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Abstract: In this paper, we state and prove theorems related to the existence and multiplicity for positive solutions
of a system of first order differential equations with multipoint and integral boundary conditions. The main tool is the
fixed point theory. In order to illustrate the main results, we present some examples.
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1. Introduction
In this paper, we consider the following nonlinear system{

u′(t) = f(t, u(t), v(t)), t ∈ (0, T ),

v′(t) = g(t, u(t), v(t)), t ∈ (0, T ),
(1.1)

asscociated with multipoint and integral boundary conditions as follows:
u(0) = u0,

v(0) =
N∑
j=1

Bjv(Tj) +
∫ T

0
H(t)v(t)dt,

(1.2)

where f, g : [0, T ]× Rn × Rn → Rn, H : [0, T ] → Mn are given continuous functions, in which Mn is the set
of square matrices of order n , and u0 ∈ Rn , Bj ∈ Mn (j = 1, N ), 0 < T1 < T2 < · · · < TN = T are given
constants.

Multipoint boundary value problems for ordinary differential equations play an important role in several
branches of physics and applied mathematics, see [1] - [6], [8] - [20], [22] and the references given therein.
Many authors have studied various aspects of boundary value problems, by using different methods and various
techniques, such as the Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder, the
fixed point theory (the fixed point theorems of Banach or Krasnoselskii, or Schaefer, the fixed point theorem in
cones, etc.), the coincidence degree theory, monotone iterative techniques.
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In [3], Bolojan et al. proved the existence results of solutions to the following problem for a nonlinear
first order differential system subject to nonlinear nonlocal initial conditions of the form

x′(t) = f1(t, x(t), y(t)),
y′(t) = f2(t, x(t), y(t)), a.e. on [0, 1],
x(0) = α[x, y],
y(0) = β[x, y],

(1.3)

where f1, f2 : [0, 1]×R2 → R were L1 - Carathéodory functions, α, β : C([0, 1])×C([0, 1]) → R were nonlinear
continuous functionals, and the solution (x, y) was sought in W 1,1(0, 1; R2). That problem was studied by
using the fixed point principles by Perov, Schauder and Leray-Schauder, together with the technique that used
convergent matrices and vector norms.

In [15], by applying the Banach fixed point theorem and the Schaefer fixed point theorem, Mardanov
et al. proved the existence and uniqueness theorems for the system of ordinary differential equations with
three-point boundary conditions as follows:{

y′ = f(t, y), t ∈ (0, T ),

Ay(0) +By(t1) + Cy(T ) = d,
(1.4)

where A, B, C were constant square matrices of order n such that det(A+B +C) 6= 0, f : [0, T ]×Rn → Rn

was a given function, d ∈ Rn was a given vector, t1 satisfied the condition of 0 < t1 < T , and y : [0, T ] → Rn

was unknown.
In [16], Mardanov et al. considered the following nonlinear differential system with multipoint and integral

boundary conditions x′ = f(t, x(t)), t ∈ [0, T ],
m∑
i=0

lix(ti) +
∫ T

0
h(t)x(t)dt = α,

(1.5)

where li, i = 1,m, are n -order constant matrices with detN 6= 0, N =
m∑
i=0

li+
∫ T

0
h(t)dt; f : [0, T ]×Rn → Rn ,

h : [0, T ] → Rn×n were given functions; the points t0, t1, · · · , tm were arbitrarely chosen in the finite interval
0 = t0 < t1 < · · · < tm−1 < tm = T . At first, a suitable Green function was constructed in order to reduce the
problem into a corresponding integral equation. Next, by using the Banach contraction mapping principle and
Schaefer fixed point theorem on the integral equation, the authors proved that the solution of the multipoint
problem exists and it is unique.

In [10], Han considered the second-order three-point boundary value problem in the form{
x′′(t) = f(t, x(t)), t ∈ (0, 1),
x′(0) = 0, x(η) = x(1),

(1.6)

with η ∈ (0, 1) . By means of the fixed point theorem in cones, the existence and multiplicity of positive solutions
were proved.

In [5], Boucherif applied the fixed point theorem in a cone to study the existence of positive solutions for
the problem given by 

x′′(t) = f(t, x(t)), t ∈ (0, 1),

x(0)− cx′(0) =
∫ 1

0
g0(s)x(s)ds,

x(1)− dx′(1) =
∫ 1

0
g1(s)x(s)ds,

(1.7)
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where f : [0, 1]×R → R was continuous, g0, g1 : [0, 1] → [0,+∞) were continuous and positive, c and d were
nonnegative real parameters.

In [20], Truong et al. studied the following m -point boundary value problem{
x′′(t) = f(t, x(t)), t ∈ (0, 1),

x′(0) = 0, x(1) =
∑m−2

j=1 αjx(ηj),
(1.8)

where m ≥ 3, ηj ∈ (0, 1) and αj ≥ 0, for all j = 1,m− 2 such that
∑m−2

j=1 αj < 1 . By applying well-known
Guo-Krasnoselskii fixed point theorem and applying the monotone iterative technique, the results obtained in
[20] were the existence and multiplicity of positive solutions. Furthermore, the compactness of the set of positive
solutions was proved.

In [1], Agarwal et al. formulated existence results for solutions to discrete equations which approximate
three-point boundary value problems for second-order ordinary differential equations. The proofs of these results
were finished based on extending the notion of discrete compatibility, which was a degree-based relationship
between the given boundary conditions and the lower or upper solutions chosen, to three-point boundary
conditions. On the other hand, the invariance of the degree under the homotopy of the degree theory was also
applied in the above proofs.

In [12], Henderson and Luca investigated the following multipoint boundary value problem for the system
of nonlinear higher-order ordinary differential equations of the type{

u(n)(t) = f(t, v(t)), t ∈ (0, T ), n ∈ N, n ≥ 2,

v(m)(t) = g(t, u(t)), t ∈ (0, T ), m ∈ N, m ≥ 2,
(1.9)

with the multipoint boundary conditions
u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

p−2∑
i=1

aiu(ξi), p ∈ N, p ≥ 3,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =
q−2∑
i=1

biv(ηi), q ∈ N, q ≥ 3.

(1.10)

Under sufficient assumptions on f and g , the authors proved the existence and multiplicity of positive
solutions of the above problem by applying the fixed point index theory.

Inspired and motivated by the idea of the above mentioned works, we continue to investigate the more
general boundary problem of the form (1.1) - (1.2) with multipoint and integral boundary conditions. This paper
consists of six sections. Section 1 is the introduction. In Section 2, we present some preliminaries. Here, the
Green function is established for Problems (1.1)–(1.2) such that this problem is reduced to the equivalent integral
system. Section 3 is devoted to the existence and uniqueness of solutions based on the fixed point theorems of
Banach and Krasnoselskii. In Sections 4 and 5, by using the Guo-Krasnoselskii’s fixed point theorem in a cone,
we prove sufficient conditions for the existence and multiplicity of positive solutions. Finally, a remark is given
in Section 6 for a system of multiple differential equations. In order to demonstrate the validity of the main
results, three examples (Examples 3.1, 3.2, 4.1) are given.

2. Preliminaries
Let us start this section with some definitions and remarks which are used in next sections.
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First, let C([0, T ];Rn) and C1([0, T ];Rn) be the Banach spaces with normal norms, respectively, as
follows:

‖u‖C([0,T ];Rn) = max
0≤t≤T

|u(t)|1 ,

‖u‖C1([0,T ];Rn) = ‖u‖C([0,T ];Rn) + ‖u′‖C([0,T ];Rn) ,

where |x|1 = |x1|+ · · ·+ |xn| , with x = (x1, · · · , xn)
T ∈ Rn.

Next, we define the norm of square matrices of order n, for all A = (aij) ∈ Mn, by

‖A‖1 = sup
0 ̸=x∈Rn

|Ax|1
|x|1

= max
1≤j≤n

n∑
i=1

|aij | , for all A = (aij) ∈ Mn.

We also define a cone in Rn and a cone in Mn , respectively, as follows:

Rn
+ = {x = (x1, · · · , xn)

T ∈ Rn : xi ≥ 0, ∀i = 1, n},

M+
n = {A = (aij) ∈ Mn : aij ≥ 0, ∀i, j = 1, n}.

We recall that, let X be a Banach space, a cone K ⊂ X is a closed convex set such that λK ⊂ K , for
all λ ≥ 0 and K ∩ (−K) = {0}. Of course, we shall always assume implicitly that K 6= {0}. Given a cone
K ⊂ X, we can define a partial ordering ≤ (or ≥) with respect to K by x ≤ y (or y ≥ x) iff y − x ∈ K, and
we can check which properties of the usual ≤ for the reals, i.e. ≤ with respect to R+ , remain valid for ≤ with
respect to any K due to the properties of a cone, (see [7]).

Therefore, we can define here that, ∀x, y ∈ Rn, x ≤ y (or y ≥ x) iff y − x ∈ Rn
+; and ∀A,B ∈ Mn,

A ≤ B (or B ≥ A) iff B − A ∈ M+
n . For each x ∈ Rn, we can write x > 0 to indicate that x ≥ 0 and

x 6= 0; and for each A ∈ Mn, we also write A > 0 iff A ≥ 0 and A 6= 0. It is clear to see that many properties
of the usual ≤ for the reals remain valid for ≤ with respect to the cones Rn

+ , M+
n .

We also recall here the well-known fixed point theorems in order to use in next sections as follows.
Theorem 2.1 (Krasnosellskii) [21]. Let M be a nonempty bounded closed convex subset of a Banach

space X . Suppose that U : M → X is a contraction and C : M → X is a compact operator such that

U(x) + C(y) ∈ M, ∀x, y ∈ M.

Then, U + C has a fixed point in M .

Theorem 2.2 (Guo-Krasnoselskii) [9]. Let (X, ‖·‖) be a Banach space and let K ⊂ X be a cone. Assume
that Ω1, Ω2 are two open bounded subsets of X with 0 ∈ Ω1 , Ω1 ⊂ Ω2 and let P : K ∩ (Ω2 \ Ω1) → K be a
completely continuous operator satisfying one of the following conditions

(i) ‖Pu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Pu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2;
or

(ii) ‖Pu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Pu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, the operator P has a fixed point in K ∩ (Ω2 \ Ω1) .

Now, we construct an equivalent integral system for Problems (1.1)–(1.2), with f, g ∈ C([0, T ] × Rn ×
Rn;Rn) , H ∈ C([0, T ];Mn) and B1, · · · , BN ∈ Mn. Here, we note more that, in order to get the existence of
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solutions in Section 3, furthermore, the solutions are positive with the conditions (H̃2), (H̃3) as in Sections 4
and 5 below, we shall use the following functions fα(t, u, v) = f(t, u, v) + αu, and gβ(t, u, v) = g(t, u, v) + βv,

for α, β ≥ 0 .

Put σβ = I −
∫ T

0
e−βτH(τ)dτ −

∑N
j=1 e

−βTjBj .

Lemma 2.3. Assume that detσβ 6= 0 . The pair of functions (u, v) ∈ C([0, T ];Rn) × C([0, T ];Rn) is a
solution of Problems (1.1)–(1.2) if and only if (u, v) is a solution of the following integral equations system



u(t) = e−αtu0 +
∫ t

0
e−α(t−s)fα(s, u(s), v(s))ds,

v(t) =
∫ t

0
e−β(t−s)gβ(s, u(s), v(s))ds

+e−βtσ−1
β

∫ T

0

(∫ T

s
e−β(τ−s)H(τ)dτ

)
gβ(s, u(s), v(s))ds

+e−βtσ−1
β

N∑
j=1

Bj

∫ Tj

0
e−β(Tj−s)gβ(s, u(s), v(s))ds.

(2.1)

Proof of Lemma 2.3. Let (u, v) ∈ C([0, T ];Rn)× C([0, T ];Rn) be a solution of Problems (1.1)–(1.2). It
is obviously that (u, v) ∈ C1([0, T ];Rn) × C1([0, T ];Rn) and (u, v) satisfies Problems (1.1)–(1.2). For each α,

β ≥ 0 , the system (1.1) can be transformed into an equivalent form as

{
u′ + αu = fα(t, u, v), t ∈ (0, T ),

v′ + βv = gβ(t, u, v), t ∈ (0, T ).
(2.2)

Multiplying the equations in (2.2) by eαt and eβt , respectively, and integrating from 0 to t , we obtain

u(t) = e−αtu0 +

∫ t

0

e−α(t−s)fα(s, u(s), v(s))ds, t ∈ (0, T ), (2.3)

v(t) = e−βtv(0) +

∫ t

0

e−β(t−s)gβ(s, u(s), v(s))ds, t ∈ (0, T ). (2.4)

It follows from (2.4) that

∫ T

0

H(τ)v(τ)dτ = v(0)

∫ T

0

H(τ)e−βτdτ +

∫ T

0

H(τ)dτ

(∫ τ

0

e−β(τ−s)gβ(s, u(s), v(s))ds

)

= v(0)

∫ T

0

H(τ)e−βτdτ +

∫ T

0

(∫ T

s

e−β(τ−s)H(τ)dτ

)
gβ(s, u(s), v(s))ds,

and

N∑
j=1

Bjv(Tj)− v(0)

N∑
j=1

Bje
−βTj =

N∑
j=1

Bj

∫ Tj

0

e−β(Tj−s)gβ(s, u(s), v(s))ds.
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It implies that

v(0) =

N∑
j=1

Bjv(Tj) +

∫ T

0

H(τ)v(τ)dτ

= v(0)

N∑
j=1

Bje
−βTj +

N∑
j=1

Bj

∫ Tj

0

e−β(Tj−s)gβ(s, u(s), v(s))ds

+v(0)

∫ T

0

H(τ)e−βτdτ +

∫ T

0

(∫ T

s

e−β(τ−s)H(τ)dτ

)
gβ(s, u(s), v(s))ds.

Therefore,

v(0)

I −
∫ T

0

H(τ)e−βτdτ −
N∑
j=1

Bje
−βTj


=

N∑
j=1

Bj

∫ Tj

0

e−β(Tj−s)gβ(s, u(s), v(s))ds+

∫ T

0

(∫ T

s

e−β(τ−s)H(τ)dτ

)
gβ(s, u(s), v(s))ds,

and thus,

v(0) = σ−1
β

N∑
j=1

Bj

∫ Tj

0

e−β(Tj−s)gβ(s, u(s), v(s))ds

+ σ−1
β

∫ T

0

(∫ T

s

e−β(τ−s)H(τ)dτ

)
gβ(s, u(s), v(s))ds.

(2.5)

Combining (2.3), (2.4), and (2.5), we infer that (u(t), v(t)) satisfies the system (2.1), therefore (u, v) is
a solution of the nonlinear integral system (2.1).

Otherwise, let (u, v) ∈ C([0, T ];Rn)×C([0, T ];Rn) is a solution of the nonlinear integral equations (2.1).
It is not difficult to prove that (u, v) ∈ C1([0, T ];Rn)×C1([0, T ];Rn) and (u, v) satisfies Problems (1.1)–(1.2).

Lemma 2.3 is proved. □
We note that, the integral equation (2.4) can be written in form

v(t) =

∫ T

0

G(t, s)gβ(s, u(s), v(s))ds, (2.6)
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where the Green function G(t, s) is defined as follows:

G(t, s) =

{
e−β(t−s)I, 0 ≤ s ≤ t ≤ T,

0, 0 ≤ t ≤ s ≤ T
+ e−β(t−s)σ−1

β

∫ T

s

e−βτH(τ)dτ

+ e−β(t−s)σ−1
β



N∑
j=1

e−βTjBj , 0 ≤ s ≤ T1,

...
...

N∑
j=k

e−βTjBj , Tk−1 < s ≤ Tk,

...
...

e−βTBN , TN−1 < s ≤ T.

(2.7)

The next Lemma will propose a property of the Green function G(t, s).

Lemma 2.4. Suppose that H(t) ≥ 0, ∀t ∈ [0, T ], and Bj ≥ 0, ∀j = 1, N − 1 , BN > 0, such that
detσβ 6= 0, σ−1

β > 0 and σ−1
β BN = (cij), with cij > 0, ∀i, j = 1, n. Then

e−βTσ−1
β BNe−β(t−s) ≤ G(t, s) ≤ σ−1

β e−β(t−s), ∀s, t ∈ [0, T ]. (2.8)

On the other hand, there exist positive matrices Ḡ0, Ḡ1 such that

Ḡ0 ≤ G(t, s) ≤ Ḡ1, ∀(t, s) ∈ [0, T ]× [0, T ]. (2.9)

Moreover, there exists a constant γ ∈ (0, 1) such that

γ
(
I + σ−1

β

)
eβs ≤ G(t, s) ≤

(
I + σ−1

β

)
eβs, ∀s, t ∈ [0, T ]. (2.10)

Remark 2.1. If A > 0 and A is invertible then it does not imply that A−1 > 0. Indeed, we can give an
example as follows:

A =

[
1 0
1 1

]
> 0, A−1 =

[
1 0
−1 1

]
,

obviously, we do not have A−1 > 0 .
Remark 2.2. Let A = (aij), C = (cij) ∈ Mn. Assume that cij > 0, ∀i, j = 1, n. Then, there exists a

constant γ ∈ (0, 1) such that C − γA > 0.

Indeed, we have C − γA = (cij − γaij) ∈ Mn.

By choosing 0 < γ < min
(i,j)

{
cij

1+|aij | , 1
}
, we get C − γA = (cij − γaij) > 0.

Proof of Lemma 2.4. By direct computations, we have

G(t, s) ≥ e−βTσ−1
β BNe−β(t−s), (2.11)

G(t, s) ≤

I + σ−1
β

∫ T

0

e−βτH(τ)dτ +

N∑
j=1

e−βTjBj

 e−β(t−s)

=
[
I + σ−1

β (I − σβ)
]
e−β(t−s) = σ−1

β e−β(t−s). (2.12)
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Because e−βT ≤ e−β(t−s) ≤ eβT , for all t, s ∈ [0, T ], we obtain (2.9) with

Ḡ0 = e−2βTσ−1
β BN , Ḡ1 = eβTσ−1

β .

On the other hand,

G(t, s) ≥ e−βTσ−1
β BNe−β(t−s) ≥ e−2βTσ−1

β BN ,

G(t, s) ≤ σ−1
β e−β(t−s) ≤

(
I + σ−1

β

)
e−β(t−s) ≤

(
I + σ−1

β

)
eβs.

By the fact that e−2βTσ−1
β BN = (e−2βT cij), with e−2βT cij > 0, ∀i, j = 1, n, in a similar way as in

Remark 2.2, there exists a constant γ ∈ (0, 1) such that

e−2βTσ−1
β BN − γ

(
I + σ−1

β

)
> 0.

Hence

G(t, s) ≥ e−2βTσ−1
β BNeβs ≥ γ

(
I + σ−1

β

)
eβs.

Lemma 2.4 is proved. □
We note more that if the sign of Bj and H(t) cannot be determined, we have

−Gmax ≤ G(t, s) ≤ Gmax, ∀(t, s) ∈ [0, T ]× [0, T ], (2.13)

with

Gmax =

[
I + σ−1

β

(∫ T

0

e−βτ |H(τ)| dτ +
∑N

j=1
|Bj | e−βTj

)]
eβT , (2.14)

where we denote the matrix |A| = (|aij |), if A = (aij) ∈ Mn.

3. Existence and uniqueness

Based on the preliminaries, in this section, we prove two existence results of solutions for Problems (1.1)–(1.2),
in which f, g ∈ C([0, T ]× Rn × Rn;Rn), H ∈ C([0, T ];Mn), Bj ∈ Mn (j = 1, N ). The first result (Theorem
3.1) is the unique existence of a solution by applying the Banach fixed point theorem. Under weaker conditions,
we obtain the second result (Theorem 3.5) by using the Krasnoselskii fixed point theorem.

We first consider the Banach space X = C([0, T ];Rn)× C([0, T ];Rn) equipped with the norm

‖(u, v)‖X = ‖u‖C([0,T ];Rn) + ‖v‖C([0,T ];Rn) . (3.1)

Next, based on Lemma 2.3 with respect to α = 0, β = 0 , we define an operator P : X −→ X as follows:

P : X −→ X
(u, v) 7−→ (P1(u, v),P2(u, v)),
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in which

P1(u, v)(t) = u0 +

∫ t

0

f(s, u(s), v(s))ds,

P2(u, v)(t) =

∫ T

0

G(t, s)g(s, u(s), v(s))ds,

where

G(t, s) =

{
I, 0 ≤ s ≤ t ≤ T,

0, 0 ≤ t ≤ s ≤ T
+ σ−1

∫ T

s

H(τ)dτ

+ σ−1



N∑
j=1

Bj , 0 ≤ s ≤ T1,

...
...

N∑
j=k

Bj , Tk−1 < s ≤ Tk,

...
...

BN , TN−1 < s ≤ T,

(3.2)

and

σ = I −
∫ T

0

H(τ)dτ −
N∑
j=1

Bj .

We make the following assumptions.

(H1) H ∈ C([0, T ];Mn); Bj ∈ Mn (j = 1, N) such that 0 <
∫ T

0
‖H(t)‖1 dt+

N∑
j=1

‖Bj‖1 < 1;

(H2) There exists a positive function Lf ∈ L1(0, T ) such that

|f(t, u, v)− f(t, ū, v̄)|1 ≤ Lf (t) (|u− ū|1 + |v − v̄|1) , (3.3)

for all (t, u, v), (t, ū, v̄) ∈ [0, T ]× Rn × Rn ;
(H3) There exists a positive function Lg ∈ L1(0, T ) such that

|g(t, u, v)− g(t, ū, v̄)|1 ≤ Lg(t) (|u− ū|1 + |v − v̄|1) , (3.4)

for all (t, u, v), (t, ū, v̄) ∈ [0, T ]× Rn × Rn .
Remark 3.1. The assumption (H1) leads to∥∥∥∥∥∥

∫ T

0

H(τ)dτ +

N∑
j=1

Bj

∥∥∥∥∥∥
1

≤
∫ T

0

‖H(t)‖1 dt+
N∑
j=1

‖Bj‖1 < 1,

so σ ≡ I −
∫ T

0
H(τ)dτ −

∑N
j=1 Bj is invertible and

∥∥σ−1
∥∥
1
≤ 1

1−
∥∥∥∫ T

0
H(τ)dτ +

∑N
j=1 Bj

∥∥∥
1

≤ 1

1−
∫ T

0
‖H(t)‖1 dt−

N∑
j=1

‖Bj‖1

.
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Theorem 3.1. Suppose that (H1)–(H3) are satisfied. Additionally, assume that

L = ‖Lf‖L1(0,T ) + ‖Lg‖L1(0,T )

∥∥σ−1
∥∥
1
< 1. (3.5)

Then, Problems (1.1)–(1.2) has a unique solution.
Proof of Theorem 3.1.
First, we put fT = max

0≤t≤T
|f(t, 0, 0)|1 , gT = max

0≤t≤T
|g(t, 0, 0)|1 and choose R > 0 large enough such that

R >
|u0|1 + T

(
fT + gT

∥∥σ−1
∥∥
1

)
1− L

. (3.6)

Next, we will finish the proof of this theorem through a process with two steps as follows.
Step 1. Let BR = {(u, v) ∈ X : ‖(u, v)‖X ≤ R} . We show that P(BR) ⊂ BR .
Indeed, for (u, v) ∈ BR and for all t ∈ [0, T ] , we have the following estimates

|P1(u, v)(t)|1 ≤ |u0|1 +
∫ t

0

|f(s, u(s), v(s))− f(s, 0, 0)|1 ds+
∫ t

0

|f(s, 0, 0)|1 ds (3.7)

≤ |u0|1 +R ‖Lf‖L1(0,T ) + TfT ,

and

|P2(u, v)(t)|1 ≤
∥∥σ−1

∥∥
1

[∫ T

0

|g(s, u(s), v(s))− g(s, 0, 0)|1 ds+
∫ T

0

|g(s, 0, 0)|1 ds

]
(3.8)

≤
∥∥σ−1

∥∥
1

[
R ‖Lg‖L1(0,T ) + TgT

]
.

Combining (3.7)–(3.8) and the choice of R as in (3.6), we infer that P(BR) ⊂ BR, it means that the
operator P : BR → BR is defined.

Step 2. We prove that the operator P is a contraction mapping.
Indeed, let (u, v) and (ū, v̄) be arbitrary elements in BR . We have

|P1(u, v)(t)− P1(ū, v̄)(t)|1 ≤
∫ t

0

|f(s, u(s), v(s))− f(s, ū(s), v̄(s))|1 ds (3.9)

≤ ‖Lf‖L1(0,T ) ‖(u, v)− (ū, v̄)‖X ,

and

|P2(u, v)(t)− P2(ū, v̄)(t)|1 (3.10)

≤
∥∥σ−1

∥∥
1

∫ T

0

|g(s, u(s), v(s))− g(s, ū(s), v̄(s))|1 ds

≤
∥∥σ−1

∥∥
1
‖Lg‖L1(0,T ) ‖(u, v)− (ū, v̄)‖X .

It follows from (3.9)–(3.10) and the assumption in Theorem 3.1 that P : BR → BR is a contraction
mapping. Applying the Banach fixed point theorem, we verify that the problem (1.1)–(1.2) has a unique
solution (u, v) . Theorem 3.1 is completely proved. □
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Next, under weaker conditions, the second result is given without the Lipschitzian condition on g as in
(H3) . We make the assumption (H̄3) as below.

(H̄3) g : [0, T ]× Rn × Rn is a continuous function and there exist
two positive functions g1, g2 ∈ L1(0, T ) such that

|g(t, u, v)|1 ≤ g1(t) (|u|1 + |v|1) + g2(t), ∀(t, u, v) ∈ [0, T ]× Rn × Rn. (3.11)

We now define two operators U , C : X → X as follows:

U : X → X
(u, v) 7−→ (P1(u, v), 0) ,

(3.12)

with

P1(u, v)(t) = u0 +

∫ t

0

f(s, u(s), v(s))ds, (3.13)

and
C : X → X
(u, v) 7−→ (0,P2(u, v)) ,

(3.14)

where

P2(u, v)(t) =

∫ T

0

G(t, s)g(s, u(s), v(s))ds. (3.15)

Obviously, P = U + C .
Lemma 3.2. Let (H1), (H2) and (H̄3) hold. In addition, assume that

L1 = ‖Lf‖L1(0,T ) +
∥∥σ−1

∥∥
1
‖g1‖L1(0,T ) < 1. (3.16)

Then, there exists a positive constant R > 0 such that

U(u, v) + C(ū, v̄) ∈ BR, (3.17)

for all (u, v), (ū, v̄) ∈ BR = {(u, v) ∈ X : ‖(u, v)‖X ≤ R}.

Proof of Lemma 3.2. Let (u, v), (ū, v̄) ∈ BR. We have the following estimate

|P1(u, v)(t)|1 ≤ |u0|1 +
∫ t

0

|f(s, u(s), v(s))|1 ds (3.18)

≤ |u0|1 + TfT +R ‖Lf‖L1(0,T ) .

We also have an estimate for P2(ū, v̄) as follows:

|P2(ū, v̄)(t)|1 ≤
∥∥σ−1

∥∥
1

∫ T

0

|g(s, ū(s), v̄(s))|1 ds (3.19)

≤
∥∥σ−1

∥∥
1

[
R ‖g1‖L1(0,T ) + ‖g2‖L1(0,T )

]
.
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Choosing R > 0 large enough such that

R ≥
|u0|1 + TfT +

∥∥σ−1
∥∥
1
‖g2‖L1(0,T )

1− L1
. (3.20)

Combining (3.18)–(3.20) and doing some direct calculations, we obtain an estimate as in (3.17). Lemma
3.2 is proved. □

Lemma 3.3. If the conditions in the Lemma 3.2 are satisfied, then the operator U : X → X is a
contraction.

Proof of Lemma 3.3. Let (u, v) and (ū, v̄) be arbitrary elements in X . We have

|P1(u, v)(t)− P1(ū, v̄)(t)|1 ≤
∫ t

0

|f(s, u(s), v(s))− f(s, ū(s), v̄(s))|1 ds (3.21)

≤ ‖Lf‖L1(0,T ) ‖(u, v)− (ū, v̄)‖X .

Since ‖Lf‖L1(0,T ) ≤ L1 < 1 , we infer that P1 : X → C([0, T ];Rn) is a contraction mapping, so is the

operator U = (P1, 0) : X → X . Lemma 3.3 is proved. □
Lemma 3.4. If the conditions in the Lemma 3.2 are satisfied, then the operator C : BR → X is

continuous and compact.
Proof of Lemma 3.4.
Step 1: P2 is continuous. Let {(um, vm)} ⊂ BR and (u, v) ∈ BR such that

‖(um, vm)− (u, v)‖X → 0, as m → +∞. (3.22)

By the continuity of g and the Lebesgue’s dominated convergence theorem, we get

∫ T

0

|g(t, um(t), vm(t))− g(t, u(t), v(t))|1 dt → 0, as m → +∞. (3.23)

Using (3.23), we infer that

sup
0≤t≤T

|P2(um, vm)(t)− P2(u, v)(t)|1 (3.24)

≤
∥∥σ−1

∥∥
1

∫ T

0

|g(t, um(t), vm(t))− g(t, u(t), v(t))|1 dt → 0, as m → +∞.

Step 2: P2(BR) is relatively compact. It follows from the continuity of g that there exists mR > 0 such
that |g(t, u(t), v(t))|1 ≤ mR for all (u, v) ∈ BR, ∀t ∈ [0, T ] . Hence, the set P2(BR) is bounded in C([0, T ];Rn) .

Taking arbitrary (u, v) ∈ BR and t1, t2 ∈ [0, T ], t2 < t1 , we obtain

|P2(u, v)(t1)− P2(u, v)(t2)|1 =

∣∣∣∣∫ t1

t2

g(s, u(s), v(s))ds

∣∣∣∣
1

≤ mR |t1 − t2| , (3.25)

it leads to P2(BR) is equicontinuous. Therefore, the set P2(BR) is relatively compact in C([0, T ];Rn) due to
the Arzelà-Ascoli’s theorem. Lemma 3.4 is proved. □
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Theorem 3.5. Suppose that the conditions in Lemma 3.2 are satisfied. Then, Problems (1.1)–(1.2) have
a solution.

Proof of Theorem 3.5. Combining Lemmas 3.2, 3.3, 3.4 and applying Theorem 2.1 (Krasnoselskii), it is
clear to see that P = U + C has a fixed point.

Theorem 3.5 is completely proved. □
Remark 3.2. The result obtained in Theorem 3.5 leads that the set of solutions of Problems (1.1)–(1.2)

is compact in X , it means that the set

S = {(u, v) ∈ BR : (u, v) = U(u, v) + C(u, v)}

is compact in X . Indeed, by the fact that U : X → X is a contraction, (I − U) : X → X is invertible and
(I − U)−1 : X → X is continuous, and therefore, S can be written as follows:

S = {(u, v) ∈ BR : (u, v) = (I − U)−1C(u, v)} = (I − U)−1C(S).

By C : BR → X is continuous and compact, and by (I − U)−1 : X → X is continuous, it implies that
(I −U)−1C : BR → X is continuous and compact. Hence, S = (I −U)−1C(S) is relatively compact in X , since
S is bounded. In order to prove the compactness of S, it remains to check that S is closed in X .

Suppose that {(um, vm)} ⊂ S, ‖(um, vm)− (u, v)‖X → 0. By the continuity of (I − U)−1C, we have

∥∥(u, v)− (I − U)−1C(u, v)
∥∥
X

≤ ‖(u, v)− (um, vm)‖X +
∥∥(I − U)−1C(um, vm)− (I − U)−1C(u, v)

∥∥
X

→ 0.

Thus (u, v) = (I − U)−1C(u, v), so (u, v) ∈ S. We verify that S is compact in X .
Remark 3.3. Using Lemma 2.3, with respect to α > 0, β > 0 , we also obtain similar results. It is proved

that Theorems 3.1 and 3.5 remain valid for this case, where L and L1 , respectively, are defined as follows:

L = αT + ‖Lf‖L1(0,T ) +
(
βT + ‖Lg‖L1(0,T )

)∥∥∥eβTσ−1
β

∥∥∥
1
,

L1 = αT + ‖Lf‖L1(0,T ) +
(
βT + ‖g1‖L1(0,T )

)∥∥∥eβTσ−1
β

∥∥∥
1
.

Example 3.1. We consider the following problem



u′
1(t) = δ1e

−t
[
cos(|u, (t)|1) + sin2(|v(t)|1)

]
, t ∈ (0, 1),

u′
2(t) = δ2e

−t
[
cos(|v(t)|1) + sin2(|u(t)|1)

]
, t ∈ (0, 1),

v′1(t) =
δ̄1 |u(t)|1

e2t + |u(t)|1 + |v(t)|1
, t ∈ (0, 1),

v′2(t) =
δ̄2 |v(t)|1

e2t + |u(t)|1 + |v(t)|1
, t ∈ (0, 1),

(u1(0), u2(0))
T = u0 ∈ R2,

v1(0) =
1

8
v1(1/2) +

1

16
v1(1) +

1

4

∫ 1

0
e−tv1(t)dt,

v2(0) =
1

8
v1(1/2) +

1

16
v2(1/2) +

1

8
v1(1) +

1

32
v2(1)

+
1

8

∫ 1

0
e−tv1(t)dt+

1

8

∫ 1

0
e−tv2(t)dt,

(3.26)
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where (|δ1|+ |δ2|)
(
1− e−1

) [
1 +

(
1 + e−1

) 2e(31 + 203e)

(4 + 9e)(4 + 25e)

]
< 1 .

Problem (3.26) has the form Problems (1.1)–(1.2) with respect to n = 2, f(t, u, v) = (f1(t, u, v), f2(t, u, v))
T
,

g(t, u, v) = (g1(t, u, v), g2(t, u, v))
T
, where

f1(t, u, v) = δ1e
−t
[
cos(|u(t)|1) + sin2(|v(t)|1)

]
,

f2(t, u, v) = δ2e
−t
[
cos(|v(t)|1) + sin2(|u(t)|1)

]
,

g1(t, u, v) =
δ̄1 |u(t)|1

e2t + |u(t)|1 + |v(t)|1
,

g2(t, u, v) =
δ̄2 |v(t)|1

e2t + |u(t)|1 + |v(t)|1
,

and N = 2, T1 =
1

2
, T2 = T = 1,

H(t) = e−t

[
1/4 0
1/8 1/8

]
, B1 =

[
1/8 0
1/8 1/16

]
, B2 =

[
1/16 0
1/8 1/32

]
.

It is easy to see that the assumptions (H1) are satisfied, since

∫ 1

0

‖H(t)‖1 dt+ ‖B1‖1 + ‖B2‖1 =
13

16
− 3

8e
< 1.

On the other hand, the assumptions (H2) , (H3) are satisfied with Lf (t) = (|δ1|+ |δ2|) e−t, Lg(t) =

2(
∣∣δ̄1∣∣+ ∣∣δ̄2∣∣)e−2t.

Moreover, we have

σ ≡ I −
∫ 1

0

H(t)dt−B1 −B2

= I −
(
1− e−1

) [ 1/4 0
1/8 1/8

]
−
[

1/8 0
1/8 1/16

]
−
[

1/16 0
1/8 1/32

]
=

[
σ11 0
σ21 σ22

]
,

where

σ11 = 1− 1− e−1

4
− 1

8
− 1

16
=

1

4e
+

9

16
> 0,

σ22 = 1− 1− e−1

8
− 1

16
− 1

32
=

1

8e
+

25

32
> 0,

σ21 = −1− e−1

8
− 1

8
− 1

8
=

1

8e
− 3

8
< 0,

σ−1 =

[ 1
σ11

0
−σ21

σ11σ22

1
σ22

]
=

[ 1
σ11

0
−σ21

σ11σ22

1
σ22

]
=

[
16e
4+9e 0

2e(3e−1)
(4+9e)(4+25e)

32e
4+25e

]
> 0.
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Hence

∥∥σ−1
∥∥
1

= max

{
16e

4 + 9e
+

2e(3e− 1)

(4 + 9e)(4 + 25e)
,

32e

4 + 25e

}
=

2e(31 + 203e)

(4 + 9e)(4 + 25e)
.

Moreover

‖Lf‖L1(0,1) = (|δ1|+ |δ2|)
(
1− e−1

)
,

‖Lg‖L1(0,1) = (|δ1|+ |δ2|)
(
1− e−2

)
,

we have

L = ‖Lf‖L1(0,1) + ‖Lg‖L1(0,1)

∥∥σ−1
∥∥
1

= (|δ1|+ |δ2|)
(
1− e−1

)
+ (|δ1|+ |δ2|)

(
1− e−2

) 2e(31 + 203e)

(4 + 9e)(4 + 25e)

= (|δ1|+ |δ2|)
(
1− e−1

) [
1 +

(
1 + e−1

) 2e(31 + 203e)

(4 + 9e)(4 + 25e)

]
< 1.

Then, the conditions of Theorem 3.1 are satisfied. Thus, we deduce that Problem (3.26) has a unique
solution.

Example 3.2. Let us consider the following system



u′
1(t) =

δ1 |u(t)|1
et + |u(t)|1 + |v(t)|1

, t ∈ (0, 1),

u′
2(t) =

δ2 |v(t)|1
et + |u(t)|1 + |v(t)|1

, t ∈ (0, 1),

v′1(t) = δ̄1e
−t
(
v1(t) + u2(t) sin(

3
√

v2(t))
)
, t ∈ (0, 1),

v′2(t) = δ̄2e
−t
(
v2(t) + u1(t) cos(

5
√

v1(t))
)
, t ∈ (0, 1),

(u1(0), u2(0))
T = u0 ∈ R2,

v1(0) =
1

8
v1(1/2) +

1

16
v1(1) +

1

4

∫ 1

0
e−tv1(t)dt,

v2(0) =
1

8
v1(1/2) +

1

16
v2(1/2) +

1

8
v1(1) +

1

32
v2(1)

+
1

8

∫ 1

0
e−tv1(t)dt+

1

8

∫ 1

0
e−tv2(t)dt,

(3.27)

where 2
(
1− e−1

) [
(|δ1|+ |δ2|) + e(31+203e)

(4+9e)(4+25e) max{
∣∣δ̄1∣∣ , ∣∣δ̄2∣∣}] < 1 .

Problem (3.27) has the form Problems (1.1)–(1.2) with n = 2, f(t, u, v) = (f1(t, u, v), f2(t, u, v))
T
,
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g(t, u, v) = (g1(t, u, v), g2(t, u, v))
T
, in which

f1(t, u, v) =
δ1 |u(t)|1

et + |u(t)|1 + |v(t)|1
,

f2(t, u, v) =
δ2 |v(t)|1

et + |u(t)|1 + |v(t)|1
,

g1(t, u, v) = δ̄1e
−t
(
v1(t) + u2(t) sin(

3
√

v2(t))
)
,

g2(t, u, v) = δ̄2e
−t
(
v2(t) + u1(t) cos(

5
√

v1(t))
)
,

and N = 2, T1 =
1

2
, T2 = T = 1,

H(t) = e−t

[
1/4 0
1/8 1/8

]
, B1 =

[
1/8 0
1/8 1/16

]
, B2 =

[
1/16 0
1/8 1/32

]
.

Obviously, (H2) and (H̄3) are satisfied with Lf (t) = 2 (|δ1|+ |δ2|) e−t, g1(t) = max{
∣∣δ̄1∣∣ , ∣∣δ̄2∣∣}e−t,

g2(t) = 0.

We note that, with
(
1− e−1

)(
2 (|δ1|+ |δ2|) +

592e2 max{
∣∣δ̄1∣∣ , ∣∣δ̄2∣∣}

(9e+ 4)(25e+ 4)

)
< 1, we have

L1 = ‖Lf‖L1(0,1) +
∥∥σ−1

∥∥
1
‖g1‖L1(0,1)

= 2
(
1− e−1

)
(|δ1|+ |δ2|) +

2e(31 + 203e)

(4 + 9e)(4 + 25e)

(
1− e−1

)
max{

∣∣δ̄1∣∣ , ∣∣δ̄2∣∣}
= 2

(
1− e−1

) [
(|δ1|+ |δ2|) +

e(31 + 203e)

(4 + 9e)(4 + 25e)
max{

∣∣δ̄1∣∣ , ∣∣δ̄2∣∣}] < 1.

Applying Theorem 3.5, we verify that Problem (3.27) has a solution.

4. Positive solutions
The main purpose of this section is to prove the existence of positive solutions for Problems (1.1)–(1.2), in
which f, g ∈ C([0, T ] × Rn × Rn;Rn), and H ∈ C([0, T ];Mn), Bj ∈ Mn (j = 1, N ). The main tool is the
Guo-Krasnoselskii’s fixed point theorem in a cone and applying Lemmas 2.3 and 2.4 with α > 0, β > 0 . For
the sake of simplicity, we consider the case u0 = 0 .

First, based on Lemma 2.3 with α > 0, β > 0 , the integral system (2.1) can be written as follows:{
u(t) =

∫ t

0
e−α(t−s)fα(s, u(s), v(s))ds,

v(t) =
∫ T

0
G(t, s)gβ(s, u(s), v(s))ds.

(4.1)

Next, based on Lemma 2.4, we make here the assumptions as follows.
There exist positive constants α, β such that the following conditions are fulfilled:

(H̃1) H ∈ C([0, T ];Mn), Bj ∈ Mn (j = 1, N ) such that the assumptions of Lemma 2.4 are satisfied;
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(H̃2) f : [0, T ]× Rn × Rn → Rn is a continuous function such that

f(t, u, v) ≥ −αu, for all (t, u, v) ∈ [0, T ]× Rn
+ × Rn

+;

(H̃3) g : [0, T ]× Rn × Rn → Rn is a continuous function such that

g(t, u, v) ≥ −βv, for all (t, u, v) ∈ [0, T ]× Rn
+ × Rn

+.

We have the following simple lemma.

Lemma 4.1. Suppose that (H̃1)–(H̃3) are satisfied. Then, for each (u, v) ∈ X such that u(t), v(t) ≥ 0,

∀t ∈ [0, T ] , we have P1(u, v)(t), P2(u, v)(t) ≥ 0 , for all t ∈ [0, T ] . □
We next define the cone K in X as follows:

K = {(u, v) ∈ X : u(t) ≥ 0, v(t) ≥ 0, |v(t)|1 ≥ γ‖(u, v)‖X , ∀t ∈ [0, T ]}, (4.2)

where γ is defined as in (2.10) of Lemma 2.4.
Lemma 4.2. Suppose that the following conditions are fulfilled

(i) α ≤ β;

(ii) fα(t, u, v) ≤ gβ(t, u, v) for all (t, u, v) ∈ [0, T ]× R+ × R+.

Then, P : K → K .
Proof of Lemma 4.2. Let (u, v) be an arbitrary element in K . We have

‖P(u, v)‖X = sup
0≤t≤T

|P1(u, v)(t)|1 + sup
0≤t≤T

|P2(u, v)(t)|1 (4.3)

= sup
0≤t≤T

∣∣∣∣∫ t

0

e−α(t−s)fα(s, u(s), v(s))ds

∣∣∣∣
1

+ sup
0≤t≤T

∣∣∣∣∣
∫ T

0

G(t, s)gβ(s, u(s), v(s))ds

∣∣∣∣∣
1

= sup
0≤t≤T

∫ t

0

e−α(t−s) |fα(s, u(s), v(s))|1 ds+ sup
0≤t≤T

∫ T

0

|G(t, s)gβ(s, u(s), v(s))|1 ds

≤
∫ T

0

eαs |fα(s, u(s), v(s))|1 ds+
∫ T

0

∣∣∣σ−1
β eβsgβ(s, u(s), v(s))

∣∣∣
1
ds

≤
∫ T

0

eβs |gβ(s, u(s), v(s))|1 ds+
∫ T

0

eβs
∣∣∣σ−1

β gβ(s, u(s), v(s))
∣∣∣
1
ds

=

∫ T

0

eβs
[
|gβ(s, u(s), v(s))|1 +

∣∣∣σ−1
β gβ(s, u(s), v(s))

∣∣∣
1

]
ds

=

∫ T

0

eβs
∣∣∣(I + σ−1

β

)
gβ(s, u(s), v(s))

∣∣∣
1
ds.
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On the other hand, we also have

|P2(u, v)(t)|1 =

∣∣∣∣∣
∫ T

0

G(t, s)gβ(s, u(s), v(s))ds

∣∣∣∣∣
1

(4.4)

=

∫ T

0

|G(t, s)gβ(s, u(s), v(s))|1 ds

≥ γ

∫ T

0

∣∣∣(I + σ−1
β

)
gβ(s, u(s), v(s))

∣∣∣
1
ds ≥ γ ‖P(u, v)‖X .

It follows from (4.3), (4.4) that |P2(u, v)(t)|1 ≥ γ ‖P(u, v)‖X , so P : K → K . Lemma 4.2 is proved. □

Theorem 4.3. Suppose that (H̃1) - (H̃3) and the conditions in Lemma 4.2 are satisfied. Furthermore,
the following assertions are fulfilled

(i) There is a constant θ ∈ (0, 1/2T ] such that

|fα(t, u, v)|1 ≤ θ (|u|1 + |v|1) , ∀(t, u, v) ∈ [0, T ]× Rn × Rn; (4.5)

(ii) There exist two positive constants r, R, r < R, such that

∣∣Ḡ1gβ(t, u, v)
∣∣
1
≤ r

2T
, ∀(t, u, v) ∈ [0, T ]× Rn

+ × Rn
+, |u|1 ≤ r, γr ≤ |v|1 ≤ r, (4.6)

∣∣Ḡ0gβ(t, u, v)
∣∣
1
≥ R

T
, ∀(t, u, v) ∈ [0, T ]× Rn

+ × Rn
+, |u|1 ≤ R, γR ≤ |v|1 ≤ R,

or ∣∣Ḡ0gβ(t, u, v)
∣∣
1
≥ r

T
, ∀(t, u, v) ∈ [0, T ]× Rn

+ × Rn
+, |u|1 ≤ r, γr ≤ |v|1 ≤ r, (4.7)

∣∣Ḡ1gβ(t, u, v)
∣∣
1
≤ R

2T
, ∀(t, u, v) ∈ [0, T ]× Rn

+ × Rn
+, |u|1 ≤ R, γR ≤ |v|1 ≤ R.

Then, Problems (1.1)–(1.2) have a solution (u, v) with u(t) ≥ 0, v(t) ≥ 0 , for all t ∈ [0, T ] .
Proof of Theorem 4.3. Using similar calculations as in Lemma 3.4, we obtain that the operator P is

completely continuous. Let us consider two bounded sets as follows:

Ωr = {(u, v) ∈ X : ‖(u, v)‖X < r}, (4.8)

ΩR = {(u, v) ∈ X : ‖(u, v)‖X < R}.

It is easy to see that Ωr and ΩR are open subsets of X with 0 ∈ Ωr and Ωr ⊂ ΩR . We shall consider
two cases.

Case 1. The (4.6) is true.
Take an arbitrary element (u, v) ∈ K with ‖(u, v)‖X = r . We have the following estimates

|P1(u, v)(t)|1 ≤ θ

∫ t

0

(|u(s)|+ |v(s)|) ds ≤ Tθ ‖(u, v)‖X , (4.9)
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and

|P2(u, v)(t)|1 =

∫ T

0

|G(s, t)gβ(s, u(s), v(s))|1 ds (4.10)

≤
∫ T

0

∣∣Ḡ1gβ(s, u(s), v(s))
∣∣
1
ds ≤ T

r

2T
=

1

2
‖(u, v)‖X .

It follows from (4.6) (1) , (4.9) and (4.10) that

‖P(u, v)‖X ≤ ‖(u, v)‖X , ∀(u, v) ∈ K ∩ ∂Ωr. (4.11)

On the other hand, for each (u, v) ∈ K ∩ ∂ΩR , we have

‖P(u, v)‖X ≥ |P2(u, v)(t)|1 =

∣∣∣∣∣
∫ T

0

G(t, s)gβ(s, u(s), v(s))ds

∣∣∣∣∣
1

(4.12)

=

∫ T

0

|G(t, s)gβ(s, u(s), v(s))|1 ds

≥
∫ T

0

∣∣Ḡ0gβ(s, u(s), v(s))
∣∣
1
ds ≥ T

R

T
= ‖(u, v)‖X .

Combining (4.11), (4.12) and applying the first part of Theorem 2.3 (Guo-Krasnoselskii), we deduce that
there exists (u∗, v∗) ∈ K ∩ (ΩR \ Ωr) such that P(u∗, v∗) = (u∗, v∗) . It means that Problems (1.1)–(1.2), with
u0 = 0, have positive solutions.

Case 2. The (4.7) is true.
Using the same method as in Case 1, by applying the second part of Theorem 2.3, we obtain the similar

result.
Theorem 4.3 is completely proved. □
Remark 4.1. In order to show the existence of positive solutions of Problems (1.1)–(1.2) with u0 > 0 ,

we put ū(t) = u(t)− u0 . Then, the pair of functions (ū, v) is the solution of the following problem
ū′ = f̄(t, ū, v), t ∈ (0, T ),

v′ = ḡ(t, ū, v), t ∈ (0, T ),

ū(0) = 0, v(0) =
N∑
j=1

Bjv(Tj) +
∫ T

0
H(t)v(t)dt,

(4.13)

where f̄(t, ū, v) = f(t, ū+ u0, v), ḡ(t, ū, v) = g(t, ū+ u0, v).

Applying results in Theorem 4.3 for the system (4.13), we can obtain the existence of a solution (u, v)

such that u(t) ≥ u0, v(t) ≥ 0 for all t ∈ [0, T ] . □
We will provide an example for Theorem 4.3 below.
Example 4.1. Let us consider the nonlinear first order ordinary differential system as follows:

u′(t) = f(u(t), v(t)), t ∈ (0, T ),
v′(t) = g(u(t), v(t)), t ∈ (0, T ),

u(0) = u0, v(0) = B1v(T1) +B2v(T2) +
∫ T

0
H(t)v(t)dt,

(4.14)
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where N = 2, T1 =
T

2
, T2 = T,

H(t) = e−t

[
1/4 0
1/8 1/8

]
, B1 =

[
1/8 0
1/8 1/16

]
, B2 =

[
1/16 1/16
1/8 1/32

]
,

and f(u, v), g(u, v) are given as in (4.15) below.
We first choose γ ∈ (0, 1) as in Lemma 2.4. We have

σβ ≡ I −
∫ T

0

e−βtH(t)dt− e−βT/2B1 − e−TβB2

= I − 1− e−(1+β)T

1 + β

[
1/4 0
1/8 1/8

]
− e−βT/2

[
1/8 0
1/8 1/16

]
− e−Tβ

[
1/16 1/16
1/8 1/32

]
=

[
σ11 σ12

σ21 σ22

]
,

where

σ11 = 1− 1− e−(1+β)T

4(1 + β)
− 1

8
e−βT/2 − 1

16
e−Tβ > 0,

σ22 = 1− 1− e−(1+β)T

8(1 + β)
− 1

16
e−βT/2 − 1

32
e−Tβ > 0,

σ12 = − 1

16
e−Tβ < 0,

σ21 = −1− e−(1+β)T

8(1 + β)
− 1

8
e−βT/2 − 1

8
e−Tβ < 0, with β > 0 small enough,

detσβ = σ11σ22 − σ12σ21 = ∆ > 0,

σ−1
β =

1

∆

[
σ22 −σ12

−σ21 σ11

]
≡
[

σ̄22 −σ̄12

−σ̄21 σ̄11

]
> 0.

I + σ−1
β =

[
1 + σ̄22 −σ̄12

−σ̄21 1 + σ̄11

]
≡
(
d̄ij
)
,

e−2βTσ−1
β BN = e−2βT

[
σ̄22 −σ̄12

−σ̄21 σ̄11

] [
1/16 1/16
1/8 1/32

]
= e−2βT

[
σ̄22

16 − σ̄12

8
σ̄22

16 − σ̄12

32−σ̄21

16 + σ̄11

8
−σ̄21

16 + σ̄11

32

]
≡ (c̄ij) ,

c̄ij > 0, ∀i, j = 1, 2.

By choosing γ ∈ (0, 1) such that

0 < γ < min
i,j=1,2

{
1,

c̄ij
1 + d̄ij

}
,
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then

e−2βTσ−1
β BN − γ

(
I + σ−1

β

)
> 0.

We next choose two positive constants r, R such that r < R and r < γR.

We note more that it is easy to compute two positive matrices Ḡ0, Ḡ1 as in Lemma 2.4.
Now, we give the functions f, g as follows:

f(u, v) + αu = δ
[
g(u, v) + βv + α

(
|v1| sin2( 3

√
v2), |v2| sin2( 5

√
v1)
)]

, (4.15)

g(u, v)− βv =



c1
|v|1 |u|

2
1

1 + |u|21
d⃗, u, v ∈ R2, |v|1 ≤ r,

c1(|v|1 − γR)

r − γR

r |u|21
1 + |u|21

d⃗

+
c2(|v|1 − r)

γR− r

(
u+

|v|1
γR

v

)
, u, v ∈ R2, r ≤ |v|1 ≤ γR,

c2(u+ v), u, v ∈ R2, |v|1 ≥ γR,

for 0 ≤ c1(d1 + d2) + 2β ≤ 1

2T
∥∥Ḡ1

∥∥
1

, c2 ≥ 1

γT
and d⃗ = (d1, d2) ∈ R2

+, d⃗ > 0.

In what follows, we verify that (H̃2), (H̃3) are satisfied.
It is clear to see that g ∈ C(R2 × R2;R2) and for all (u, v) ∈ R2

+ × R2
+, we have

(i) (u, v) ∈ R2
+ × R2

+, |v|1 ≤ r : g(u, v)− βv = c1
|v|1 |u|

2
1

1 + |u|21
d⃗ ≥ 0;

(ii) (u, v) ∈ R2
+ × R2

+, r ≤ |v|1 ≤ γR :

g(u, v)− βv =
c1(|v|1 − γR)

r − γR

r |u|21
1 + |u|21

d⃗+
c2(|v|1 − r)

γR− r

(
u+

|v|1
γR

v

)
=

(
1−

|v|1 − r

γR− r

)
c1r |u|21
1 + |u|21

d⃗+
|v|1 − r

γR− r
c2

(
u+

|v|1
γR

v

)
= (1− λ)

c1r |u|21
1 + |u|21

d⃗+ λc2

(
u+

|v|1
γR

v

)
≥ 0, with λ =

|v|1 − r

γR− r
∈ [0, 1];

(iii) (u, v) ∈ R2
+ × R2

+, |v|1 ≥ γR : g(u, v)− βv = c2(u+ v) ≥ 0.

Thus g(u, v) + βv = g(u, v)− βv + 2βv ≥ 0, ∀(u, v) ∈ R2
+ × R2

+. It implies that (H̃3) holds.

On the other hand, f satisfies (H̃2). Indeed, by

f(t, u, v) = −αu+ δ
[
g(u, v) + βv + α

(
|v1| sin2( 3

√
v2), |v2| sin2( 5

√
v1)
)]

,

we have f ∈ C(R2 × R2;R2) and for all (u, v) ∈ R2
+ × R2

+,

f(u, v) + αu = δ
[
g(u, v) + βv + α

(
|v1| sin2( 3

√
v2), |v2| sin2( 5

√
v1)
)]

≥ δ (g(u, v) + βv) ≥ 0.

Next, the conditions in Lemma 4.2 are satisfied. We need prove that if α ≤ β, then

f(u, v) + αu ≤ g(u, v) + βv, ∀(u, v) ∈ R2
+ × R2

+.
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We have

fα(u, v) = δ
[
g(u, v) + βv + α

(
|v1| sin2( 3

√
v2), |v2| sin2( 5

√
v1)
)]

≤ δ [g(u, v) + βv + αv]

= δ

[
g(u, v) +

(
1 +

α

β

)
βv

]
≤ δ

(
1 +

α

β

)
gβ(u, v)

≤ gβ(u, v), ∀(u, v) ∈ R2
+ × R2

+,

with δ > 0 small enough, such that 0 < δ

(
1 +

α

β

)
≤ 1.

It is clear that the function f satisfies the condition (4.5), i.e.

∃θ ∈ (0,
1

2T
] : |fα(u, v)| = |f(u, v) + αu|1 ≤ θ (|u|1 + |v|1) ,∀u, v ∈ R2.

Indeed, for all (u, v) ∈ R2, we have
(i) (u, v) ∈ R2 × R2, |v|1 ≤ r :

|g(u, v)− βv|1 = c1
|v|1 |u|

2
1

1 + |u|21
(d1 + d2)

≤ c1(d1 + d2) |v|1 ≤ c1(d1 + d2) (|u|1 + |v|1) ;

(ii) (u, v) ∈ R2 × R2, r ≤ |v|1 ≤ γR : with λ =
|v|1 − r

γR− r
∈ [0, 1], we get

|g(u, v)− βv|1 =

∣∣∣∣∣(1− λ)
c1r |u|21
1 + |u|21

d⃗+ λc2

(
u+

|v|1
γR

v

)∣∣∣∣∣
1

≤ (1− λ) c1
r |u|21

1 + |u|21
(d1 + d2) + λc2

(
|u|1 +

|v|1
γR

|v|1

)
≤ c1(d1 + d2) |v|1 + c2 (|u|1 + |v|1)
≤ [c1(d1 + d2) + c2] (|u|1 + |v|1) ;

(iii) (u, v) ∈ R2 × R2, |v|1 ≥ γR : |g(u, v)− βv|1 = |c2(u+ v)|1 ≤ c2 (|u|1 + |v|1) .

It implies from (i)–(iii) that

|g(u, v)− βv|1 ≤ [c1(d1 + d2) + c2] (|u|1 + |v|1) , ∀(u, v) ∈ R2 × R2.

Hence

|f(u, v) + αu|1 = δ
∣∣g(u, v) + βv + α

(
|v1| sin2( 3

√
v2), |v2| sin2( 5

√
v1)
)∣∣

1

≤ δ [|g(u, v)− βv|1 + (2β + α) |v|1 ]

≤ δ [(c1(d1 + d2) + c2) (|u|1 + |v|1) + (2β + α) (|u|1 + |v|1) ]

≤ δ [c1(d1 + d2) + c2 + 2β + α ] (|u|1 + |v|1)

≡ θ (|u|1 + |v|1) , ∀(u, v) ∈ R2 × R2,

where θ = δ [c1(d1 + d2) + c2 + 2β + α ] ≤ 1

2T
, with δ > 0 small enough.

Finally, the function gβ satisfies the condition (4.6), because
(i) (u, v) ∈ R2

+ × R2
+, |u|1 ≤ r, γr ≤ |v|1 ≤ r :

|g(u, v)− βv|1 = c1
|v|1 |u|

2
1

1 + |u|21
(d1 + d2) ≤ c1(d1 + d2) |v|1 ;
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hence,

|gβ(u, v)|1 ≤ |g(u, v)− βv|1 + 2β |v|1
≤ [c1(d1 + d2) + 2β ] |v|1 ≤ [c1(d1 + d2) + 2β ] r.

It implies that ∣∣Ḡ1gβ(u, v)
∣∣
1

≤
∥∥Ḡ1

∥∥
1
|gβ(u, v)|1 ≤

∥∥Ḡ1

∥∥
1
[c1(d1 + d2) + 2β ] r

≤
∥∥Ḡ1

∥∥
1

r

2T
∥∥Ḡ1

∥∥
1

=
r

2T
.

(ii) (u, v) ∈ R2
+ × R2

+, |u|1 ≤ R, γR ≤ |v|1 ≤ R :
gβ(u, v) = g(u, v)− βv + 2βv ≥ g(u, v)− βv = c2 (u+ v) ≥ c2v;

therefore, ∣∣Ḡ0gβ(u, v)
∣∣
1
≥ c2 |v|1 ≥ c2γR ≥ R

T
.

We deduce that the assumptions and the conditions in Theorem 4.3 are satisfied; hence, we verify that
the system (4.14) has a positive solution. □

5. Multiplicity of positive solutions

In this section, we will show that Problems (1.1)–(1.2) can have two distinct solutions or even finitely many
distinct solutions. The multiplicity of positive solutions depends strongly on the nonlinear term in (1.1). For
the sake of simplicity, we just consider the case u0 = 0 .

First, in order to prove the multiplicity result, we assume that there exists R1 < γR2 < γ2R3 such that
for j = 1, 2

(Ḡ1)
∣∣Ḡ1gβ(t, u, v)

∣∣
1
≤ Rj

2T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj , γRj ≤ |v|1 ≤ Rj ,

(G1)
∣∣Ḡ0gβ(t, u, v)

∣∣
1
≥ Rj+1

T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj+1, γRj+1 ≤ |v|1 ≤ Rj+1,
where γ is defined as in (2.10) of Lemma 2.4.

Theorem 5.1. Assume that (H̃1)–(H̃3) , (4.5) and (Ḡ1)–(G1) are satisfied. Then, Problems (1.1)–(1.2)
have two solutions (u1, v1) and (u2, v2) such that

R1 < ‖(u1, v1)‖X ≤ R2, (5.1)

R2 < ‖(u2, v2)‖X ≤ R3.

Proof of Theorem 5.1. We denote the sets

Ωj = {(u, v) ∈ X : ‖(u, v)‖X < Rj} , j = 1, 3. (5.2)

For (u, v) ∈ K ∩ ∂Ω1 , we have

|u(t)|1 ≤ ‖(u, v)‖X = R1, (5.3)

γR1 = γ ‖(u, v)‖X ≤ |v(t)|1 ≤ ‖(u, v)‖X = R1.
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It follows from (5.3) and (Ḡ1) that

∣∣Ḡ1gβ(t, u(t), v(t))
∣∣
1
≤ R1

2T
. (5.4)

Combining (4.5) and (5.4), we obtain the following estimate

‖P(u, v)‖X = max
0≤t≤T

∫ t

0

|fα(s, u(s), v(s)|1 ds+ max
0≤t≤T

∫ T

0

|G(t, s)gβ(s, u(s), v(s))|1 ds (5.5)

≤ 1

2
‖(u, v)‖X +

R1

2
= ‖(u, v)‖X .

If (u, v) ∈ K ∩ ∂Ω2 , we have

|u(t)|1 ≤ ‖(u, v)‖X = R2, (5.6)

γR2 = γ‖(u, v)‖X ≤ |v(t)|1 ≤ ‖(u, v)‖ = R2.

It follows from (5.6) and the assumption (G1) that

‖P(u, v)‖X ≥ ‖(u, v)‖X . (5.7)

Applying the Guo-Krasnoselskii’s fixed point theorem, we verify that there exists a pair of functions
(u1, v1) ∈ K ∩ (Ω2 \ Ω1) such that P(u1, v1) = (u1, v1) .

By using the similar calculations as the previous part, we also deduce that there exists a pair of functions
(u2, v2) ∈ K ∩ (Ω3 \ Ω2) which is a fixed point of the operator P .

Theorem 5.1 is completely proved. □
Next, we shall generalize results obtained in Theorem 5.1 to have the existence of finitely many distinct

solutions. For this purpose, we assume that there exists {Rj}pj=1 such that Rj−1 < γRj . We make the following
assumptions

(Ḡp)
∣∣Ḡ1gβ(t, u, v)

∣∣
1
≤ Rj

2T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj , γRj ≤ |v|1 ≤ Rj , j = 1, p− 1,
(Gp)

∣∣Ḡ0gβ(t, u, v)
∣∣
1
≥ Rj+1

T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj+1, γRj+1 ≤ |v|1 ≤ Rj+1, j = 1, p− 1;
or

(G∗
p)
∣∣Ḡ0gβ(t, u, v)

∣∣
1
≥ Rj

T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj , γRj ≤ |v|1 ≤ Rj , j = 1, p− 1,
(Ḡ∗

p)
∣∣Ḡ1gβ(t, u, v)

∣∣
1
≤ Rj+1

2T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj+1, γRj+1 ≤ |v|1 ≤ Rj+1, j = 1, p− 1.

Then, by the method and calculations as in the proof of Theorem 5.1, we obtain the following theorem.

Theorem 5.2. Assume that (H̃1)–(H̃3) , (4.5) and (Ḡp)–(Gp) (or (G∗
p)–(Ḡ∗

p)) are satisfied. Then,
Problems (1.1)–(1.2) have at least p− 1 solutions (uj , vj), 1 ≤ j ≤ p− 1 such that

Rj < ‖(u, v)‖X ≤ Rj+1, j = 1, p− 1. (5.8)
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Finally, assume that we have a positive sequence {Rj} such that Rj

Rj+1
< γ < 1 such that for each

j ∈ N,

(Ḡ∞)
∣∣Ḡ1gβ(t, u, v)

∣∣
1
≤ Rj

2T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj , γRj ≤ |v|1 ≤ Rj ,

(G∞)
∣∣Ḡ0gβ(t, u, v)

∣∣
1
≥ Rj+1

T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj+1, γRj+1 ≤ |v|1 ≤ Rj+1;

or

(G∗
∞)

∣∣Ḡ0gβ(t, u, v)
∣∣
1
≥ Rj

T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj , γRj ≤ |v|1 ≤ Rj ,

(Ḡ∗
∞)

∣∣Ḡ1gβ(t, u, v)
∣∣
1
≤ Rj+1

2T
for all (t, u, v) ∈ [0, T ]× Rn

+ × Rn
+,

|u|1 ≤ Rj+1, γRj+1 ≤ |v|1 ≤ Rj+1.

Then, we also obtain the following theorem.
Theorem 5.3. Assume that (H̃1)–(H̃3) , (4.5) and (Ḡ∞)–(G∞) (or (G∗

∞)–(Ḡ∗
∞)) are satisfied. Then,

Problems (1.1)–(1.2) have infinitely many solutions {(uj , vj)}, j ∈ N such that

Rj < ‖(u, v)‖X ≤ Rj+1, ∀j ∈ N. (5.9)

6. A remark
We remark that the methods used in the above sections can be applied again to obtain the same results as
above for the following problem

u′
k(t) = fk(t, u1, · · · , um, um+1, · · · , um+n), t ∈ (0, T ), k = 1,m+ n, (6.1)

associated with the initial and multipoint conditions
uk(0) = u0k, k = 1,m,

uk(0) =
Nk∑
j=1

µkjuk(Tkj) +
∫ T

0
hk(t)uk(t)dt, k = m+ 1,m+ n,

(6.2)

where fk : [0, T ] × Rm+n → R, hk : [0, T ] → R (k = 1,m+ n) are given functions and u0k (k = 1,m),
0 < Tk1 < Tk2 < · · · < TkNk

= T (k = m+ 1,m+ n), µkj (j = 1, Nk ) are given constants, with

max
m+1≤k≤m+n

(
Nk∑
j=1

|µkj |+
∫ T

0
|hk(t)| dt

)
≤ 1 .
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