also, if we consider

s2(a,b) =
∑
γ⊢2n

cγ(a,b)sγ

by the conjugation symmetry of the Littlewood–Richardson coefficients [17], it follows that

s2(a,b)′ =
∑
γ′⊢2n

cγ
′

(a,b)′sγ′

where cγ
′

(a,b)′ = cγ(a,b) . Therefore s2λ has maximal multiplicity 3 also in the case λ = (2, b)′ or λ = (b− 2, b)′ . I

claim that there are no other partitons λ such that s2λ has maximal multiplicity 3 .

Corollary 3.6 Let λ = (n) ⊢ n . Then s2(n) =
∑n

i=0 s(n−i,n+i) and

s(2)[s(n)] =
∑

γ=(k,l)⊢2n
k,l even

sγ

s(12)[s(n)] =
∑

γ=(k,l)⊢2n
k,l odd

sγ .

Proof.
As a consequence of Theorem 3.1 , we get the classical formulas of Littlewood for the Schur function

expansions of the plethysms s(2)[s(n)] and s(12)[s(n)] . In fact, in the special case λ = (a, b) = (n) , then a = 0 ,
b = n and by Pieri’s rule [14] it follows that

s2(a,b) =
∑
γ⊢2n

cγ(a,b)sγ = s2(n) =

n∑
i=0

s(n−i,n+i).

Therefore the set P in Theorem 3.1 of all the partitions γ = (γ1, γ2, γ3, γ4) of 2n such that cγ(a,b) is odd

reduces to the set of partitions γ = (0, 0, γ3, γ4) ⊢ 2n such that cγ(a,b) is 1 . If we denote k = γ3 and l = γ4 ,

then, by Pieri’s rule, P reduces to the set of all the partitions (k, l) ⊢ 2n where either k, l are even or k, l are
odd. By Theorem 3.1 it follows

p2[s(n)] =
∑
γ∈A

sγ −
∑
γ∈B

sγ

and
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s2(n) =
∑
γ∈A

sγ +
∑
γ∈B

sγ

where A is the set of partitions (k, l) ∈ P where k, l are even and B is the set of partitions (k, l) ∈ P

where k, l are odd.
Thus, by

s(2)[s(n)] =
1

2
(s2(n) + p2[s(n)])

s(12)[s(n)] =
1

2
(s2(n) − p2[s(n)])

we get Littlewood’s formulas:

s(2)[s(n)] =
∑
γ∈A

sγ =
∑

γ=(k,l)⊢2n
k,l even

sγ

s(12)[s(n)] =
∑
γ∈B

sγ =
∑

γ=(k,l)⊢2n
k,l odd

sγ .

Example 3.7 Let n = 3 . Then
s2(3) = s(6) + s(1,5) + s(2,4) + s(3,3)

p2[s(3)] = s(6) + s(2,4) − s(1,5) − s(3,3)

s(2)[s(3)] = s(6) + s(2,4)

s(12)[s(3)] = s(1,5) + s(3,3) .

Example 3.8 Let n = 4 . Then
s2(4) = s(8) + s(1,7) + s(2,6) + s(3,5) + s(4,4)

p2[s(4)] = s(8) + s(2,6) + s(4,4) − s(3,5) − s(1,7)

s(2)[s(4)] = s(8) + s(2,6) + s(4,4)

s(12)[s(4)] = s(1,7) + s(3,5) .

Corollary 3.9 If λ ⊢ n and λ is (1, a) , (a−1, a) , (a, a) , s2λ =
∑

γ⊢2n c
γ
λsγ and P the set of all the partitions

γ = (γ1, γ2, γ3, γ4) ⊢ 2n such that cγλ is 1 , then

p2[sλ] =
∑
γ∈A

sγ −
∑
γ∈B

sγ

where A is the set of partitions γ ∈ P where γ1, γ2, γ3, γ4 have the same parity and B the set of partitions
γ ∈ P where γ1, γ2, γ3, γ4 have different parity.

Proof. In [1], it has been shown that, in case λ is either (1, a) or (a − 1, a) , s2λ has maximal multiplicity 2 .
Also by [17], if λ is (a, a) , s2λ is multiplicity-free. Therefore, by Theorem 3.1, the set P of all the partitions
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γ = (γ1, γ2, γ3, γ4) of 2n such that cγλ is odd reduces to the set of partitions γ = (γ1, γ2, γ3, γ4) of 2n such that
cγλ is 1 and now the corollary follows.

Example 3.10 Let λ = (2, 3) ⊢ 5 . Then

s2(2,3) = s(4,6) + s(1,3,6) + s(2,2,6) + s(5,5) + 2s(1,4,5) + 2s(2,3,5) + s(1,1,3,5) + s(1,2,2,5)

+s(2,4,4) + s(1,1,4,4) + s(3,3,4) + 2s(1,2,3,4) + s(2,2,2,4) + s(1,3,3,3) + s(2,2,3,3)

p2[s(2,3)] = s(4,6) − s(1,3,6) + s(2,2,6) − s(5,5) + s(1,1,3,5) − s(1,2,2,5)

+s(2,4,4) − s(1,1,4,4) − s(3,3,4) + s(2,2,2,4) + s(1,3,3,3) − s(2,2,3,3).

4. The computation of p2[s(1r,2t)]

In this section we derive formulas for the Schur function expansion of the plethysm p2[sλ] when λ has two
columns.

Proposition 4.1 Let λ ⊢ n , λ′ the conjugate partition of λ and p2[sλ] =
∑

γ⊢2n c
γ
λsγ . Then

• p2[sλ′ ] =
∑

γ′⊢2n c
γ
λsγ′ if |λ| is even

• p2[sλ′ ] =
∑

γ′⊢2n(−cγλ)sγ′ if |λ| is odd.

Proof. Since s(2)[sλ] =
1
2 (s

2
λ + p2[sλ]) and s(12)[sλ] =

1
2 (s

2
λ − p2[sλ]) , then

p2[sλ] = s(2)[sλ]− s(12)[sλ]

and
p2[sλ′ ] = s(2)[sλ′ ]− s(12)[sλ′ ].

Let s(2)[sλ] =
∑

γ⊢2n a
γ
λsγ and s(12)[sλ] =

∑
γ⊢2n b

γ
λsγ . Then, by the conjugation property:

• (sµ[sλ])
′ = sµ[sλ′ ] if |λ| is even

it follows that if, |λ| is even, (s(2)[sλ])
′ =

∑
γ⊢2n a

γ
λsγ′ = s(2)[sλ′ ] and (s(12)[sλ])

′ =
∑

γ⊢2n b
γ
λsγ′ = s(12)[sλ′ ] .

Since
p2[sλ] = s(2)[sλ]− s(12)[sλ] =

∑
γ⊢2n

aγλsγ −
∑
γ′⊢2n

bγλsγ =
∑
γ′⊢2n

cγλsγ

in case |λ| is even we get

p2[sλ′ ] = s(2)[sλ′ ]− s(12)[sλ′ ] =
∑
γ′⊢2n

aγλsγ′ −
∑
γ′⊢2n

bγλsγ′ =
∑
γ′⊢2n

cγλsγ′ .

In case |λ| is odd we have to consider the conjugation property:

• (sµ[sλ])
′ = sµ′ [sλ′ ] if |λ| is odd
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Therefore, in case µ = 2 and |λ| is odd,

(s(2)[sλ])
′ = s(12)[sλ′ ]

(s(12)[sλ])
′ = s(2)[sλ′ ]

and consequently

p2[sλ′ ] = s(2)[sλ′ ]− s(12)[sλ′ ] = s(12)[sλ′ ]− s(2)[sλ′ ] =
∑
γ′⊢2n

bγλsγ′ −
∑
γ′⊢2n

aγλsγ′ =
∑
γ′⊢2n

(−cγλ)sγ′ .

Corollary 4.2 Let λ = (a, b) ⊢ n , λ′ the conjugate partition of λ , p2[s(a,b)] =
∑

γ⊢2n c
γ
λsγ . Then

• p2[s(1b−a,2a)] =
∑

γ′⊢2n c
γ
λsγ′ if |λ| is even

• p2[s(1b−a,2a)] =
∑

γ′⊢2n(−cγλ)sγ′ if |λ| is odd.

Proof. In case λ = (a, b) ⊢ n , the conjugate partition λ′ is equal to (1b−a, 2a) and now the Corollary follows
from Proposition 4.1.

Corollary 4.3 Let λ = (a, b) ⊢ n , λ′ the conjugate partition of λ , s2(a,b) =
∑

γ⊢2n c
γ
(a,b)sγ . Then

s2(1b−a,2a) =
∑
γ′⊢2n

cγ(a,b)sγ′

Proof.
Since s(2)[sλ] =

1
2 (s

2
λ + p2[sλ]) and s(12)[sλ] =

1
2 (s

2
λ − p2[sλ]) , then

s2λ = s(2)[sλ] + s(12)[sλ].

Similarly as in Proposition 4.1 we can get the conjugation symmetry of the Littlewood–Richardson coefficients

which implies that if s2λ =
∑

γ⊢2n c
γ
λsγ then s2λ′ =

∑
γ′⊢2n c

γ′

λ′sγ′ where cγ
′

λ′ = cγλ . Therefore in case λ = (a, b) ,

the conjugate partition λ′ is equal to (1b−a, 2a) and

s2(1b−a,2a) =
∑
γ′⊢2n

cγ(a,b)sγ′ .

Example 4.4 In case λ = (2, 3) ⊢ 5 , then |λ| is odd. By Example 3.10, Corollaries 4.2 and 4.3 we get:

s2(1,22) = s2(2,3)′ = s(4,6)′ + s(1,3,6)′ + s(2,2,6)′ + s(5,5)′ + 2s(1,4,5)′ + 2s(2,3,5)′ + s(1,1,3,5)′ + s(1,2,2,5)′

+s(2,4,4)′ + s(1,1,4,4)′ + s(3,3,4)′ + 2s(1,2,3,4)′ + s(2,2,2,4)′ + s(1,3,3,3)′ + s(2,2,3,3)′ =

= s(12,24) + s(13,22,3) + s(14,32) + s(25) + 2s(1,23,3) + 2s(12,2,32) + s(12,22,4) + s(13,3,4)

+s(22,32) + s(23,4) + s(1,33) + 2s(1,2,3,4) + s(12,42) + s(32,4) + s(2,42).
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p2[s(1,22)] = p2[s(2,3)′ ] = −s(4,6)′ + s(1,3,6)′ − s(2,2,6)′ + s(5,5)′ − s(1,1,3,5)′ + s(1,2,2,5)′ − s(2,4,4)′+

+s(1,1,4,4)′ + s(3,3,4)′ − s(2,2,2,4)′ − s(1,3,3,3)′ + s(2,2,3,3)′ =

= −s(12,24) + s(13,22,3) − s(14,32) + s(25) − s(12,22,4) + s(13,3,4)

−s(22,32) + s(23,4) + s(1,33) − s(12,42) − s(32,4) + s(2,42).
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