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1. Introduction
Let ρ : g → gl(V ) be a finite dimensional representation of the Lie algebra g over a field K of characteristic
zero; that is, gl(V ) = EndK(V ) , the space of all K -linear transformations of the finite dimensional K -vector
space V , viewed as a Lie algebra with Lie product [A,B] := A ◦ B − B ◦ A for A,B ∈ EndK(V ) , and ρ is
a homomorphism of Lie algebras. Denote by Fm := K〈x1, . . . , xm〉 the free associative K -algebra with m

generators. Consider Fm as a subalgebra of Fm+1 in the obvious way, and write F :=
⋃∞

m=1 Fm for the free
associative algebra of countable rank. We say that f = 0 is an identity of the representation ρ of g (or briefly,
of the pair (g, ρ)) for some f ∈ Fm if for any elements A1, . . . , Am ∈ g we have the following equality in the
associative K -algebra EndK(V ) :

f(ρ(A1), . . . , ρ(An)) = 0 ∈ EndK(V ).

Note that an identity of the representation ρ of the Lie algebra g is also called in the literature a weak polynomial
identity for the pair (EndK(V ), ρ(g)) . This notion was introduced and powerfully applied first by Razmyslov
[13–16] (see Drensky [8] for a recent survey on weak polynomial identities). Set

I(g, ρ) := {f ∈ F | f = 0 is an identity of (g, ρ)}.

Clearly I(g, ρ) is an ideal in F stable with respect to all K -algebra endomorphisms of F of the form xi 7→ ui ,
where ui for i = 1, 2, . . . is an element of the Lie subalgebra of F generated by x1, x2, . . . . In particular,
the general linear group GLm(K) acts on Fm via K -algebra automorphisms: for g = (gij)

m
i,j=1 we have

g · xj =
∑m

i=1 gijxi , and I(g, ρ) ∩ Fm is a GLm(K) -invariant subspace of Fm . The multilinear component of
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Fm is
Pm := SpanK{xπ(1) · · ·xπ(m) | π ∈ Sm},

where Sm is the symmetric group of degree m . It is well known that when char(K) = 0 , the ideal I(g, ρ)
is determined by the multilinear components I(g, ρ) ∩ Pm , m = 1, 2, . . . . Identifying Sm with the subgroup
of permutation matrices in GLm(K) we get its action on Fm via K -algebra automorphisms (more explicitly,
π ∈ Sm is the automorphism of Fm given by xi 7→ xπ(i) ), and the subspaces Pm and I(g, ρ) ∩ Pm are
Sm -invariant. Define the m th cocharacter of (g, ρ) as

χm(g, ρ) := the character of the Sm-module Pm/(I(g, ρ) ∩ Pm).

We call
χ(g, ρ) := (χm(g, ρ) | m = 1, 2, . . . )

the cocharacter sequence of (g, ρ) . The irreducible Sm -modules are labeled by partitions of m ; let χλ denote
the character of the irreducible Sm -module associated to the partition λ = (λ1, . . . , λm) ` m . We have

χm(g, ρ) =
∑
λ⊢m

multλ(g, ρ)χ
λ,

and we are interested in the multiplicities multλ(g, ρ) of the irreducible Sm -characters in the cocharacter
sequence. Note that the value of χm(g, ρ) on the identity element of Sm is

cm(g, ρ) := dimK(Pm/(I(g, ρ) ∩ Pm)),

and
(cm(g, ρ) | m = 1, 2, . . . )

is called the codimension sequence of (g, ρ) . It was proved by Gordienko [10] that limm→∞
m
√
cm(g, ρ) exists

and is an integer. As is observed in [10, Example 3], an obvious upper bound for cm(g, ρ) can be obtained from
the fact that there is a natural K -linear embedding

Pm/(I(g, ρ) ∩ Pm) ↪→ HomK(ρ(g)⊗m,EndK(V )). (1.1)

Our starting observation is that the adjoint representation of g on itself induces a natural representation of g

on ρ(g)⊗m (the mth tensor power of ρ(g)) and on EndK(V ) , such that the image of the embedding (1.1) is
contained in the subspace of g -module homomorphisms from ρ(g)⊗m to EndK(V ) . So (1.1) can be refined as

Pm/(I(g, ρ) ∩ Pm) ↪→ Homg(ρ(g)
⊗m,EndK(V )). (1.2)

This will be used to give an upper bound for the multiplicities in the cocharacter sequence χ(sl2(C), ρ(d))
of the d -dimensional irreducible representation

ρ(d) : sl2(C) → gl(Cd) = Cd×d

of sl2(C) for d = 1, 2, . . . . Note that throughout the paper we shall identify gl(Cd) with the associative algebra
Cd×d of d× d complex matrices, viewed as a Lie algebra with Lie bracket [A,B] = AB −BA .
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Theorem 1.1 The multiplicity multλ(sl2(C), ρ(d)) in χ(sl2(C), ρ(d)) is nonzero only if λ = (λ1, λ2, λ3) (i.e.
λ has at most 3 nonzero parts), and in this case we have the inequality

multλ(sl2(C), ρ(d)) ≤ 3d−2.

Remark 1.2 (i) The exact values of multλ(sl2(C), ρ(d)) are known for d ≤ 3 . For d = 1 all the multiplicities
are obviously zero. It was proved in [12] (see also [7, Exercise 12.6.12]) that

multλ(sl2(C), ρ(2)) = 1 for all λ = (λ1, λ2, λ3).

The multiplicities multλ(sl2(C), ρ(3)) are computed in [5, Theorem 3.7, Proposition 3.8]. It turns out that
multλ(sl2(C), ρ(3)) ∈ {1, 2, 3} for each λ = (λ1, λ2, λ3) .

(ii) Theorem 1.1 shows in particular that for each dimension d , there is a uniform bound (depending
on d only) for the multiplicities multλ(sl2(C), ρ(d)) . For comparison we mention that the multiplicities in the
cocharacter sequence of the ordinary polynomial identities of 2× 2 matrices are unbounded: see [6] and [9]. For
example, for any partition λ = (λ1, λ2) with λ2 > 0 , the multiplicity is (λ1 − λ2 + 1)λ2 . On the other hand,
the cocharacter multiplicities of any PI algebra are polynomially bounded by [2].

(iii) There is no uniform upper bound independent of d for the multiplicities multλ(sl2(C), ρ(d)) , because
by Proposition 4.1, max{multλ(sl2(C), ρ(d)) | m = 1, 2, . . . , λ ` m} ≥ d− 1 for d ≥ 2 .

(iv) The irreducible representations of sl2(C) are defined over Q . For any field K of characteristic zero
and any positive integer d , the Lie algebra sl2(K) has a unique (up to isomorphism) d-dimensional irreducible

representation ρ
(d)
K over K . By well-known general arguments, the multiplicities multλ(sl2(K), ρ

(d)
K ) do not

depend on K . Therefore Theorem 1.1 implies that multλ(sl2(K), ρ
(d)
K ) ≤ 3d−2 for any field K of characteristic

zero.
(v) A different interpretation and approach to the study of Homg(ρ(g)

⊗m,EndK(V )) for g = sl2(C) and
ρ = ρ(d) is given in our parallel preprint [4], using classical invariant theory.

We close the introduction by mentioning the recent paper of da Silva Macedo and Koshlukov [3, Theorem
3.7], where the codimension growth of polynomial identities of representations of Lie algebras is studied. In
particular, in [3, Theorem 3.7] the identities of representations of sl2(C) play a decisive role.

2. Matrix computations

Denote by ρ̃(d) : sl2(C) → gl(Cd×d) the representation given by

ρ̃(d)(A)(L) = ρ(d)(A)L− Lρ(d)(A) for A ∈ sl2(C), L ∈ Cd×d. (2.1)

We have ρ̃(d) ∼= ρ(d) ⊗ ρ(d)
∗ . The representations of sl2(C) are self-dual, and so by the Clebsch-Gordan rules

we have

ρ̃(d) ∼= ρ(d) ⊗ ρ(d) ∼=
d⊕

n=1

ρ(2n−1). (2.2)

We shall need an explicit decomposition of Cd×d as a direct sum of minimal ρ̃(d) -invariant subspaces.
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Set

e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
,

so e, f, h is a C -vector space basis of sl2(C) , with [h, e] = 2e , [h, f ] = −2f , and [e, f ] = h .
Recall that given a representation ψ : sl2(C) → gl(V ) , by a highest weight vector we mean a nonzero

element w ∈ V such that ψ(e)(w) = 0 ∈ V and ψ(h)(w) = nw for some nonnegative integer n (the nonnegative
integer n is called the weight of w ); in this case w generates a minimal sl2(C) -invariant subspace in V , on which
the representation of sl2(C) is isomorphic to ρ(n+1) . Moreover, any finite dimensional irreducible sl2(C) -module
contains a unique (up to nonzero scalar multiples) highest weight vector.

Lemma 2.1 Consider the sl2(C)-module Cd×d via the representation ρ̃(d) . To simplify notation set ρ := ρ(d)

and ρ̃ := ρ̃(d) .

(i) ρ(e)n is a highest weight vector in Cd×d of weight 2n for n = 0, 1, . . . , d− 1 .

(ii) ρ(e)n−1 generates a minimal ρ̃-invariant subspace Vn on which sl2(C) acts via ρ(2n−1) for n = 1, . . . , d .

(iii) Cd×d =
⊕d

n=1 Vn .

(iv) For L1 ∈ Vn1
and L2 ∈ Vn2

with 1 ≤ n1 6= n2 ≤ d we have Tr(L1L2) = 0 .

Proof (i) We have ρ̃(e)(ρ(e)n) = ρ(e)ρ(e)n − ρ(e)nρ(e) = 0 and

ρ̃(h)(ρ(e)n) = ρ([h, e])ρ(e)n−1 + ρ(e)ρ([h, e])ρ(e)n−2 + · · ·+ ρ(e)n−1ρ([h, e]) = 2nρ(e)n.

This shows that ρ(e)n is the highest weight vector of weight 2n for the representation ρ̃ .
(ii) Statement (i) implies that ρ(e)n−1 generates an irreducible sl2(C) -submodule of ρ̃ isomorphic to

ρ(2n−1) for n = 1, . . . , d .
(iii) follows from (ii) and (2.2).
(iv) Consider the symmetric nondegenerate bilinear form

β : Cd×d × Cd×d → C, (L,M) 7→ Tr(LM).

Note that β is ρ̃ -invariant:

β([ρ(A), L],M) + β(L, [ρ(A),M ]) = Tr([ρ(A), L]M) + Tr(L[ρ(A),M ])

= Tr([ρ(A), LM ]) = 0 for any A ∈ sl2(C).

The radical of the bilinear form βVn : Vn×Vn 7→ C (the restriction of β to Vn×Vn ) is a ρ̃ -invariant subspace in
Vn , so it is either Vn or {0} . We claim that it is not Vn . Indeed, Vn contains a nonzero diagonal matrix D with
real entries, since the zero weight subspace in Cd×d (with respect to ρ̃(h)) is the subspace of diagonal matrices,
and Vn intersects the zero-weight space in a 1 -dimensional subspace (defined over the reals). Now being a sum
of squares of nonzero real numbers, 0 6= Tr(D2) = β(D,D) . Thus βVn is nondegenerate. The representation ρ̃

is multiplicity free by (2.2), and by (ii) and (iii), every ρ̃ -invariant subspace is of the form
∑

j∈J Vj for some
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subset J ⊆ {1, 2, . . . , d} . As we showed above, the orthogonal complement of Vn (with respect to β ) is disjoint
from Vn , so it is the sum of the other minimal invariant subspaces Vj , j ∈ {1, . . . , d} \ {n} . 2

The representation ρ(2) is the defining representation of sl2(C) on C2 , and ρ(d) is the (d−1)th symmetric
tensor power of ρ(2) . Denote by x, y the standard basis vectors in C2 , and take the basis xd−1, xd−1y, . . . , yd−1

in the (d − 1)th symmetric tensor power of C2 . Then denoting by Ei,j the matrix unit with entry 1 in the
(i, j) position and zeros in all other positions, the representation ρ(d) as a matrix representation sl2(C) → Cd×d

is given as follows:

ρ(d)(e) =

d−1∑
i=1

iEi,i+1, ρ(d)(f) =

d−1∑
i=1

(d− i)Ei+1,i, ρ(d)(h) =

d∑
i=1

(d+ 1− 2i)Ei,i

Lemma 2.2 For d ≥ 3 the C-vector space Cd×d is spanned by

{ρ(d)(A1) · · · ρ(d)(Ad−1) | A1, . . . , Ad−1 ∈ sl2(C)}.

Proof To simplify the notation write ρ := ρ(d) and ρ̃ := ρ̃(d) . Let L be the subspace of Cd×d spanned by the
products ρ(A1) · · · ρ(Ad−1) , where A1, . . . , Ad−1 ∈ sl2(C) . Clearly L is a ρ̃ -invariant subspace of Cd×d . Since
the representation ρ̃ is multiplicity free by (2.2), we have L =

∑
j∈J Vj for some subset J ⊆ {1, 2, . . . , d} by

Lemma 2.1 (ii) and (iii). Therefore to prove the equality L = Cd×d it is sufficient to show that L ∩ Vn 6= {0}
for each n = 1, . . . , d , or equivalently, that L is not contained in

∑
j∈{1,...,d}\{n} Vj . Since Vd is generated by

ρ(e)d−1 ∈ L , we have Vd ⊆ L . Moreover, to prove L ⊈
∑

j∈{1,...,d}\{n+1} Vj for n ∈ {0, 1, . . . , d − 2} , it is

sufficient to present an element Ln ∈ L with Tr(ρ(e)nLn) 6= 0 by Lemma 2.1 (ii) and (iv). We shall give below
such elements Ln ∈ L for n = 0, 1, . . . , d− 2 .

For n = 1, . . . , d− 1 we have

ρ(e)n =

d−n∑
j=1

j · (j + 1) · · · (j + n− 1)Ej,j+n

ρ(f)n =

d−n∑
j=1

(d− j) · (d− j − 1) · · · (d− j − n+ 1)Ej+n.j

and ρ(e)0 = Id = ρ(f)0 , where Id is the d× d identity matrix. It follows that for n = 1, . . . , d− 1 ,

ρ(e)nρ(f)n =

d−n∑
j=1

j(j + 1) · · · (j + n− 1) · (d− j)(d− j − 1) · · · (d− j − n+ 1)Ej,j

is a diagonal matrix with nonnegative integer entries, and the (1, 1)-entry is positive. The same holds for
ρ(e)0ρ(f)0 = Id . For n with d−1−n even, ρ(h)d−1−n is the square of a diagonal matrix with integer entries, and
its (1, 1) -entry is positive. Hence Tr(ρ(e)nρ(f)nρ(h)d−1−n) 6= 0 , being a positive integer. So in this case we may
take Ln := ρ(f)nρ(h)d−1−n . For n < d−2 with d−1−n odd, note that ρ(e)ρ(f)−ρ(f)ρ(e) = ρ([e, f ]) = ρ(h) ,
and thus

ρ(f)nρ(h)d−2−n = ρ(f)nρ(h)d−3−n(ρ(e)ρ(f)− ρ(f)ρ(e))
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also belongs to L . Since ρ(h)d−2−n is a diagonal matrix with nonnegative integer entries, and with a positive
(1, 1) -entry, we may take Ln := ρ(f)nρ(h)d−2−n in this case. It remains to deal with the case n = d− 2 . Then

ρ(e)d−2ρ(f)d−2 = (d− 1)((d− 2)!)2 · (E1,1 + E2,2),

hence taking Ld−2 := ρ(f)d−2ρ(h) we get

Tr(ρ(e)d−2Ld−2) = Tr((d− 1)((d− 2)!)2 · ((d− 1)E11 + (d− 3)E22)

= (2d− 4)(d− 1)((d− 2)!)2,

which is nonzero for d ≥ 3 . This finishes the proof of the equality L = Cd×d for d ≥ 3 . 2

3. Adjoint invariants

Denote by ad : sl2(C) → gl(sl2(C)) the adjoint representation of sl2(C) on itself, so ad(A)(B) = [A,B] for
A,B ∈ sl2(C) . Take the n -fold direct sum ad⊕n : sl2(C) → gl(sl2(C)⊕n) of the adjoint representation, and
write O[sl2(C)n]sl2(C) for the algebra of ad⊕n -invariant polynomial functions on sl2(C)⊕n . There is a right
action of GLn(C) on sl2(C)n that commutes with ad⊕n : for g = (gij)

n
i,1=1 and (A1, . . . , An) ∈ sl2(C)n we

have

(A1, . . . , An) · g := (

n∑
i=1

gi1Ai, . . . ,

n∑
i=1

ginAi).

This induces a left GLn(C) -action on the coordinate ring O[sl2(C)n] : for g ∈ GLn(C) , f ∈ O[sl2(C)n] and
(A1, . . . , An) ∈ sl2(C)n we have (g · f)(A1, . . . , An) = f((A1, . . . , An) · g) .

Lemma 3.1 Consider the linear map ι : Fm = C〈x1, . . . , xm〉 → O[sl2(C)m+d−1] given by

ι(f)(A1, . . . , Am+d−1) = Tr(f(ρ(d)(A1), . . . , ρ
(d)(Am)) · ρ(d)(Am+1) · · · ρ(d)(Am+d−1))

for f ∈ Fm and (A1, . . . , Am+d−1) ∈ sl2(C)m+d−1 . It has the following properties:

(i) The image of ι is contained in the subalgebra O[sl2(C)m+d−1]sl2(C) of sl2(C)-invariants.

(ii) For d ≥ 3 the kernel of ι is the ideal I(sl2(C), ρ(d)) ∩ Fm .

(iii) The map ι is GLm(C)-equivariant, where we restrict the GLm+d−1(C)-action on O[sl2(C)m+d−1] to the

subgroup GLm(C) ∼= {
(
g 0
0 Id−1

)
| g ∈ GLm(C)} in GLm+d−1(C) .

Proof For notational simplicity we shall write ρ instead of ρ(d) .
(i) By linearity of ι it is sufficient to show that ι(xi1 · · ·xik) is an sl2(C) -invariant for any i1, . . . , ik ∈

{1, . . . ,m} . Setting n = k + d− 1 , B1 = Ai1 , . . . , Bk = Aik , Bk+1 = Am+1, . . . , Bn = Am+d−1 we have

ι(xi1 · · ·xik)(A1, . . . , Am+d−1) = Tr(ρ(B1) · · · ρ(Bn)). (3.1)
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For any X ∈ sl2(C) we have

0 = Tr([ρ(X), ρ(B1) · · · ρ(Bn)])

= Tr(

n∑
j=1

ρ(B1) · · · ρ(Bj−1)[ρ(X), ρ(Bj)]ρ(Bj+1) · · · ρ(Bn))

= Tr(

n∑
j=1

ρ(B1) · · · ρ(Bj−1)ρ([X,Bj ])ρ(Bj+1) · · · ρ(Bn))

=

n∑
j=1

Tr(ρ(B1) · · · ρ(Bj−1)ρ([X,Bj ])ρ(Bj+1) · · · ρ(Bn)).

The equalities (3.1) and

n∑
j=1

Tr(ρ(B1) · · · ρ(Bj−1)ρ([X,Bj ])ρ(Bj+1) · · · ρ(Bn)) = 0

mean that ι(xi1 · · ·xik) is sl2(C) -invariant, so (i) holds.
(ii) Suppose that f ∈ ker(ι) . Then Tr(f(ρ(A1), . . . , ρ(Am))B) = 0 for all A1, . . . , Am ∈ sl2(C) and

for all B ∈ Cd×d by Lemma 2.2. By nondegeneracy of the trace we get f(ρ(A1), . . . , ρ(Am)) = 0 for all
A1, . . . , Am ∈ sl2(C) . That is, f ∈ I(sl2(C), ρ) . Thus ker(ι) ⊆ I(sl2(C), ρ) ∩ Fm . The reverse inclusion
I(sl2(C), ρ) ∩ Fm ⊆ ker(ι) is obvious.

(iii) Take g = (gij)
m
i,j=1 ∈ GLm(C) . For f ∈ Fm and (A1, . . . , Am+d−1) ∈ sl2(C)m+d−1 we have (by

linearity of ρ)

ι(g · f)(A1, . . . , Am+d−1)

= Tr(f(

m∑
i=1

gi1ρ(Ai), . . . ,

m∑
i=1

gimρ(Ai)) · ρ(Am+1) · · · ρ(Am+d−1))

= Tr(f(ρ(

m∑
i=1

gi1(Ai)), . . . , ρ(

m∑
i=1

gim(Ai)) · ρ(Am+1) · · · ρ(Am+d−1))

= (g · ι(f))(A1, . . . , Am+d−1).

This shows (iii). 2

Restricting the action of GLn(C) on O[sl2(C)n] to the subgroup of diagonal matrices we get an Nn
0 -

grading on O[sl2(C)n] , preserved by the action of sl2(C) . Denote by O[sl2(C)n](1n) the multihomogeneous
component of multidegree (1, . . . , 1) ; this is the space of n -linear functions on sl2(C) . The spaces O[sl2(C)n](1n)

and O[sl2(C)n]sl2(C)(1n) are Sn -invariant (where we restrict the GLn(C) -action to its subgroup Sn of permutation

matrices). Lemma 3.1 has the following immediate consequence:

Corollary 3.2 For d ≥ 3 the restriction of ι to the multilinear component Pm of C〈x1, . . . , xm〉 factors through
an Sm -equivariant C-linear embedding

ῑ : Pm/(I(sl2(C)) ∩ Pm) → O[sl2(C)m+d−1]
sl2(C)
(1m+d−1)
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where on the right hand side we consider the restriction of the Sm+d−1 -action to its subgroup Sm (the stabilizer
in Sm+d−1 of the elements m+ 1,m+ 2, . . . ,m+ d− 1).

For a partition λ ` m denote by r(λ) the multiplicity of χλ in the restriction to Sm of the Sm+d−1 -

module O[sl2(C)m+d−1]
sl2(C)
(1m+d−1)

. Corollary 3.2 immediately implies the following:

Corollary 3.3 For d ≥ 3 and any partition λ ` m we have the inequality

multλ(sl2(C), ρ(d)) ≤ r(λ).

The Sn -character of O[sl2(C)n]sl2(C)(1n) is known:

Proposition 3.4 For a partition λ ` n denote by ν(λ) the multiplicity of χλ in the Sn -character of

O[sl2(C)n]sl2(C)(1n) . Then we have

ν(λ) =

{
1 for λ = (λ1, λ2, λ3) with λ1 ≡ λ2 ≡ λ3 modulo 2

0 otherwise.

Proof The GLn(C) -module structure of O[sl2(C)n]sl2(C) is given for example in [12, Theorem 2.2]. The
isomorphism types of the irreducible GLn(C) -module direct summands of the degree n homogeneous component
of O[sl2(C)n] are labeled by partitions of n with at most 3 nonzero parts. The multiplicity µ(λ) of the
irreducible GLn(C) -module Wλ in the degree n homogeneous component of O[sl2(C)n]sl2(C) is 1 if λ1, λ2, λ3
have the same parity and is zero otherwise. Note finally that the multilinear component of Wλ is Sn -stable,
and its Sn -character is χλ (see for example [1, Corollary 6.3.11]). 2

Following [11, Section I.1] for partitions λ ` n and µ ` k we write λ ⊂ µ is λi ≤ µi for all i . Moreover,
given λ ` m and µ ` m + d − 1 with λ ⊂ µ , by a standard tableau of shape µ/λ we mean a sequence
λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(d−1) of partitions λ(i) ` m+ i , where λ(0) = λ , λ(d−1) = µ . By the well-known branching
rules for the symmetric group, for λ ` m the multiplicity of χλ in the restriction to Sm of the irreducible
Sm+d−1 -character χµ equals the number of standard tableaux of shape µ/λ (see for example [1, Theorem
6.4.11]). Therefore Proposition 3.4 has the following consequence.

Corollary 3.5 We have the equality

r(λ) = |{T |T is a standard skew tableau of shape µ/λ,

µ ` m+ d− 1, µ = (µ1, µ2, µ3), µ1 ≡ µ2 ≡ µ3 modulo 2}|.

Corollary 3.6 For d ≥ 3 we have the inequality r(λ) ≤ 3d−2 .

Proof Associate to a standard skew tableau T = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(d−1) of shape µ/λ , where
µ = (µ1, µ2, µ3) ` m + d − 1 and µ1 ≡ µ2 ≡ µ3 modulo 2 the function fT : {1, . . . , d − 1} → {1, 2, 3} ,
which maps j ∈ {1, . . . , d−1} to the unique i ∈ {1, 2, 3} such that the ith component of the partition λ(j) is 1

greater than the ith component of λ(j−1) . The assignment T 7→ fT is obviously an injective map from the set
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of standard skew tableaux of shape µ/λ into the set of functions {1, . . . , d − 1} → {1, 2, 3} . We claim that at
most 3d−2 functions are contained in the image of this map. Indeed, if the three parts of λ(d−3) have the same
parity, then (fT (d − 2), fT (d − 1)) ∈ {(1, 1), (2, 2), (3, 3)} , since the three parts of µ = λ(d−1) must have the
same parity. If the three parts of λ(d−3) do not have the same parity, say the first two components of λ(d−3)

have the same parity, and the third part has the opposite parity, then (fT (d − 2), fT (d − 1)) ∈ {(1, 2), (2, 1)} .
Hence r(λ) is not greater than 3 -times the number of functions from a (d− 3) -element set to a 3 -element set.
Thus r(λ) ≤ 3d−2 . 2

3.1. Proof of Theorem 1.1
For d ≥ 3 the statement follows from Corollary 3.3 and Corollary 3.6. For the cases d ≤ 3 see Remark 1.2 (i).

4. A lower bound
Proposition 4.1 For d ≥ 2 we have the equality

mult(d−1,1)(sl2(C), ρ(d)) = d− 1.

Proof For k = 0, 1, . . . , d− 2 consider the element

wk := xk1 [x1, x2]x
d−2−k
1 ∈ C〈x1, x2〉 = F2.

These elements are GL2(C) -highest weight vectors with weight (d− 1, 1) , hence each generates an irreducible
GL2(C) -submodule isomorphic to W(d−1,1) (see the proof of Proposition 3.4 for the notation Wλ : it is the
polynomial GL2(C) -module with highest weight λ = (λ1, λ2)). Moreover, the wk (k = 0, 1, . . . , d − 2) are
linearly independent modulo the ideal I(sl2(C), ρ(d)) : indeed, make the substitution x1 7→ ρ(h) , x2 7→ ρ(e) .
Then we get

wk(ρ(h), ρ(e)) = (

d∑
i=1

(d+ 1− 2i)Ei,i)
k · (2

d−1∑
i=1

iEi,i+1) · (
d∑

i=1

(d+ 1− 2i)Ei,i)
d−2−k

= 2

d−1∑
i=1

i(d+ 1− 2i)k(d− 1− 2i)d−2−kEi,i+1.

Denote by Z = (Zi,j)
d−1
i,j=1 the (d−1)×(d−1) matrix whose (i, k+1) entry is the (i, i+1) -entry of wk(ρ(h), ρ(e))

(i.e. the coefficient of Ei.i+1 on the right hand side of the above equality). If i 6= d−1
2 , then

Zi,k+1 = 2(d− 1− 2i)d−2 ·
(
d+ 1− 2i

d− 1− 2i

)k

.

Thus when d is even, Z is obtained from a Vandermonde matrix via multiplying each row by a nonzero integer.
Since the numbers d+1−2i

d−1−2i , i = 1, . . . , d − 1 are distinct, we conclude that det(Z) 6= 0 . When d = 2f − 1 is
odd, the (f − 1)th row of Z is

(0, . . . , 0, 2(f − 1)2d−2).
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Expand the determinant of Z along this row; the (d−2)×(d−2) minor of Z obtained by removing the (f−1)th

row and the last column of Z is again obtained from a Vandermonde matrix by multiplying each row by a nonzero
integer. So det(Z) is nonzero also when d is odd. This shows that the elements wk(ρ(h), ρ(e)) , k = 0, 1, . . . , d−2

are linearly independent in Cd×d . Consequently, no nontrivial linear combination of w0, w1, . . . , wd−2 belongs
to I(sl2(C), ρ(d)) . It follows that F2/(I(sl2(C), ρ(d)) ∩ F2) contains the irreducible GL2(C) -module W(d−1,1)

with multiplicity ≥ d−1 . This multiplicity is in fact equal to d−1 , because d−1 is the multiplicity of W(d−1,1)

as a summand in F2 . Recall finally that for λ = (λ1, λ2) ` m , the multiplicity of χλ in the cocharacter sequence
coincides with the multiplicity of Wλ in F2/(I(sl2(C), ρ(d)) ∩ F2) . 2
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