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Abstract: Let (K, v) be a Henselian discrete valued field with residue field K̂ of characteristic q ≥ 0 , and Brdp(K)

be the Brauer p -dimension of K , for each prime p . The present paper shows that if p = q , then Brdp(K) ≤ 1 if and

only if K̂ is a p -quasilocal field and the degree [K̂ : K̂p] is ≤ p . This complements our earlier result that, in case p ̸= q ,

we have Brdp(K) ≤ 1 if and only if K̂ is p -quasilocal and Brdp(K̂) ≤ 1 .
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1. Introduction
Let E be a field, Esep its separable closure, Br(E) the Brauer group of E , s(E) the class of associative finite-
dimensional central simple algebras over E , and d(E) the subclass of division algebras D ∈ s(E) . For each
A ∈ s(E) , let deg(A) , ind(A) and exp(A) be the degree, the Schur index and the exponent of A , respectively. It
is well-known (cf. [28], Sect. 14.4) that exp(A) divides ind(A) and shares with it the same set of prime divisors;
also, ind(A) | deg(A) , and deg(A) = ind(A) if and only if A ∈ d(E) . Note that ind(B1⊗EB2) = ind(B1)ind(B2)

if B1, B2 ∈ s(E) and g.c.d.{ind(B1), ind(B2)} = 1 ; equivalently, B′
1⊗EB

′
2 ∈ d(E) in case B′

j ∈ d(E) , j = 1, 2 ,
and g.c.d.{deg(B′

1),deg(B
′
2)} = 1 (see [28], Sect. 13.4). Since Br(E) is an abelian torsion group and ind(A) ,

exp(A) are invariants both of A and its equivalence class [A] ∈ Br(E) , these results reduce the study of the
restrictions on the pairs ind(A) , exp(A) , A ∈ s(E) , to the special case of p -primary pairs, for an arbitrary fixed
prime p . The Brauer p -dimensions Brdp(E) , p ∈ P , where P is the set of prime numbers, contain essential
information on these restrictions. We say that Brdp(E) = n < ∞ , for a given p ∈ P , if n is the least integer
≥ 0 , for which ind(Ap) | exp(Ap)

n whenever Ap ∈ s(E) and [Ap] lies in the p -component Br(E)p of Br(E) ; if
no such n exists, we put Brdp(E) = ∞ . For instance, Brdp(E) ≤ 1 , for all p ∈ P , if and only if E is a stable
field, i.e. deg(D) = exp(D) , for each D ∈ d(E) ; Brdp′(E) = 0 , for some p′ ∈ P , if and only if Br(E)p′ = {0} .
The absolute Brauer p -dimension abrdp(E) of E is defined to be the supremum of Brdp(R) : R ∈ Fe(E) , where
Fe(E) is the set of finite extensions of E in Esep . We have abrdp(E) ≤ 1 , p ∈ P , if E is an absolutely stable
field, i.e. its finite extensions are stable fields. Important fields of this kind have been exhibited by class field
theory and the theory of algebraic surfaces, which shows that Brdp(Φ) = abrdp(Φ) = 1 , p ∈ P , if Φ is a global
or local field (see, e.g., [29], (31.4) and (32.19)), or a finitely-generated extension of transcendence degree 2 over
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an algebraically closed field Φ0 [22, 24].
Similarly to other topics in the theory of central simple algebras and Brauer groups of fields (see, e.g.,

[32], Chaps. 9-12), the study of the sequence Brdp(E), abrdp(E) , p ∈ P , brings useful general results if it
restricts at one point or another to certain classes of Henselian (valued) fields or other suitably chosen special
fields. The restriction on E allows to find formulae for Brdp(E) and abrdp(E) and to use them for constructing
fields E′ with prescribed sequences Brdp(E

′), abrdp(E
′) , p ∈ P [13]. This, in turn, provides new information

on the behaviour of index-exponent relations under finitely-generated field extensions (see, e.g., the answer to
[4], Problem 4.4, given in [10, 11], or else [13], Corollary 5.6 and [11], Remark 5.5, for the ground fields in a
sequence of examples disproving Conjecture 2 of [15]). The chosen approach also contributes to better knowledge
of Brauer groups of absolutely stable fields, viewed as abstract abelian torsion groups [7], Corollary 4.7. More
recently, it has been shown in [6] that some absolutely stable fields (with absolute stability proved in [7]) admit
noncyclic division algebras of degree 2ν , for every integer ν ≥ 2 .

A nontrivial Krull valuation v of a field K is called Henselian, if it extends uniquely, up-to equivalence,
to a valuation vL on each algebraic extension L of K . The stability condition on a Henselian (valued) field

(K0, v0) with a residue field K̂0 of zero characteristic has been fully characterized in [7] by conditions on K̂0

and the value group v0(K0) . Also, [12], Proposition 3.5 and results of [7] characterize maximally complete

stable fields (Kq, vq) with K̂q perfect and char(Kq) = q > 0 . For example, by [7], Corollary 4.5 (ii), the
iterated formal (Laurent) power series field J((X))((Y )) in 2 variables over a field J is absolutely stable if and
only if J is perfect, and the absolute Galois group GJ := G(Jsep/J) is metabelian of cohomological dimension
cd(GJ) ≤ 1 , in the sense of [31]. By Lemma 1.2 of [8], GJ possesses the noted properties if and only if its Sylow
pro-p -groups are topologically isomorphic to the additive group Zp of p -adic integers whenever p ∈ P and
the cohomological p -dimension cdp(GJ) (in the sense of [31]) is nonzero. Therefore, J((X))((Y )) is absolutely
stable if the field J is quasifinite, i.e., perfect with GJ isomorphic to the topological group product

∏
p∈P Zp

(see also Remark 5.3 (ii)).
The present paper can be viewed as a continuation of [7]. It completes the characterization of Henselian

discrete valued (abbr, HDV) stable fields by properties of their residue fields. Combined with [27], Theorem 2,

it determines Brdp(K) in case (K, v) is an HDV-field, char(K̂) = p > 0 , and the degree [K̂ : K̂p] is at most

equal to p , where K̂p = {α̂p : α̂ ∈ K̂} .

2. Statements of the main results

It is known that Brdp(K̂) ≤ Brdp(K) , p ∈ P , for any Henselian field (K, v) (see Theorem 2.8 of [20], or Lemma

3.3 below). Therefore, K̂ is a stable field, provided that so is K . The problem of characterizing Henselian
stable fields with p -indivisible value groups is related to the study of p -quasilocal fields. By a p -quasilocal field,
for some p ∈ P , we mean a field E satisfying one of the following two conditions: Brdp(E) = 0 or E(p) = E ,
where E(p) is the maximal p -extension of E (in Esep ); Brdp(E) ̸= 0 , E(p) ̸= E , and every extension of E in
E(p) of degree p is embeddable as an E -subalgebra in each Dp ∈ d(E) of degree p . We say that the field E is
quasilocal if its finite extensions are p -quasilocal fields for every p ∈ P . The class of quasilocal fields contains
local fields; in addition, it is essentially larger than the class of HDV-fields with quasifinite residue fields (cf.
[30], Ch. XIII, Sect. 3, and [9], Remark 3.7). As to global fields, they are not p -quasilocal, for any p ∈ P ; if
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F is a global field, then one obtains from the Grunwald–Wang theorem and the description of Br(F ) by class
field theory (see [3], Ch. X, and [34], Ch. XIII, Sections 3 and 6, respectively) that for any p ∈ P and each
∆p ∈ d(F ) with deg(∆p) = p , there exist infinitely many extensions Φp of F in F (p) , such that [Φp : F ] = p

and ∆p ⊗F Φp ∈ d(Φp) . Note also that quasilocal fields are absolutely stable [9], Proposition 2.3. This is
implied by the fact that a p -quasilocal field E satisfies Brdp(E) ≤ 1 in the following cases: (i) E(p) ̸= E [9],
Theorem 3.1 (ii); (ii) E contains a primitive p -th root of unity; (iii) char(E) = p . Moreover, in cases (ii) and
(iii), the assumption that Brdp(E) ̸= 0 ensures that E(p) ̸= E (see [25], (16.2), and [1], Ch. VII, Theorem 28).
Henselian stable fields and p -quasilocal fields are related by the following results:

Proposition 2.1 Let (K, v) be a Henselian field and p be a prime. Then,

(a) K̂ is a p-quasilocal field if v(K) ̸= pv(K) and Brdp(K) ≤ 1 .

(b) Brdp(K) ≤ 1 , provided that K̂ is p-quasilocal, p ̸= char(K̂) , Brdp(K̂) ≤ 1 , and the quotient group
v(K)/pv(K) has order p .

Proposition 2.1 (a) follows from [9], Proposition 2.1 (with its proof). Proposition 2.1 (b) is a special case of [12],
Theorem 4.1; it can also be deduced from [7], Theorem 3.1 (a). Using Proposition 2.1 (a), (b) and well-known
results about the reduction of Schur indices and exponents under a scalar extension of finite degree over the
centre (cf. [28], Sects. 13.4 and 14.4), one sees that the problem of characterizing stable HDV-fields reduces to
the one of finding a necessary and sufficient condition that Brdp(K) ≤ 1 , where (K, v) is an HDV-field with

char(K̂) = p . The main result of [14], stated below, takes a step towards achieving this goal. It shows that if

Brdp(K) ≤ 1 , then [K̂ : K̂p] ≤ p (in case K contains a primitive p -th root of unity and char(K̂) = p , this has
been proved in [5], Section 4, and in [7], Section 2):

Proposition 2.2 Let (K, v) be an HDV-field with char(K̂) = p > 0 . Then:

(a) Brdp(K) is infinite if and only if K̂/K̂p is an infinite extension:

(b) Brdp(K) ≥ n if [K̂ : K̂p] = pn , for some n ∈ N .

When char(K̂) = p > 0 , the inequality [K̂ : K̂p] ≤ p holds if and only if K̂ is an almost perfect field,
i.e., its finite extensions are simple; perfect fields of any characteristic satisfy the condition on the right side
and, in this sense, are also almost perfect (see [23], Ch. V, Theorem 4.6 and Corollary 6.10). This allows us to
state the main results of the present paper as follows:

Theorem 2.3 Let (K, v) be an HDV-field with char(K̂) = p > 0 . Then Brdp(K) ≤ 1 if and only if K̂ is

p-quasilocal and almost perfect; the equality Brdp(K) = 0 holds if and only if K̂ is perfect and K̂(p) = K̂ .

Theorem 2.3 yields Brdp(K) = 1 in case K̂sep = K̂ and [K̂ : K̂p] = p . This result is contained in [35],
Proposition 2.1 (see also [5], Proposition 4.5), and it is used for proving the stated theorem in general.

Corollary 2.4 Assuming that (K, v) and p satisfy the conditions of Proposition 2.2, let [K̂ : K̂p] = p . Then

Brdp(K) = 2 unless K̂ is p-quasilocal.
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Corollary 2.4 follows from Theorem 2.3 and [27], Theorem 2. Theorem 2.3 and this corollary determine

Brdp(K) when (K, v) is HDV with char(K̂) = p and K̂ almost perfect. At the same time, Proposition 2.1
and Theorem 2.3 yield the following characterization of stable HDV-fields:

Corollary 2.5 Let (K, v) be an HDV-field. Then K is stable if and only if K̂ is almost perfect, stable, and
p-quasilocal for every p ∈ P .

It is presently unknown whether a field E is stable under the condition that it is p -quasilocal, for every
p ∈ P . In view of the above-noted facts on the Brauer p -dimensions of p -quasilocal fields, the stability of E
will be proved if the following open problem has an affirmative solution:

Problem 2.6 Let F be a field not containing a primitive p-th root of unity, for some p ∈ P different from
char(F ) . Find whether Brdp(F ) = 0 in case F (p) = F .

The basic notation, terminology, and conventions kept in this paper are standard and essentially the same
as in [23], [28], [20] and [9]. We refer the reader to [28], for the definition of a cyclic algebra over an arbitrary
field; the notions of an inertial algebra, an inertial lift, and a nicely semiramified (briefly, NSR) algebra over
a Henselian field are defined in [20]. As in [13], we suppose that, for any discrete valued field (K, v) , v(K) is
chosen to be a subgroup of the additive group Q of rational numbers. Throughout, Brauer groups and value
groups are written additively, Galois groups are viewed as profinite with respect to the Krull topology, and by
a profinite group homomorphism, we mean a continuous one. Given a field E , E∗ denotes its multiplicative
group, E∗n = {an : a ∈ E∗} , for each n ∈ N , and GE = G(Esep/E) is the absolute Galois group of E . For
any p ∈ P , we denote by pBr(E) the group {bp ∈ Br(E) : pbp = 0} and by rp(E) the rank of G(E(p)/E) as a
pro-p -group, i.e., the cardinality of any minimal system of generators of G(E(p)/E) as a topological group (we
put rp(E) = 0 if E(p) = E ). As usual, Br(E′/E) stands for the relative Brauer group of any field extension
E′/E (defined to be the kernel of the scalar extension map πE→E′ of Br(E) into Br(E′)); also, E′ is called a
splitting field of every A ∈ s(E) with [A] ∈ Br(E′/E) . We write I(E′/E) for the set of intermediate fields of
E′/E ; when E′/E is separable of finite degree [E′ : E] , N(E′/E) denotes the norm group of E′/E .

Here is an overview of the paper: Section 3 includes preliminaries on Henselian fields used in the sequel.
Theorem 2.3 is proved in Section 4. Absolutely stable HDV-fields are characterized in Section 5, where some
special fields of this kind are also presented. Specifically, we show that an m -dimensional local field Km (i.e., a
complete m -discretely valued field (see [33], [19], [37]) with a quasifinite m -th residue field) is absolutely stable,
if m ≤ 2 , and Km is not stable, otherwise. When char(Km) > 0 , this is contained in [7], Corollaries 4.5, 4.6.

3. Preliminaries
Let K be a field with a nontrivial valuation v , Ov(K) = {a ∈ K : v(a) ≥ 0} the valuation ring of (K, v) ,
Mv(K) = {µ ∈ K : v(µ) > 0} the maximal ideal of Ov(K) , Ov(K)∗ = {u ∈ K : v(u) = 0} the group of

units of Ov(K) , v(K) and K̂ = Ov(K)/Mv(K) the value group and the residue field of (K, v) , respectively.
For each γ ∈ v(K) , γ ≥ 0 , ∇γ(K) denotes the set {λ ∈ K : v(λ − 1) > γ} . Note that v is Henselian if the
following conditions hold: K is complete relative to the topology of v ; v(K) is an Archimedean group, i.e., it
embeds as an ordered subgroup in the additive group R of real numbers (cf. [23], Ch. XII, and see Lemma
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3.4 below). In order that v be Henselian, it is necessary and sufficient that any of the following two equivalent
conditions holds (cf. [18], Sect. 18.1, and [23], Ch. XII, Sect. 4):

(3.1) (a) Given a polynomial f(X) ∈ Ov(K)[X] and an element a ∈ Ov(K) , such that 2v(f ′(a)) <

v(f(a)) , where f ′ is the formal derivative of f , there is a zero c ∈ Ov(K) of f satisfying the equality
v(c− a) = v(f(a)/f ′(a)) ;

(b) For each normal extension Ω/K , v′(τ(µ)) = v′(µ) whenever µ ∈ Ω , v′ is a valuation of Ω extending
v , and τ is a K -automorphism of Ω .

When v is Henselian, so is vL , for every algebraic field extension L/K . In this case, we denote by

L̂ the residue field of (L, vL) , and put Ov(L) = OvL(L) , Mv(L) = MvL(L) and v(L) = vL(L) . Clearly,

L̂ is an algebraic extension of K̂ , and v(K) is an ordered subgroup of v(L) ; the index of v(K) in v(L) is

denoted by e(L/K) . By Ostrowski’s theorem, if [L : K] is finite, then [L̂ : K̂]e(L/K) divides [L : K] and

[L : K][L̂ : K̂]−1e(L/K)−1 has no divisor p ∈ P , p ̸= char(K̂) ; in particular, vL can be chosen so that v(L) be

an ordered subgroup of a fixed divisible hull of v(K) . We say that L/K is defectless, if [L : K] = [L̂ : K̂]e(L/K) .

The defectlessness of L/K is guaranteed, if char(K̂) ∤ [L : K] as well as in the following two cases:
(3.2) (a) If (K, v) is HDV and L/K is separable (see [18], Sect. 17.4);
(b) When (K, v) is a complete discrete valued field (cf. [23], Ch. XII, Proposition 6.1).
Assume as above that (K, v) is Henselian. We say that a finite extension R of K is inertial, if

[R : K] = [R̂ : K̂] and R̂/K̂ is separable; R/K is called totally ramified if e(R/K) = [R : K] . Inertial extensions
are separable and have the following properties (see [32], Theorem A.23):

Lemma 3.1 (a) An inertial extension R′/K is Galois if and only if R̂′/K̂ is Galois. When this holds, G(R′/K)

and G(R̂′/K̂) are canonically isomorphic.
(b) The compositum Kur of inertial extensions of K in Ksep is a Galois extension of K with G(Kur/K)

isomorphic to GK̂ . Finite extensions of K in Kur are inertial, and the natural map I(Kur/K) → I(K̂sep/K̂)

is bijective.
(c) The group N(I/K) includes ∇0(K) , for every inertial extension I/K .

The Henselian property of (K, v) guarantees that v extends on each D ∈ d(K) to a unique, up-to

equivalence, valuation vD (cf. [20], pp. 131-132; [32], Exercise 3.11). Put v(D) = vD(D) and let D̂ be

the residue division ring of (D, vD) . It is known that D̂ is a division K̂ -algebra, [D̂ : K̂] < ∞ , v(D) is
an ordered abelian group and v(K) is an ordered subgroup of v(D) of finite index e(D/K) . Moreover, by

Ostrowski-Draxl’s theorem [17], [D̂ : K̂]e(D/K) | [D : K] and [D : K][D̂ : K̂]−1e(D/K)−1 has no prime divisor

p ̸= char(K̂) . In addition, Proposition 2.2 of [33], states the following:

Lemma 3.2 Let (K, v) be an HDV-field and D ∈ d(K) . Then D/K is defectless, i.e. [D : K] = [D̂ : K̂]e(D/K) .

Next we state results on inertial and central K -algebras (contained in [20], Theorem 2.8), which are used for
studying the sequence Brdp(K) , p ∈ P :
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Lemma 3.3 Let (K, v) be a Henselian field. Then, the set IBr(K) = {[S′] ∈ Br(K) : S′ ∈ d(K) is inertial over

K} is a subgroup of Br(K) , and the natural map IBr(K) → Br(K̂) is an index-preserving group isomorphism;

Brdp(K̂) ≤ Brdp(K) , for all p ∈ P , and equality holds if Brdp(K̂) = ∞ .

The following lemma shows that a nontrivially valued field (K, v) with v(K) Archimedean is Henselian
if and only if K does not admit a separable proper extension in its completion Kv with respect to the topology
induced by v . This is a known consequence of basic properties of valuation prolongations on finite separable
extensions (cf. [23], Ch. XII, Sections 2, 3, and 6). When (K, v) is Henselian, the lemma characterizes finite
extensions of Kv in Kv,sep . As it seems to be difficult to find a standard reference to these results, we refer the
reader to [14], Lemma 3.1, for a proof of the lemma.

Lemma 3.4 Assume that (K, v) is a nontrivially valued field with v(K) Archimedean. Then, (K, v) is
Henselian if and only if K is separably closed in Kv . When (K, v) is Henselian, the following conditions
are fulfilled:

(a) Every L ∈ Fe(Kv) is Kv -isomorphic to L̃ ⊗K Kv and L̃v , where L̃ is the separable closure of K

in L . The extension L/Kv is Galois if and only if so is L̃/K ; in case this holds, G(L/Kv) and G(L̃/K) are
isomorphic.

(b) Ksep⊗K Kv is a field, and there exist canonical isomorphisms Ksep⊗K Kv
∼= Kv,sep and GK

∼= GKv
.

The proof of Theorem 2.3 relies on the following well-known results:

Proposition 3.5 Let (K, v) be an HDV-field, and v̄ the valuation of Kv continuously extending v . Then:
(a) The map πK→Kv

is an injective homomorphism preserving Schur indices and exponents (cf. [16],
Theorem 1), so Brdp′(K) ≤ Brdp′(Kv) , for every p′ ∈ P ;

(b) The valued field (Kv, v̄) is an immediate extension of (K, v) , i.e., it is a valued extension with

K̂v = K̂ and v̄(Kv) = v(K) (cf. [18], Theorem 9.3.2);

(c) If char(K) = p > 0 , [K̂ : K̂p] = pn , for some integer n ≥ 0 , and K/Kv is a finite extension,

then (K, v̄K) is a complete discrete valued field with [K : Kp] = pn+1 and [K̂ : K̂p] = pn (apply (3.2) (b), [5],
Lemma 2.12, and, for the completeness of (K, v̄K) , see [23], Ch. XII, Proposition 2.5).

At the end of this Section, we prove the latter assertion of Theorem 2.3. Let (K, v) be an HDV-field

with char(K̂) = p > 0 . Proposition 2.2 allows to consider only the case where K̂ is perfect. In this case,

Br(K̂)p = {0} (cf. [1], Ch. VII, Theorem 22), so Lemma 3.2 and [20], Lemma 5.14, imply that if rp(K̂) = 0 ,

then Br(K)p = {0} , i.e. Brdp(K) = 0 . Suppose that rp(K̂) > 0 . Then, there is an NSR-algebra ∆p ∈ d(K)

of degree p , whence Brdp(K) ≥ 1 . The inequality Brdp(K) ≤ 1 is known (see, e.g., [27], Corollary 2.5); it is
also a part of the next lemma which we prove for convenience of the reader.

Lemma 3.6 Assume that (K, v) is an HDV-field, such that K̂ is perfect, char(K̂) = p > 0 and rp(K̂) > 0 .
Then, every Dp ∈ d(K) of p-primary degree deg(Dp) ̸= 1 is an NSR-algebra over K with exp(Dp) = deg(Dp) .

Proof Take any K -algebra Dp ∈ d(K) , Dp ̸= K , and let deg(Dp) = pn . As K̂ is perfect, whence

Br(K̂)p = {0} , D̂p/K̂ is a separable field extension, so it is simple, which implies D̂p = D̂′
p and [D′

p : K] =
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[D̂p : K̂] divides pn , for some inertial extension D′
p of K included in Dp as a (commutative) K -subalgebra

(see [28], Sect. 13.1). Since v(K) is cyclic, it follows similarly that e(Dp/K) divides pn . Hence, by Lemma 3.2,

[D̂p : K̂] = e(Dp/K) = pn . Therefore, by [20], Corollary 6.10 (a result of Platonov and Yanchevskij) and the
cyclicity of the group v(Dp)/v(K) , pn | exp(Dp) , proving that exp(Dp) = pn . Finally, one obtains from [20],
Lemma 5.14, that [Dp] = [Np] , where Np ∈ d(K) is NSR. By Wedderburn’s structure theorem (see, e.g., [28],
Sect. 3.5), this means that Dp

∼= Np as K -algebras, so Lemma 3.6 is proved. 2

4. Proof of the main theorem
The purpose of this Section is to prove the former assertion of Theorem 2.3. Let (K, v) be an HDV-field with

char(K̂) = p . Using Propositions 2.1 (a), 2.2 and the latter assertion of Theorem 2.3, one sees that it suffices

to deduce the inequality Brdp(K) ≤ 1 , provided that [K̂ : K̂p] = p and K̂ is p -quasilocal. Proposition 3.5 (c)

and the equality [K̂ : K̂p] = p imply finite extensions of K̂ are almost perfect fields and K̂ has a unique, up-to

a K̂ -isomorphism, purely inseparable extension K̂n of degree pn , for each n ∈ N . Therefore, using [1], Ch.
VII, Theorem 32, one obtains the following:

(4.1) (a) Each D̃p ∈ d(K̂) with [D̃p] ∈ Br(K̂)p has a splitting field that is a purely inseparable extension

of K̂ of degree equal to exp(D̃p) ; in particular, deg(D̃p) = exp(D̃p) , i.e. Brdp(K̂) ≤ 1 ;

(b) If ∆̃p ∈ d(K̂) and exp(∆̃p) = p , then ∆̃p is a cyclic K̂ -algebra (cf. [28], Sect. 15.5);
(c) The inner group product Y ∗g∇0(Y ) includes Ov(K)∗ in case Y/K is a finite extension, [Y : K] =

[Ŷ : K̂] = g and Ŷ /K̂ is purely inseparable.
The proof of Theorem 2.3 also relies on the following lemma.

Lemma 4.1 Let (K, v) be an HDV-field with char(K̂) = p and [K̂ : K̂p] = p , and let Y/K be a field extension,

such that [Y : K] = [Ŷ : K̂] = p . Suppose that K̂ is p-quasilocal and Ŷ is normal over K̂ . Then, Br(Y/K)

includes the group pBr(K)∩ IBr(K) , and the homomorphism πK→Y : Br(K) → Br(Y ) maps Br(K)p ∩ IBr(K)

surjectively upon Br(Y )p ∩ IBr(Y ) .

Proof It follows from [9], Theorem 4.1, and Albert–Hochschild’s theorem (cf. [31], Ch. II, 2.2) that πK̂→Ŷ

maps Br(K̂)p surjectively upon Br(Ŷ )p . At the same time, we have Br(Ŷ /K̂) = pBr(K̂) , by [9], Theorem 4.1,

if Ŷ /K̂ is separable, and by (4.1) (a), when Ŷ /K̂ is inseparable. Note further that IBr(Y ) includes the

image of IBr(K) under πK→Y , and the natural maps rK→K̂ : IBr(K) → Br(K̂) and rY→Ŷ : IBr(Y ) → IBr(Ŷ ) ,
are index-preserving group isomorphisms (see [20], Theorems 5.6 and 2.8). Since (πK̂→Ŷ ◦ rK→K̂)([D]) =

(rY→Ŷ ◦ πK→Y )([D]) (in Br(Ŷ )) whenever D ∈ d(K) is inertial over K , this enables one to prove the latter
part of the assertion of Lemma 4.1, and the fact that ind(Dp ⊗K Y ) = deg(Dp)/p , for each Dp ∈ d(K) with
[Dp] ̸= 0 and [Dp] ∈ (Br(K)p ∩ IBr(K)) (the stated equality is also implied by (4.1), Lemma 3.1 and [28],
Section 15.1, Proposition b). In view of the Corollary in [28], Section 13.4, these results complete our proof. 2

Next we show that Theorem 2.3 will be proved, if we deduce the equality deg(∆) = p , assuming that
∆ ∈ d(K) and exp(∆) = p . It follows from Lemma 3.2 and [20], Proposition 1.7, that each D ∈ d(K) with

deg(D) = p possesses a maximal subfield Y satisfying the conditions of Lemma 4.1. Hence, Ŷ is p -quasilocal
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(cf. [9], Theorem 4.1 and Proposition 4.4), which enables one to obtain from the claimed property of ∆ , by
the method of proving [10], Lemma 4.1, that if ∆n ∈ d(K) and exp(∆n) = pn , then ∆n has a splitting field

Yn with [Yn : K] = pn , v(Yn) = v(K) and Ŷn ∈ I(Ŷ ′/K̂) , where Ŷ ′ is a perfect closure of K̂(p) . This result
gives the desired reduction. Since, by Merkur’ev’s theorem [26], Sect. 4, Theorem 2, each ∆ ∈ d(K) with
exp(∆) = p is Brauer equivalent to a tensor product of degree p algebras from d(K) , we need only prove that
if Dj ∈ d(K) and deg(Dj) = p , j = 1, 2 , then D1 ⊗K D2 /∈ d(K) . This can be deduced from the next lemma.

Lemma 4.2 Let (K, v) be an HDV-field with char(K̂) = p , K̂ p-quasilocal and [K̂ : K̂p] = p . Then
exp(∆) = p2 , for any ∆ ∈ d(K) of degree p2 .

Proof Let ∆ be a K -algebra satisfying the conditions of the lemma. As K̂ is almost perfect, this implies
p2 is divisible by the dimension of any commutative K̂ -subalgebra of ∆̂ . At the same time, it follows from
Lemma 3.2 and the cyclicity of v(∆) that e(∆/K) | p2 . Suppose first that e(∆/K) = 1 . Then [∆̂ : K̂] = p4 , by

Lemma 3.2, so the observation on commutative K̂ -subalgebras of ∆̂ indicates that ∆̂ ∈ d(K̂) and deg(∆̂) = p2 .

Applying [1], Ch. VII, Theorem 28, and [9], Theorem 3.1, one concludes that exp(∆̂) = p2 . It is now easily
obtained from [20], Theorems 2.8 and 2.9, that ∆/K is inertial and deg(∆) = exp(∆) , as claimed by Lemma
4.2.

Henceforth, we assume that e(∆/K) ̸= 1 . Our first goal is to prove that
(4.2) (a) If U is a central K -subalgebra of ∆ of degree p , then U is neither an inertial nor an NSR-algebra

over K ;
(b) If e(∆/K) = p , then totally ramified extensions of K of degree p are not embeddable in ∆ as

K -subalgebras.
The proof of (4.2) (a) relies on the double centralizer theorem (see [28], Section 12.7), which implies ∆ is
K -isomorphic to U ⊗K U ′ , for some U ′ ∈ d(K) with deg(U ′) = p . Suppose for a moment that U/K is inertial.
Applying (3.2) (a), Lemma 3.2 and [20], Theorem 2.8 and Proposition 1.7, one concludes that e(U ′/K) = p ,

Û ′/K̂ is a normal field extension of degree p , and U ′ contains as a K -subalgebra an extension Y of K with

Ŷ = Û ′ . Therefore, by Lemma 4.1, Y is embeddable in U as a K -subalgebra, which means that U⊗KY /∈ d(Y ) .
As ∆ ∈ d(K) and U⊗K Y is a K -subalgebra of ∆ , this is a contradiction proving that U/K cannot be inertial.
The non-existence of an NSR-subalgebra of ∆ of degree p is merely a consequence of (4.2) (b).

We turn to the proof of (4.2) (b), so we assume that e(∆/K) = p . Suppose that our assertion is false, i.e.,
∆ contains as a K -subalgebra a totally ramified extension T of K of degree p , and let W ′ be the centralizer
of T in ∆ . It is clear from the double centralizer theorem that W ′ ∈ d(T ) and deg(W ′) = p , and it follows

from Lemma 3.2 and the assumptions on ∆/K and T/K that [Ŵ ′ : T̂ ] = p2 . As T̂ = K̂ is almost perfect, each

commutative T̂ -subalgebra Θ̂′ of Ŵ ′ embeds as a T̂ -subalgebra in Θ̂ , for some commutative T -subalgebra
Θ of W ′ , so the noted facts show (similarly to the proof of the equality [D̂p : T̂ ] = deg(Dp) , in the setting of

Lemma 3.6) that [Θ̂′ : T̂ ] equals 1 or p . Thus, they prove that Ŵ ′ ∈ d(T̂ ) and deg(Ŵ ′) = p . Taking again

into account that T̂ = K̂ , and using [20], Theorem 2.8, one concludes that W ′ ∼= W ⊗K T as a T -algebra,

where W ∈ d(K) is an inertial lift of Ŵ ′ over K . This leads to the conclusion that W is embeddable in ∆ as
a K -subalgebra, which contradicts the nonexistence of inertial central K -subalgebras of ∆ of degree p . The
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obtained contradiction proves (4.2) (b) and completes the proof of (4.2) (a).

We continue with the proof of Lemma 4.2 in the case of e(∆/K) = p . Clearly, Lemma 3.2 yields [∆̂ : K̂] =

p3 , so the assumption that [K̂ : K̂p] = p implies ∆̂ is noncommutative. This means that [∆̂ : Z(∆̂)] = p2 and

[Z(∆̂) : K̂] = p , where Z(∆̂) is the centre of ∆̂ . First we prove that exp(∆) = p2 , under the extra hypothesis

that ∆ possesses a K -subalgebra ∆0 , such that [∆0 : K] = p3 and ∆̂0 is K̂ -isomorphic to ∆̂ ; by [20],

Theorem 2.9, this holds in the special case where Z(K̂) is a separable extension of K̂ . It follows from [20],

Proposition 1.7, our extra hypothesis and the cyclicity of v(K) that Z(∆̂)/K̂ is a normal extension of degree
p . Hence, by Lemma 4.1, [∆0] = [D ⊗K Z(∆0)] (in Br(Z(∆0))), for some D ∈ d(K) inertial over K . The
obtained result shows that [∆ ⊗K Dop] ∈ Br(Z(∆0)/K) , where Dop is the K -algebra opposite to D . This
requires that exp(∆⊗K Dop) | p . Since deg(D) = exp(D) = p2 , it follows now that exp(∆) = p2 , as claimed.

We are now prepared to consider the case of e(∆/K) = p in general. The preceding part of our proof

allows us to assume that Z(∆̂) is a purely inseparable extension of K̂ . Note also that [Z(∆̂) : K̂] = p , and

it follows from [9], Theorem 3.1, and [1], Ch. VII, Theorem 28, that ∆̂ is a cyclic Z(∆̂) -algebra of degree p .
Therefore, there exists η ∈ ∆ , which generates an inertial cyclic extension of K of degree p . Hence, by the
Skolem–Noether theorem (cf. [28], Sect. 12.6), there is ξ ∈ ∆∗ , such that ξη′ξ−1 = φ(η′) , for every η′ ∈ K(η) ,
where φ is a generator of G(K(η)/K) . Denote by B the K -subalgebra of ∆ generated by η and ξ . It is easy
to see that K(ξp) = Z(B) , deg(B) = p and B is either an inertial or an NSR-algebra over K(ξp) . In view
of (4.2) (a), this means that ξp /∈ K which gives [K(ξp) : K] = p , and combined with (4.2) (b), proves that
v(K(ξp)) = v(K) . In other words, K(ξp)∗ = Ov(K(ξp))∗.K∗ . As e(∆/K) = p , the obtained properties of B
and K(ξp) indicate that if B/K(ξp) is inertial (equivalently, if v∆(ξ) ∈ v(K) , see [20], Theorem 5.6 (a)), then

B̂ ∼= ∆̂ over K̂ . This means that ∆/K is subject to the extra hypothesis, which yields exp(∆) = p2 . When
B/K(ξp) is NSR, these properties imply with (4.2) (b) and [28], Section 15.1, Proposition b, the existence of
an algebra Σ ∈ d(K) satisfying the following conditions:

(4.3) (a) Σ is isomorphic to the cyclic K -algebra (K(η)/K,φ, π′) , for some π′ ∈ K∗ ; Σ/K is NSR,
whence Σ does not embed in ∆ as a K -subalgebra;

(b) ind(∆⊗K Σ) = p2 (see also [28], Section 13.4, and [11], (1.1)(b)), the underlying division K -algebra
∆′ of ∆ ⊗K Σ has a K -subalgebra Z ′ isomorphic to Z(B) , and the centralizer C∆′(Z ′) := C is an inertial
Z ′ -algebra. Note here that [∆′] ∈ Br(K(ξp, η)/K) . Using (3.2) (a), (4.3) and Lemma 3.2 (and also, the double

centralizer theorem), one concludes that [C : K] = p3 and either ∆′/K is inertial or e(∆′/K) = p and Ĉ ∼= ∆̂′

as a K̂ -algebra. As shown above, this requires that exp(∆′) = p2 . In view of (4.3) (b) and the equality
deg(Σ) = exp(Σ) = p , it thereby proves that exp(∆) = p2 as well.

It remains to consider the case where e(∆/K) = p2 . We first show that one may assume without loss of

generality that Brdp(K̂) = 0 . It follows from (4.2) (a), Lemma 3.2 and the equality e(∆/K) = p2 that ∆̂/K̂ is
a field extension of degree p2 . Using [20], Theorem 3.1, one obtains that ∆⊗K U ∈ d(U) , v(∆⊗K U) = v(∆)

and e((∆⊗K U)/U) = p2 , provided U is an extension of K in K(p) ∩Kur , such that no proper extension of

K̂ in Û is embeddable in ∆̂ as a K̂ -subalgebra. Note also that ∆̂⊗K̂ Û is Û -isomorphic to the residue field
of ∆ ⊗K U , which enables one to prove (by applying Galois theory and Zorn’s lemma) that U can be chosen
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so that rp(Û) ≤ 1 . Then, by [21], Proposition 4.4.8, Br(Û)p = {0} , which leads to the desired reduction.

We suppose further that Brdp(K̂) = 0 and prove the following assertion:

(4.4) If ∆ possesses a K -subalgebra Z , such that [Z : K] = [Ẑ : K̂] = p and Ẑ is purely inseparable

over K̂ , then ∆̂/K̂ is purely inseparable.

Assuming the opposite and using (3.2) (a) and Lemma 3.2, one obtains that Z has an inertial extension M ,
which is a maximal subfield of ∆ . As v is Henselian, the assumptions on Z and M ensure that M = LZ , for
some inertial extension L of K in M of degree p . Note further that [M : K] , [M̂ : K̂] and [∆̂ : K̂] are equal

to p2 , which means that M̂ = ∆̂ . This enables one to deduce from Lemma 3.1 and [20], Proposition 1.7, that

L/K is a cyclic extension. At the same time, the equality Brdp(K̂) = 0 and Albert–Hochschild’s theorem,

applied to the extension Ẑ/K̂ , indicate that Brdp(Ẑ) = 0 . Therefore, the group N(M/Z) includes Ov(Z)
∗

(cf. [28], Sect. 15.1, Proposition b), which allows to obtain from the Skolem-Noether theorem and the double
centralizer theorem that there is a Z -isomorphism C∆(Z) ∼= (M/Z,ψ′, γ) , for some γ ∈ K∗ and a generator ψ′

of G(M/Z) . This implies ∆ ∼= D1 ⊗K D2 as K -algebras, where D1 = (L/K,ψ, γ) , ψ is the K -automorphism

of L induced by ψ′ , D2 ∈ d(K) and [D2] ∈ Br(Z/K) . As Brdp(K) = 0 , K̂ is almost perfect and deg(D2) = p ,
one obtains further that D2 has a K -subalgebra T that is a totally ramified extension of K of degree p . It is
easy to see that the T -algebra L⊗K T is a field. More precisely, (L⊗K T )/T is an inertial and cyclic extension
of degree p , which allows to deduce consecutively that the norm group N((L⊗K T )/T ) includes Ov(T )

∗ and
K∗ . Observing also that D1 ⊗K T is T -isomorphic to ((L⊗K T )/T, ψT , γ) , where ψT is the T -isomorphism
of L⊗K T extending ψ , one obtains from [28], Sect. 15.1, Proposition b, that D1 ⊗K T ∈ s(T ) \ d(T ) , whence,
D1 ⊗K T contains zero-divisors. As D1 ⊗K T is a K -subalgebra of D1 ⊗K D2 and D1 ⊗K D2

∼= ∆ ∈ d(K) ,
this is a contradiction proving (4.4).

We are now in a position to prove Lemma 4.2. If ∆̂/K̂ is a purely inseparable field extension, then it

follows from Proposition 3.5 and [35], Proposition 2.1, that exp(∆) = p2 . Suppose finally that ∆̂ is a field and

∆̂/K̂ is not purely inseparable. In view of [20], Proposition 1.7 and Theorem 2.9, this ensures the existence of
an inertial cyclic extension Λ of K of degree p , which embeds in ∆ as a K -subalgebra. Our goal is to show
that there is an infinite extension W of K in an algebraic closure K , satisfying the following:

(4.5) v(W ) = v(K) , Ŵ is purely inseparable over K̂ and ∆⊗K W ∈ d(W ) .

Note that (4.5) implies exp(∆) = p2 . Indeed, [K̂ : K̂p] = p , so it follows from (3.2) (a) and (4.5) that Ŵ

is perfect; hence, by Lemma 3.6, (∆ ⊗K W )/W is NSR and exp(∆ ⊗K W ) = deg(∆ ⊗K W ) = p2 . Since
exp(∆⊗K W ) | exp(∆) and exp(∆) | deg(∆) = p2 , this gives exp(∆) = p2 , as required.

Finally, we prove (4.5). Fix an element a0 ∈ Ov(K)∗ so that â0 /∈ K̂p , take a system an ∈ K , n ∈ N ,
satisfying apn = an−1 , for each n , and let W be the union of the fields Wn = K(an) , n ∈ N . It is easily

verified that [Wn : K] = [Ŵn : K̂] = pn and Ŵn/K̂ is purely inseparable, for every n ∈ N , so it follows from

(3.2) (a), the equality [K̂ : K̂p] = p and the inclusions Wn ⊂ Wn+1 , n ∈ N , that W is a field, v(W ) = v(K)

and Ŵ is a perfect closure of K̂ . Arguing by induction on n , taking into account that ∆ ⊗K Wn+1 and
(∆⊗K Wn)⊗Wn

Wn+1 are isomorphic as Wn+1 -algebras, and using (4.4), the noted properties of Wn , and the
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behaviour of Schur indices under scalar extensions of finite degrees (cf. [28], Sect. 13.4), one obtains that, for
each n ∈ N , ∆⊗K Wn ∈ d(Wn) , and Λ⊗K Wn is an inertial cyclic extension of Wn of degree p , embeddable
in ∆ ⊗K Wn as a Wn -subalgebra. Therefore, ∆ ⊗K W ∈ d(W ) , so (4.5), Lemma 4.2 and Theorem 2.3 are
proved. 2

5. Absolutely stable HDV-fields

The first result of this Section states the following:

Corollary 5.1 Let (K, v) be an HDV-field. Then, K is absolutely stable if and only if K̂ is quasilocal and

almost perfect; for instance, this holds when K̂ is a complete discrete valued field with a quasifinite residue field.

Proof Our former conclusion follows from Corollary 2.4, the absolute stability of quasilocal fields, and the fact
that the class of almost perfect fields is closed under the formation of finite extensions. Since complete discrete
valued fields with quasifinite residue fields are quasilocal and almost perfect (see [30], Ch. XIII, Section 3, and
[18], Theorem 12.2.3), our latter conclusion is an immediate consequence of the former one. 2

The latter part of Corollary 5.1 can be restated by saying that 2 -dimensional local fields K2 with
quasifinite second residue fields K0 are absolutely stable. This result can be specified as follows:

Proposition 5.2 An m-dimensional local field Km with a quasifinite m-th residue field K0 is stable if and
only if m ≤ 2 . When m ≤ 2 , Km is absolutely stable and Brdp′(K ′

m) = 1 , p′ ∈ P , for every finite extension
K ′

m/Km .

Proof It is known (cf. [30], Ch. XIII, Sect. 3) that if m = 1 , then Km is a quasilocal field with Br(Km)

isomorphic to the quotient group Q/Z of the additive group of rational numbers by the subgroup of integers.
This implies Km is absolutely stable, and Brdp′(K ′

m) = 1 , for all p′ ∈ P and K ′
m ∈ Fe(Km) , as claimed. We

assume further that m ≥ 2 . Then, Km is complete with respect to a discrete valuation wm whose residue field
Km−1 is an (m − 1) -dimensional local field with last residue field isomorphic to K0 . Therefore, (Km, wm) is
HDV, and by Lemma 3.3, Brdp′(Km−1) ≤ Brdp(Km) , for each p′ ∈ P . Suppose now that m = 2 . As noted
above, K1 is quasilocal with Br(K1) ∼= Q/Z ; in addition, if char(K1) = char(K0) , then K1 is isomorphic to
the formal power series field K0((X1)) (see [18], Theorem 12.2.3), which is almost perfect. Hence, by Corollary
5.1, K2 is absolutely stable and Brdp′(Ku) = 1 , u = 1, 2 , p′ ∈ P . This proves Proposition 5.2, for m = 2

(since finite extensions of K2 are 2 -dimensional local fields with quasifinite 2nd residue fields). Next, we prove
that r2(K1) ≥ 2 . Firstly, if char(K0) = 2 , then [14], Lemma 2.2 and [11], Lemma 4.2, show that r2(K1) = ∞
unless char(K1) = 0 and K0 is finite. Secondly, if char(K1) = 0 , char(K0) = 2 and K0 is finite, then it
follows from Lemma 3.4 and [31], Ch. II, Theorem 4, that r2(K1) ≥ 3 . When char(K0) ̸= 2 , K∗

1/K
∗2
1 is

a noncyclic group of order 4 (it is isomorphic to the direct sum K∗
0/K

∗2
0 ⊕ w1(K1)/2w1(K1) , w1 being the

discrete Henselian valuation of K1 with K̂1 = K0 ), so it is clear from Kummer theory that r2(K1) = 2 . Lemma
3.1 and the inequality r2(K1) ≥ 2 imply there exist an algebra ∆2 ∈ d(K2) and a field extension L2/K2 , such
that deg(∆2) = [L2 : K2] = 2 , ∆2/K2 is NSR, L2/K2 is inertial relative to w2 , and ∆2 ⊗K L2 ∈ d(L2) . Thus
it follows that K2 is not 2 -quasilocal. Using this result, Proposition 2.1 (a) and Lemma 3.3, one obtains that
if m ≥ 3 , then Brd2(Kj) ≥ 2 , j = 3, . . . ,m , which completes our proof. 2
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In the setting of Proposition 5.2, Km is p -quasilocal with Brdp(Km) = 1 , provided that p ∈ P ,
p ̸= char(K0) and K0 does not contain a primitive p -th root of unity (apply Proposition 2.1 (a) and [12],

Corollary 4.3, to the HDV-field (Km, wm) with K̂m
∼= Km−1 , for m ≥ 2). When K0 is finite, this means that

Brdp(Km) = 1 , for all p ∈ P , with finitely many exceptions in case m ≥ 3 , such as p = 2 and p = char(K0)

(see [12], Proposition 4.4).

Remark 5.3 Here are two special cases of Corollary 5.1 obtained in [7]:

(i) An HDV-field (K, v) with K̂ perfect is absolutely stable if and only if K̂ is quasilocal [7], Corollary 4.6;

(ii) For any complete discrete valued field (L, ω) with a quasifinite residue field L̂ (specifically, for any
local field L), the formal power series field L((T )) is absolutely stable [7], Corollary 4.5 (ii). If char(L) = 0 ,
this is also contained in [7], Corollary 4.6. When char(L) = p > 0 , L((T )) is isomorphic to the iterated formal

power series field L̂((Z))((T )) (apply [18], Theorem 12.2.3), so the inequality abrdp(L((T ))) ≤ 1 , used for
proving [7], Corollary 4.5 (ii), follows from [1], Ch. XI, Theorem 3, and results of Aravire, Jacob, Merkurjev
and Tignol (see [2], Sect. 3 and the Appendix).

The concluding result of this paper is new if char(K) ̸= char(K̂) and K̂ is an imperfect field of type C1 ,

in the sense of Lang and [31], Ch. II. Under the same hypotheses on K̂ , if char(K) = char(K̂) , then the result

is contained in [36], Theorem 2, and in case K̂ is perfect, it follows from [7], Corollary 4.6.

Corollary 5.4 An HDV-field (K, v) is absolutely stable, if K̂ has type C1 .

Proof The field K̂ is almost perfect with abrdp(K̂) = 0: p ∈ P (cf. [31], Ch. II, 3.2), so K̂ is quasilocal, and
by Corollary 5.1, K is absolutely stable. 2
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