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Abstract: The purpose of this paper is to study the distribution of zeros of solutions to a first-order neutral differential
equation of the form

[x(t) + p(t)x(t− τ)]′ + q(t)x(t− σ) = 0, t ≥ t0,

where p ∈ C([t0,∞), [0,∞)) , q ∈ C([t0,∞), (0,∞)) , τ, σ > 0 , and σ > τ . We obtain new upper bound estimates
for the distance between consecutive zeros of solutions, which improve upon many of the previously known ones. The
results are formulated so that they can be generalized without much effort to equations for which the distribution of
zeros problem is related to the study of this property for a first-order delay differential inequality. The strength of our
results is demonstrated via two illustrative examples.
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1. Introduction
In this work, we study the upper bounds for the distance between adjacent zeros of solutions to a first-order
neutral differential equation of the form

[x(t) + p(t)x(t− τ)]
′
+ q(t)x(t− σ) = 0, t ≥ t0, (E)

where p ∈ C([t0,∞), [0,∞)) , q ∈ C([t0,∞), (0,∞)) , and σ > τ > 0 . By a solution of (E), we understand a
nontrivial real-valued function x ∈ C([t0 − σ,∞),R) such that x(t) + p(t)x(t− τ) is continuously differentiable
and (E) is satisfied on [t0,∞) . It is straightforward to show using the method of steps that Eq. (E) has a unique
solution x ∈ C([t0 − σ,∞),R) such that x = φ on [t0 − σ, t0] , where φ ∈ C([t0 − σ, t0],R) is a given initial
function. As is customary, a solution x is called oscillatory if it has infinitely many zeros and nonoscillatory
otherwise. Equation itself is termed oscillatory if all its solutions are oscillatory.

With regard to a large number of applications of first-order functional differential equations in many fields
of natural sciences and engineering (see, for example, [6, 10, 13, 14] for more details), the oscillation theory of
such equations has been developed extensively over the last few decades. The interest in this subject is evidenced
by numerous published monographs [1, 3, 6, 10, 11, 13]. Most efforts, however, were dedicated toward studying
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the existence or nonexistence of oscillatory solutions whereas only a few authors were interested in determining
the location of zeros of solutions of such equations. As a matter of fact, the problem of estimating the distance
between consecutive zeros of solutions of first-order delay differential equations has been considered to be one
of the main challenges in the oscillation theory. Recently, there has been increasing interest concerning this
problem, and we mention particularly important work [7] studying the distribution of zeros for the first-order
delay differential equation

x′(t) + p(t)x(t− σ) = 0, t ≥ t0, (1.1)

with p ∈ C([t0,∞), [0,∞)) and σ > 0 . In [2] and [8], the authors improved the techniques from [7] to study the
distribution of zeros of first-order differential equations with several constant and distributed delays, respectively.
Similarly, many authors [4–6, 8, 15–19] have developed and extended the methods used to study the distribution
of zeros for Eq. (1.1) to study the same property for the first-order neutral differential equations of the form
(E) and their generalizations.

The purpose of this work is to continue the study on the distribution of zeros for Eq. (E) and to obtain
better upper bound estimates for the distance between adjacent zeros of all its solutions. Motivated by the
method used in [4, 15, 16], we first study the properties of a positive solution X(t) to the companion first-order
delay differential inequality

X ′(t) + P (t)X(t− δ) ≤ 0, t ≥ T0 + ζ, (1.2)

where P ∈ C([T0 + ζ, ∞), [0, ∞)) , T0 ≥ t0 and δ, ζ > 0 on any bounded real interval. This makes our
results more general so that they can be applied without much effort to any differential equation for which
the distribution of zeros problem is related to the study of the same property for a first-order delay differential
inequality (1.2). The results established in our work improve and extend the ones obtained in [4, 6–8, 15, 16, 19],
which are illustrated by two examples.

2. Properties of positive solutions of the companion inequality (1.2)

In order to obtain our main results, we study the properties of a positive solution X(t) of the first-order delay
differential inequality (1.2). In the sequel, we set

∫ t

t−δ

P (v)dv ≥ η ≥ 0 for t ≥ T0 + ζ + δ (2.1)

and also, we will make use of two constants ζ1, ζ2 ≥ 0 such that

ζ ≥ max{ζ1, ζ2}+ δ. (2.2)

For η satisfying (2.1), we define the sequence {Υn(η)}n≥0 as follows:

Υ0(η) = 1,

Υ1(η) =
1

1− η
,

Υn+1(η) =
1

1− η − η2

2 Υn(η)
, n = 1, 2, . . .

(2.3)
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Lemma 2.1 Assume that n ∈ N0 and (2.1) holds. If there exist T1 ≥ t0+ζ+nδ and a function X(t) satisfying
(1.2) on [T0 + ζ1, T1] with X ′(t) ≤ 0 on [T0 + ζ2, T0 + ζ] and X(t) > 0 on [T0 + ζ1, T1] , then

X(t− δ)

X(t)
≥ Υn(η) > 0 for t ∈ [T0 + ζ + nδ, T1], (2.4)

where Υn(η) is defined by (2.3).

Proof In view of X(t) > 0 on [T0 + ζ1, T1] and (2.2), it follows from (1.2) that

X ′(t) ≤ 0 for t ∈ [T0 + ζ, T1].

This together with X ′(t) ≤ 0 on [T0 + ζ2, T0 + ζ] implies that

X ′(t) ≤ 0 for t ∈ [T0 + ζ2, T1]. (2.5)

Therefore,
X(t− δ)

X(t)
≥ 1 = Υ0(η) for t ∈ [T0 + ζ, T1].

Integrating inequality (1.2) from t− δ to t , we obtain

X(t)−X(t− δ) +

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1]. (2.6)

Since X ′(t) ≤ 0 on [T0 + ζ2, T1] and ζ ≥ ζ2 + δ , then

X(v − δ) ≥ X(t− δ) for t− δ ≤ v ≤ t and t ∈ [T0 + ζ + δ, T1] .

Combining this together with 2.6, we get

X(t− δ)

(
1−

∫ t

t−δ

P (v)dv

)
≥ X(t) > 0 for t ∈ [T0 + ζ + δ, T1].

Consequently,
X(t− δ)

X(t)
≥ 1

1−
∫ t

t−δ
P (v)dv

≥ 1

1− η
= Υ1(η) for t ∈ [T0 + ζ + δ, T1]. (2.7)

Integrating inequality (1.2) from v − δ to t− δ and t− δ ≤ v ≤ t , we get

X(v − δ) ≥ X(t− δ) +

∫ t−δ

v−δ

P (v1)X(v1 − δ)dv1 for t ∈ [T0 + ζ + 2δ, T1].

Using the latter inequality in (2.6), we obtain

X(t)−X(t− δ) +X(t− δ)

∫ t

t−δ

P (v)dv +

∫ t

t−δ

P (v)

∫ t−δ

v−δ

P (v1)X(v1 − δ)dv1dv ≤ 0
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for t ∈ [T0 + ζ + 2δ, T1] . Using the nonincreasing nature of X(t) on [T0 + ζ2, T1] and rearranging, we have

X(t− δ)

(
1−

∫ t

t−δ

P (v)dv − X(t− 2δ)

X(t− δ)

∫ t

t−δ

P (v)

∫ t−δ

v−δ

P (v1)dv1dv

)
≥ X(t) > 0

for t ∈ [T0 + ζ + 2δ, T1] . Let t∗ ∈ [t− δ, t] , T0 + ζ + 2δ ≤ t ≤ T1 such that
∫ t∗

t−δ
p(v)dv = η . Then

X(t− δ)

(
1− η − X(t− 2δ)

X(t− δ)

∫ t∗

t−δ

P (v)

∫ t−δ

v−δ

P (v1)dv1dv

)
≥ X(t) > 0. (2.8)

Clearly, ∫ t∗

t−δ

P (v)

∫ t−δ

v−δ

P (v1)dv1dv =

∫ t∗

t−δ

P (v)

∫ v

v−δ

P (v1)dv1dv −
∫ t∗

t−δ

P (v)

∫ v

t−δ

P (v1)dv1dv

≥ η2 −
∫ t∗

t−δ

P (v)

∫ v

t−δ

P (v1)dv1dv.

(2.9)

However, ∫ t∗

t−δ

dv

∫ v

t−δ

P (v)P (v1)dv1 =

∫ t∗

t−δ

dv1

∫ t∗

v

P (v1)P (v)dv.

Therefore,

∫ t∗

t−δ

dv

∫ v

t−δ

P (v)P (v1)dv1 =
1

2

∫ t∗

t−δ

dv1

∫ t∗

t−δ

P (v1)P (v)dv =
1

2

(∫ t∗

t−δ

P (v)dv

)2

=
η2

2
.

Substituting this into (2.9), we obtain

∫ t∗

t−δ

P (v)

∫ t−δ

v−δ

P (v)dv ≥ η2

2
for t ∈ [T0 + ζ + 2δ, T1] .

Combining the above inequality together with (2.8), we find

X(t− δ)

(
1− η − X(t− 2δ)

X(t− δ)

η2

2

)
≥ X(t) > 0 for t ∈ [T0 + ζ + 2δ, T1] . (2.10)

In view of (2.7), it follows that

X(t− 2δ)

X(t− δ)
≥ Υ1(η) for t ∈ [T0 + ζ + 2δ, T1] .

Using the above inequality in (2.10), we get

X(t− δ)

X(t)
≥ 1

1− η − η2

2
X(t−2δ)
X(t−δ)

≥ 1

1− η − η2

2 Υ1(η)
= Υ2(η) for t ∈ [T0 + ζ + 2δ, T1] .

Repeating this procedure n times we obtain (2.4). The proof is complete. 2
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Let

Ψ1(v) = P (v),

Ψn(v) = P (v − (n− 1)δ)

∫ v

t−δ

Ψn−1(v1)dv1, t− δ ≤ v ≤ t, t ≥ T0 + ζ + nδ, n = 2, 3, . . . .
(2.11)

Lemma 2.2 Assume (2.1) holds and

∫ t

t−δ

Ψ1(v)dv +

n∑
l=2

l∏
i=2

Υn+2−i(η)

∫ t

t−δ

Ψl(v)dv ≥ 1 for t ≥ T0 + ζ + (n+ 1)δ, (2.12)

where n ∈ N and Ψn(t) is defined by (2.11). If there exists a function X(t) satisfying (1.2) on [T0+ζ, T1] such
that X ′(t) ≤ 0 on [T0+ ζ2, T0+ ζ] and X(t) > 0 on [T0+ ζ1, T1] , then X(t) cannot be positive on [T0+ ζ, T1] ,
T1 ≥ T0 + ζ + (n+ 1)δ .

Proof Assume, for the sake of contradiction, that X(t) is positive on [T0+ζ, T1] , where T1 ≥ T0+ζ+(n+1)δ .
Integrating inequality (1.2) from t− δ to t , we obtain

X(t)−X(t− δ) +

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1]. (2.13)

Integrating the latter inequality by parts, it follows that∫ t

t−δ

P (v)X(v − δ)dv =

∫ t

t−δ

X(v − δ)d

(∫ v

t−δ

Ψ1(v1)dv1

)

= X(t− δ)

∫ t

t−δ

Ψ1(v)dv −
∫ t

t−δ

X ′(v − δ)

∫ v

t−δ

Ψ1(v1)dv1dv

for t ∈ [T0 + ζ + δ, T1] . From this and (1.2), we get∫ t

t−δ

P (v)X(v − δ)dv ≥ X(t− δ)

∫ t

t−δ

Ψ1(v)dv +

∫ t

t−δ

X(v − 2δ)P (v − δ)

∫ v

t−δ

Ψ1(v1)dv1dv

= X(t− δ)

∫ t

t−δ

Ψ1(v)dv +

∫ t

t−δ

Ψ2(v)X(v − 2δ)dv

for t ∈ [T0 + ζ + 2δ, T1] . By repeating this argument, we have

∫ t

t−δ

P (v)X(v − δ)dv ≥
n∑

l=1

X(t− lδ)

∫ t

t−δ

Ψl(v)dv +

∫ t

t−δ

Ψn+1(v)X(v − (n+ 1)δ)dv

for t ∈ [T0 + ζ + (n+ 1)δ, T1] . In view of X(t) > 0 for t ∈ [T0 + ζ1, T1] and ζ ≥ ζ1 + δ , it follows that

∫ t

t−δ

P (v)X(v − δ)dv ≥
n∑

l=1

X(t− lδ)

∫ t

t−δ

Ψl(v)dv (2.14)
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for t ∈ [T0 + ζ + (n+ 1)δ, T1] . Clearly,

X(t− lδ) =

(
l∏

i=2

X(t− iδ)

X(t− (i− 1)δ)

)
X(t− δ), l = 1, 2, . . . . (2.15)

It is clear for t ∈ [T0 + ζ + (n+1)δ, T1] , that t− (i− 1)δ ∈ [T0 + ζ + (n+2− i)δ, T1 − (i− 1)δ] . It follows from
(2.4) that

X(t− iδ)

X(t− (i− 1)δ)
≥ Υn+2−i(η) for t ∈ [T0 + ζ + (n+ 1)δ, T1] .

This together with (2.14) and (2.15) implies that

∫ t

t−δ

P (v)X(v − δ)dv ≥ X(t− δ)

n∑
l=1

l∏
i=2

Υn+2−i(η)

∫ t

t−δ

Ψl(v)dv

for t ∈ [T0 + ζ + (n+ 1)δ, T1] . Substituting into (2.13), we obtain

X(t) +X(t− δ)

(
1−

n∑
l=1

l∏
i=2

Υn+2−i(η)

∫ t

t−δ

Ψl(v)dv

)
≤ 0 for t ∈ [T0 + ζ + (n+ 1)δ, T1] ,

contradicting (2.12). The proof is complete. 2

Let

Φ0(t) = P (t), t ≥ T0 + ζ,

Φn(t) = Φn−1(t)e
∫ t
t−δ

Φn−1(v)dv

∫ t

t−δ

Φn−1(v)dv, t ≥ T0 + ζ + nδ, n = 1, 2, . . .
(2.16)

Lemma 2.3 Assume that ∫ t

t−δ

Φn(v)dv ≥ 1 for t ≥ T0 + ζ + (n+ 1)δ, (2.17)

where n ∈ N and Φn(t) is defined by (2.16). If there exists a function X(t) satisfying (1.2) on [T0+ζ, T1] such
that X ′(t) ≤ 0 on [T0+ ζ2, T0+ ζ] and X(t) > 0 on [T0+ ζ1, T1] , then X(t) cannot be positive on [T0+ ζ, T1] ,
T1 ≥ T0 + ζ + (n+ 1)δ .

Proof Assume the contrary, i.e. X(t) > 0 on [T0 + ζ, T1] , T1 ≥ T0 + ζ + (n + 1)δ . Integrating (1.2) from
t− δ to t , we have

X(t)−X(t− δ) +

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1].

Multiplying by P (t) and using (1.2), we have

X ′(t) + P (t)X(t) + P (t)

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1].
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Let Z1(t) = e
∫ t
T0+ζ

P (v)dv
X(t) , t ≥ T0 + ζ . Then Z1(t) > 0 on [T0 + ζ, T1] . Since

(X ′(t) + P (t)X(t)) e
∫ t
T0+ζ

P (v)dv
+ P (t)e

∫ t
T0+ζ

P (v)dv
∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1],

we see that

Z ′
1(t) + P (t)e

∫ t
T0+ζ

P (v)dv
∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1].

In view of (2.5) from the proof of Lemma 2.1, X ′(t) ≤ 0 on [T0 + ζ2, T1] . Hence,

Z ′
1(t) = e

∫ t
T0+ζ

P (v)dv
(X ′(t) + P (t)X(t)) ≤ e

∫ t
T0+ζ

P (v)dv
(X ′(t) + P (t)X(t− δ)) ≤ 0

for t ∈ [T0 + ζ, T1] , and

Z ′
1(t) + P (t)e

∫ t
T0+ζ

P (v)dv
X(t− δ)

∫ t

t−δ

P (v)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1].

Then
Z ′
1(t) ≤ 0 for t ∈ [T0 + ζ, T1] (2.18)

and
Z ′
1(t) + Φ1(t)Z1(t− δ) ≤ 0 for t ∈ [T0 + ζ + δ, T1]. (2.19)

Integrating (2.19) from t− δ to t , we get

Z1(t)− Z1(t− δ) +

∫ t

t−δ

Φ1(v)Z1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 2δ, T1].

Multiplying both sides of the above inequality by Φ1(t) and using (2.19), we have

Z ′
1(t) + Φ1(t)Z1(t) + Φ1(t)

∫ t

t−δ

Φ1(v)Z1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 2δ, T1].

Let
Z2(t) = e

∫ t
T0+ζ+δ

Φ1(v)dvZ1(t) for t ≥ T0 + ζ + δ.

In view of (2.18) and (2.19), it follows that

Z ′
2(t) = e

∫ t
T0+ζ+δ

Φ1(v)dv (Z ′
1(t) + Φ1(t)Z1(t)) ≤ e

∫ t
T0+ζ+δ

Φ1(v)dv (Z ′
1(t) + Φ1(t)Z1(t− δ)) ≤ 0

for t ∈ [T0 + ζ + δ, T1] , and

Z ′
2(t) + Φ1(t)e

∫ t
T0+ζ+δ

Φ1(v)dv
∫ t

t−δ

Φ1(v)Z1(v − δ)dv for t ∈ [T0 + ζ + 2δ, T1].

Then
Z ′
2(t) ≤ 0 for t ∈ [T0 + ζ + δ, T1]
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and
Z ′
2(t) + Φ2(t)Z2(t− δ) ≤ 0 for t ∈ [T0 + ζ + 2δ, T1].

By induction, we obtain

Z ′
n(t) + Φn(t)Zn(t− δ) ≤ 0 for t ∈ [T0 + ζ + nδ, T1] (2.20)

and
Z ′
n(t) ≤ 0 for t ∈ [T0 + ζ + nδ, T1] ,

where

Zn(t) = e
∫ t
T0+ζ+(n−1)δ

Φn−1(v)dvZn−1(t) for t ≥ T0 + ζ + (n− 1)δ

and Zn(t) > 0 on [T0 + ζ + (n− 1)δ, T1] . Integrating (2.20) from t− δ to t , we get

Zn(t)− Zn(t− δ) +

∫ t

t−δ

Φn(v)Zn(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + (n+ 1)δ, T1].

Therefore,

Zn(t) +

(∫ t

t−δ

Φn(v)dv − 1

)
Zn(t− δ) ≤ 0 for t ∈ [T0 + ζ + (n+ 1)δ, T1].

This contradiction completes the proof. 2

Let

Ω0(t) = P (t) for t ≥ T0 + ζ,

Ωn(t) = Ωn−1(t)

∫ t

t−δ

Ωn−1(v)e
∫ t
v−δ

Ωn−1(v1)dv1dv for t ≥ T0 + ζ + 2nδ, n = 1, 2, . . . .
(2.21)

Lemma 2.4 Assume that ∫ t

t−δ

Ω1(v)e
∫ t−δ
v−δ

Φ1(v1)dv1dv ≥ 1 for n = 1

∫ t

t−δ

Ωn(v)dv ≥ 1 for n = 2, 3, . . . ,

(2.22)

where n ∈ N , Φ1(t) and Ωn(t) are defined by (2.16) and (2.21), respectively. If there exists a function X(t)

satisfying (1.2) on [T0 + ζ, T1] such that X ′(t) ≤ 0 on [T0 + ζ2, T0 + ζ] and X(t) > 0 on [T0 + ζ1, T1] , then
X(t) cannot be positive on [T0 + ζ, T1] , T1 ≥ T0 + ζ + 3nδ .

Proof Assume, for the sake of contradiction, that X(t) is positive on [T0 + ζ, T1] , T1 ≥ T0 + ζ + 3nδ . Then
X ′(t) ≤ 0 for t ∈ [T0 + ζ2, T1] . Integrating (1.2) from t− δ to t , we have

X(t)−X(t− δ) +

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1].
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Multiplying by P (t) and using (1.2), we have

X ′(t) +X(t)P (t) + P (t)

∫ t

t−δ

P (v)X(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + δ, T1]. (2.23)

Let B1(t) = e
∫ t
T0+ζ

P (v)dv
X(t) , t ≥ T0 + ζ . Then B1(t) > 0 on [T0 + ζ, T1] . In view of (1.2), X ′(t) ≤ 0 on

[T0 + ζ2, T1] , it follows that

B′
1(t) = (X ′(t) + P (t)X(t)) e

∫ t
T0+ζ

P (v)dv ≤ (X ′(t) + P (t)X(t− δ)) e
∫ t
T0+ζ

P (v)dv ≤ 0

for t ∈ [T0 + ζ, T1] . Therefore, B′
1(t) ≤ 0 for t ∈ [T0 + ζ, T1] . Substituting into (2.23), we have

B′
1(t) + P (t)

∫ t

t−δ

e
∫ t
v−δ

P (v1)dv1P (v)B1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 2δ, T1].

Since B′
1(t) ≤ 0 for t ∈ [T0 + ζ, T1] . Then

B′
1(t) + Ω1(t)B1(t− δ) ≤ 0 for t ∈ [T0 + ζ + 2δ, T1]. (2.24)

Integrating form t− δ to t , we get

B1(t)−B1(t− δ) +

∫ t

t−δ

Ω1(v)B1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 3δ, T1]. (2.25)

It is clear that B1(t) is the same as Z1(t) in the proof of Lemma 2.3. By using B′
1(t) ≤ 0 for t ∈ [T0 + ζ, T1]

and (2.19), we have
B′

1(t) + Φ1(t)B1(t) ≤ 0 for t ∈ [T0 + ζ + δ, T1].

Then

−B′
1(t)

B1(t)
≥ Φ1(t) for t ∈ [T0 + ζ + δ, T1].

Integrating the above inequality from v − δ to t− δ , t− δ ≤ v ≤ t for t ∈ [T0 + ζ + 3δ, T1] , we obtain

B1(v − δ) ≥ B1(t− δ)e
∫ t−δ
v−δ

Φ1(v1)dv1 for t ∈ [T0 + ζ + 3δ, T1].

Substituting into (2.25), we get

B1(t) +

[∫ t

t−δ

Ω1(v)e
∫ t−δ
v−δ

Φ1(v1)dv1dv − 1

]
B1(t− δ) ≤ 0 for t ∈ [T0 + ζ + 3δ, T1].

This contradiction completes the proof for n = 1 .
Again multiplying both sides of (2.25) by Ω1(t) and then using (2.24), we get

B′
1(t) + Ω1(t)B1(t) + Ω1(t)

∫ t

t−δ

Ω1(v)B1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 3δ, T1].
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Put B2(t) = e
∫ t
T0+ζ+2δ

Ω1(v)dvB1(t) , t ≥ T0 + ζ + 2δ , so B2(t) > 0 on [T0 + ζ + 2δ, T1] . Therefore,

B′
2(t) + Ω1(t)e

∫ t
T0+ζ+2δ

Ω1(v)dv
∫ t

t−δ

Ω1(v)B1(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 4δ, T1]. (2.26)

Then B′
2(t) ≤ 0 for t ∈ [T0 + ζ + 3δ, T1] . This together with (2.26) leads to

B′
2(t) +B2(t− δ)Ω1(t)

∫ t

t−δ

Ω1(v)e
∫ t
v−δ

Ω1(v1)dv1dv ≤ 0 for t ∈ [T0 + ζ + 5δ, T1],

that is
B′

2(t) + Ω2(t)B2(t− δ) ≤ 0 for t ∈ [T0 + ζ + 5δ, T1].

Repeating this arguments n times, we have

B′
n(t) + Ωn(t)Bn(t− δ) ≤ 0 for t ∈ [T0 + ζ + (3n− 1)δ, T1], (2.27)

where Bn(t) = e
∫ t
T0+ζ+nδ

Ω1(v)dvBn−1(t) for t ≥ T0 + ζ + nδ and B′
n(t) ≤ 0 for t ∈ [T0 + ζ + (3n − 3)δ, T1] .

Integrating (2.27) from t− δ to t , we get

Bn(t)−Bn(t− δ) +

∫ t

t−δ

Ωn(v)Bn(v − δ)dv ≤ 0 for t ∈ [T0 + ζ + 3nδ, T1].

Using the nonincreasing nature of Bn(t) on [T0 + ζ + (3n− 3)δ, T1] , we obtain

Bn(t) +

[∫ t

t−δ

Ωn(v)dv − 1

]
Bn(t− δ) ≤ 0 for t ∈ [T0 + ζ + 3nδ, T1].

This contradicts with (2.22). The proof is complete. 2

3. Main results
In this section, we obtain new estimates for the upper bounds for the distance between zeros of all solutions of
Eq. (E). Let F ∈ C1([t1,∞), [0,∞)) , t1 ≥ t0 + σ and Dt1 be the least upper bound of all distances between
adjacent zeros of a solution of Eq. (E) on [t1, ∞] . We will consider the following conditions to be held:

(A1) F (t) ≥ p(t−σ)q(t)
q(t−τ) for t ≥ t1 + τ + σ ;

(A2) q(t) ≥ |F ′(t)| for t ≥ t1 + τ + σ .

The proof of the following two lemmas can be found, with minor modifications, in [4, 16].

Lemma 3.1 Assume that (A1) is satisfied and F ′(t) ≤ 0 for t ≥ t1 + τ + σ . If x(t) is a positive solution of
Eq. (E) on [t1, t2] , t2 ≥ t1 + 2σ , then there exists a solution V (t) of the inequality

V ′(t) +
q(t)

1 + F (t)
V (t− (σ − τ)) < 0 for t ∈ [t1 + 2σ, t2],

such that V (t) > 0 for t ∈ [t1 + 2τ, t2] and V ′(t) < 0 for t ∈ [t1 + σ + τ, t2] .
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Proof Assume that
W (t) = x(t) + p(t)x(t− τ) for t ∈ [t1 + τ, t2],

and hence W (t) > 0 for t ∈ [t1 + τ, t2] . In view of (E), it follows that

W ′(t) = [x(t) + p(t)x(t− τ)]
′
= −q(t)x(t− σ) for t ∈ [t1 + τ, t2].

Therefore, W ′(t) < 0 for [t1 + σ, t2] and

W ′(t) = −q(t)x(t− σ) = −q(t)[W (t− σ)− p(t− σ)x(t− τ − σ)] (3.1)

for t ∈ [t1 + τ + σ, t2] . Clearly,

x(t− τ − σ) =
−1

q(t− τ)
W ′(t− τ) for t ∈ [t1 + 2τ, t2 + τ ].

Substituting into (3.1), we get

W ′(t) = −q(t)[W (t− σ) +
p(t− σ)

q(t− τ)
W ′(t− τ)]

= −q(t)W (t− σ)− q(t)p(t− σ)

q(t− τ)
W ′(t− τ) for t ∈ [t1 + τ + σ, t2].

Then

W ′(t) + q(t)W (t− σ) +
q(t)p(t− σ)

q(t− τ)
W ′(t− τ) = 0 for t ∈ [t1 + τ + σ, t2].

In view (A1) and W ′(t) < 0 for [t1 + σ, t2] , it follows that

W ′(t) + F (t)W ′(t− τ) + q(t)W (t− σ) ≤ 0 for t ∈ [t1 + τ + σ, t2]. (3.2)

Let
G(t) = W (t) + F (t)W (t− τ) for t ∈ [t1 + τ + σ, t2].

Therefore,
G′(t) = W ′(t) + F ′(t)W (t− τ) + F (t)W ′(t− τ) for t ∈ [t1 + τ + σ, t2]. (3.3)

From (3.2), we have

W ′(t) + F (t)W ′(t− τ) ≤ −q(t)W (t− σ) for t ∈ [t1 + τ + σ, t2].

This together with (3.3) and F ′(t) ≤ 0 for t ≥ [t1 + τ + σ, t2] leads to

G′(t) ≤ F ′(t)W (t− τ)− q(t)W (t− σ) ≤ 0 for t ∈ [t1 + τ + σ, t2], (3.4)

that is
G′(t)− F ′(t)W (t− τ) + q(t)W (t− σ) ≤ 0 for t ∈ [t1 + τ + σ, t2]. (3.5)

In view of W ′(t) < 0 on [t1 + σ, t2] , it follows that

G(t) = W (t) + F (t)W (t− τ) < W (t− τ) + F (t)W (t− τ) for t ∈ [t1 + τ + σ, t2].
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Consequently,

W (t− τ) >
G(t)

1 + F (t)
for t ∈ [t1 + τ + σ, t2]. (3.6)

Therefore,

W (t) >
G(t+ τ)

1 + F (t+ τ)
for t ∈ [t1 + σ, t2 − τ ].

Then

W (t− σ) >
G(t+ τ − σ)

1 + F (t+ τ − σ)
for t ∈ [t1 + 2σ, t2 − τ + σ]. (3.7)

Substituting from (3.6) and (3.7) into (3.5), we have

G′(t)− F ′(t)

1 + F (t)
G(t) +

q(t)

1 + F (t+ τ − σ)
G(t+ τ − σ) < 0 for t ∈ [t1 + 2σ, t2]. (3.8)

Let V (t) = e
−
∫ t
t1

F ′(v)
1+F (v)

dv
G(t) for t ≥ t1 . Then V (t) > 0 for t ∈ [t1 + 2τ, t2] and

V ′(t) = G′(t)e
−
∫ t
t1

F ′(v)
1+F (v)

dv − F ′(t)

1 + F (t)
e
−
∫ t
t1

F ′(v)
1+F (v)dv G(t)

= e
−
∫ t
t1

F ′(v)
1+F (v)

dvG
′(t) (1 + F (t))− F ′(t)G(t)

1 + F (t)

for t ≥ t1 + τ + σ . From this, (3.4) and (3.6), we have

V ′(t) < e
−
∫ t
t1

F ′(v)
1+F (v)

dv [F
′(t)W (t− τ)− q(t)W (t− σ)] (1 + F (t))− (1 + F (t))F ′(t)W (t− τ)

1 + F (t)

= −e
−
∫ t
t1

F ′(v)
1+F (v)

dv
q(t)W (t− σ) < 0 for t ∈ [t1 + τ + σ, t2].

Using the transformation V (t) = e
−
∫ t
t1

F ′(v)
1+F (v)

dv
G(t) , inequality (3.8) becomes

V ′(t) +
q(t)

1 + F (t+ τ − σ)
e−
∫ t
t+τ−σ

F ′(v)
1+F (v)

dvV (t+ τ − σ) < 0 for t ∈ [t1 + 2σ, t2],

that is

V ′(t) +
q(t)

1 + F (t)
V (t− (σ − τ)) < 0 for t ∈ [t1 + 2σ, t2],

where V (t) > 0 for t ∈ [t1 + 2τ, t2] and V ′(t) < 0 for t ∈ [t1 + τ + σ, t2] . The proof is complete. 2

Lemma 3.2 Assume that (A1) − (A2) are satisfied. If x(t) is a positive solution of Eq. (E) on [t1, t2] ,
t2 ≥ t1 + 2σ , then there exists a solution G(t) of the inequity

G′(t) +
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
G(t− (σ − τ)) < 0 for t ∈ [t1 + 2σ, t2],

such that G(t) > 0 for all t ∈ [t1 + 2τ, t2] and G′(t) < 0 for all t ∈ [t1 + τ + σ, t2] .

206



ATTIA et al./Turk J Math

Proof Let
W (t) = x(t) + p(t)x(t− τ) for t ∈ [t1 + τ, t2]

and
G(t) = W (t) + F (t)W (t− τ) for t ∈ [t1 + τ + σ, t2].

Therefore, G(t) ≥ 0 on [t1 + 2τ, t2] . From (3.5), we have

G′(t)− F ′(t)W (t− τ) + q(t)W (t− σ) ≤ 0 for t ≥ [t1 + τ + σ, t2],

where W ′(t) < 0 for t ∈ [t1 + σ, t2] . Therefore,

G′(t) ≤ F ′(t)W (t− τ)− q(t)W (t− σ) ≤ |F ′(t)|W (t− τ)− q(t)W (t− σ) for t ∈ [t1 + τ + σ, t2].

Then
G′(t) < − (q(t)− |F ′(t)|)W (t− σ) ≤ 0 for t ∈ [t1 + τ + σ, t2].

Substituting from (3.7), we have

G′(t) +
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
G(t− (σ − τ)) < 0 for t ∈ [t1 + 2σ, t2].

This completes the proof. 2

Theorem 3.3 Let F ′(t) ≤ 0 for t ≥ t1+τ+σ . Assume that (2.1), (A1) and (2.12) are satisfied with δ = σ−τ

and

P (t) =
q(t)

1 + F (t)
t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (n+ 3)σ − (n+ 1)τ .

Proof Assume the contrary, i.e. there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1

where T1 ≥ T0 + (n+ 3)σ − (n+ 1)τ . In view of Lemma 3.1, there exists a solution V (t) of the inequality

V ′(t) +
q(t)

1 + F (t)
V (t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where V (t) > 0 for t ∈ [T0 + 2τ, T1] and V ′(t) < 0 for t ∈ [T0 + σ + τ, T1] . Therefore, one can assume in
Lemma 2.2 that ζ = 2σ , ζ1 = 2τ and δ = σ − τ . Clearly,

ζ + (n+ 1)δ = (n+ 3)σ − (n+ 1)τ.

Applying Lemma 2.2, then V (t) cannot be positive on [T0 + 2σ, T1] , T1 ≥ T0 + (n + 3)σ − (n + 1)τ . This
contradiction completes the proof. 2

Theorem 3.4 Let F ′(t) ≤ 0 for t ≥ t1 + τ +σ . Assume that (A1) and (2.17) are satisfied with δ = σ− τ and

P (t) =
q(t)

1 + F (t)
t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (n+ 3)σ − (n+ 1)τ .
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Proof Assume that there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1 where
T1 ≥ T0 + (n+ 3)σ − (n+ 1)τ . In view of Lemma 3.1, there exists a solution V (t) of the inequality

V ′(t) +
q(t)

1 + F (t)
V (t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where V (t) > 0 for t ∈ [T0 + 2τ, T1] and V ′(t) < 0 for t ∈ [T0 + σ + τ, T1] . If we assume in Lemma 2.3 that
ζ = 2σ , ζ1 = 2τ , ζ2 = σ + τ and δ = σ − τ . It is clear that

ζ + (n+ 1)δ = (n+ 3)σ − (n+ 1)τ.

Applying Lemma 2.3, then V (t) can not be positive on [T0 + 2σ, T1] . This contradiction completes the proof.
2

Theorem 3.5 Let F ′(t) ≤ 0 for t ≥ t1 + τ +σ . Assume that (A1) and (2.22) are satisfied with δ = σ− τ and

P (t) =
q(t)

1 + F (t)
t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (3n+ 2)σ − 3nτ .

Proof Assume that there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1 where
T1 ≥ T0 + (3n+ 2)σ − 3nτ . In view of Lemma 3.1, there exists a solution V (t) of the inequality

V ′(t) +
q(t)

1 + F (t)
V (t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where V (t) > 0 for t ∈ [T0 + 2τ, T1] and V ′(t) < 0 for t ∈ [T0 + σ + τ, T1] . Therefore, one can assume in
Lemma 2.4 that ζ = 2σ , ζ1 = 2τ , ζ2 = σ + τ and δ = σ − τ . Then

ζ + 3nδ = (3n+ 2)σ − 3nτ.

Applying Lemma 2.4, then V (t) cannot be positive on [T0 + 2σ, T1] . This contradiction completes the proof.
2

Theorem 3.6 Assume that (2.1), (A1)− (A2) and (2.12) are satisfied with δ = σ − τ and

P (t) =
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
, t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (n+ 3)σ − (n+ 1)τ .

Proof Assume the contrary, i.e. there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1

where T1 ≥ T0 + (n+ 3)σ − (n+ 1)τ . In view of Lemma 3.2, there exists a solution G(t) of the inequality

G′(t) +
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
G(t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where G(t) > 0 for t ∈ [T0 + 2τ, T1] and G′(t) < 0 for t ∈ [T0 + σ + τ, T1] . By using Lemma 2.2, then G(t)

cannot be positive on [T0 + 2σ, T1] . This contradiction completes the proof. 2
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Theorem 3.7 Assume that (A1)− (A2) and (2.17) are satisfied with δ = σ − τ and

P (t) =
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
, t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (3 + n)σ − (n+ 1)τ .

Proof Assume that there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1 where
T1 ≥ T0 + (n+ 3)σ − (n+ 1)τ . In view of Lemma 3.2, there exists a solution G(t) of the inequality

G′(t) +
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
G(t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where G(t) > 0 for t ∈ [T0 + 2τ, T1] and G′(t) < 0 for t ∈ [T0 + σ + τ, T1] . Applying Lemma 2.3, then G(t)

can not be positive on [T0 + 2σ, T1] . This contradiction completes the proof. 2

Theorem 3.8 Assume that (A1)− (A2) and (2.22) are satisfied with δ = σ − τ and

P (t) =
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
, t ≥ t1 + σ + τ.

Then Eq. (E) is oscillatory and Dt1(x) ≤ (3n+ 2)σ − 3nτ .

Proof Assume that there exists a solution x(t) of Eq. (E) such that x(t) > 0 on [T0, T1] , T0 ≥ t1 where
T1 ≥ T0 + (3n+ 2)σ − 3nτ . In view of Lemma 3.2, there exists a solution G(t) of the inequality

G′(t) +
q(t)− |F ′(t)|

1 + F (t+ τ − σ)
G(t− (σ − τ)) < 0 for t ∈ [T0 + 2σ, T1],

where G(t) > 0 for t ∈ [T0 + 2τ, T1] and G′(t) < 0 for t ∈ [T0 + σ + τ, T1] . Applying Lemma 2.4, then G(t)

cannot be positive on [T0 + 2σ, T1] . This contradiction completes the proof. 2

Remark 3.9

It should be noted that our results improve many results from [16], [15] and [4]. For example, Lemma 2.1
improves [16, Lemma 2.1] and [4, Lemma 2.1]. Also, Lemma 2.4 improves [4, Lemma 2.4].

4. Numerical examples
Example 4.1 Consider the first-order neutral differential equation

[x(t) + p(t)x (t− τ)]
′
+ q(t)x (t− σ) = 0 t ≥ 5π

2
, (4.1)

where τ = 3π
2 , σ = 5π

2 , p(t) = 1.1−sin(t)
1.1+cos(t) , q(t) = α (1.1 + sin (t)) , and α = 139

200 . Observe that

F (t) = p(t− σ)
q(t)

q(t− τ)
=

1.1− sin
(
t− 5π

2

)
1.1 + cos

(
t− 5π

2

) α (1.1 + sin t)

α
(
1.1 + sin

(
t− 3π

2

)) = 1.
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Let δ = σ − τ = π and

P (t) =
q(t)

1 + F (t)
=

α

2
(1.1 + sin (t)) .

Clearly, ∫ t

t−δ

P (v)dv = α

(
11

20
π − cos t

)
≥ α

(
11

20
π − 1

)
for all t ≥ δ .

Therefore, ∫ t

t−δ

P (v)e
∫ v
v−δ

P (v1)dv1dv

∫ v

v−δ

P (v1)dv1

≥ e

∫ t

t−δ

P (v)

(∫ v

v−δ

P (v1)dv1

)2

dv

= α3e

(
−1

3
cos3 (t)− 121π2

400
cos (t)− 121π

100
sin (t) +

1331π3

8000
+

11π

40

)
> 1.

Consequently, condition (2.17) with n = 1 is satisfied. Thus, according to Theorem (3.4), Dt1(x) ≤ 4σ − 2τ =

7π . It is worth noting that the corresponding results from [4, 15, 16, 19] cannot give this estimation. For
example, we shall show that according to [4, Theorem 3.2], the distance between adjacent zeros of all solutions
of (4.1) is not greater than 8π . Let

η = α

(
11

20
π − 1

)
and

f0(η) = 1, f1(η) =
1

1− η
, f2(η) =

1

2− eη
, f3(η) =

f1(η)

1− f1(η)− eηf1(η)
.

Therefore, η < 1 and 0 < fi(η) < +∞ for i = 1, 2 and f3(η) < 0 . Also,

∫ t

t−δ

P (v)dv + f2(η)

∫ t

t−δ

P (v − δ)

∫ v

t−δ

P (v1)dv1dv > 1.

As an application of [4, Theorem 3.2] with n = 2 , we obtain Dt1(x) ≤ 2σ + 3(σ − τ) = 8π .

Example 4.2 Consider the first-order neutral differential equation

[x(t) + x (t− 1)]
′
+ αx (t− 3) = 0 t ≥ 1, (4.2)

where α > 0 . Equation (4.2) is a particular case of (E) with p(t) = 1 , q(t) = α , τ = 1 and σ = 3 . It is clear
that

F (t) = p(t− σ)
q(t)

q(t− τ)
= 1.

Let δ = σ − τ = 2 and define

P (t) =
q(t)

1 + F (t)
=

α

2
.
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Then ∫ t

t−δ

P (v)dv = α for all t ≥ δ .

Thus, one can choose η = α (that is defined by (2.1)). Furthermore, using the computer-algebra software (e.g.,
Maple), we obtain

∫ t

t−δ

Ψ1(v)dv = α and Υ1(η) =
1

1− α
,

∫ t

t−δ

Ψ2(v)dv =
1

2
α2 and Υ2(η) =

1

1− α− 1
2(1−α)α

2
,

∫ t

t−δ

Ψ3(v)dv =
1

6
α3 and Υ3(η) =

1

1− α− α2

2(1−α− 1
2(1−α)

α2)

,

∫ t

t−δ

Ψ4(v)dv =
1

24
α4 and Υ4(η) =

1

1− α− α2

2

(
1−α− α2

2(1−α− 1
2(1−α)

α2)

) ,

where Υn(η) and Ψn(v) are defined by (2.3) and (2.11), respectively. Consequently,

4∑
l=1

l∏
i=2

Υ6−i(η)

∫ t

t−δ

Ψl(v)dv =

∫ t

t−δ

Ψ1(v)dv +Υ4(η)

∫ t

t−δ

Ψ2(v)dv +Υ4(η)Υ3(η)

∫ t

t−δ

Ψ3(v)dv

+Υ4(η)Υ3(η)Υ2(η)

∫ t

t−δ

Ψ4(v)dv > 1

for α = 0.4367 . By Theorem 3.3 with n = 4 , it is easy to see that Dt1(x) ≤ 16 for all α ≥ 0.4367 . It is worth
noting that none of the corresponding results of [4, 15, 16, 19] can give this estimation for such α . For example,
[16, Theorem 3.1] and [4, Theorem 3.2] give, respectively Dt1(x) ≤ 18 and Dt1(x) ≤ 22 for all α ≥ 0.4367 .

5. Conclusion
In this work, we obtained new upper bounds for the distance between adjacent zeros of all solutions of the
first-order linear neutral differential equation (E). Our results essentially improve many known results in the
literature which was illustrated via examples. The generality of the obtained results, especially in Section 2,
leads to study the distance between zeros for many other functional differential equations, which is left for
further research.
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