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Abstract: The weak L;-space meets in many areas of mathematics. For example, the conjugate functions of Lebesgue
integrable functions belong to the weak Li-space. The difficulty of working with the weak L;-space is that the weak
L4 -space is not a normed space. Moreover, infinitely differentiable (even continuous) functions are not dense in this
space. Due to this, the theory of approximation was not produced in this space. In the present paper, we introduced the
concept of the modulus of continuity of the functions from the weak Li-space, studied its properties, found a criterion
for convergence to zero of the modulus of continuity of the function from the weak L;-space, and proved in this space

an analogue of the Jackson-type theorem.
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1. Introduction

Let L,(T), 1 < p < oo , the space of all measurable 27-periodic functions with finite L,(T)-norm ||f||, =

(7 [ \f(x)|pdx)1/p, and Lo (T) = C(T) the space of all continuous 27-periodic functions with uniform
norm ||fllec = maxger |f(x)|, where T = [—m,7]; let E,(f), be the best approximation of a function
f in the metric L,(T) by trigonometric polynomials of order at most n, n € Zi; and let w(f,d), =
supocp<s 1+ 1) = ()L, ), 6 > 0.

It was proved by D. Jackson that (see, for example, [8]) if f € L,(T), 1 <p < oo, then

s

n+1

En(f)pgc'w<fa > , n=0,1,2,3,...,
P

where ¢ is an absolute constant.
This central theorem gave impetus to the intensive development of approximation theory in the spaces

L,. Further, for the development of the theory of approximation in other function spaces, an analogue of
Jackson’s theorem in these spaces was obtained (see [1-7, 9-12, 14-20] and many references therein).

The space of all functions measurable on [a,b] with bounded quasi-norm

/11w 4 1oty = $UP A miz € [a,b] : |f(x)] = A} (L.1)
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is called a weak L;-space and is denoted by W L;([a,b]), where m - is the Lebesgue measure.

Note that for any f,g € WL;i([a,b]) the inequality

2
1+ gllwrsgoan < (VI Iwraomn + l9lwraom) <2 (1 0wragom +lolwr o) (1:2)

shows that (1.1) is indeed a quasi-norm.

The weak L;-space meets in many areas of mathematics. For example, the conjugate functions of
Lebesgue integrable functions belong to the weak L;-space (see, for example, [13]). The difficulty of working
with the weak L;-space is that the weak L;-space is not a normed space. Moreover, infinitely differentiable (even
continuous) functions are not dense in this space. Due to this, the theory of approximation was not produced in
this space. In the present paper, we introduced the concept of the modulus of continuity wyear(f;0), 6 > 0 of
the functions f € WL4([a,b]), studied its properties, found a criterion for convergence to zero of the modulus

of continuity wyeak(f;9) as § — 0, and proved in this space an analogue of the Jackson-type theorem.

2. Modulus of continuity of functions from a weak L;-space and its properties

For each function f € WL;([a,b]) we put
wweak(f; 5) = Ssup Hf( + h) - f(’)”WLl([avb_h])
0<h<s

= sup (supA-m{z € [a,b—h]: |f(x+h)— f(x)]>A}), 0<d<b—a,
0<h<8 A>0

Wipear (f30) = S £+ h) = FOlweLy(ab)

= sup (supA-m{z € la,b]: |f(x+h)— f(z)]| > A}), § >0,
0<h<3§ A>0

where in the second case f is assumed to be extended by periodicity with period b — a. The quantities
Wyweak(f;0) and w? .. (f;9) are called moduli of continuity of the function f € WLi([a,b]) (w)...(f;0) is the
periodic modulus of continuity).

We note some properties of the modulus of continuity wyeqar(f;0).

Property 1. For any f € WLi([a,b]), the modulus of continuity wy,eqr(f;0) is a nondecreasing function.

Property 2. For any f € WL([a,b]) and 0 <d <b—a

wweak(f; 6) < 4||f||WL1([a,b])'

Property 3. For any f,g € WL;([a,b]) and 0 <d <b—a

wweak(f + g; 5) S (\/wweak:(f; 5) + \/wweak(g; 6)>2 S Q(Wweak(f; 6) + wweak(g; 5))

Property 4. If f € WL;([a,b]), then for every 01,02 >0, 61 +d2 <b—a

wreat(F351 4 52) < (VrwearT500) + v rear (1352)) < 2uea (1) + Guar (1352)).
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Property 5. If f € WLi([a,b]), then for any k € N and 0 < d < "‘Ta

Wweak(f; k(S) S kQWWEGk(f; 6)’

where N is the set of natural numbers.
Property 1 is obvious, properties 2, 3, and 4 follow from (1.2), and property 5 follows from property 4.
Indeed, for k =1, property 5 is obvious. If property 5 holds for k € NV, then it follows from property 4 that

wweak(f; (k + 1)5) S (\/wweak(f; ké) + \/Wweak(f; 6))2 S (k + 1)2wweak(f; 5)7
which means that property 5 holds for £+ 1. It follows from mathematical induction that property 5 holds for
any k€ N.

But the equality

Egrg+wweak(f;6) =0 (2.1)

is generally not satisfied. For example, the function f(z) = % belongs to the class WL;([0,1]), but for any
0 > 0 we have wyear(f;9) =1, and, therefore, equality (2.1) is not satisfied for this function.

Theorem 2.1 The modulus of continuity of the function f € WLi([a,b]) satisfies equality (2.1) iff

lim X -m{z € a,b]:|f(z)] > A} =0. (2.2)
A—+oco
Proof Necessity. Let the equality (2.1) holds. Let us prove that the equality (2.2) holds. Assume that the
(2.2) does not hold. Then

limsup A - m{z € [a,b] : |f(x)] > A} = ap > 0.

A—+oo
It follows that there is a sequence of numbers {\,}52,, such that lim, ., A\, = +00 and for any n € N

Qo

m{z € [a,b] : [f(x)] > A} > .

(2.3)
Denote g = 9§ > 0. It follows from (2.1) that there exists a number 0 < §y < b_T“ such that for any 0 < h < §g
and A >0

A-m{z €la,b—h]:|f(x+h)— f(x)] > A} < eo. (2.4)

Denote
O, ={(z,h): 0<h<byg, x€[a,b—h], |f(z+h)— flx)]>N\/2}.

It follows from (2.4) that for any 0 < h < §g

2
miz € [a,b—h]: |f(@+h) = f2)] = A/2} < T2
This implies the estimate
280 ) (67
)\n B 8)\”

where m(®,,) denotes the Lebesgue measure of the set ®@,,.
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It follows from inclusions
{zela,b—h]:|f(@)| = A A[flx+h)| <A/2} C{z €[a,b—h]:[f(z+h)— flz)] = A\ /2},

{r €la,b—h]:

fle+ )= A A f(2)] < An/2} C{x € la,b—h]: |f(z+h) = f(z)] = An/2},

that
2m(®,,) > m{(x,h): 0 <h <do, x € [a,b—h], |f(x)| > A Alf(xz+h)| < A,/2}

+m{(z, 0 < h<do, z€la,b—h,

h) fl@+h)| =X Alf(2)] < An/2}
=m{(z,h): 0<h<dy, z€la,b—n"], |f(z)] > A|f(x+h)]<I/2}
+m{(z,h): 0<h<dy, x €[a+hb], |f(x)] > Alf(x—h)|<\/2}
=m{(z,h): z € [a,b], 0 < h <min{dp,b—x}, |f(z)|> I A|f(x+h)|<,/2}
+m{(z,h) : x € [a,b], 0 < h <min{dp,x —a}, [f(z)]> I Alf(x—h)| < I/2}
Considering that for any = € [a, b]
m{h:0 < h <min{dy,b—z}, |f(z+ h)| < \./2}
+m{h:0 < h <min{dy,z —a}, |f(z—h)| < A\,/2}
=min{dp,b — z} —m{h: 0 <h <min{dy,b — z}, |f(z+ h)| > \,/2}

+min{dp,x —a} — m{h: 0 < h <min{dg,z — a}, |f(z+h)| > \./2}

. 2 . 2
> min{dg,b — z} — /\*HfHWLl([a,b]) +min{dp, z —a} — T||f||WL1([a,b])

4
> 00 = = llwraa
due to inequality (2.3) we get

Qo

4
m(®n) = - (60 - Anllfllwm([a,bb)'
It follows from (2.5) and (2.6) that

4
do — ~ I fllw e (a.p) < d0/2.
n

But this is impossible due to the condition lim,, ., A, = +00. The resulting contradiction proves the validity

of equality (2.2).

Sufficiency. Let the equality (2.2) holds. Let us prove that the equality (2.1) holds. Assume that the
(2.1) is not held. Then there are the number gy and the sequences of positive numbers {h,}, {\,} such that

lim, yo hy, =0 and for any n € N
Ancm{x € [a,b— hy] 2 [f(z + hy) — f(2)] = An} > €0

It follows from the inclusion
{.’ﬂ € [avbf hn} : ‘f($+hn) - f(ﬂf)| Z An}
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C {w € asb—ha] : [f(@)] = A/2} U e € [a.b = ho] | f (2 + )| > Au/2}

that
m{x € [a,b— hy] : |f(x+ hy) — f(2)] > A} <2m{zx € [a,b] : |f(x)| > \n/2}.

From here and from (2.7) it follows that

m{z € [a,b] : |f(z)] > An/2} > ;Ton (2.8)

Inequalities (2.2) and (2.8) show that the sequence {\,} is bounded. Therefore the sequence {\,} has a
convergent subsequence {Ay, }7 . Let

/\0 = lim )\nk.
k—o0

It follows from (2.7) that

Therefore there exists k, € N that for any k > kg
X0/2 < A, < 2Xo.
Then from inequality (2.7) we obtain that for k > ko

miz € [a,b = hp ] 2 [f(2 + hny) = f(2)] = Ao/2}

& e
>mf{x € [a,b—hn, ]t |f(@ 4 hn) — F(2)] > Any} > AO > ﬁ (2.9)
Nk 0
It follows from (2.2) that there exists My > 0 such that
e
m{z € [a,b] : |f(x)] > Mo} < i (2.10)

Denote

fi(x) = f(x), for |f(x)| < Mo; fi(x)=0, for |f(x)]> My,
fa(x) =0, for |f(z)| < My; fo(z)= f(x), for |f(z)]> M.

Then for any = € [a,b] we have f(x) = fi(z) + fo(z). It follows from the inclusion
{zela,b—hn]:[f(x+hn,) = f(2)] 2 Xo/2}

Clzelab=hn]:[file+hn) = fi(@)] = Ao/4} U{z € [a,b = hn, ] [fo(@ + by ) = fa(@)] = Ao /4}

and from (2.10) that
m{z € [a,b— hn] 2 [f(z + hny) — f(2)] = Ao/2}

<miz € [a,b—hn]: |fi(z + hn,) — fr(2)] > Ao/4} + 4%00. (2.11)
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Then it follows from (2.9) and (2.11) that
&
m{x € [a,b— hp,] < |f1(x 4 hn,) — f1(z)] > No/4} > & (2.12)

Since the function f; is bounded, it is Lebesgue integrable on [a,b]. It follows from Lebesgue’s theorem that

b—h
Jim [ A+ h) = fi@lde =0,
Therefore
b,
lim [fi(x + hp,) — fi(x)|dz = 0. (2.13)

k—oo J,

On the other hand, it follows from (2.12) that for any k € N

b—hnk A c
/ 1+ ) = r(@)lde > T2 m{e € [a,b— ho) < |fi(e+ hay) = fa(@)] 2 o/4} > 32
But this is impossible due to (2.13). The resulting contradiction proves the validity of equality (2.1). O

Definition 2.2 Denote by W A([a,b]) the class of functions f € WLi([a,b]) satisfying condition (2.2).

Theorem 2.1 shows that in the class of functions W A([a, b]) the modulus of continuity wy,eqr(f;0) satisfies
condition (2.1).
Note that properties 1-5 and theorem 2.1 also hold for the modulus of continuity w .. (f;6).

3. The best approximations and Jackson-type theorem in the weak [L;-space

Let f € WLy([—m,7]) be a 2w-periodic function. For any n € Z, = N U0 we write

En(f)weak = inf ||f - Tn||WL1([—7r,7r])

for the best approximation in WLy ([—m,7]) to f by trigonometric polynomials, where the infimum is taken

over all trigonometric polynomials of order at most n.

Theorem 3.1 For any function f € WA([—n,n]) the inequality

™
En wea <c- . ; 5 VA 3.1
(f) k c Wweak(f n+ 1) nesy ( )

holds, where c is an absolute constant.
Proof From the condition f € WA([—m,n]) it follows that

lim A-m{z € [-mn]: |f(z)] > A} =0.

A—+o00
Therefore, for any € > 0 and n € N there exist A,(¢) > 1 such that for any A > A, (¢)

Xomfe e [-mal: |f(@)] 22} <& whean(fs5) (3:2)
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Denote

fi(z) = f(z), for [f(z)| < An(e); fi(z) =0, for [f(z)]> An(e),
fa(x) =0, for [f(z)| < An(e); falw) = f(x), for [f(z)| > An(e).

Then it follows from inequality (3.2) that

1 follwe - = S A -z € [-m.7] : [ fa(o)] = A}
>

« ™
= swp A-mfz € [ f(@) 2 A} < wheunfi o) (33)
A>A, (g) n
Denote
Up(x) = 3 ﬂf(t) sinn - 52 4dt . ] .
@)= gy ) O e | 4 eelmrl nel.

It is well known, that (see, for example, [8]) U, (x) is a trigonometric polynomial of order at most 2n — 2

and

sinnt 4
. } dat
sint

/2
Unle) ~ i) = =2 | [fl(x+2t)+f1(x—2t)—2f1(ar)]-[

m(2n? +1
Then for any A > 0 we have
miz € [-m, 7]+ |Un(z) = fr(2)| 2 A}

sin nt

4 2
dt2>\~7m(2g+1)}

/2
<m {x el [ R0+ file -2 - 20

sint

w/2 . 4 9
<m{:c€[—7r,7r]: / ile +26) — fi(a)] - | 220 dt>)\~7m(2n+1)}
0 sint 6
w/2 . 4 2 1
—|—m{m€[—7r,7r]: / |fi(z) = fi(x —2t)| - Slflnt dt>)\~7m(2%+>}
0
m/2n sinnt |* mn(2n? + 1)
< — : — . > PR S
_m{xe[ 7] /0 ale20) = fa(a)| | T > 5 T
/2 sinnt|* an(2n? + 1)
_ . 94 — ) S WAL Sl
+m {xe [—7, 7] /7r/2n|f1(x—|— t) — fi(x)] int dt >\ 3
m/2n sinnt |* mn(2n? + 1)
_ . _ _ ) S WA Sl
+m {x € [-m, 7] /0 |f1(x) — fi(x — 2t)] i dt > A 15
w/2 . 4 9
+mize[—m / o) — fulw —20)] |0 gy 5y TR@ A D)
7/2n 12
=J1+ Jo+ J3+ Js. (34)
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It follows from the inequalities
|sinnt| < n|sint|, 0<t<7/2n;

2
|sinnt| <1, |sint|>—t, 0<t<m/2
7r
and from property 2.5 that

w/2n s 2
Jlsm{fgw,ﬂ:/o |f1<x+2t>f1<w>ldm~%?”}

7/2n -
<m{x€[—7r77r]: /0 |f1(x+2t)—f1(:r)dt>)\-6n}

3 3 m
<~ sup suwpp-miz€[-ma|:|filz+h) - fi(2)] > p} = Twhean(f1; )
A 0<h<n/n p>0 A n

12, T
< Twweak(fl; %)7 (35)
emlecinn: [ ine e - e za 19 0D
25SMyT T, /om 1T 1 t4 = 7T4 1277,3
/n dt 8n?
Sm{l’G[mﬂi / |fi(z+2t) = fi(z)| I _/\'373 :
7/2n m
Let n =2 + b, where 0 < b < 2™. Then, we have
2*+hw/2n dt 8n3
Jo < E : 2t A —
2 m{x 7T7T Z/z n/om Ifl + ) fl( )|t4 = 37‘(3}

m 2k +L e /on dt 8n?

k.m/2n

k. /2n

m 2k+1 T/2n .94k
< Zm{x € [—mm|: /2 |fi(@ +2t) = fi(a)]dt > A Gn(kif)(kJrg)}

“3(k+1)(k+2
S kv )(3k ) sup  supp-m{x € [-m, 7] |fi(x +h) = fi(z)] > p}
A2 0<h<2k.r/2n pn>0

gDk T

2y wenlUiig,
3em(k+1)(k+2) o
< XkZ:OT'wweak(flv%)
48 s
< 7 ’ weak(fl; %) (3 6)
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Similarly,
12 us
< —wr — .
J3 = )\wweak:(flv2n)a (3 7)
48 T
Jy < 7 : wweak:(fl; %) (38>

It follows from (3.4), (3.5), (3.6), (3.7), and (3.8) that the inequality

120 T

iz € [m]  [Un@) ~ A@)] 2 A} S S0 whearlfii o).
holds for any A > 0. This shows that
. 0
||Un_f1||WL1([—7T,7T]) < 120'wweak(f1;%)' (39)

It follows from (3.3), (3.9) and from properties 2.2, 2.3 that

2

* m * .
Un = fillwi, (=m,m)) <120 (\/wwwk(f; %) + \/wweak(fz, 2n)>

™

< 1201+ 2VE) - wieuefs 5-). (3.10)

From (1.2), (3.3), and (3.10) we have

2
|Un = fllwi, (=mm]) < (\/HUn — [illwi, (=mm)) + \/||f2||WL1([77r,7r]))

< (V2001 +2v8) 4 V2) - whearlfi o).

Since € > 0 is arbitrary, it follows that
. i
10w = fllwr ) < 120 (5 20) (3.11)
Since U, is a trigonometric polynomial of order at most 2n — 2, the inequality (3.1) follows from (3.11). O
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