

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2022) 46: 1749 – 1758 © TÜBİTAK doi:10.55730/1300-0098.3230

Research Article

Bound for the cocharacters of the identities of irreducible representations of $\mathfrak{sl}_2(\mathbb{C})$

Mátyás DOMOKOS^{*}[©] Alfréd Rényi Institute of Mathematics Dedicated to Vesselin Drensky on his 70th birthday

Received: 15.12.2021 •	Accepted/Published Online: 05.01.2022	•	Final Version: 20.06.2022
------------------------	---------------------------------------	---	----------------------------------

Abstract: For each irreducible finite dimensional representation of the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ of 2 × 2 traceless matrices, an explicit uniform upper bound is given for the multiplicities in the cocharacter sequence of the polynomial identities satisfied by the given representation.

Key words: Weak polynomial identities, simple Lie algebra, irreducible representation, cocharacter sequence

1. Introduction

Let $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite dimensional representation of the Lie algebra \mathfrak{g} over a field K of characteristic zero; that is, $\mathfrak{gl}(V) = \operatorname{End}_K(V)$, the space of all K-linear transformations of the finite dimensional K-vector space V, viewed as a Lie algebra with Lie product $[A, B] := A \circ B - B \circ A$ for $A, B \in \operatorname{End}_K(V)$, and ρ is a homomorphism of Lie algebras. Denote by $F_m := K\langle x_1, \ldots, x_m \rangle$ the free associative K-algebra with m generators. Consider F_m as a subalgebra of F_{m+1} in the obvious way, and write $F := \bigcup_{m=1}^{\infty} F_m$ for the free associative algebra of countable rank. We say that f = 0 is an identity of the representation ρ of \mathfrak{g} (or briefly, of the pair (\mathfrak{g}, ρ)) for some $f \in F_m$ if for any elements $A_1, \ldots, A_m \in \mathfrak{g}$ we have the following equality in the associative K-algebra $\operatorname{End}_K(V)$:

$$f(\rho(A_1),\ldots,\rho(A_n)) = 0 \in \operatorname{End}_K(V).$$

Note that an identity of the representation ρ of the Lie algebra \mathfrak{g} is also called in the literature a *weak polynomial identity* for the pair $(\operatorname{End}_{K}(V), \rho(\mathfrak{g}))$. This notion was introduced and powerfully applied first by Razmyslov [13–16] (see Drensky [8] for a recent survey on weak polynomial identities). Set

 $I(\mathfrak{g},\rho) := \{ f \in F \mid f = 0 \text{ is an identity of } (\mathfrak{g},\rho) \}.$

Clearly $I(\mathfrak{g},\rho)$ is an ideal in F stable with respect to all K-algebra endomorphisms of F of the form $x_i \mapsto u_i$, where u_i for i = 1, 2, ... is an element of the Lie subalgebra of F generated by $x_1, x_2, ...$ In particular, the general linear group $\operatorname{GL}_m(K)$ acts on F_m via K-algebra automorphisms: for $g = (g_{ij})_{i,j=1}^m$ we have $g \cdot x_j = \sum_{i=1}^m g_{ij} x_i$, and $I(\mathfrak{g}, \rho) \cap F_m$ is a $\operatorname{GL}_m(K)$ -invariant subspace of F_m . The multilinear component of

^{*}Correspondence: domokos.matyas@renyi.hu

²⁰¹⁰ AMS Mathematics Subject Classification: 16R30; 16R10; 17B01; 17B20; 20C30.

 F_m is

$$P_m := \operatorname{Span}_K \{ x_{\pi(1)} \cdots x_{\pi(m)} \mid \pi \in S_m \},$$

where S_m is the symmetric group of degree m. It is well known that when $\operatorname{char}(K) = 0$, the ideal $I(\mathfrak{g}, \rho)$ is determined by the multilinear components $I(\mathfrak{g}, \rho) \cap P_m$, $m = 1, 2, \ldots$. Identifying S_m with the subgroup of permutation matrices in $\operatorname{GL}_m(K)$ we get its action on F_m via K-algebra automorphisms (more explicitly, $\pi \in S_m$ is the automorphism of F_m given by $x_i \mapsto x_{\pi(i)}$), and the subspaces P_m and $I(\mathfrak{g}, \rho) \cap P_m$ are S_m -invariant. Define the *m*th cocharacter of (\mathfrak{g}, ρ) as

$$\chi_m(\mathfrak{g},\rho) :=$$
 the character of the S_m -module $P_m/(I(\mathfrak{g},\rho) \cap P_m)$

We call

$$\chi(\mathfrak{g},\rho) := (\chi_m(\mathfrak{g},\rho) \mid m = 1, 2, \dots)$$

the cocharacter sequence of (\mathfrak{g}, ρ) . The irreducible S_m -modules are labeled by partitions of m; let χ^{λ} denote the character of the irreducible S_m -module associated to the partition $\lambda = (\lambda_1, \ldots, \lambda_m) \vdash m$. We have

$$\chi_m(\mathfrak{g},\rho) = \sum_{\lambda \vdash m} \operatorname{mult}_{\lambda}(\mathfrak{g},\rho) \chi^{\lambda},$$

and we are interested in the multiplicities $\operatorname{mult}_{\lambda}(\mathfrak{g},\rho)$ of the irreducible S_m -characters in the cocharacter sequence. Note that the value of $\chi_m(\mathfrak{g},\rho)$ on the identity element of S_m is

$$c_m(\mathfrak{g},\rho) := \dim_K(P_m/(I(\mathfrak{g},\rho) \cap P_m)),$$

and

$$(c_m(\mathfrak{g},\rho) \mid m=1,2,\dots)$$

is called the *codimension sequence of* (\mathfrak{g}, ρ) . It was proved by Gordienko [10] that $\lim_{m\to\infty} \sqrt[m]{c_m(\mathfrak{g}, \rho)}$ exists and is an integer. As is observed in [10, Example 3], an obvious upper bound for $c_m(\mathfrak{g}, \rho)$ can be obtained from the fact that there is a natural K-linear embedding

$$P_m/(I(\mathfrak{g},\rho)\cap P_m) \hookrightarrow \operatorname{Hom}_K(\rho(\mathfrak{g})^{\otimes m}, \operatorname{End}_K(V)).$$
 (1.1)

Our starting observation is that the adjoint representation of \mathfrak{g} on itself induces a natural representation of \mathfrak{g} on $\rho(\mathfrak{g})^{\otimes m}$ (the *m*th tensor power of $\rho(\mathfrak{g})$) and on $\operatorname{End}_{K}(V)$, such that the image of the embedding (1.1) is contained in the subspace of \mathfrak{g} -module homomorphisms from $\rho(\mathfrak{g})^{\otimes m}$ to $\operatorname{End}_{K}(V)$. So (1.1) can be refined as

$$P_m/(I(\mathfrak{g},\rho)\cap P_m) \hookrightarrow \operatorname{Hom}_{\mathfrak{g}}(\rho(\mathfrak{g})^{\otimes m},\operatorname{End}_K(V)).$$
 (1.2)

This will be used to give an upper bound for the multiplicities in the cocharacter sequence $\chi(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$ of the *d*-dimensional irreducible representation

$$\rho^{(d)}:\mathfrak{sl}_2(\mathbb{C})\to\mathfrak{gl}(\mathbb{C}^d)=\mathbb{C}^{d\times d}$$

of $\mathfrak{sl}_2(\mathbb{C})$ for $d = 1, 2, \ldots$. Note that throughout the paper we shall identify $\mathfrak{gl}(\mathbb{C}^d)$ with the associative algebra $\mathbb{C}^{d \times d}$ of $d \times d$ complex matrices, viewed as a Lie algebra with Lie bracket [A, B] = AB - BA.

Theorem 1.1 The multiplicity $\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$ in $\chi(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$ is nonzero only if $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ (i.e. λ has at most 3 nonzero parts), and in this case we have the inequality

$$\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \le 3^{d-2}$$

Remark 1.2 (i) The exact values of $\text{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$ are known for $d \leq 3$. For d = 1 all the multiplicities are obviously zero. It was proved in [12] (see also [7, Exercise 12.6.12]) that

$$\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(2)}) = 1 \text{ for all } \lambda = (\lambda_1, \lambda_2, \lambda_3).$$

The multiplicities $\operatorname{mult}_{\lambda}(\mathfrak{sl}_{2}(\mathbb{C}), \rho^{(3)})$ are computed in [5, Theorem 3.7, Proposition 3.8]. It turns out that $\operatorname{mult}_{\lambda}(\mathfrak{sl}_{2}(\mathbb{C}), \rho^{(3)}) \in \{1, 2, 3\}$ for each $\lambda = (\lambda_{1}, \lambda_{2}, \lambda_{3})$.

(ii) Theorem 1.1 shows in particular that for each dimension d, there is a uniform bound (depending on d only) for the multiplicities $\operatorname{mult}_{\lambda}(\mathfrak{sl}_{2}(\mathbb{C}), \rho^{(d)})$. For comparison we mention that the multiplicities in the cocharacter sequence of the ordinary polynomial identities of 2×2 matrices are unbounded: see [6] and [9]. For example, for any partition $\lambda = (\lambda_{1}, \lambda_{2})$ with $\lambda_{2} > 0$, the multiplicity is $(\lambda_{1} - \lambda_{2} + 1)\lambda_{2}$. On the other hand, the cocharacter multiplicities of any PI algebra are polynomially bounded by [2].

(iii) There is no uniform upper bound independent of d for the multiplicities $\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$, because by Proposition 4.1, $\max\{\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \mid m = 1, 2, ..., \lambda \vdash m\} \ge d-1$ for $d \ge 2$.

(iv) The irreducible representations of $\mathfrak{sl}_2(\mathbb{C})$ are defined over \mathbb{Q} . For any field K of characteristic zero and any positive integer d, the Lie algebra $\mathfrak{sl}_2(K)$ has a unique (up to isomorphism) d-dimensional irreducible representation $\rho_K^{(d)}$ over K. By well-known general arguments, the multiplicities $\operatorname{mult}_\lambda(\mathfrak{sl}_2(K), \rho_K^{(d)})$ do not depend on K. Therefore Theorem 1.1 implies that $\operatorname{mult}_\lambda(\mathfrak{sl}_2(K), \rho_K^{(d)}) \leq 3^{d-2}$ for any field K of characteristic zero.

(v) A different interpretation and approach to the study of $\operatorname{Hom}_{\mathfrak{g}}(\rho(\mathfrak{g})^{\otimes m}, \operatorname{End}_{K}(V))$ for $\mathfrak{g} = \mathfrak{sl}_{2}(\mathbb{C})$ and $\rho = \rho^{(d)}$ is given in our parallel preprint [4], using classical invariant theory.

We close the introduction by mentioning the recent paper of da Silva Macedo and Koshlukov [3, Theorem 3.7], where the codimension growth of polynomial identities of representations of Lie algebras is studied. In particular, in [3, Theorem 3.7] the identities of representations of $\mathfrak{sl}_2(\mathbb{C})$ play a decisive role.

2. Matrix computations

Denote by $\tilde{\rho}^{(d)}:\mathfrak{sl}_2(\mathbb{C})\to\mathfrak{gl}(\mathbb{C}^{d\times d})$ the representation given by

$$\widetilde{\rho}^{(d)}(A)(L) = \rho^{(d)}(A)L - L\rho^{(d)}(A) \text{ for } A \in \mathfrak{sl}_2(\mathbb{C}), \ L \in \mathbb{C}^{d \times d}.$$
(2.1)

We have $\tilde{\rho}^{(d)} \cong {\rho^{(d)}}^*$. The representations of $\mathfrak{sl}_2(\mathbb{C})$ are self-dual, and so by the Clebsch-Gordan rules we have

$$\widetilde{\rho}^{(d)} \cong \rho^{(d)} \otimes \rho^{(d)} \cong \bigoplus_{n=1}^{d} \rho^{(2n-1)}.$$
(2.2)

We shall need an explicit decomposition of $\mathbb{C}^{d \times d}$ as a direct sum of minimal $\tilde{\rho}^{(d)}$ -invariant subspaces.

Set

$$e := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

so e, f, h is a \mathbb{C} -vector space basis of $\mathfrak{sl}_2(\mathbb{C})$, with [h, e] = 2e, [h, f] = -2f, and [e, f] = h.

Recall that given a representation $\psi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$, by a highest weight vector we mean a nonzero element $w \in V$ such that $\psi(e)(w) = 0 \in V$ and $\psi(h)(w) = nw$ for some nonnegative integer n (the nonnegative integer n is called the *weight* of w); in this case w generates a minimal $\mathfrak{sl}_2(\mathbb{C})$ -invariant subspace in V, on which the representation of $\mathfrak{sl}_2(\mathbb{C})$ is isomorphic to $\rho^{(n+1)}$. Moreover, any finite dimensional irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module contains a unique (up to nonzero scalar multiples) highest weight vector.

Lemma 2.1 Consider the $\mathfrak{sl}_2(\mathbb{C})$ -module $\mathbb{C}^{d \times d}$ via the representation $\tilde{\rho}^{(d)}$. To simplify notation set $\rho := \rho^{(d)}$ and $\tilde{\rho} := \tilde{\rho}^{(d)}$.

- (i) $\rho(e)^n$ is a highest weight vector in $\mathbb{C}^{d \times d}$ of weight 2n for $n = 0, 1, \dots, d-1$.
- (ii) $\rho(e)^{n-1}$ generates a minimal $\tilde{\rho}$ -invariant subspace V_n on which $\mathfrak{sl}_2(\mathbb{C})$ acts via $\rho^{(2n-1)}$ for $n = 1, \ldots, d$.
- (*iii*) $\mathbb{C}^{d \times d} = \bigoplus_{n=1}^{d} V_n$.
- (iv) For $L_1 \in V_{n_1}$ and $L_2 \in V_{n_2}$ with $1 \le n_1 \ne n_2 \le d$ we have $\text{Tr}(L_1L_2) = 0$.

Proof (i) We have $\widetilde{\rho}(e)(\rho(e)^n) = \rho(e)\rho(e)^n - \rho(e)^n\rho(e) = 0$ and

$$\tilde{\rho}(h)(\rho(e)^n) = \rho([h,e])\rho(e)^{n-1} + \rho(e)\rho([h,e])\rho(e)^{n-2} + \dots + \rho(e)^{n-1}\rho([h,e]) = 2n\rho(e)^n.$$

This shows that $\rho(e)^n$ is the highest weight vector of weight 2n for the representation $\tilde{\rho}$.

(ii) Statement (i) implies that $\rho(e)^{n-1}$ generates an irreducible $\mathfrak{sl}_2(\mathbb{C})$ -submodule of $\tilde{\rho}$ isomorphic to $\rho^{(2n-1)}$ for $n = 1, \ldots, d$.

- (iii) follows from (ii) and (2.2).
- (iv) Consider the symmetric nondegenerate bilinear form

$$\beta: \mathbb{C}^{d \times d} \times \mathbb{C}^{d \times d} \to \mathbb{C}, \quad (L, M) \mapsto \operatorname{Tr}(LM).$$

Note that β is $\tilde{\rho}$ -invariant:

$$\beta([\rho(A), L], M) + \beta(L, [\rho(A), M]) = \operatorname{Tr}([\rho(A), L]M) + \operatorname{Tr}(L[\rho(A), M])$$
$$= \operatorname{Tr}([\rho(A), LM]) = 0 \quad \text{for any } A \in \mathfrak{sl}_2(\mathbb{C}).$$

The radical of the bilinear form $\beta_{V_n} : V_n \times V_n \mapsto \mathbb{C}$ (the restriction of β to $V_n \times V_n$) is a $\tilde{\rho}$ -invariant subspace in V_n , so it is either V_n or $\{0\}$. We claim that it is not V_n . Indeed, V_n contains a nonzero diagonal matrix D with real entries, since the zero weight subspace in $\mathbb{C}^{d \times d}$ (with respect to $\tilde{\rho}(h)$) is the subspace of diagonal matrices, and V_n intersects the zero-weight space in a 1-dimensional subspace (defined over the reals). Now being a sum of squares of nonzero real numbers, $0 \neq \operatorname{Tr}(D^2) = \beta(D, D)$. Thus β_{V_n} is nondegenerate. The representation $\tilde{\rho}$ is multiplicity free by (2.2), and by (ii) and (iii), every $\tilde{\rho}$ -invariant subspace is of the form $\sum_{j \in J} V_j$ for some

subset $J \subseteq \{1, 2, ..., d\}$. As we showed above, the orthogonal complement of V_n (with respect to β) is disjoint from V_n , so it is the sum of the other minimal invariant subspaces V_j , $j \in \{1, ..., d\} \setminus \{n\}$. \Box

The representation $\rho^{(2)}$ is the defining representation of $\mathfrak{sl}_2(\mathbb{C})$ on \mathbb{C}^2 , and $\rho^{(d)}$ is the (d-1)th symmetric tensor power of $\rho^{(2)}$. Denote by x, y the standard basis vectors in \mathbb{C}^2 , and take the basis $x^{d-1}, x^{d-1}y, \ldots, y^{d-1}$ in the (d-1)th symmetric tensor power of \mathbb{C}^2 . Then denoting by $E_{i,j}$ the matrix unit with entry 1 in the (i, j) position and zeros in all other positions, the representation $\rho^{(d)}$ as a matrix representation $\mathfrak{sl}_2(\mathbb{C}) \to \mathbb{C}^{d \times d}$ is given as follows:

$$\rho^{(d)}(e) = \sum_{i=1}^{d-1} i E_{i,i+1}, \quad \rho^{(d)}(f) = \sum_{i=1}^{d-1} (d-i) E_{i+1,i}, \quad \rho^{(d)}(h) = \sum_{i=1}^{d} (d+1-2i) E_{i,i}$$

Lemma 2.2 For $d \geq 3$ the \mathbb{C} -vector space $\mathbb{C}^{d \times d}$ is spanned by

 $\{\rho^{(d)}(A_1)\cdots\rho^{(d)}(A_{d-1})\mid A_1,\ldots,A_{d-1}\in\mathfrak{sl}_2(\mathbb{C})\}.$

Proof To simplify the notation write $\rho := \rho^{(d)}$ and $\tilde{\rho} := \tilde{\rho}^{(d)}$. Let \mathcal{L} be the subspace of $\mathbb{C}^{d \times d}$ spanned by the products $\rho(A_1) \cdots \rho(A_{d-1})$, where $A_1, \ldots, A_{d-1} \in \mathfrak{sl}_2(\mathbb{C})$. Clearly \mathcal{L} is a $\tilde{\rho}$ -invariant subspace of $\mathbb{C}^{d \times d}$. Since the representation $\tilde{\rho}$ is multiplicity free by (2.2), we have $\mathcal{L} = \sum_{j \in J} V_j$ for some subset $J \subseteq \{1, 2, \ldots, d\}$ by Lemma 2.1 (ii) and (iii). Therefore to prove the equality $\mathcal{L} = \mathbb{C}^{d \times d}$ it is sufficient to show that $\mathcal{L} \cap V_n \neq \{0\}$ for each $n = 1, \ldots, d$, or equivalently, that \mathcal{L} is not contained in $\sum_{j \in \{1, \ldots, d\} \setminus \{n\}} V_j$. Since V_d is generated by $\rho(e)^{d-1} \in \mathcal{L}$, we have $V_d \subseteq \mathcal{L}$. Moreover, to prove $\mathcal{L} \not\subseteq \sum_{j \in \{1, \ldots, d\} \setminus \{n+1\}} V_j$ for $n \in \{0, 1, \ldots, d-2\}$, it is sufficient to present an element $L_n \in \mathcal{L}$ with $\operatorname{Tr}(\rho(e)^n L_n) \neq 0$ by Lemma 2.1 (ii) and (iv). We shall give below such elements $L_n \in \mathcal{L}$ for $n = 0, 1, \ldots, d-2$.

For $n = 1, \ldots, d - 1$ we have

$$\rho(e)^n = \sum_{j=1}^{d-n} j \cdot (j+1) \cdots (j+n-1) E_{j,j+n}$$
$$\rho(f)^n = \sum_{j=1}^{d-n} (d-j) \cdot (d-j-1) \cdots (d-j-n+1) E_{j+n,j}$$

and $\rho(e)^0 = I_d = \rho(f)^0$, where I_d is the $d \times d$ identity matrix. It follows that for $n = 1, \ldots, d - 1$,

$$\rho(e)^n \rho(f)^n = \sum_{j=1}^{d-n} j(j+1) \cdots (j+n-1) \cdot (d-j)(d-j-1) \cdots (d-j-n+1) E_{j,j}$$

is a diagonal matrix with nonnegative integer entries, and the (1,1)-entry is positive. The same holds for $\rho(e)^0 \rho(f)^0 = I_d$. For n with d-1-n even, $\rho(h)^{d-1-n}$ is the square of a diagonal matrix with integer entries, and its (1,1)-entry is positive. Hence $\operatorname{Tr}(\rho(e)^n \rho(f)^n \rho(h)^{d-1-n}) \neq 0$, being a positive integer. So in this case we may take $L_n := \rho(f)^n \rho(h)^{d-1-n}$. For n < d-2 with d-1-n odd, note that $\rho(e)\rho(f) - \rho(f)\rho(e) = \rho([e, f]) = \rho(h)$, and thus

$$\rho(f)^n \rho(h)^{d-2-n} = \rho(f)^n \rho(h)^{d-3-n} (\rho(e)\rho(f) - \rho(f)\rho(e))$$

also belongs to \mathcal{L} . Since $\rho(h)^{d-2-n}$ is a diagonal matrix with nonnegative integer entries, and with a positive (1,1)-entry, we may take $L_n := \rho(f)^n \rho(h)^{d-2-n}$ in this case. It remains to deal with the case n = d-2. Then

$$\rho(e)^{d-2}\rho(f)^{d-2} = (d-1)((d-2)!)^2 \cdot (E_{1,1} + E_{2,2})$$

hence taking $L_{d-2} := \rho(f)^{d-2}\rho(h)$ we get

$$\operatorname{Tr}(\rho(e)^{d-2}L_{d-2}) = \operatorname{Tr}((d-1)((d-2)!)^2 \cdot ((d-1)E_{11} + (d-3)E_{22}))$$
$$= (2d-4)(d-1)((d-2)!)^2,$$

which is nonzero for $d \ge 3$. This finishes the proof of the equality $\mathcal{L} = \mathbb{C}^{d \times d}$ for $d \ge 3$.

3. Adjoint invariants

Denote by $\mathrm{ad} : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C}))$ the adjoint representation of $\mathfrak{sl}_2(\mathbb{C})$ on itself, so $\mathrm{ad}(A)(B) = [A, B]$ for $A, B \in \mathfrak{sl}_2(\mathbb{C})$. Take the *n*-fold direct sum $\mathrm{ad}^{\oplus n} : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C})^{\oplus n})$ of the adjoint representation, and write $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]^{\mathfrak{sl}_2(\mathbb{C})}$ for the algebra of $\mathrm{ad}^{\oplus n}$ -invariant polynomial functions on $\mathfrak{sl}_2(\mathbb{C})^{\oplus n}$. There is a right action of $\mathrm{GL}_n(\mathbb{C})$ on $\mathfrak{sl}_2(\mathbb{C})^n$ that commutes with $\mathrm{ad}^{\oplus n}$: for $g = (g_{ij})_{i,1=1}^n$ and $(A_1,\ldots,A_n) \in \mathfrak{sl}_2(\mathbb{C})^n$ we have

$$(A_1, \dots, A_n) \cdot g := (\sum_{i=1}^n g_{i1}A_i, \dots, \sum_{i=1}^n g_{in}A_i).$$

This induces a left $\operatorname{GL}_n(\mathbb{C})$ -action on the coordinate ring $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]$: for $g \in \operatorname{GL}_n(\mathbb{C})$, $f \in \mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]$ and $(A_1, \ldots, A_n) \in \mathfrak{sl}_2(\mathbb{C})^n$ we have $(g \cdot f)(A_1, \ldots, A_n) = f((A_1, \ldots, A_n) \cdot g)$.

Lemma 3.1 Consider the linear map $\iota: F_m = \mathbb{C}\langle x_1, \ldots, x_m \rangle \to \mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^{m+d-1}]$ given by

$$\iota(f)(A_1,\ldots,A_{m+d-1}) = \operatorname{Tr}(f(\rho^{(d)}(A_1),\ldots,\rho^{(d)}(A_m)) \cdot \rho^{(d)}(A_{m+1}) \cdots \rho^{(d)}(A_{m+d-1}))$$

for $f \in F_m$ and $(A_1, \ldots, A_{m+d-1}) \in \mathfrak{sl}_2(\mathbb{C})^{m+d-1}$. It has the following properties:

- (i) The image of ι is contained in the subalgebra $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^{m+d-1}]^{\mathfrak{sl}_2(\mathbb{C})}$ of $\mathfrak{sl}_2(\mathbb{C})$ -invariants.
- (ii) For $d \geq 3$ the kernel of ι is the ideal $I(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \cap F_m$.
- (iii) The map ι is $\operatorname{GL}_m(\mathbb{C})$ -equivariant, where we restrict the $\operatorname{GL}_{m+d-1}(\mathbb{C})$ -action on $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^{m+d-1}]$ to the subgroup $\operatorname{GL}_m(\mathbb{C}) \cong \{ \begin{pmatrix} g & 0 \\ 0 & I_{d-1} \end{pmatrix} \mid g \in \operatorname{GL}_m(\mathbb{C}) \}$ in $\operatorname{GL}_{m+d-1}(\mathbb{C})$.

Proof For notational simplicity we shall write ρ instead of $\rho^{(d)}$.

(i) By linearity of ι it is sufficient to show that $\iota(x_{i_1}\cdots x_{i_k})$ is an $\mathfrak{sl}_2(\mathbb{C})$ -invariant for any $i_1,\ldots,i_k \in \{1,\ldots,m\}$. Setting n = k + d - 1, $B_1 = A_{i_1},\ldots,B_k = A_{i_k}, B_{k+1} = A_{m+1},\ldots,B_n = A_{m+d-1}$ we have

$$\iota(x_{i_1}\cdots x_{i_k})(A_1,\dots,A_{m+d-1}) = \operatorname{Tr}(\rho(B_1)\cdots \rho(B_n)).$$
(3.1)

For any $X \in \mathfrak{sl}_2(\mathbb{C})$ we have

$$0 = \operatorname{Tr}([\rho(X), \rho(B_1) \cdots \rho(B_n)])$$

= $\operatorname{Tr}(\sum_{j=1}^n \rho(B_1) \cdots \rho(B_{j-1})[\rho(X), \rho(B_j)]\rho(B_{j+1}) \cdots \rho(B_n))$
= $\operatorname{Tr}(\sum_{j=1}^n \rho(B_1) \cdots \rho(B_{j-1})\rho([X, B_j])\rho(B_{j+1}) \cdots \rho(B_n))$
= $\sum_{j=1}^n \operatorname{Tr}(\rho(B_1) \cdots \rho(B_{j-1})\rho([X, B_j])\rho(B_{j+1}) \cdots \rho(B_n)).$

The equalities (3.1) and

$$\sum_{j=1}^{n} \operatorname{Tr}(\rho(B_1) \cdots \rho(B_{j-1}) \rho([X, B_j]) \rho(B_{j+1}) \cdots \rho(B_n)) = 0$$

mean that $\iota(x_{i_1}\cdots x_{i_k})$ is $\mathfrak{sl}_2(\mathbb{C})$ -invariant, so (i) holds.

(ii) Suppose that $f \in \ker(\iota)$. Then $\operatorname{Tr}(f(\rho(A_1), \ldots, \rho(A_m))B) = 0$ for all $A_1, \ldots, A_m \in \mathfrak{sl}_2(\mathbb{C})$ and for all $B \in \mathbb{C}^{d \times d}$ by Lemma 2.2. By nondegeneracy of the trace we get $f(\rho(A_1), \ldots, \rho(A_m)) = 0$ for all $A_1, \ldots, A_m \in \mathfrak{sl}_2(\mathbb{C})$. That is, $f \in I(\mathfrak{sl}_2(\mathbb{C}), \rho)$. Thus $\ker(\iota) \subseteq I(\mathfrak{sl}_2(\mathbb{C}), \rho) \cap F_m$. The reverse inclusion $I(\mathfrak{sl}_2(\mathbb{C}), \rho) \cap F_m \subseteq \ker(\iota)$ is obvious.

(iii) Take $g = (g_{ij})_{i,j=1}^m \in \operatorname{GL}_m(\mathbb{C})$. For $f \in F_m$ and $(A_1, \ldots, A_{m+d-1}) \in \mathfrak{sl}_2(\mathbb{C})^{m+d-1}$ we have (by linearity of ρ)

$$\iota(g \cdot f)(A_1, \dots, A_{m+d-1}) = \operatorname{Tr}(f(\sum_{i=1}^m g_{i1}\rho(A_i), \dots, \sum_{i=1}^m g_{im}\rho(A_i)) \cdot \rho(A_{m+1}) \cdots \rho(A_{m+d-1})) = \operatorname{Tr}(f(\rho(\sum_{i=1}^m g_{i1}(A_i)), \dots, \rho(\sum_{i=1}^m g_{im}(A_i)) \cdot \rho(A_{m+1}) \cdots \rho(A_{m+d-1}))) = (g \cdot \iota(f))(A_1, \dots, A_{m+d-1}).$$

This shows (iii).

Restricting the action of $\operatorname{GL}_n(\mathbb{C})$ on $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]$ to the subgroup of diagonal matrices we get an \mathbb{N}_0^n grading on $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]$, preserved by the action of $\mathfrak{sl}_2(\mathbb{C})$. Denote by $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]_{(1^n)}$ the multihomogeneous component of multidegree $(1, \ldots, 1)$; this is the space of *n*-linear functions on $\mathfrak{sl}_2(\mathbb{C})$. The spaces $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]_{(1^n)}$ and $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]_{(1^n)}^{\mathfrak{sl}_2(\mathbb{C})}$ are S_n -invariant (where we restrict the $\operatorname{GL}_n(\mathbb{C})$ -action to its subgroup S_n of permutation matrices). Lemma 3.1 has the following immediate consequence:

Corollary 3.2 For $d \ge 3$ the restriction of ι to the multilinear component P_m of $\mathbb{C}\langle x_1, \ldots, x_m \rangle$ factors through an S_m -equivariant \mathbb{C} -linear embedding

$$\bar{\iota}: P_m/(I(\mathfrak{sl}_2(\mathbb{C})) \cap P_m) \to \mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^{m+d-1}]_{(1^{m+d-1})}^{\mathfrak{sl}_2(\mathbb{C})}$$

where on the right hand side we consider the restriction of the S_{m+d-1} -action to its subgroup S_m (the stabilizer in S_{m+d-1} of the elements $m+1, m+2, \ldots, m+d-1$).

For a partition $\lambda \vdash m$ denote by $r(\lambda)$ the multiplicity of χ^{λ} in the restriction to S_m of the S_{m+d-1} module $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^{m+d-1}]_{(1^{m+d-1})}^{\mathfrak{sl}_2(\mathbb{C})}$. Corollary 3.2 immediately implies the following:

Corollary 3.3 For $d \geq 3$ and any partition $\lambda \vdash m$ we have the inequality

$$\operatorname{mult}_{\lambda}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \le r(\lambda)$$

The S_n -character of $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]_{(1^n)}^{\mathfrak{sl}_2(\mathbb{C})}$ is known:

Proposition 3.4 For a partition $\lambda \vdash n$ denote by $\nu(\lambda)$ the multiplicity of χ^{λ} in the S_n -character of $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]^{\mathfrak{sl}_2(\mathbb{C})}_{(1^n)}$. Then we have

$$\nu(\lambda) = \begin{cases} 1 \text{ for } \lambda = (\lambda_1, \lambda_2, \lambda_3) \text{ with } \lambda_1 \equiv \lambda_2 \equiv \lambda_3 \text{ modulo } 2\\ 0 \text{ otherwise.} \end{cases}$$

Proof The $\operatorname{GL}_n(\mathbb{C})$ -module structure of $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]^{\mathfrak{sl}_2(\mathbb{C})}$ is given for example in [12, Theorem 2.2]. The isomorphism types of the irreducible $\operatorname{GL}_n(\mathbb{C})$ -module direct summands of the degree n homogeneous component of $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]$ are labeled by partitions of n with at most 3 nonzero parts. The multiplicity $\mu(\lambda)$ of the irreducible $\operatorname{GL}_n(\mathbb{C})$ -module W_{λ} in the degree n homogeneous component of $\mathcal{O}[\mathfrak{sl}_2(\mathbb{C})^n]^{\mathfrak{sl}_2(\mathbb{C})}$ is 1 if $\lambda_1, \lambda_2, \lambda_3$ have the same parity and is zero otherwise. Note finally that the multilinear component of W_{λ} is S_n -stable, and its S_n -character is χ^{λ} (see for example [1, Corollary 6.3.11]).

Following [11, Section I.1] for partitions $\lambda \vdash n$ and $\mu \vdash k$ we write $\lambda \subset \mu$ is $\lambda_i \leq \mu_i$ for all *i*. Moreover, given $\lambda \vdash m$ and $\mu \vdash m + d - 1$ with $\lambda \subset \mu$, by a standard tableau of shape μ/λ we mean a sequence $\lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(d-1)}$ of partitions $\lambda^{(i)} \vdash m + i$, where $\lambda^{(0)} = \lambda$, $\lambda^{(d-1)} = \mu$. By the well-known branching rules for the symmetric group, for $\lambda \vdash m$ the multiplicity of χ^{λ} in the restriction to S_m of the irreducible S_{m+d-1} -character χ^{μ} equals the number of standard tableaux of shape μ/λ (see for example [1, Theorem 6.4.11]). Therefore Proposition 3.4 has the following consequence.

Corollary 3.5 We have the equality

$$\begin{split} r(\lambda) &= |\{T \ | T \ is \ a \ standard \ skew \ tableau \ of \ shape \ \mu/\lambda, \\ & \mu \vdash m + d - 1, \ \mu = (\mu_1, \mu_2, \mu_3), \ \mu_1 \equiv \mu_2 \equiv \mu_3 \ modulo \ 2\}|. \end{split}$$

Corollary 3.6 For $d \ge 3$ we have the inequality $r(\lambda) \le 3^{d-2}$.

Proof Associate to a standard skew tableau $T = \lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(d-1)}$ of shape μ/λ , where $\mu = (\mu_1, \mu_2, \mu_3) \vdash m + d - 1$ and $\mu_1 \equiv \mu_2 \equiv \mu_3$ modulo 2 the function $f_T : \{1, \ldots, d - 1\} \rightarrow \{1, 2, 3\}$, which maps $j \in \{1, \ldots, d - 1\}$ to the unique $i \in \{1, 2, 3\}$ such that the *i*th component of the partition $\lambda^{(j)}$ is 1 greater than the *i*th component of $\lambda^{(j-1)}$. The assignment $T \mapsto f_T$ is obviously an injective map from the set

of standard skew tableaux of shape μ/λ into the set of functions $\{1, \ldots, d-1\} \rightarrow \{1, 2, 3\}$. We claim that at most 3^{d-2} functions are contained in the image of this map. Indeed, if the three parts of $\lambda^{(d-3)}$ have the same parity, then $(f_T(d-2), f_T(d-1)) \in \{(1,1), (2,2), (3,3)\}$, since the three parts of $\mu = \lambda^{(d-1)}$ must have the same parity. If the three parts of $\lambda^{(d-3)}$ do not have the same parity, say the first two components of $\lambda^{(d-3)}$ have the same parity, and the third part has the opposite parity, then $(f_T(d-2), f_T(d-1)) \in \{(1,2), (2,1)\}$. Hence $r(\lambda)$ is not greater than 3-times the number of functions from a (d-3)-element set to a 3-element set. Thus $r(\lambda) \leq 3^{d-2}$.

3.1. Proof of Theorem 1.1

For $d \ge 3$ the statement follows from Corollary 3.3 and Corollary 3.6. For the cases $d \le 3$ see Remark 1.2 (i).

4. A lower bound

Proposition 4.1 For $d \ge 2$ we have the equality

$$\operatorname{mult}_{(d-1,1)}(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) = d - 1.$$

Proof For k = 0, 1, ..., d - 2 consider the element

$$w_k := x_1^k [x_1, x_2] x_1^{d-2-k} \in \mathbb{C} \langle x_1, x_2 \rangle = F_2$$

These elements are $\operatorname{GL}_2(\mathbb{C})$ -highest weight vectors with weight (d-1,1), hence each generates an irreducible $\operatorname{GL}_2(\mathbb{C})$ -submodule isomorphic to $W_{(d-1,1)}$ (see the proof of Proposition 3.4 for the notation W_{λ} : it is the polynomial $\operatorname{GL}_2(\mathbb{C})$ -module with highest weight $\lambda = (\lambda_1, \lambda_2)$). Moreover, the w_k $(k = 0, 1, \ldots, d-2)$ are linearly independent modulo the ideal $I(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$: indeed, make the substitution $x_1 \mapsto \rho(h), x_2 \mapsto \rho(e)$. Then we get

$$w_k(\rho(h), \rho(e)) = \left(\sum_{i=1}^d (d+1-2i)E_{i,i}\right)^k \cdot \left(2\sum_{i=1}^{d-1} iE_{i,i+1}\right) \cdot \left(\sum_{i=1}^d (d+1-2i)E_{i,i}\right)^{d-2-k}$$
$$= 2\sum_{i=1}^{d-1} i(d+1-2i)^k (d-1-2i)^{d-2-k} E_{i,i+1}.$$

Denote by $Z = (Z_{i,j})_{i,j=1}^{d-1}$ the $(d-1) \times (d-1)$ matrix whose (i, k+1) entry is the (i, i+1)-entry of $w_k(\rho(h), \rho(e))$ (i.e. the coefficient of $E_{i,i+1}$ on the right hand side of the above equality). If $i \neq \frac{d-1}{2}$, then

$$Z_{i,k+1} = 2(d-1-2i)^{d-2} \cdot \left(\frac{d+1-2i}{d-1-2i}\right)^k.$$

Thus when d is even, Z is obtained from a Vandermonde matrix via multiplying each row by a nonzero integer. Since the numbers $\frac{d+1-2i}{d-1-2i}$, i = 1, ..., d-1 are distinct, we conclude that $\det(Z) \neq 0$. When d = 2f - 1 is odd, the (f-1)th row of Z is

$$(0,\ldots,0,2(f-1)2^{d-2}).$$

Expand the determinant of Z along this row; the $(d-2) \times (d-2)$ minor of Z obtained by removing the (f-1)throw and the last column of Z is again obtained from a Vandermonde matrix by multiplying each row by a nonzero integer. So det(Z) is nonzero also when d is odd. This shows that the elements $w_k(\rho(h), \rho(e))$, $k = 0, 1, \ldots, d-2$ are linearly independent in $\mathbb{C}^{d \times d}$. Consequently, no nontrivial linear combination of $w_0, w_1, \ldots, w_{d-2}$ belongs to $I(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)})$. It follows that $F_2/(I(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \cap F_2)$ contains the irreducible $\operatorname{GL}_2(\mathbb{C})$ -module $W_{(d-1,1)}$ with multiplicity $\geq d-1$. This multiplicity is in fact equal to d-1, because d-1 is the multiplicity of $W_{(d-1,1)}$ as a summand in F_2 . Recall finally that for $\lambda = (\lambda_1, \lambda_2) \vdash m$, the multiplicity of χ^{λ} in the cocharacter sequence coincides with the multiplicity of W_{λ} in $F_2/(I(\mathfrak{sl}_2(\mathbb{C}), \rho^{(d)}) \cap F_2)$.

Acknowledgment

This research was partially supported by the Hungarian National Research, Development and Innovation Office, NKFIH K 138828, K 132002.

References

- Aljadeff E, Giambruno A, Procesi C, Regev A. Rings with Polynomial Identities and Finite Dimensional Algebras. AMS Colloquium Publications: Vol 66. Providence, RI, USA: American Mathematical Society, 2020.
- [2] Berele A, Regev A. Applications of hook Young diagrams to P.I. algebras. Journal of Algebra 1983; 82: 559-567.
- [3] da Silva Macedo DL, Koshlukov P. Codimension growth for weak polynomial identities and non-integrality of the PI exponent. Proceedings of the Edinburgh Mathematical Society 2020; 63: 929-949.
- [4] Domokos M. Matrix valued concomitants of $\mathfrak{sl}_2(\mathbb{C})$. arXiv:2112.06882.
- [5] Domokos M, Drensky V. Cocharacters for the weak polynomial identities of the Lie algebra of 3×3 skew-symmetric matrices. Advances in Mathematics 2020; 374: Paper no: 107343.
- [6] Drensky V. Codimensions of T-ideals and Hilbert series of relatively free algebras. Journal of Algebra 1984; 91: 1-17.
- [7] Drensky V. Free Algebras and PI-Algebras. Springer-Verlag, Singapore, 2000.
- [8] Drensky V. Weak polynomial identities and their applications. Communications in Mathematics 2021; 29: 291-324.
- [9] Formanek E. Invariants and the ring of generic matrices. Journal of Algebra 1984; 89: 178-223.
- [10] Gordienko AS. Codimensions of polynomial identities of representations of Lie algebras. Proceedings of the Amercan Mathematical Society 2013; 141: 3369-3382.
- [11] Macdonald IG. Symmetric Functions and Hall Polynomials. Oxford: Oxford Univ. Press (Clarendon), 1979, Second Edition, 1995.
- [12] Procesi C. Computing with 2×2 matrices. Journal of Algebra 1984; 87: 342-359.
- [13] Razmyslov YuP. Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero. Algebra i Logika 1973; 12: 83-113 (in Russian. English translation: Algebra and Logic 1973; 12: 47-63).
- [14] Razmyslov YuP. On a problem of Kaplansky. Izvestiya Akademii Nauk SSSR 1973; Seriya Matematicheskaya 37: 483-501 (in Russian. English translation: Math. USSR. Izv. 1973; 7: 479-496).
- [15] Razmyslov YuP. Finite basis property for identities of representations of a simple three-dimensional Lie algebra over a field of characteristic zero. In: Algebra, Work Collect., dedic. O. Yu. Shmidt, Moskva 1982, 139-150 (in Russian. English Translation: American Mathematical Society Translations: Series 2 1988; 140: 101-109).
- [16] Razmyslov YuP. Identities of Algebras and Their Representations. Moscow, Nauka, 1989. (in Russian. English translation: Translations of Mathematical Monographs 138, Providence, RI, USA: AMS, 1994).