Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tübitak

Research Article

Turk J Math
(2022) 46: 1749 - 1758
© TÜBİTAK
doi:10.55730/1300-0098.3230

Bound for the cocharacters of the identities of irreducible representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Mátyás DOMOKOS* ${ }^{\text {(}}$
Alfréd Rényi Institute of Mathematics
Dedicated to Vesselin Drensky on his 70th birthday

| Received: 15.12 .2021 | Accepted/Published Online: 05.01 .2022 | • | Final Version: 20.06 .2022 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

For each irreducible finite dimensional representation of the Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$ of 2×2 traceless matrices, an explicit uniform upper bound is given for the multiplicities in the cocharacter sequence of the polynomial identities satisfied by the given representation.

Key words: Weak polynomial identities, simple Lie algebra, irreducible representation, cocharacter sequence

1. Introduction

Let $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be a finite dimensional representation of the Lie algebra \mathfrak{g} over a field K of characteristic zero; that is, $\mathfrak{g l}(V)=\operatorname{End}_{K}(V)$, the space of all K-linear transformations of the finite dimensional K-vector space V, viewed as a Lie algebra with Lie product $[A, B]:=A \circ B-B \circ A$ for $A, B \in \operatorname{End}_{K}(V)$, and ρ is a homomorphism of Lie algebras. Denote by $F_{m}:=K\left\langle x_{1}, \ldots, x_{m}\right\rangle$ the free associative K-algebra with m generators. Consider F_{m} as a subalgebra of F_{m+1} in the obvious way, and write $F:=\bigcup_{m=1}^{\infty} F_{m}$ for the free associative algebra of countable rank. We say that $f=0$ is an identity of the representation ρ of \mathfrak{g} (or briefly, of the pair $(\mathfrak{g}, \rho))$ for some $f \in F_{m}$ if for any elements $A_{1}, \ldots, A_{m} \in \mathfrak{g}$ we have the following equality in the associative K-algebra $\operatorname{End}_{K}(V)$:

$$
f\left(\rho\left(A_{1}\right), \ldots, \rho\left(A_{n}\right)\right)=0 \in \operatorname{End}_{K}(V)
$$

Note that an identity of the representation ρ of the Lie algebra \mathfrak{g} is also called in the literature a weak polynomial identity for the pair $\left(\operatorname{End}_{K}(V), \rho(\mathfrak{g})\right)$. This notion was introduced and powerfully applied first by Razmyslov [13-16] (see Drensky [8] for a recent survey on weak polynomial identities). Set

$$
I(\mathfrak{g}, \rho):=\{f \in F \mid f=0 \text { is an identity of }(\mathfrak{g}, \rho)\}
$$

Clearly $I(\mathfrak{g}, \rho)$ is an ideal in F stable with respect to all K-algebra endomorphisms of F of the form $x_{i} \mapsto u_{i}$, where u_{i} for $i=1,2, \ldots$ is an element of the Lie subalgebra of F generated by x_{1}, x_{2}, \ldots In particular, the general linear group $\mathrm{GL}_{m}(K)$ acts on F_{m} via K-algebra automorphisms: for $g=\left(g_{i j}\right)_{i, j=1}^{m}$ we have $g \cdot x_{j}=\sum_{i=1}^{m} g_{i j} x_{i}$, and $I(\mathfrak{g}, \rho) \cap F_{m}$ is a $\mathrm{GL}_{m}(K)$-invariant subspace of F_{m}. The multilinear component of

[^0]F_{m} is
$$
P_{m}:=\operatorname{Span}_{K}\left\{x_{\pi(1)} \cdots x_{\pi(m)} \mid \pi \in S_{m}\right\}
$$
where S_{m} is the symmetric group of degree m. It is well known that when $\operatorname{char}(K)=0$, the ideal $I(\mathfrak{g}, \rho)$ is determined by the multilinear components $I(\mathfrak{g}, \rho) \cap P_{m}, m=1,2, \ldots$ Identifying S_{m} with the subgroup of permutation matrices in $\mathrm{GL}_{m}(K)$ we get its action on F_{m} via K-algebra automorphisms (more explicitly, $\pi \in S_{m}$ is the automorphism of F_{m} given by $\left.x_{i} \mapsto x_{\pi(i)}\right)$, and the subspaces P_{m} and $I(\mathfrak{g}, \rho) \cap P_{m}$ are S_{m}-invariant. Define the m th cocharacter of (\mathfrak{g}, ρ) as
$$
\chi_{m}(\mathfrak{g}, \rho):=\text { the character of the } S_{m} \text {-module } P_{m} /\left(I(\mathfrak{g}, \rho) \cap P_{m}\right)
$$

We call

$$
\chi(\mathfrak{g}, \rho):=\left(\chi_{m}(\mathfrak{g}, \rho) \mid m=1,2, \ldots\right)
$$

the cocharacter sequence of (\mathfrak{g}, ρ). The irreducible S_{m}-modules are labeled by partitions of m; let χ^{λ} denote the character of the irreducible S_{m}-module associated to the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \vdash m$. We have

$$
\chi_{m}(\mathfrak{g}, \rho)=\sum_{\lambda \vdash m} \operatorname{mult}_{\lambda}(\mathfrak{g}, \rho) \chi^{\lambda}
$$

and we are interested in the multiplicities $\operatorname{mult}_{\lambda}(\mathfrak{g}, \rho)$ of the irreducible S_{m}-characters in the cocharacter sequence. Note that the value of $\chi_{m}(\mathfrak{g}, \rho)$ on the identity element of S_{m} is

$$
c_{m}(\mathfrak{g}, \rho):=\operatorname{dim}_{K}\left(P_{m} /\left(I(\mathfrak{g}, \rho) \cap P_{m}\right)\right)
$$

and

$$
\left(c_{m}(\mathfrak{g}, \rho) \mid m=1,2, \ldots\right)
$$

is called the codimension sequence of (\mathfrak{g}, ρ). It was proved by Gordienko [10] that $\lim _{m \rightarrow \infty} \sqrt[m]{c_{m}(\mathfrak{g}, \rho)}$ exists and is an integer. As is observed in [10, Example 3], an obvious upper bound for $c_{m}(\mathfrak{g}, \rho)$ can be obtained from the fact that there is a natural K-linear embedding

$$
\begin{equation*}
P_{m} /\left(I(\mathfrak{g}, \rho) \cap P_{m}\right) \hookrightarrow \operatorname{Hom}_{K}\left(\rho(\mathfrak{g})^{\otimes m}, \operatorname{End}_{K}(V)\right) . \tag{1.1}
\end{equation*}
$$

Our starting observation is that the adjoint representation of \mathfrak{g} on itself induces a natural representation of \mathfrak{g} on $\rho(\mathfrak{g})^{\otimes m}$ (the m th tensor power of $\rho(\mathfrak{g})$) and on $\operatorname{End}_{K}(V)$, such that the image of the embedding (1.1) is contained in the subspace of \mathfrak{g}-module homomorphisms from $\rho(\mathfrak{g})^{\otimes m}$ to $\operatorname{End}_{K}(V)$. So (1.1) can be refined as

$$
\begin{equation*}
P_{m} /\left(I(\mathfrak{g}, \rho) \cap P_{m}\right) \hookrightarrow \operatorname{Hom}_{\mathfrak{g}}\left(\rho(\mathfrak{g})^{\otimes m}, \operatorname{End}_{K}(V)\right) . \tag{1.2}
\end{equation*}
$$

This will be used to give an upper bound for the multiplicities in the cocharacter sequence $\chi\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$ of the d-dimensional irreducible representation

$$
\rho^{(d)}: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}\left(\mathbb{C}^{d}\right)=\mathbb{C}^{d \times d}
$$

of $\mathfrak{s l}_{2}(\mathbb{C})$ for $d=1,2, \ldots$. Note that throughout the paper we shall identify $\mathfrak{g l}\left(\mathbb{C}^{d}\right)$ with the associative algebra $\mathbb{C}^{d \times d}$ of $d \times d$ complex matrices, viewed as a Lie algebra with Lie bracket $[A, B]=A B-B A$.

Theorem 1.1 The multiplicity $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$ in $\chi\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$ is nonzero only if $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ (i.e. λ has at most 3 nonzero parts), and in this case we have the inequality

$$
\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \leq 3^{d-2}
$$

Remark 1.2 (i) The exact values of $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$ are known for $d \leq 3$. For $d=1$ all the multiplicities are obviously zero. It was proved in [12] (see also [7, Exercise 12.6.12]) that

$$
\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(2)}\right)=1 \text { for all } \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

The multiplicities $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(3)}\right)$ are computed in [5, Theorem 3.7, Proposition 3.8]. It turns out that $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(3)}\right) \in\{1,2,3\}$ for each $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
(ii) Theorem 1.1 shows in particular that for each dimension d, there is a uniform bound (depending on d only) for the multiplicities $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$. For comparison we mention that the multiplicities in the cocharacter sequence of the ordinary polynomial identities of 2×2 matrices are unbounded: see [6] and [9]. For example, for any partition $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ with $\lambda_{2}>0$, the multiplicity is $\left(\lambda_{1}-\lambda_{2}+1\right) \lambda_{2}$. On the other hand, the cocharacter multiplicities of any PI algebra are polynomially bounded by [2].
(iii) There is no uniform upper bound independent of d for the multiplicities $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$, because by Proposition 4.1, $\max \left\{\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \mid m=1,2, \ldots, \lambda \vdash m\right\} \geq d-1$ for $d \geq 2$.
(iv) The irreducible representations of $\mathfrak{s l}_{2}(\mathbb{C})$ are defined over \mathbb{Q}. For any field K of characteristic zero and any positive integer d, the Lie algebra $\mathfrak{s l}_{2}(K)$ has a unique (up to isomorphism) d-dimensional irreducible representation $\rho_{K}^{(d)}$ over K. By well-known general arguments, the multiplicities $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(K), \rho_{K}^{(d)}\right)$ do not depend on K. Therefore Theorem 1.1 implies that $\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(K), \rho_{K}^{(d)}\right) \leq 3^{d-2}$ for any field K of characteristic zero.
(v) A different interpretation and approach to the study of $\operatorname{Hom}_{\mathfrak{g}}\left(\rho(\mathfrak{g})^{\otimes m}, \operatorname{End}_{K}(V)\right)$ for $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ and $\rho=\rho^{(d)}$ is given in our parallel preprint [4], using classical invariant theory.

We close the introduction by mentioning the recent paper of da Silva Macedo and Koshlukov [3, Theorem 3.7], where the codimension growth of polynomial identities of representations of Lie algebras is studied. In particular, in [3, Theorem 3.7] the identities of representations of $\mathfrak{s l}_{2}(\mathbb{C})$ play a decisive role.

2. Matrix computations

Denote by $\widetilde{\rho}^{(d)}: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}\left(\mathbb{C}^{d \times d}\right)$ the representation given by

$$
\begin{equation*}
\widetilde{\rho}^{(d)}(A)(L)=\rho^{(d)}(A) L-L \rho^{(d)}(A) \text { for } A \in \mathfrak{s l}_{2}(\mathbb{C}), L \in \mathbb{C}^{d \times d} \tag{2.1}
\end{equation*}
$$

We have $\widetilde{\rho}^{(d)} \cong \rho^{(d)} \otimes \rho^{(d)^{*}}$. The representations of $\mathfrak{s l}_{2}(\mathbb{C})$ are self-dual, and so by the Clebsch-Gordan rules we have

$$
\begin{equation*}
\widetilde{\rho}^{(d)} \cong \rho^{(d)} \otimes \rho^{(d)} \cong \bigoplus_{n=1}^{d} \rho^{(2 n-1)} \tag{2.2}
\end{equation*}
$$

We shall need an explicit decomposition of $\mathbb{C}^{d \times d}$ as a direct sum of minimal $\widetilde{\rho}^{(d)}$-invariant subspaces.

Set

$$
e:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f:=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

so e, f, h is a \mathbb{C}-vector space basis of $\mathfrak{s l}_{2}(\mathbb{C})$, with $[h, e]=2 e,[h, f]=-2 f$, and $[e, f]=h$.
Recall that given a representation $\psi: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}(V)$, by a highest weight vector we mean a nonzero element $w \in V$ such that $\psi(e)(w)=0 \in V$ and $\psi(h)(w)=n w$ for some nonnegative integer n (the nonnegative integer n is called the weight of $w)$; in this case w generates a minimal $\mathfrak{s l}_{2}(\mathbb{C})$-invariant subspace in V, on which the representation of $\mathfrak{s l}_{2}(\mathbb{C})$ is isomorphic to $\rho^{(n+1)}$. Moreover, any finite dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module contains a unique (up to nonzero scalar multiples) highest weight vector.

Lemma 2.1 Consider the $\mathfrak{s l}_{2}(\mathbb{C})$-module $\mathbb{C}^{d \times d}$ via the representation $\widetilde{\rho}^{(d)}$. To simplify notation set $\rho:=\rho^{(d)}$ and $\widetilde{\rho}:=\widetilde{\rho}^{(d)}$.
(i) $\rho(e)^{n}$ is a highest weight vector in $\mathbb{C}^{d \times d}$ of weight $2 n$ for $n=0,1, \ldots, d-1$.
(ii) $\rho(e)^{n-1}$ generates a minimal $\widetilde{\rho}$-invariant subspace V_{n} on which $\mathfrak{s l}_{2}(\mathbb{C})$ acts via $\rho^{(2 n-1)}$ for $n=1, \ldots, d$.
(iii) $\mathbb{C}^{d \times d}=\bigoplus_{n=1}^{d} V_{n}$.
(iv) For $L_{1} \in V_{n_{1}}$ and $L_{2} \in V_{n_{2}}$ with $1 \leq n_{1} \neq n_{2} \leq d$ we have $\operatorname{Tr}\left(L_{1} L_{2}\right)=0$.

Proof (i) We have $\widetilde{\rho}(e)\left(\rho(e)^{n}\right)=\rho(e) \rho(e)^{n}-\rho(e)^{n} \rho(e)=0$ and

$$
\widetilde{\rho}(h)\left(\rho(e)^{n}\right)=\rho([h, e]) \rho(e)^{n-1}+\rho(e) \rho([h, e]) \rho(e)^{n-2}+\cdots+\rho(e)^{n-1} \rho([h, e])=2 n \rho(e)^{n}
$$

This shows that $\rho(e)^{n}$ is the highest weight vector of weight $2 n$ for the representation $\widetilde{\rho}$.
(ii) Statement (i) implies that $\rho(e)^{n-1}$ generates an irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-submodule of $\widetilde{\rho}$ isomorphic to $\rho^{(2 n-1)}$ for $n=1, \ldots, d$.
(iii) follows from (ii) and (2.2).
(iv) Consider the symmetric nondegenerate bilinear form

$$
\beta: \mathbb{C}^{d \times d} \times \mathbb{C}^{d \times d} \rightarrow \mathbb{C}, \quad(L, M) \mapsto \operatorname{Tr}(L M)
$$

Note that β is $\widetilde{\rho}$-invariant:

$$
\begin{array}{r}
\beta([\rho(A), L], M)+\beta(L,[\rho(A), M])=\operatorname{Tr}([\rho(A), L] M)+\operatorname{Tr}(L[\rho(A), M]) \\
=\operatorname{Tr}([\rho(A), L M])=0 \quad \text { for any } A \in \mathfrak{s l}_{2}(\mathbb{C})
\end{array}
$$

The radical of the bilinear form $\beta_{V_{n}}: V_{n} \times V_{n} \mapsto \mathbb{C}$ (the restriction of β to $V_{n} \times V_{n}$) is a $\widetilde{\rho}$-invariant subspace in V_{n}, so it is either V_{n} or $\{0\}$. We claim that it is not V_{n}. Indeed, V_{n} contains a nonzero diagonal matrix D with real entries, since the zero weight subspace in $\mathbb{C}^{d \times d}$ (with respect to $\widetilde{\rho}(h)$) is the subspace of diagonal matrices, and V_{n} intersects the zero-weight space in a 1-dimensional subspace (defined over the reals). Now being a sum of squares of nonzero real numbers, $0 \neq \operatorname{Tr}\left(D^{2}\right)=\beta(D, D)$. Thus $\beta_{V_{n}}$ is nondegenerate. The representation $\widetilde{\rho}$ is multiplicity free by (2.2), and by (ii) and (iii), every $\widetilde{\rho}$-invariant subspace is of the form $\sum_{j \in J} V_{j}$ for some
subset $J \subseteq\{1,2, \ldots, d\}$. As we showed above, the orthogonal complement of V_{n} (with respect to β) is disjoint from V_{n}, so it is the sum of the other minimal invariant subspaces $V_{j}, j \in\{1, \ldots, d\} \backslash\{n\}$.

The representation $\rho^{(2)}$ is the defining representation of $\mathfrak{s l}_{2}(\mathbb{C})$ on \mathbb{C}^{2}, and $\rho^{(d)}$ is the $(d-1)$ th symmetric tensor power of $\rho^{(2)}$. Denote by x, y the standard basis vectors in \mathbb{C}^{2}, and take the basis $x^{d-1}, x^{d-1} y, \ldots, y^{d-1}$ in the $(d-1)$ th symmetric tensor power of \mathbb{C}^{2}. Then denoting by $E_{i, j}$ the matrix unit with entry 1 in the (i, j) position and zeros in all other positions, the representation $\rho^{(d)}$ as a matrix representation $\mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathbb{C}^{d \times d}$ is given as follows:

$$
\rho^{(d)}(e)=\sum_{i=1}^{d-1} i E_{i, i+1}, \quad \rho^{(d)}(f)=\sum_{i=1}^{d-1}(d-i) E_{i+1, i}, \quad \rho^{(d)}(h)=\sum_{i=1}^{d}(d+1-2 i) E_{i, i}
$$

Lemma 2.2 For $d \geq 3$ the \mathbb{C}-vector space $\mathbb{C}^{d \times d}$ is spanned by

$$
\left\{\rho^{(d)}\left(A_{1}\right) \cdots \rho^{(d)}\left(A_{d-1}\right) \mid A_{1}, \ldots, A_{d-1} \in \mathfrak{s l}_{2}(\mathbb{C})\right\}
$$

Proof To simplify the notation write $\rho:=\rho^{(d)}$ and $\widetilde{\rho}:=\widetilde{\rho}^{(d)}$. Let \mathcal{L} be the subspace of $\mathbb{C}^{d \times d}$ spanned by the products $\rho\left(A_{1}\right) \cdots \rho\left(A_{d-1}\right)$, where $A_{1}, \ldots, A_{d-1} \in \mathfrak{s l}_{2}(\mathbb{C})$. Clearly \mathcal{L} is a $\widetilde{\rho}$-invariant subspace of $\mathbb{C}^{d \times d}$. Since the representation $\widetilde{\rho}$ is multiplicity free by (2.2), we have $\mathcal{L}=\sum_{j \in J} V_{j}$ for some subset $J \subseteq\{1,2, \ldots, d\}$ by Lemma 2.1 (ii) and (iii). Therefore to prove the equality $\mathcal{L}=\mathbb{C}^{d \times d}$ it is sufficient to show that $\mathcal{L} \cap V_{n} \neq\{0\}$ for each $n=1, \ldots, d$, or equivalently, that \mathcal{L} is not contained in $\sum_{j \in\{1, \ldots, d\} \backslash\{n\}} V_{j}$. Since V_{d} is generated by $\rho(e)^{d-1} \in \mathcal{L}$, we have $V_{d} \subseteq \mathcal{L}$. Moreover, to prove $\mathcal{L} \nsubseteq \sum_{j \in\{1, \ldots, d\} \backslash\{n+1\}} V_{j}$ for $n \in\{0,1, \ldots, d-2\}$, it is sufficient to present an element $L_{n} \in \mathcal{L}$ with $\operatorname{Tr}\left(\rho(e)^{n} L_{n}\right) \neq 0$ by Lemma 2.1 (ii) and (iv). We shall give below such elements $L_{n} \in \mathcal{L}$ for $n=0,1, \ldots, d-2$.

For $n=1, \ldots, d-1$ we have

$$
\begin{gathered}
\rho(e)^{n}=\sum_{j=1}^{d-n} j \cdot(j+1) \cdots(j+n-1) E_{j, j+n} \\
\rho(f)^{n}=\sum_{j=1}^{d-n}(d-j) \cdot(d-j-1) \cdots(d-j-n+1) E_{j+n . j}
\end{gathered}
$$

and $\rho(e)^{0}=I_{d}=\rho(f)^{0}$, where I_{d} is the $d \times d$ identity matrix. It follows that for $n=1, \ldots, d-1$,

$$
\rho(e)^{n} \rho(f)^{n}=\sum_{j=1}^{d-n} j(j+1) \cdots(j+n-1) \cdot(d-j)(d-j-1) \cdots(d-j-n+1) E_{j, j}
$$

is a diagonal matrix with nonnegative integer entries, and the $(1,1)$-entry is positive. The same holds for $\rho(e)^{0} \rho(f)^{0}=I_{d}$. For n with $d-1-n$ even, $\rho(h)^{d-1-n}$ is the square of a diagonal matrix with integer entries, and its $(1,1)$-entry is positive. Hence $\operatorname{Tr}\left(\rho(e)^{n} \rho(f)^{n} \rho(h)^{d-1-n}\right) \neq 0$, being a positive integer. So in this case we may take $L_{n}:=\rho(f)^{n} \rho(h)^{d-1-n}$. For $n<d-2$ with $d-1-n$ odd, note that $\rho(e) \rho(f)-\rho(f) \rho(e)=\rho([e, f])=\rho(h)$, and thus

$$
\rho(f)^{n} \rho(h)^{d-2-n}=\rho(f)^{n} \rho(h)^{d-3-n}(\rho(e) \rho(f)-\rho(f) \rho(e))
$$

also belongs to \mathcal{L}. Since $\rho(h)^{d-2-n}$ is a diagonal matrix with nonnegative integer entries, and with a positive $(1,1)$-entry, we may take $L_{n}:=\rho(f)^{n} \rho(h)^{d-2-n}$ in this case. It remains to deal with the case $n=d-2$. Then

$$
\rho(e)^{d-2} \rho(f)^{d-2}=(d-1)((d-2)!)^{2} \cdot\left(E_{1,1}+E_{2,2}\right)
$$

hence taking $L_{d-2}:=\rho(f)^{d-2} \rho(h)$ we get

$$
\begin{aligned}
\operatorname{Tr}\left(\rho(e)^{d-2} L_{d-2}\right) & =\operatorname{Tr}\left((d-1)((d-2)!)^{2} \cdot\left((d-1) E_{11}+(d-3) E_{22}\right)\right. \\
& =(2 d-4)(d-1)((d-2)!)^{2}
\end{aligned}
$$

which is nonzero for $d \geq 3$. This finishes the proof of the equality $\mathcal{L}=\mathbb{C}^{d \times d}$ for $d \geq 3$.

3. Adjoint invariants

 $A, B \in \mathfrak{s l}_{2}(\mathbb{C})$. Take the n-fold direct sum $\operatorname{ad}^{\oplus n}: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}^{\left(\mathfrak{s l}_{2}(\mathbb{C})^{\oplus n}\right) \text { of the adjoint representation, and }}$ write $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]^{\mathfrak{s l}_{2}(\mathbb{C})}$ for the algebra of ad ${ }^{\oplus n}$-invariant polynomial functions on $\mathfrak{s l}_{2}(\mathbb{C})^{\oplus n}$. There is a right action of $\mathrm{GL}_{n}(\mathbb{C})$ on $\mathfrak{s l}_{2}(\mathbb{C})^{n}$ that commutes with $\mathrm{ad}^{\oplus n}$: for $g=\left(g_{i j}\right)_{i, 1=1}^{n}$ and $\left(A_{1}, \ldots, A_{n}\right) \in \mathfrak{s l}_{2}(\mathbb{C})^{n}$ we have

$$
\left(A_{1}, \ldots, A_{n}\right) \cdot g:=\left(\sum_{i=1}^{n} g_{i 1} A_{i}, \ldots, \sum_{i=1}^{n} g_{i n} A_{i}\right)
$$

This induces a left $\mathrm{GL}_{n}(\mathbb{C})$-action on the coordinate ring $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]$: for $g \in \mathrm{GL}_{n}(\mathbb{C}), f \in \mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]$ and $\left(A_{1}, \ldots, A_{n}\right) \in \mathfrak{s l}_{2}(\mathbb{C})^{n}$ we have $(g \cdot f)\left(A_{1}, \ldots, A_{n}\right)=f\left(\left(A_{1}, \ldots, A_{n}\right) \cdot g\right)$.

Lemma 3.1 Consider the linear map $\iota: F_{m}=\mathbb{C}\left\langle x_{1}, \ldots, x_{m}\right\rangle \rightarrow \mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}\right]$ given by

$$
\iota(f)\left(A_{1}, \ldots, A_{m+d-1}\right)=\operatorname{Tr}\left(f\left(\rho^{(d)}\left(A_{1}\right), \ldots, \rho^{(d)}\left(A_{m}\right)\right) \cdot \rho^{(d)}\left(A_{m+1}\right) \cdots \rho^{(d)}\left(A_{m+d-1}\right)\right)
$$

for $f \in F_{m}$ and $\left(A_{1}, \ldots, A_{m+d-1}\right) \in \mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}$. It has the following properties:
(i) The image of ι is contained in the subalgebra $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}\right]^{\mathfrak{s l}_{2}(\mathbb{C})}$ of $\mathfrak{s l}_{2}(\mathbb{C})$-invariants.
(ii) For $d \geq 3$ the kernel of ι is the ideal $I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \cap F_{m}$.
(iii) The map ८ is $\mathrm{GL}_{m}(\mathbb{C})$-equivariant, where we restrict the $\mathrm{GL}_{m+d-1}(\mathbb{C})$-action on $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}\right]$ to the subgroup $\mathrm{GL}_{m}(\mathbb{C}) \cong\left\{\left.\left(\begin{array}{cc}g & 0 \\ 0 & I_{d-1}\end{array}\right) \right\rvert\, g \in \mathrm{GL}_{m}(\mathbb{C})\right\}$ in $\mathrm{GL}_{m+d-1}(\mathbb{C})$.

Proof For notational simplicity we shall write ρ instead of $\rho^{(d)}$.
(i) By linearity of ι it is sufficient to show that $\iota\left(x_{i_{1}} \cdots x_{i_{k}}\right)$ is an $\mathfrak{s l}_{2}(\mathbb{C})$-invariant for any $i_{1}, \ldots, i_{k} \in$ $\{1, \ldots, m\}$. Setting $n=k+d-1, B_{1}=A_{i_{1}}, \ldots, B_{k}=A_{i_{k}}, B_{k+1}=A_{m+1}, \ldots, B_{n}=A_{m+d-1}$ we have

$$
\begin{equation*}
\iota\left(x_{i_{1}} \cdots x_{i_{k}}\right)\left(A_{1}, \ldots, A_{m+d-1}\right)=\operatorname{Tr}\left(\rho\left(B_{1}\right) \cdots \rho\left(B_{n}\right)\right) \tag{3.1}
\end{equation*}
$$

For any $X \in \mathfrak{s l}_{2}(\mathbb{C})$ we have

$$
\begin{aligned}
0 & =\operatorname{Tr}\left(\left[\rho(X), \rho\left(B_{1}\right) \cdots \rho\left(B_{n}\right)\right]\right) \\
& =\operatorname{Tr}\left(\sum_{j=1}^{n} \rho\left(B_{1}\right) \cdots \rho\left(B_{j-1}\right)\left[\rho(X), \rho\left(B_{j}\right)\right] \rho\left(B_{j+1}\right) \cdots \rho\left(B_{n}\right)\right) \\
& =\operatorname{Tr}\left(\sum_{j=1}^{n} \rho\left(B_{1}\right) \cdots \rho\left(B_{j-1}\right) \rho\left(\left[X, B_{j}\right]\right) \rho\left(B_{j+1}\right) \cdots \rho\left(B_{n}\right)\right) \\
& =\sum_{j=1}^{n} \operatorname{Tr}\left(\rho\left(B_{1}\right) \cdots \rho\left(B_{j-1}\right) \rho\left(\left[X, B_{j}\right]\right) \rho\left(B_{j+1}\right) \cdots \rho\left(B_{n}\right)\right) .
\end{aligned}
$$

The equalities (3.1) and

$$
\sum_{j=1}^{n} \operatorname{Tr}\left(\rho\left(B_{1}\right) \cdots \rho\left(B_{j-1}\right) \rho\left(\left[X, B_{j}\right]\right) \rho\left(B_{j+1}\right) \cdots \rho\left(B_{n}\right)\right)=0
$$

mean that $\iota\left(x_{i_{1}} \cdots x_{i_{k}}\right)$ is $\mathfrak{s l}_{2}(\mathbb{C})$-invariant, so (i) holds.
(ii) Suppose that $f \in \operatorname{ker}(\iota)$. Then $\operatorname{Tr}\left(f\left(\rho\left(A_{1}\right), \ldots, \rho\left(A_{m}\right)\right) B\right)=0$ for all $A_{1}, \ldots, A_{m} \in \mathfrak{s l}_{2}(\mathbb{C})$ and for all $B \in \mathbb{C}^{d \times d}$ by Lemma 2.2. By nondegeneracy of the trace we get $f\left(\rho\left(A_{1}\right), \ldots, \rho\left(A_{m}\right)\right)=0$ for all $A_{1}, \ldots, A_{m} \in \mathfrak{s l}_{2}(\mathbb{C})$. That is, $f \in I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho\right)$. Thus $\operatorname{ker}(\iota) \subseteq I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho\right) \cap F_{m}$. The reverse inclusion $I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho\right) \cap F_{m} \subseteq \operatorname{ker}(\iota)$ is obvious.
(iii) Take $g=\left(g_{i j}\right)_{i, j=1}^{m} \in \mathrm{GL}_{m}(\mathbb{C})$. For $f \in F_{m}$ and $\left(A_{1}, \ldots, A_{m+d-1}\right) \in \mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}$ we have (by linearity of ρ)

$$
\begin{aligned}
& \iota(g \cdot f)\left(A_{1}, \ldots, A_{m+d-1}\right) \\
& =\operatorname{Tr}\left(f\left(\sum_{i=1}^{m} g_{i 1} \rho\left(A_{i}\right), \ldots, \sum_{i=1}^{m} g_{i m} \rho\left(A_{i}\right)\right) \cdot \rho\left(A_{m+1}\right) \cdots \rho\left(A_{m+d-1}\right)\right) \\
& =\operatorname{Tr}\left(f\left(\rho\left(\sum_{i=1}^{m} g_{i 1}\left(A_{i}\right)\right), \ldots, \rho\left(\sum_{i=1}^{m} g_{i m}\left(A_{i}\right)\right) \cdot \rho\left(A_{m+1}\right) \cdots \rho\left(A_{m+d-1}\right)\right)\right. \\
& =(g \cdot \iota(f))\left(A_{1}, \ldots, A_{m+d-1}\right) .
\end{aligned}
$$

This shows (iii).
Restricting the action of $\mathrm{GL}_{n}(\mathbb{C})$ on $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]$ to the subgroup of diagonal matrices we get an \mathbb{N}_{0}^{n} grading on $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]$, preserved by the action of $\mathfrak{s l}_{2}(\mathbb{C})$. Denote by $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]_{\left(1^{n}\right)}$ the multihomogeneous component of multidegree $(1, \ldots, 1)$; this is the space of n-linear functions on $\mathfrak{s l}_{2}(\mathbb{C})$. The spaces $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]_{\left(1^{n}\right)}$ and $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]_{\left.1^{n}\right)}^{\mathfrak{s l}_{2}(\mathbb{C})}$ are S_{n}-invariant (where we restrict the $\mathrm{GL}_{n}(\mathbb{C})$-action to its subgroup S_{n} of permutation matrices). Lemma 3.1 has the following immediate consequence:

Corollary 3.2 For $d \geq 3$ the restriction of ι to the multilinear component P_{m} of $\mathbb{C}\left\langle x_{1}, \ldots, x_{m}\right\rangle$ factors through an S_{m}-equivariant \mathbb{C}-linear embedding

$$
\bar{\iota}: P_{m} /\left(I\left(\mathfrak{s l}_{2}(\mathbb{C})\right) \cap P_{m}\right) \rightarrow \mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}\right]_{\left(1^{m+d-1}\right.}^{\mathfrak{s l}_{2}(\mathbb{C})}
$$

where on the right hand side we consider the restriction of the S_{m+d-1}-action to its subgroup S_{m} (the stabilizer in S_{m+d-1} of the elements $\left.m+1, m+2, \ldots, m+d-1\right)$.

For a partition $\lambda \vdash m$ denote by $r(\lambda)$ the multiplicity of χ^{λ} in the restriction to S_{m} of the S_{m+d-1} module $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{m+d-1}\right]_{\left(1^{m+d-1}\right)}^{\mathfrak{s l}_{2}(\mathbb{C})}$. Corollary 3.2 immediately implies the following:

Corollary 3.3 For $d \geq 3$ and any partition $\lambda \vdash m$ we have the inequality

$$
\operatorname{mult}_{\lambda}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \leq r(\lambda)
$$

The S_{n}-character of $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]_{\left(1^{n}\right)}^{\mathfrak{s l}_{2}(\mathbb{C})}$ is known:
Proposition 3.4 For a partition $\lambda \vdash n$ denote by $\nu(\lambda)$ the multiplicity of χ^{λ} in the S_{n}-character of $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]_{\left(1^{n}\right)}^{\mathfrak{s}_{2}(\mathbb{C})}$. Then we have

$$
\nu(\lambda)=\left\{\begin{array}{l}
1 \text { for } \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \text { with } \lambda_{1} \equiv \lambda_{2} \equiv \lambda_{3} \text { modulo } 2 \\
0 \text { otherwise }
\end{array}\right.
$$

Proof The $\mathrm{GL}_{n}(\mathbb{C})$-module structure of $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]^{\mathfrak{s l}_{2}(\mathbb{C})}$ is given for example in [12, Theorem 2.2]. The isomorphism types of the irreducible $\mathrm{GL}_{n}(\mathbb{C})$-module direct summands of the degree n homogeneous component of $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]$ are labeled by partitions of n with at most 3 nonzero parts. The multiplicity $\mu(\lambda)$ of the irreducible $\mathrm{GL}_{n}(\mathbb{C})$-module W_{λ} in the degree n homogeneous component of $\mathcal{O}\left[\mathfrak{s l}_{2}(\mathbb{C})^{n}\right]^{\mathfrak{s l}_{2}(\mathbb{C})}$ is 1 if $\lambda_{1}, \lambda_{2}, \lambda_{3}$ have the same parity and is zero otherwise. Note finally that the multilinear component of W_{λ} is S_{n}-stable, and its S_{n}-character is χ^{λ} (see for example [1, Corollary 6.3.11]).

Following [11, Section I.1] for partitions $\lambda \vdash n$ and $\mu \vdash k$ we write $\lambda \subset \mu$ is $\lambda_{i} \leq \mu_{i}$ for all i. Moreover, given $\lambda \vdash m$ and $\mu \vdash m+d-1$ with $\lambda \subset \mu$, by a standard tableau of shape μ / λ we mean a sequence $\lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(d-1)}$ of partitions $\lambda^{(i)} \vdash m+i$, where $\lambda^{(0)}=\lambda, \lambda^{(d-1)}=\mu$. By the well-known branching rules for the symmetric group, for $\lambda \vdash m$ the multiplicity of χ^{λ} in the restriction to S_{m} of the irreducible S_{m+d-1}-character χ^{μ} equals the number of standard tableaux of shape μ / λ (see for example [1, Theorem 6.4.11]). Therefore Proposition 3.4 has the following consequence.

Corollary 3.5 We have the equality

$$
\begin{aligned}
& r(\lambda)=\mid\{T \mid T \text { is a standard skew tableau of shape } \mu / \lambda, \\
& \left.\qquad \mu \vdash m+d-1, \mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \mu_{1} \equiv \mu_{2} \equiv \mu_{3} \text { modulo } 2\right\} \mid .
\end{aligned}
$$

Corollary 3.6 For $d \geq 3$ we have the inequality $r(\lambda) \leq 3^{d-2}$.
Proof Associate to a standard skew tableau $T=\lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(d-1)}$ of shape μ / λ, where $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \vdash m+d-1$ and $\mu_{1} \equiv \mu_{2} \equiv \mu_{3}$ modulo 2 the function $f_{T}:\{1, \ldots, d-1\} \rightarrow\{1,2,3\}$, which maps $j \in\{1, \ldots, d-1\}$ to the unique $i \in\{1,2,3\}$ such that the i th component of the partition $\lambda^{(j)}$ is 1 greater than the i th component of $\lambda^{(j-1)}$. The assignment $T \mapsto f_{T}$ is obviously an injective map from the set
of standard skew tableaux of shape μ / λ into the set of functions $\{1, \ldots, d-1\} \rightarrow\{1,2,3\}$. We claim that at most 3^{d-2} functions are contained in the image of this map. Indeed, if the three parts of $\lambda^{(d-3)}$ have the same parity, then $\left(f_{T}(d-2), f_{T}(d-1)\right) \in\{(1,1),(2,2),(3,3)\}$, since the three parts of $\mu=\lambda^{(d-1)}$ must have the same parity. If the three parts of $\lambda^{(d-3)}$ do not have the same parity, say the first two components of $\lambda^{(d-3)}$ have the same parity, and the third part has the opposite parity, then $\left(f_{T}(d-2), f_{T}(d-1)\right) \in\{(1,2),(2,1)\}$. Hence $r(\lambda)$ is not greater than 3 -times the number of functions from a $(d-3)$-element set to a 3 -element set. Thus $r(\lambda) \leq 3^{d-2}$.

3.1. Proof of Theorem 1.1

For $d \geq 3$ the statement follows from Corollary 3.3 and Corollary 3.6. For the cases $d \leq 3$ see Remark 1.2 (i).

4. A lower bound

Proposition 4.1 For $d \geq 2$ we have the equality

$$
\operatorname{mult}_{(d-1,1)}\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)=d-1
$$

Proof For $k=0,1, \ldots, d-2$ consider the element

$$
w_{k}:=x_{1}^{k}\left[x_{1}, x_{2}\right] x_{1}^{d-2-k} \in \mathbb{C}\left\langle x_{1}, x_{2}\right\rangle=F_{2}
$$

These elements are $\mathrm{GL}_{2}(\mathbb{C})$-highest weight vectors with weight $(d-1,1)$, hence each generates an irreducible $\mathrm{GL}_{2}(\mathbb{C})$-submodule isomorphic to $W_{(d-1,1)}$ (see the proof of Proposition 3.4 for the notation W_{λ} : it is the polynomial $\mathrm{GL}_{2}(\mathbb{C})$-module with highest weight $\left.\lambda=\left(\lambda_{1}, \lambda_{2}\right)\right)$. Moreover, the $w_{k}(k=0,1, \ldots, d-2)$ are linearly independent modulo the ideal $I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$: indeed, make the substitution $x_{1} \mapsto \rho(h), x_{2} \mapsto \rho(e)$. Then we get

$$
\begin{aligned}
w_{k}(\rho(h), \rho(e)) & =\left(\sum_{i=1}^{d}(d+1-2 i) E_{i, i}\right)^{k} \cdot\left(2 \sum_{i=1}^{d-1} i E_{i, i+1}\right) \cdot\left(\sum_{i=1}^{d}(d+1-2 i) E_{i, i}\right)^{d-2-k} \\
& =2 \sum_{i=1}^{d-1} i(d+1-2 i)^{k}(d-1-2 i)^{d-2-k} E_{i, i+1}
\end{aligned}
$$

Denote by $Z=\left(Z_{i, j}\right)_{i, j=1}^{d-1}$ the $(d-1) \times(d-1)$ matrix whose $(i, k+1)$ entry is the $(i, i+1)$-entry of $w_{k}(\rho(h), \rho(e))$ (i.e. the coefficient of $E_{i . i+1}$ on the right hand side of the above equality). If $i \neq \frac{d-1}{2}$, then

$$
Z_{i, k+1}=2(d-1-2 i)^{d-2} \cdot\left(\frac{d+1-2 i}{d-1-2 i}\right)^{k}
$$

Thus when d is even, Z is obtained from a Vandermonde matrix via multiplying each row by a nonzero integer. Since the numbers $\frac{d+1-2 i}{d-1-2 i}, i=1, \ldots, d-1$ are distinct, we conclude that $\operatorname{det}(Z) \neq 0$. When $d=2 f-1$ is odd, the $(f-1)$ th row of Z is

$$
\left(0, \ldots, 0,2(f-1) 2^{d-2}\right)
$$

Expand the determinant of Z along this row; the $(d-2) \times(d-2)$ minor of Z obtained by removing the $(f-1)$ th row and the last column of Z is again obtained from a Vandermonde matrix by multiplying each row by a nonzero integer. So $\operatorname{det}(Z)$ is nonzero also when d is odd. This shows that the elements $w_{k}(\rho(h), \rho(e)), k=0,1, \ldots, d-2$ are linearly independent in $\mathbb{C}^{d \times d}$. Consequently, no nontrivial linear combination of $w_{0}, w_{1}, \ldots, w_{d-2}$ belongs to $I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right)$. It follows that $F_{2} /\left(I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \cap F_{2}\right)$ contains the irreducible $\mathrm{GL}_{2}(\mathbb{C})$-module $W_{(d-1,1)}$ with multiplicity $\geq d-1$. This multiplicity is in fact equal to $d-1$, because $d-1$ is the multiplicity of $W_{(d-1,1)}$ as a summand in F_{2}. Recall finally that for $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \vdash m$, the multiplicity of χ^{λ} in the cocharacter sequence coincides with the multiplicity of W_{λ} in $F_{2} /\left(I\left(\mathfrak{s l}_{2}(\mathbb{C}), \rho^{(d)}\right) \cap F_{2}\right)$.

Acknowledgment

This research was partially supported by the Hungarian National Research, Development and Innovation Office, NKFIH K 138828, K 132002.

References

[1] Aljadeff E, Giambruno A, Procesi C, Regev A. Rings with Polynomial Identities and Finite Dimensional Algebras. AMS Colloquium Publications: Vol 66. Providence, RI, USA: American Mathematical Society, 2020.
[2] Berele A, Regev A. Applications of hook Young diagrams to P.I. algebras. Journal of Algebra 1983; 82: 559-567.
[3] da Silva Macedo DL, Koshlukov P. Codimension growth for weak polynomial identities and non-integrality of the PI exponent. Proceedings of the Edinburgh Mathematical Society 2020; 63: 929-949.
[4] Domokos M. Matrix valued concomitants of $\mathfrak{s l}_{2}(\mathbb{C})$. arXiv:2112.06882.
[5] Domokos M, Drensky V. Cocharacters for the weak polynomial identities of the Lie algebra of 3×3 skew-symmetric matrices. Advances in Mathematics 2020; 374: Paper no: 107343.
[6] Drensky V. Codimensions of T-ideals and Hilbert series of relatively free algebras. Journal of Algebra 1984; 91: 1-17.
[7] Drensky V. Free Algebras and PI-Algebras. Springer-Verlag, Singapore, 2000.
[8] Drensky V. Weak polynomial identities and their applications. Communications in Mathematics 2021; 29: 291-324.
[9] Formanek E. Invariants and the ring of generic matrices. Journal of Algebra 1984; 89: 178-223.
[10] Gordienko AS. Codimensions of polynomial identities of representations of Lie algebras. Proceedings of the Amercan Mathematical Society 2013; 141: 3369-3382.
[11] Macdonald IG. Symmetric Functions and Hall Polynomials. Oxford: Oxford Univ. Press (Clarendon), 1979, Second Edition, 1995.
[12] Procesi C. Computing with 2×2 matrices. Journal of Algebra 1984; 87: 342-359.
[13] Razmyslov YuP. Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero. Algebra i Logika 1973; 12: 83-113 (in Russian. English translation: Algebra and Logic 1973; 12: 47-63).
[14] Razmyslov YuP. On a problem of Kaplansky. Izvestiya Akademii Nauk SSSR 1973; Seriya Matematicheskaya 37: 483-501 (in Russian. English translation: Math. USSR. Izv. 1973; 7: 479-496).
[15] Razmyslov YuP. Finite basis property for identities of representations of a simple three-dimensional Lie algebra over a field of characteristic zero. In: Algebra, Work Collect., dedic. O. Yu. Shmidt, Moskva 1982, 139-150 (in Russian. English Translation: American Mathematical Society Translations: Series 2 1988; 140: 101-109).
[16] Razmyslov YuP. Identities of Algebras and Their Representations. Moscow, Nauka, 1989. (in Russian. English translation: Translations of Mathematical Monographs 138, Providence, RI, USA: AMS , 1994).

[^0]: *Correspondence: domokos.matyas@renyi.hu
 2010 AMS Mathematics Subject Classification: 16R30; 16R10; 17B01; 17B20; 20C30.

