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Abstract: For each irreducible finite dimensional representation of the Lie algebra sl;(C) of 2 x 2 traceless matrices,
an explicit uniform upper bound is given for the multiplicities in the cocharacter sequence of the polynomial identities

satisfied by the given representation.
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1. Introduction

Let p: g — gl(V) be a finite dimensional representation of the Lie algebra g over a field K of characteristic
zero; that is, gl(V) = Endg(V), the space of all K -linear transformations of the finite dimensional K -vector
space V', viewed as a Lie algebra with Lie product [A,B] := Ao B — Bo A for A,B € Endg(V), and p is
a homomorphism of Lie algebras. Denote by F,, := K(x1,...,2Zm,) the free associative K -algebra with m
generators. Consider F, as a subalgebra of Fj,1; in the obvious way, and write F' := U:::l F,, for the free
associative algebra of countable rank. We say that f =0 is an identity of the representation p of g (or briefly,
of the pair (g, p)) for some f € F,, if for any elements Aq,...,A,, € g we have the following equality in the
associative K -algebra Endg (V):

(AL, .., p(An)) = 0 € Endye (V).

Note that an identity of the representation p of the Lie algebra g is also called in the literature a weak polynomial
identity for the pair (Endg(V),p(g)). This notion was introduced and powerfully applied first by Razmyslov

[13-16] (see Drensky [8] for a recent survey on weak polynomial identities). Set

I(g,p) :={f € F| f =0is an identity of (g,p)}.

Clearly I(g, p) is an ideal in F' stable with respect to all K -algebra endomorphisms of F of the form z; — u;,
where w; for ¢ = 1,2,... is an element of the Lie subalgebra of F' generated by zi,x2,.... In particular,

the general linear group GL,,(K) acts on F,, via K-algebra automorphisms: for g = (gij)%=1 we have

g-z; =Y i", gijzi, and I(g,p) N Fy, is a GL,,(K)-invariant subspace of F,,. The multilinear component of
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F,, is
Py i= Spang{Zq(1)*** Tr(m) | T € S},

where S, is the symmetric group of degree m. It is well known that when char(K) = 0, the ideal I(g,p)
is determined by the multilinear components I(g,p) N P,,, m = 1,2,.... Identifying S,, with the subgroup
of permutation matrices in GL,,(K) we get its action on F, via K-algebra automorphisms (more explicitly,
7 € Sp is the automorphism of F,, given by z; — z.;), and the subspaces P, and I(g,p) N P, are

Sp-invariant. Define the mth cocharacter of (g, p) as
Xm(g,p) := the character of the S,,-module P,,/(I(g,p) N Pn).

We call
X(gap) = (Xm(gvp) | m=1,2,. )

the cocharacter sequence of (g,p). The irreducible S,,-modules are labeled by partitions of m; let x* denote

the character of the irreducible S,,-module associated to the partition A = (A1,..., A;,) Fm. We have

Xm(g,p) = Y _ multy(g, p)x*,
AFm

and we are interested in the multiplicities multy(g,p) of the irreducible S,,-characters in the cocharacter

sequence. Note that the value of x,,(g,p) on the identity element of S,, is

¢m (9, p) = dimg (P /(1(g,p) N Pm)),

and
(em(g,p) [m=1,2,...)

is called the codimension sequence of (g,p). It was proved by Gordienko [10] that lim,,— 0o %/ cm (8, p) exists
and is an integer. As is observed in [10, Example 3], an obvious upper bound for ¢, (g, p) can be obtained from

the fact that there is a natural K -linear embedding
P /(I(g,p) N Pr) < Homg (p(g)*™, Endg (V). (1.1)

Our starting observation is that the adjoint representation of g on itself induces a natural representation of g
on p(g)®™ (the mth tensor power of p(g)) and on Endg(V), such that the image of the embedding (1.1) is

contained in the subspace of g-module homomorphisms from p(g)®™ to Endg (V). So (1.1) can be refined as
Prn/(1(g,p) N Ppn) < Homg(p(g)*™, Endg (V). (1.2)

This will be used to give an upper bound for the multiplicities in the cocharacter sequence x(sly(C), p(?9)

of the d-dimensional irreducible representation
PP sl5(C) — gl(C?) = x4

of 5ly(C) for d = 1,2, .... Note that throughout the paper we shall identify gl(C?) with the associative algebra
C?¥4 of d x d complex matrices, viewed as a Lie algebra with Lie bracket [4, B] = AB — BA.
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Theorem 1.1 The multiplicity multy(slo(C), p(D) in x(slo(C), p'?) is nonzero only if X = (A1, A2, \3) (i-e.

A has at most 3 nonzero parts), and in this case we have the inequality
mult (sl5(C), p'¥) < 3772

Remark 1.2 (i) The exact values of multy (slo(C), p¥) are known for d < 3. For d =1 all the multiplicities
are obviously zero. It was proved in [12] (see also [T, Exercise 12.6.12]) that

mult (sI2(C), p®) =1 for all X = (A1, Ao, As).

The multiplicities multy(sla(C), p®) are computed in [5, Theorem 3.7, Proposition 8.8]. It turns out that
multy (slo(C), p®) € {1,2,3} for each A = (A1, X2, A3).

(i) Theorem 1.1 shows in particular that for each dimension d, there is a uniform bound (depending
on d only) for the multiplicities multy(sly(C), p(¥)). For comparison we mention that the multiplicities in the
cocharacter sequence of the ordinary polynomial identities of 2 X 2 matrices are unbounded: see [6] and [9]. For
example, for any partition N = (A1, A2) with A > 0, the multiplicity is (A1 — Ao + 1)A2. On the other hand,
the cocharacter multiplicities of any PI algebra are polynomially bounded by [2].

(iii) There is no uniform upper bound independent of d for the multiplicities multy (sly(C), p(¥) , because
by Proposition 4.1, max{multy(slz(C), pD) |m =1,2,..., A\Fm} >d—1 for d>2.

(iv) The irreducible representations of sla(C) are defined over Q. For any field K of characteristic zero
and any positive integer d, the Lie algebra slo(K) has a unique (up to isomorphism) d-dimensional irreducible

representation p(;(i) over K. By well-known general arguments, the multiplicities multx(ﬁ[Q(K),pg?)) do not

depend on K . Therefore Theorem 1.1 implies that multy (sls(K), p(jg)) < 3972 for any field K of characteristic
zero.

(v) A different interpretation and approach to the study of Homg(p(g)®™, Endg (V') for g =sl2(C) and

p = p'D is given in our parallel preprint [4], using classical invariant theory.

We close the introduction by mentioning the recent paper of da Silva Macedo and Koshlukov [3, Theorem
3.7], where the codimension growth of polynomial identities of representations of Lie algebras is studied. In

particular, in [3, Theorem 3.7] the identities of representations of slz(C) play a decisive role.

2. Matrix computations

Denote by p(? : sly(C) — gl(C?*9) the representation given by
PD(AVL) = p'D(AVL — Lp'D(A) for A € sl4(C), L € C*, (2.1)

We have pl4) = pld) @ p(d)*. The representations of sly(C) are self-dual, and so by the Clebsch-Gordan rules

we have
d

D 22 pld) @ p@ = @) pl2n-1), (2.2)

n=1

We shall need an explicit decomposition of C#*? as a direct sum of minimal p(® -invariant subspaces.
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0 1 0 0 1 0
e:<0 0)’ F=1 0)’ hz(o —1)’

so e, f,h is a C-vector space basis of sly(C), with [h,e] = 2¢e, [h, f] = —2f, and e, f] = h.

Recall that given a representation 9 : slo(C) — gl(V), by a highest weight vector we mean a nonzero

Set

element w € V' such that ¢(e)(w) =0 € V and ¢ (h)(w) = nw for some nonnegative integer n (the nonnegative
integer n is called the weight of w); in this case w generates a minimal sl5(C)-invariant subspace in V', on which
the representation of sly(C) is isomorphic to p(®*1) . Moreover, any finite dimensional irreducible sly(C)-module

contains a unique (up to nonzero scalar multiples) highest weight vector.

Lemma 2.1 Consider the sly(C)-module C*? via the representation p'Y . To simplify notation set p := p(®
and p = pD.
(i) p(e)™ is a highest weight vector in C*¢ of weight 2n for n =0,1,...,d — 1.
(ii) p(e)"~' generates a minimal p-invariant subspace V;, on which sly(C) acts via p*~Y) forn=1,...,d.
(iii) C™d =@ V,.
(iv) For Ly € V,, and Ly € V,,, with 1 < ny # ny < d we have Tr(L1Ls) =0.

Proof (i) We have p(e)(p(e)") = p(e)p(e)" — ple)" ple) = 0 and

plh)(p(e)") = p([h. e])p(e)" ™ + ple)p([h, e])p(e)" > + - -~ + p(e)"~ p([h, €]) = 2np(e)".

This shows that p(e)™ is the highest weight vector of weight 2n for the representation p.

(ii) Statement (i) implies that p(e)"~! generates an irreducible sly(C)-submodule of p isomorphic to
pn=1 for n=1,...,d.

(iii) follows from (ii) and (2.2).

(iv) Consider the symmetric nondegenerate bilinear form
B:C>dx C™>d 5 C, (L,M) s Tr(LM).

Note that § is p-invariant:
Blp(A), L], M) + B(L, [p(A), M]) = Tx([p(A), LIM) + Tr(L[p(A), M])
=Tr([p(A),LM]) =0 for any A € sl5(C).

The radical of the bilinear form Sy, : V,, x V;, — C (the restriction of 8 to V,, xV,,) is a p-invariant subspace in
Vi, so it is either V;, or {0}. We claim that it is not V;,. Indeed, V;, contains a nonzero diagonal matrix D with
real entries, since the zero weight subspace in C?*¢ (with respect to p(h)) is the subspace of diagonal matrices,
and V,, intersects the zero-weight space in a 1-dimensional subspace (defined over the reals). Now being a sum
of squares of nonzero real numbers, 0 # Tr(D?) = (D, D). Thus Sy, is nondegenerate. The representation p

is multiplicity free by (2.2), and by (ii) and (iii), every p-invariant subspace is of the form »_ jes Vj for some
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subset J C {1,2,...,d}. As we showed above, the orthogonal complement of V,, (with respect to ) is disjoint

from V;,, so it is the sum of the other minimal invariant subspaces V;, j € {1,...,d}\ {n}. O

The representation p(?) is the defining representation of sl;(C) on C?, and p(? is the (d—1)th symmetric

d—1 ,.d—1 d—1
) L Y-y

in the (d — 1)th symmetric tensor power of C?. Then denoting by E; ; the matrix unit with entry 1 in the

tensor power of p(® . Denote by z,y the standard basis vectors in C?, and take the basis x

(i,7) position and zeros in all other positions, the representation p? as a matrix representation sly (C) — Cdxd

is given as follows:

d—1 d—1 d
pP D)= i, PV =D (d=D)Eirs pP(h) =) (d+1-2)E;,
=1 i=1 i=1

Lemma 2.2 For d > 3 the C-vector space C¥*? is spanned by
(P D (A1) pD(Ag_1) | Ar,..., Ag_1 € 515(C)}.

Proof To simplify the notation write p := p(® and p:= p®. Let £ be the subspace of C**?¢ spanned by the
products p(Ay)---p(Aq_1), where Ay,..., Ag_1 € sly(C). Clearly L is a p-invariant subspace of C%*?. Since

the representation p is multiplicity free by (2.2), we have £ = >"._;V; for some subset J C {1,2,...,d} by

je€J
Lemma 2.1 (ii) and (iii). Therefore to prove the equality £ = C?*? it is sufficient to show that £ NV, # {0}
for each n =1,...,d, or equivalently, that £ is not contained in Zje{l,... A\ {n} V;. Since Vjy is generated by

p(e)d=t € L, we have V; C L. Moreover, to prove £ ¢ e,

sufficient to present an element L, € £ with Tr(p(e)™L,) # 0 by Lemma 2.1 (ii) and (iv). We shall give below
such elements L, € £ for n=0,1,...,d — 2.

a1y Vi for n€ {0,1,...,d =2}, it is

For n=1,...,d—1 we have
d—n
pl)"=> - (G+1)-G+n—1Ejjn
j=1
d—n
p(H" =D (d=j) (d—j—1)(d—j—n+1)Ejin;
j=1

and p(e)? = I; = p(f)°, where I; is the d x d identity matrix. It follows that for n =1,...,d — 1,

d—n
pe)"p(H)* = G+ 1) G+n—1)-(d=jd—j—1)---(d—j—n+1)E;;

j=1
is a diagonal matrix with nonnegative integer entries, and the (1,1)-entry is positive. The same holds for
p(€)°p(f)° = 1. For n with d—1—n even, p(h)?~1~" is the square of a diagonal matrix with integer entries, and
its (1,1)-entry is positive. Hence Tr(p(e)"p(f)"p(h)?~1~") # 0, being a positive integer. So in this case we may
take L, := p(f)"p(h)4=1~". For n < d—2 with d—1—n odd, note that p(e)p(f)—p(f)p(e) = p(le, f]) = p(h),
and thus

p(f)"p(R)* 27" = p(f)"p(h) > (p(e)p(f) — p(f)p(e))
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d—2—n

also belongs to L. Since p(h) is a diagonal matrix with nonnegative integer entries, and with a positive

(1,1)-entry, we may take L,, := p(f)"p(h)?=2~" in this case. It remains to deal with the case n = d — 2. Then
p(e)2p(£)* 7 = (d = 1)((d = 2))* - (Bra + Bap),
hence taking Lq_o := p(f)?2p(h) we get
Te(ple)~2La_s) = Te((d — 1)((d — 2))% - ((d — 1) Eyy + (d— 3)En)
= (2d - 4)(d - 1)((d - 2)?,

which is nonzero for d > 3. This finishes the proof of the equality £ = C**? for d > 3. O

3. Adjoint invariants

Denote by ad : sl2(C) — gl(sl2(C)) the adjoint representation of slo(C) on itself, so ad(A4)(B) = [A, B] for
A, B € sly(C). Take the n-fold direct sum ad®" : sl5(C) — gl(sl(C)®™) of the adjoint representation, and
write O[slo(C)"]*"2(©) for the algebra of ad®”-invariant polynomial functions on sly(C)®™. There is a right
action of GL,(C) on sl;(C)" that commutes with ad®": for g = (9ij)71=1 and (Ay,..., An) € sla(C)" we

have

(A1,...,Ap) g = (ZgilAiv . ~7ZginAi)~
i=1 i=1

This induces a left GL,,(C)-action on the coordinate ring Ol[sla(C)"]: for g € GL,(C), f € O[sly(C)"] and
(A1,...,A,) €5l(C)" we have (g- f)(A1,...,An) = f((A1,...,An) - g).

Lemma 3.1 Consider the linear map 1 : Fy, = C{x1,...,7m) — O[sla(C)" 41 given by
UNAL - Angaar) = Te(f (P (AL, o 0D (A)) - 0D (Ai) - 0D (Apga-1))
for f € Fy, and (Ay,..., Apya_1) € slo(C)™T4=1 . [t has the following properties:
(i) The image of v is contained in the subalgebra O[sly(C)™+d=115(C) of 51, (C) -invariants.
(ii) For d >3 the kernel of ¢ is the ideal I(sly(C), pD) N F,, .

(iii) The map ¢ is GL,,(C) -equivariant, where we restrict the GLy,+q—1(C) -action on Ol[sly(C)™+4=1 to the

subgroup GL,,(C) = {( g Ido ) | g € GL,,(C)} in GLyyya—1(C).
—1

Proof For notational simplicity we shall write p instead of p(®) .
(i) By linearity of ¢ it is sufficient to show that ¢(z;, - - - 25, ) is an sly(C)-invariant for any 41,...,4; €
{1,...,m}. Setting n=k+d—1, By =A4;,,...,Br = Ai,, Bex1 = Am+1,- .., Bn = Amya—1 we have

@iy @i ) (AL, Ama—1) = Tr(p(By) - - - p(B)). (3.1)
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For any X € sl(C) we have

0= Tr([p(X), p(B1) - - p(By)])

=Tr(Y_p(B1) -+ p(Bj-1)[p(X), p(B))lp(Bj+1) - -~ p(By))

Jj=1

= TF(Z p(B1) -+ p(Bj—1)p([X, B;])p(Bj1) - - p(Bn))

=D _Tr(p(B1) - p(Bi-1)p([X, Bil)p(Bji1) - p(Bn)).
The equalities (3.1) and
Z Tr(p(By) -+ p(Bj-1)p([X, Bj)p(Bjt1) -+ p(Bn)) = 0

mean that ¢(z;, - - 2;,) is sla(C)-invariant, so (i) holds.

(ii) Suppose that f € ker(t). Then Tr(f(p(A1),...,p(Amn))B) = 0 for all Ay,..., A, € sl(C) and
for all B € C%*? by Lemma 2.2. By nondegeneracy of the trace we get f(p(A1),...,p(A,)) = 0 for all
Ar,..., Ay € sl3(C). That is, f € I(slo(C),p). Thus ker(r) C I(sla(C),p) N F,,. The reverse inclusion
I(sl5(C), p) N F,,, C ker(¢) is obvious.

(iii) Take g = (gi;)7%=1 € GLy(C). For f € F, and (Ay,...,Amya1) € sl(C)™*1 we have (by
linearity of p)

L(g : f)(Ala ey A77L+d—1)

Zgzlp Zgzmp m+1) p(Am+d—1))

Zgzl Z gzm z : m+1) e p(Am—i-d—l))

= (g (A1, Amya—1).
This shows (iii). O
Restricting the action of GL,(C) on O[sly(C)"] to the subgroup of diagonal matrices we get an N -

grading on O[sly(C)"], preserved by the action of sly(C). Denote by Olslz(C)"](1») the multihomogeneous

component of multidegree (1,...,1); this is the space of n-linear functions on sly(C). The spaces O[sl2(C)"] 1)

and O[sly(C)" ]?;2"(@) are Sy, -invariant (where we restrict the GL,,(C)-action to its subgroup S,, of permutation

matrices). Lemma 3.1 has the following immediate consequence:

Corollary 3.2 For d > 3 the restriction of ¢ to the multilinear component P, of C{xy,...,xy) factors through

an Sy, -equivariant C-linear embedding

02 Po/(I(s(C)) N Pr) = Olsly(C)" 71 PR(S)
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where on the right hand side we consider the restriction of the Sy, 4+4—1-action to its subgroup Sy, (the stabilizer

in Smid—1 of the elements m+1,m+2,... m+d—1).

For a partition A - m denote by r(\) the multiplicity of x* in the restriction to S,, of the S,4q_1-

module O[s[z(C)m“*l]f{%,E‘fi,l). Corollary 3.2 immediately implies the following:

Corollary 3.3 For d > 3 and any partition A - m we have the inequality
multy (sl (C), p'P) < ().

The S,,-character of O[sly (C)”]?{i()(c ) is known:

Proposition 3.4 For a partition \ F n denote by v(\) the multiplicity of x* in the S,-character of

0[5[2(((3)"]?{1()@). Then we have

) 1 for X = (A1, A2, A3) with Ay = Ao = A3 modulo 2
1% =
0 otherwise.

Proof The GL,(C)-module structure of O[sly(C)"]*2(© is given for example in [12, Theorem 2.2]. The
isomorphism types of the irreducible GL,,(C)-module direct summands of the degree n homogeneous component
of Olsla(C)™] are labeled by partitions of n with at most 3 nonzero parts. The multiplicity u(A) of the
irreducible GL,,(C)-module W) in the degree n homogeneous component of O[sly(C)™]52(C) is 1 if A, Ao, A3
have the same parity and is zero otherwise. Note finally that the multilinear component of W) is S, -stable,
and its S, -character is x* (see for example [1, Corollary 6.3.11]). O

Following [11, Section I.1] for partitions A - n and pt k we write A C p is A; < p; for all i. Moreover,
given A\Fm and g - m+d—1 with A C pu, by a standard tableau of shape pu/A we mean a sequence
MO c XD .. A4 of partitions A Fm +i, where A(©) = X\, \(=1) = ;. By the well-known branching
rules for the symmetric group, for A F m the multiplicity of x* in the restriction to S, of the irreducible
Sm+d—1-character x* equals the number of standard tableaux of shape p/A (see for example [1, Theorem

6.4.11]). Therefore Proposition 3.4 has the following consequence.

Corollary 3.5 We have the equality
r(A) = {T |T is a standard skew tableaw of shape ]\,

pm+d—1, pw=(u1,p2,p3), p1 = p2 = p3 modulo 2}|.

Corollary 3.6 For d > 3 we have the inequality r()\) < 3972,

Proof  Associate to a standard skew tableau T = A® < X1 < ... < Ad=D of shape /A, where
pw = (p1,po,pu3) Fm+d—1and py = pe = pz modulo 2 the function fr : {1,...,d — 1} — {1,2,3},
which maps j € {1,...,d—1} to the unique i € {1,2,3} such that the ith component of the partition A\U) is 1

greater than the ith component of AU—1) . The assignment 7'+ fr is obviously an injective map from the set
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of standard skew tableaux of shape p/X into the set of functions {1,...,d — 1} — {1,2,3}. We claim that at
most 3?2 functions are contained in the image of this map. Indeed, if the three parts of A(?=3) have the same
parity, then (fr(d —2), fr(d—1)) € {(1,1),(2,2),(3,3)}, since the three parts of u = A=Y must have the
same parity. If the three parts of A(4=3) do not have the same parity, say the first two components of A(¢=3)
have the same parity, and the third part has the opposite parity, then (fr(d — 2), fr(d —1)) € {(1,2),(2,1)}.
Hence r()) is not greater than 3-times the number of functions from a (d — 3)-element set to a 3-element set.
Thus r()\) < 392, o

3.1. Proof of Theorem 1.1
For d > 3 the statement follows from Corollary 3.3 and Corollary 3.6. For the cases d < 3 see Remark 1.2 (i).

4. A lower bound
Proposition 4.1 For d > 2 we have the equality

mUIt(d71,1)(5[2(C)7P(d)) =d—1

Proof For k=0,1,...,d— 2 consider the element

wy, 1= xlf[zl,xg]xcll_Q_k € C(xy,z2) = Fy.

These elements are GLa(C)-highest weight vectors with weight (d — 1,1), hence each generates an irreducible
GL3(C)-submodule isomorphic to Wg_1,1) (see the proof of Proposition 3.4 for the notation Wy: it is the
polynomial GLy(C)-module with highest weight A = (A1, \2)). Moreover, the wix (k = 0,1,...,d — 2) are
linearly independent modulo the ideal I(sly(C), p(?): indeed, make the substitution z; — p(h), zo — p(e).

Then we get
d d—1 d
wi(p(h), ple)) = O _(d+1=20)E; ;)" - (23 iBii1)- O _(d+1-20)E; ;)4 >F
=1 =1 =1
d—1

=2 i(d4+1-20)d—1-2)"2FE ;.

i=1

Denote by Z = (Zi,j);‘i,;‘i1 the (d—1)x(d—1) matrix whose (i, k+1) entry is the (i,i+1)-entry of wg(p(h), p(e))
(i.e. the coefficient of E; ;1 on the right hand side of the above equality). If i # %, then

d+1—2\"*
d—1-2) °

zkszu—l—%ﬂﬁ-(

Thus when d is even, Z is obtained from a Vandermonde matrix via multiplying each row by a nonzero integer.

Since the numbers 21’}:32, i=1,...,d— 1 are distinct, we conclude that det(Z) # 0. When d = 2f — 1 is

odd, the (f —1)th row of Z is

0,...,0,2(f —1)2972).

1757



DOMOKOS/Turk J Math

Expand the determinant of Z along this row; the (d—2)x (d—2) minor of Z obtained by removing the (f—1)th
row and the last column of Z is again obtained from a Vandermonde matrix by multiplying each row by a nonzero
integer. So det(Z) is nonzero also when d is odd. This shows that the elements wy(p(h), p(e)), k =0,1,...,d—2
are linearly independent in C%*?¢. Consequently, no nontrivial linear combination of wg, w1, ..., wq—s belongs
to I(slx(C), p¥). Tt follows that Fy/(I(sly(C),p¥) N F3) contains the irreducible GLo(C)-module W41 1)
with multiplicity > d—1. This multiplicity is in fact equal to d—1, because d—1 is the multiplicity of W _ 1)
as a summand in F. Recall finally that for A = (A1, A2) F m, the multiplicity of x* in the cocharacter sequence

coincides with the multiplicity of Wy in Fy/(I(slo(C), p(D) N Fy). O
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