
Turk J Math
(2023) 47: 234 – 247
© TÜBİTAK
doi:10.55730/1300-0098.3356

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Geodesics and isocline distributions in tangent bundles of nonflat
Lorentzian-Heisenberg spaces

Murat ALTUNBAŞ∗

Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey

Received: 24.06.2022 • Accepted/Published Online: 18.11.2022 • Final Version: 13.01.2023

Abstract: Let (H3, g1) and (H3, g2) be the Lorentzian-Heisenberg spaces with nonflat metrics g1 and g2, and
(TH3, g

s
1), (TH3, g

s
2) be their tangent bundles with the Sasaki metric, respectively. In the present paper, we find

nontotally geodesic distributions in tangent bundles by using lifts of contact forms from the base manifold H3.We give
examples for totally geodesic but not isocline distributions. We study the geodesics of tangent bundles by considering
horizontal and natural lifts of geodesics of the base manifold H3 . We also investigate more general classes of geodesics
which are not obtained from horizontal and natural lifts of geodesics.
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1. Introduction
Geometric properties of tangent bundles TM of (pseudo-) Riemannian manifolds (M, g) have been the subject
of much attention by researchers since the eminent work of Sasaki [15]. The metric gs introduced by Sasaki in
this paper gives a natural splitting of the tangent bundle TTM into the horizontal distribution HTM and the
vertical distribution V TM by means of the Levi-Civita connection ∇ on (M, g). It is known that the vertical
distribution V TM is integrable but the horizontal distribution HTM is not integrable unless the base manifold
(M, g) is flat. In [5], Druta and Piu showed the totally geodesicity and isoclinity of such distributions.

An important problem on tangent bundles of pseudo-Riemannian manifolds is to find geodesics with
respect to the Riemannian metrics (for the background of the geodesics, we refer to [9, 11–13]). Geodesics
have been studied intensively with respect to various Riemannian metrics in tangent bundles (for example see
[2, 6, 7, 14, 16, 18–20]).

In this paper, we deal with the tangent bundles (TH3, g
s
1) and (TH3, g

s
2) of nonflat Lorentzian-Heisenberg

spaces (H3, g1) and (H3, g2) . It is known that there exist three nonisometric left-invariant Lorentzian metrics
g1, g2, g3 on the 3-dimensional Heisenberg group where g3 is flat [10]. Using contact forms in these spaces, we
find distributions which are not totally geodesic on tangent bundles, and by defining different distributions,
show that they are totally geodesic and not isocline. We study the geodesics of the tangent bundles (TH3, g

s
1)

and (TH3, g
s
2) in a classical way, i.e. by considering horizontal and natural lifts of geodesics from the base

manifolds (H3, g1) and (H3, g2). We also search for some classes of geodesics by studying in a more general
context which are not occured from horizontal and natural lifts of geodesics.
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2. Preliminaries
2.1. Tangent bundle

We consider (M, g) to be an n−dimensional, connected, smooth pseudo-Riemannian manifold and its tangent
bundle TM has the natural projection π : TM → M . To any local chart (U,φ) = (U, x1, ..., xn) on M corre-
spond a local chart (π−1(U),Φ) = (π−1(U), x1, ..., xn, y1, ..., yn) on TM. Therefore, TM has a 2n−dimensional
smooth manifold structure.

The Levi Civita connection ∇ of g on M infers the following direct sum decomposition

TTM = V TM ⊕HTM (2.1)

of the tangent bundle to TM into the vertical distribution V TM = Kerπ∗ and the horizontal distribution
given by ∇ .

The set of vector fields { ∂
∂y1 , ...,

∂
∂yn } on π−1(U) defines a local frame field for V TM, and for HTM we

have the local frame field { δ
δx1 , ...,

δ
δxn }, where

δ

δxi
=

∂

∂xi
− Γh

kiy
k ∂

∂yh

and Γh
ki are the Christoffel symbols of g.

The set { ∂
∂y1 , ...,

∂
∂yn ,

δ
δx1 , ...,

δ
δxn } defines a local frame on TM, adapted to the direct sum decomposition

(2.1). Remark that

(
∂

∂xi
)V =

∂

∂yi
, (

∂

∂xi
)H =

∂

∂xi
− Γh

kiy
k ∂

∂yh
,

where XV ∈ V TM and XH ∈ HTM denote the vertical and horizontal lift of the vector field X on M.

The Sasaki metric gs is defined by the following three relations: gs(XH , Y H) = g(X,Y ),
gs(XH , Y V ) = 0,
gs(XV , Y V ) = g(X,Y ), ∀X,Y ∈ χ(M).

The Levi-Civita connection ∇̃ of the metric gs satisfies the following relations:
∇̃XHY H = (∇XY )H − 1

2 (R(X,Y )y)V ,

∇̃XHY V = (∇XY )V − 1
2 (R(Y, y)X)H ,

∇̃XV Y H = − 1
2 (R(X, y)Y )H ,

∇̃XV Y V = 0, ∀X,Y ∈ χ(M).

(2.2)

When the metric g of M has the components gij , the metric gs of TM has the components

gs = gijdx
idxj + gijDyiDyj , ∀i, j = 1, ..., n,

where {Dyi, dxj}i,j=1,...,n is the dual frame of { ∂
∂yi ,

δ
δxj }i,j=1,...,n. The covariant derivative of yi with respect

to ∇ is given by
Dyi = dyi + Γi

hjy
hdxj .

For further information about tangent bundles see [4] and [19].
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2.2. Totally geodesic and isocline distributions on tangent bundles

A distribution F of a pseudo-Riemannian manifold (M, g) is said to be totally geodesic if every geodesic tangent
to F at one point remains everywhere tangent to F.

A distribution F is totally geodesic if ∇XY +∇Y X ∈ C∞(F ) for all X,Y ∈ C∞(F ) [17].

Definition 2.1 ([5]) Consider that F is a totally geodesic distribution and N a unit vector field normal to F.

We say that the distribution F is isocline when for every arc-parametrized geodesic curve, the angle between the
tangent vector field γ̇(s) and the distribution F is constant along the geodesic.

Proposition 2.2 ([8],[5]) Let (M, g) be a pseudo-Riemannian manifold and ∇ Levi-Civita connection of g.

In order that, a totally geodesic distribution F is isocline it is necessary and sufficient for all vector field N

normal to F , the vector field ∇NN is normal to F.

Let {Xi, Nα}, i = 1, ..., p, α = 1, ..., q, p+ q = n, be an orthonormal frame of (M, g) for the distribution
F (Xi ∈ C∞(F ) and Nα ∈ C∞(F⊥)), then F is isocline if and only if

g(∇Xi
Xj +∇Xj

Xi, Nα) = 0 geodesicity

g(∇NαNβ +∇Nβ
Nα, Xi) = 0,

where i, j = 1, ..., p;α, β = 1, ..., q.

Proposition 2.3 ([5]) Let (M, g) be a Riemannian manifold and (TM, gs) its tangent bundle with the Sasaki
metric. Then the horizontal distribution HTM and the vertical distribution V TM are isocline.

2.3. Lorentzian-Heisenberg spaces
Each left-invariant Lorentzian metric on the 3-dimensional Heisenberg group H3 is isometric to one of the
following metrics:

g1 = − 1

λ2
(dx1)2 + (dx2)2 + (x1dx2 + dx3)2, (2.3)

g2 =
1

λ2
(dx1)2 + (dx2)2 − (x1dx2 + dx3)2, λ > 0, (2.4)

g3 = (dx1)2 + (x1dx2 + dx3)2 − ((1− x1)dx2 − dx3)2.

Furthermore, the Lorentzian metrics g1, g2, g3 are nonisometric and the Lorentzian metric g3 is flat (see [1],[3]).
We will deal with the metrics g1 and g2 (i.e. nonflat cases) and suppose that λ = 1 .

2.3.1. The metric g1

Let {ω1, ω2, ω3} be an orthonormal coframe field defined by

ω1 = x1dx2 + dx3, ω2 = dx2, ω3 = dx1.

The dual orthonormal frame field {E1, E2, E3} of {ω1, ω2, ω3} is given by

E1 =
∂

∂x3
, E2 =

∂

∂x2
− x1 ∂

∂x3
, E3 =

∂

∂x1
.
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Moreover, the 1-form ω = x1dx2 + dx3 is a contact form on (H3, g1) (since ω ∧ (dω)n ̸= 0).

Let ∇ and R denote the Levi-Civita connection and Riemannian curvature tensor of (H3, g1), respec-
tively. Then we have

∇E1
E1 = 0, ∇E1

E2 =
1

2
E3, ∇E1

E3 =
1

2
E2, (2.5)

∇E2E1 =
1

2
E3, ∇E2E2 = 0, ∇E2E3 =

1

2
E1,

∇E3
E1 =

1

2
E2,∇E3

E2 = −1

2
E1,∇E3

E3 = 0,

[E2, E3] = E1, [E1, E2] = [E1, E3] = 0

and

R(E1, E2)E1 =
1

4
E2, R(E1, E2)E2 = −1

4
E1, R(E1, E3)E1 =

1

4
E3,

R(E1, E3)E3 =
1

4
E1, R(E2, E3)E2 = −3

4
E3, R(E2, E3)E3 = −3

4
E2,

where the other components of R are zero.

2.3.2. The metric g2

Let {θ1, θ2, θ3} be an orthonormal coframe field defined by

θ1 = dx2, θ2 = dx1, θ3 = x1dx2 + dx3.

The dual orthonormal frame field {E1, E2, E3} of {θ1, θ2, θ3} is given by

E1 =
∂

∂x2
− x1 ∂

∂x3
, E2 =

∂

∂x1
, E3 =

∂

∂x3
.

Moreover, the 1-form ω = x1dx2 + dx3 is a contact form on (H3, g2) (since ω ∧ (dω)n ̸= 0).

Let ∇ and R denote the Levi-Civita connection and Riemannian curvature tensor of (H3, g2), respec-
tively. Then we have

∇E1
E1 = 0, ∇E1

E2 =
1

2
E3, ∇E1

E3 =
1

2
E2, (2.6)

∇E2
E1 = −1

2
E3, ∇E2

E2 = 0, ∇E2
E3 = −1

2
E1,

∇E3E1 =
1

2
E2,∇E3E2 = −1

2
E1,∇E3E3 = 0,

[E1, E2] = E3, [E1, E3] = [E2, E3] = 0

and

R(E1, E2)E1 = −3

4
E2, R(E1, E2)E2 =

3

4
E1, R(E1, E3)E1 =

1

4
E3,

R(E1, E3)E3 =
1

4
E1, R(E2, E3)E2 =

1

4
E3, R(E2, E3)E3 =

1

4
E2,

where the other components of R are zero.
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3. Isocline distributions and geodesics of (TH3, g
s
1)

3.1. Isoclinity

The following proposition is obtained by using the contact form ω = x1dx2 + dx3.

Proposition 3.1 Let ωH (resp. ωV ) be the horizontal (vertical) lift of the contact form ω of (H3, g1). Then,
the 1-codimensional distribution F = Ker(ωH) (resp. F = Ker(ωV )) is not totally geodesic in (TH3, g

s
1) .

Proof Consider the distribution Ker(ωH) . We can determine a basis for this distribution as {EH
2 , EH

3 , EV
1 , EV

2 , EV
3 } .

Thus, we have

gs1(∇̃EH
2
EV

2 + ∇̃EV
2
EH

2 , EH
1 ) = −1

2
gs1((R(E2, y)E2)

H , E1
H)− 1

2
gs1((R(E2, y)E2)

H , EH
1 )

= −g1(R(E2, y)E2, E1) ̸= 0,

where ∇̃ denotes the Levi-Civita connection of the Sasaki metric given by (2.2) and y is a tangent vector in
TH3.

Now, consider the distribution Ker(ωV ). In this case, a basis can be chosen as {EH
1 , EH

2 , EH
3 , EV

2 , EV
3 },

so we get from (2.5)

gs1(∇̃EH
2
EV

3 + ∇̃EV
3
EH

2 , EV
1 ) = gs1((∇E2

E3)
V , EV

1 ) = g1(
1

2
E1, E1) =

1

2
̸= 0.

Thus we proved the proposition. 2

In the following proposition, we obtain totally geodesic distributions which are not isocline in (TH3, g
s
1).

Proposition 3.2 The distributions FH = L(EH
2 , EH

3 ) and FV = L(EV
2 , EV

3 ) are totally geodesic but they are
not isocline.

Proof From (2.2) and (2.5), we easily verify the following relations:

∇̃EH
2
EH

3 + ∇̃EH
3
EH

2 = 0, ∇̃EV
2
EV

3 + ∇̃EV
3
EV

2 = 0.

So, the distributions FH and FV are totally geodesic.
We also have

gs1(∇̃EH
1
EV

2 + ∇̃EV
2
EH

1 , EH
2 ) = −1

2
gs1((R(E2, y)E1)

H , E2
H)− 1

2
gs1((R(E2, y)E1)

H , E2
H)

= −g1(R(E2, y)E1, E2) ̸= 0.

gs1(∇̃EV
1
EH

2 + ∇̃EH
2
EV

1 , EV
3 ) = gs1((∇E2

E1)
V , E3

V ) =
1

2
g1(E3, E3) = −1

2
̸= 0 (E3 is timelike).

This shows that these distributions are not isocline. 2
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3.2. Geodesics
The Sasaki lift metric gs1 of the metric g1 in (2.3) is given by

gs1 = −(dx1)2 + (dx2)2 + (x1dx2 + dx3)2 − (Dy1)2 + (Dy2)2 + (x1Dy2 +Dy3)2.

Lagrangian of the metric gs1 is expressed as

L = −
(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
x1 dx

2

dt
+

dx3

dt

)2

−
(
Dy1

dt

)2

+

(
Dy2

dt

)2

+

(
x1Dy2

dt
+

Dy3

dt

)2

and the corresponding Euler-Lagrange equations are

d

dt

dx1

dt
= −dx2

dt

(
x1 dx

2

dt
+

dx3

dt

)
,

d

dt

(
x1(x1 dx

2

dt
+

dx3

dt
) +

dx2

dt

)
= 0,

d

dt

(
x1 dx

2

dt
+

dx3

dt

)
= 0,

d

dt

Dy1

dt
= 0,

d

dt

(
x1(x1Dy2

dt
+

Dy3

dt
) +

Dy2

dt

)
= 0,

d

dt

(
x1Dy2

dt
+

Dy3

dt

)
= 0.

Let the curve γ : I → TH3, γ(t) = (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) be a geodesic which satisfies the initial
conditions γ(0) = (0, 0, 0, 0, 0, 0) and γ̇(0) = (u, v, w, l,m, n). Then the above Euler-Lagrange equations turn
in

x1 dx
2

dt
+

dx3

dt
= w, (3.1)

d

dt

dx1

dt
= −dx2

dt
w, (3.2)

d

dt

(
x1w +

dx2

dt

)
= 0, (3.3)

x1Dy2

dt
+

Dy3

dt
= n, (3.4)

Dy1

dt
= l, (3.5)

x1n+
Dy2

dt
= m. (3.6)

239



ALTUNBAŞ/Turk J Math

Remark 3.3 The equations (3.1)-(3.3) are valid if and only if the curve α : I → (H3, g1) is a geodesic which
satisfies the initial conditions α(0) = (0, 0, 0) and α̇(0) = (u, v, w).

Since γ̇(0) = (u, v, w, l,m, n), from equation (3.3) we get

dx2

dt
= −x1w + v.

By substituting above into (3.2) we obtain

d2x1

dt2
− x1w2 = 0.

Solution of this equation is

x1(t) =
u

w
sinh(wt)− v

w
cosh(wt) +

v

w
. (3.7)

Similarly, from (3.2) and (3.3) we have

x2(t) = − u

w
cosh(wt) +

v

w
sinh(wt) +

u

w
. (3.8)

Setting the solutions (3.7) and (3.8) in (3.1) we deduce

x3(t) =
(u− v)2

4w2
sinh(2wt)− uv

2w2
cosh(2wt) +

v

2w2
(u cosh(wt)− v sinhw(t)) + (

v2 − u2

2w
+ w)t− uv

2w2
.

If w = 0, the solution of the system formed by (3.1)-(3.3) is

x1(t) = ut, x2(t) = vt, x3(t) = 0. (3.9)

Now we can express the following theorem.

Theorem 3.4 The horizontal lift C̃ and the natural lift Ĉ of a curve C from H3 are geodesics in (TH3, g
s
1)

if and only if C is a geodesic in (H3, g1), and C̃ and Ĉ pass through the origin and satisfy ˙̃C(0) =
˙̂
C(0) =

(u, v, w, 0, 0, 0).

Proof Let the curve C̃(t) = (C(t), Y (t)) be the horizontal lift to (TH3, g
s
1) of the curve C(t) = (x1(t), x2(t), x3(t))

from (H3, g1). From the definition of the horizontal lift of a curve we have

Dy1

dt
=

Dy2

dt
=

Dy3

dt
= 0,

and then equations (3.4)-(3.6) yield l = m = n = 0.

Let the curve Ĉ(t) = (C(t), Y (t)) be the natural lift to (TH3, g
s
1) of the curve C(t) = (x1(t), x2(t), x3(t))

from (H3, g1). From the definition of the natural lift of a curve we have

yh =
dxh

dt
.
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Therefore, we can write the covariant derivative of Y as follows:

Dyh

dt
=

d2xh

dt2
+ Γh

ij

dxi

dt

dxj

dt
, ∀i, j, h = 1, 2, 3. (3.10)

By virtue of Remark 3.3, we see that the curve C(t) = (x1(t), x2(t), x3(t)) is a geodesic in (H3, g1) and the

expression of Dyh

dt in (3.10) reduces zero, and the last three Euler-Lagrange equations (3.4)-(3.6) yield again
l = m = n = 0. This ends the proof. 2

Now, we investigate more general examples for geodesics except for horizontal and natural lifts. To do
this, we need Christoffel symbols of the metric g1. The metric g1 in (2.3) and its inverse are rewritten in matrix
form as follows:

g1 =

 −1 0 0
0 1 + (x1)2 x1

0 x1 1

 , g−1
1 =

 −1 0 0
0 1 −x1

0 −x1 1 + (x1)2

 .

Then, we easily compute the nonzero coeffiecients of the Christoffel symbols of the metric g1 as follows:

Γ1
22 = x1, Γ1

23 =
1

2
, Γ2

12 =
x1

2
, Γ2

13 =
1

2
, Γ3

12 =
1

2
(1− (x1)2), Γ3

13 = −x1

2
.

Therefore, equations (3.4)-(3.6) become

dy1

dt
+ (x1y2 +

y3

2
)
dx2

dt
+

y2

2

dx3

dt
= l,

dy2

dt
+ (

x1y2

2
+

y3

2
)
dx1

dt
+

x1y1

2

dx2

dt
+

y1

2

dx3

dt
= m− unt,

dy3

dt
+

(1 + (x1)2)y2

2

dx1

dt
+

(1 + (x1)2)y1

2

dx2

dt
+ x1(m− x1n) = n.

If the geodesic in (H3, g1) is given as (3.9), then above equations reduce to

dy1

dt
+ (uty2 +

y3

2
)v = l,

dy2

dt
+ (

uty2

2
+

y3

2
)u+

uvty1

2
= m− unt,

dy3

dt
+

(1 + u2t2)y2

2
u+

(1 + u2t2)y1

2
v + ut(m− unt) = n,

in other words, we have the following system

(∗) :


dy1

dt + utvy2 +
v
2y3 = l,

dy2

dt + ut
2 y1 +

u2t
2 y2 +

u
2 y3 = m− unt,

dy3

dt + (1+u2t2)v
2 y1 +

(1+u2t2)u
2 y2 + ut(m− unt) = n.

Remark 3.5 When u = v = 0, a particular solution for the above system is obtained by

y1(t) = lt, y2(t) = mt, y3(t) = nt.
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Having in mind this remark, we can express the theorem below.

Theorem 3.6 If the curve from (H3, g1) reduces to the origin point (0, 0, 0), then the geodesics from (TH3, g
s
1)

are the curves γ(t) = (0, 0, 0, lt,mt, nt).

We know that if a geodesic being in a fiber of the tangent bundle (TM, gs) of a Riemannian manifold
(M, g) defined by xh = ch , ∀h = 1, ..., n, where ch is a constant, then the geodesic is expressed as xh =

ch, yh = aht + bh , according to the induced coordinates {xh, yh}h=1,...n, where ah, bh, ch are constants (see
[19]). When we consider (TH3, g

s
1) this result becomes to Theorem 3.6 , because if xi are constants, we get

Dyi

dt = dyi

dt , i = 1, 2, 3, and equations (3.4)-(3.6) with the conditions dy1

dt (0) = l, dy2

dt (0) = m, dy3

dt (0) = n yield
xi = 0, i = 1, 2, 3.

Remark 3.7 When m = n = 0, a particular solution of the system (∗) is given by

y1(t) = lt, y2(t) = 0, y3(t) = 0.

Having in mind above remark and equations (3.9), we may express the final theorem of this section.

Theorem 3.8 One of the geodesics of the tangent bundle (TH3, g
s
1) has the form γ̃(t) = (ut, vt, 0, lt, 0, 0).

4. Isocline distributions and geodesics of (TH3, g
s
2)

In this final section, we follow same way in the previous section for the metric g2 which is defined in (2.4).

4.1. Isoclinity

We write the following proposition by considering the contact form ω = x1dx2 + dx3.

Proposition 4.1 Let ωH (ωV ) be the horizontal (vertical) lift of the contact form ω of (H3, g2). Then, the
1-codimensional distribution F = Ker(ωH) (F = Ker(ωV )) is not totally geodesic in (TH3, g

s
2) .

Proof If the distribution Ker(ωH) is given, then one can constitute a basis as {EH
1 , EH

2 , EV
1 , EV

2 , EV
3 } . Thus

gs2(∇̃EH
1
EV

1 + ∇̃EV
1
EH

1 , EH
3 ) = −1

2
gs2((R(E1, y)E1)

H , E3
H)− 1

2
gs2((R(E1, y)E1)

H , EH
3 )

= −g2(R(E1, y)E1, E3) ̸= 0,

where ∇̃ is the Levi-Civita connection of the Sasaki metric given by (2.2) and y denotes a tangent vector in
TH3.

Now, let the distribution Ker(ωV ) is given. In this case, a basis can be formed as {EH
1 , EH

2 , EH
3 , EV

1 , EV
2 },

so from (2.6)

gs2(∇̃EH
1
EV

2 + ∇̃EV
2
EH

1 , EV
3 ) = gs2((∇E1E2)

V , EV
3 ) = g2(

1

2
E3, E3) = −1

2
̸= 0 (E3 is timelike).

Thus the proposition is proved. 2

In the following proposition, we determine totally geodesic distributions which are not isocline in
(TH3, g

s
2).
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Proposition 4.2 The distributions FH = L(EH
1 , EH

2 ) and FV = L(EV
1 , EV

2 ) are totally geodesic but they are
not isocline.

Proof Using (2.2) and (2.6), we get the following relations:

∇̃EH
1
EH

2 + ∇̃EH
2
EH

1 = 0, ∇̃EV
1
EV

2 + ∇̃EV
2
EV

1 = 0.

So, the distributions FH and FV are totally geodesic.
We also occur

gs2(∇̃EH
3
EV

1 + ∇̃EV
1
EH

3 , EH
1 ) = −1

2
gs2((R(E1, y)E3)

H , E1
H)− 1

2
gs2((R(E1, y)E3)

H , E1
H)

= −g2(R(E1, y)E3, E1) ̸= 0,

gs2(∇̃EV
3
EH

2 + ∇̃EH
2
EV

3 , EV
1 ) = gs2((∇E2E3)

V , EV
1 ) = −1

2
g2(E1, E1) = −1

2
̸= 0.

This shows that FV and FH are not isocline. 2

4.2. Geodesics
The Sasaki lift metric gs2 of the metric g2 in (2.4) has expression

gs2 = (dx1)2 + (dx2)2 − (x1dx2 + dx3)2 + (Dy1)2 + (Dy2)2 − (x1Dy2 +Dy3)2.

Lagrangian of this metric is

L =

(
dx1

dt

)2

+

(
dx2

dt

)2

−
(
x1 dx

2

dt
+

dx3

dt

)2

+

(
Dy1

dt

)2

+

(
Dy2

dt

)2

−
(
x1Dy2

dt
+

Dy3

dt

)2

and the corresponding Euler-Lagrange equations are written as

d

dt

dx1

dt
= −dx2

dt

(
x1 dx

2

dt
+

dx3

dt

)
,

d

dt

(
−x1(x1 dx

2

dt
+

dx3

dt
) +

dx2

dt

)
= 0,

d

dt

(
x1 dx

2

dt
+

dx3

dt

)
= 0,

d

dt

Dy1

dt
= 0,

d

dt

(
−x1(x1Dy2

dt
+

Dy3

dt
) +

Dy2

dt

)
= 0,

d

dt

(
x1Dy2

dt
+

Dy3

dt

)
= 0.
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Let the curve γ : I → TH3, γ(t) = (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) be a geodesic which satisfies the initial
conditions γ(0) = (0, 0, 0, 0, 0, 0) and γ̇(0) = (u, v, w, l,m, n). Then the above Euler-Lagrange equations reduce
to

x1 dx
2

dt
+

dx3

dt
= w, (4.1)

d

dt

dx1

dt
= −dx2

dt
w, (4.2)

d

dt

(
−x1w +

dx2

dt

)
= 0, (4.3)

x1Dy2

dt
+

Dy3

dt
= n, (4.4)

Dy1

dt
= l, (4.5)

−x1n+
Dy2

dt
= m. (4.6)

Remark 4.3 The equations (4.1)-(4.3) are fulfilled if and only if the curve α : I → (H3, g2) is a geodesic which
satisfies the initial conditions α(0) = (0, 0, 0) and α̇(0) = (u, v, w).

Since γ̇(0) = (u, v, w, l,m, n), from equation (4.3) we obtain

dx2

dt
= x1w + v.

By putting above in (4.2) we obtain
d2x1

dt2
+ x1w2 = 0.

The solution of this equation is

x1(t) =
u

w
sin(wt) +

v

w
cos(wt) +

v

w
. (4.7)

Similarly, from (4.2) and (4.3) we get

x2(t) = − u

w
cos(wt) +

v

w
sin(wt) +

u

w
. (4.8)

Putting the solutions (4.7) and (4.8) in (4.1) we deduce

x3(t) =
u2 − v2

4w2
sin(2wt)− w(

u2 + v2

2w2
− 1)t+

uv

2w2
cos(2wt).

If w = 0, the solution of the system formed by (4.1)-(4.3) is

x1(t) = ut, x2(t) = vt, x3(t) = 0. (4.9)

Now we can give the following theorem.
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Theorem 4.4 The horizontal lift C̃ and the natural lift Ĉ of a curve C from H3 are geodesics in (TH3, g
s
2)

if and only if C is a geodesic in (H3, g2), and C̃ and Ĉ pass through the origin and satisfy ˙̃C(0) =
˙̂
C(0) =

(u, v, w, 0, 0, 0).

Proof Let the curve C̃(t) = (C(t), Y (t)) be the horizontal lift to (TH3, g
s
2) of the curve C(t) = (x1(t), x2(t), x3(t))

from (H3, g2). From the definition of the horizontal lift of a curve we have

Dy1

dt
=

Dy2

dt
=

Dy3

dt
= 0,

and then equations (4.4)-(4.6) lead l = m = n = 0.

Let the curve Ĉ(t) = (C(t), Y (t)) be the natural lift to (TH3, g
s
2) of the curve C(t) = (x1(t), x2(t), x3(t))

from (H3, g2). From the definition of the natural lift of a curve we have

yh =
dxh

dt
.

Therefore, we can write the covariant derivative of Y as follows:

Dyh

dt
=

d2xh

dt2
+ Γh

ij

dxi

dt

dxj

dt
, ∀i, j, h = 1, 2, 3. (4.10)

By virtue of Remark 4.1, we see that the curve C(t) = (x1(t), x2(t), x3(t)) is a geodesic in (H3, g2) and the

expression of Dyh

dt in (4.10) reduces zero, and the last three Euler-Lagrange equations (4.4)-(4.6) lead again
l = m = n = 0. This ends the proof. 2

Now, we study more general examples for geodesics except for horizontal and natural lifts. For this, we
need Christoffel symbols of the metric g2. The metric g2 in (2.4) and its inverse are rewritten in matrix form
as follows:

g2 =

 1 0 0
0 1− (x1)2 −x1

0 −x1 −1

 , g−1
2 =

 1 0 0
0 1 −x1

0 −x1 (x1)2 − 1

 .

Then, we compute the nonzero coefficients of the Christoffel symbols of the metric g2 as follows:

Γ1
22 = x1, Γ1

23 =
1

2
, Γ2

12 = −x1

2
, Γ2

13 = −1

2
,Γ3

12 =
1

2
(1 + (x1)2),Γ3

13 =
x1

2
.

Therefore, equations (4.4)-(4.6) reduce to

dy1

dt
+ (x1y2 +

y3

2
)
dx2

dt
+

y2

2

dx3

dt
= l,

dy2

dt
− (

x1y2

2
+

y3

2
)
dx1

dt
− x1y1

2

dx2

dt
− y1

2

dx3

dt
= m− unt,

dy3

dt
+

(1 + (x1)2)y2

2

dx1

dt
+

(1 + (x1)2)y1

2

dx2

dt
− x1(m− x1n) = n.
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If the geodesic in (H3, g2) is given as (4.9), then above equations reduce to

dy1

dt
+ (uty2 +

y3

2
)v = l,

dy2

dt
− (

uty2

2
+

y3

2
)u− uvty1

2
= m− unt,

dy3

dt
+

(1 + u2t2)y2

2
u+

(1 + u2t2)y1

2
v − ut(m− unt) = n,

i.e. we have the following system

(∗∗) :


dy1

dt + utvy2 +
v
2y3 = l,

dy2

dt − ut
2 y1 −

u2t
2 y2 − u

2 y3 = m− unt,
dy3

dt + (1+u2t2)v
2 y1 +

(1+u2t2)u
2 y2 − ut(m− unt) = n.

Remark 4.5 When u = v = 0, a particular solution for the above system is obtained by

y1(t) = lt, y2(t) = mt, y3(t) = nt.

By virtue of this remark, we can express the theorem below.

Theorem 4.6 If the curve from (H3, g2) reduces to the origin point (0, 0, 0), then the geodesics from (TH3, g
s
2)

are the curves γ(t) = (0, 0, 0, lt,mt, nt).

We know that if a geodesic being in a fiber of the tangent bundle (TM, gs) of a Riemannian manifold
(M, g) defined by xh = ch , ∀h = 1, ..., n, where ch is a constant, then the geodesic is expressed as xh = ch, yh =

aht+bh , according to the induced coordinates {xh, yh}h=1,...n, where ah, bh, ch are constants. When we assume

(TH3, g
s
2) this result becomes to Theorem 4.6 , since if xi are constants, we get Dyi

dt = dyi

dt , i = 1, 2, 3, and

equations (4.4)-(4.6) with the conditions dy1

dt (0) = l, dy2

dt (0) = m, dy3

dt (0) = n lead to xi = 0, i = 1, 2, 3.

Remark 4.7 When m = n = 0, a special solution of the system (∗∗) is given by

y1(t) = lt, y2(t) = 0, y3(t) = 0.

Having in mind above remark and equations (4.9), we conclude the final theorem of this paper.

Theorem 4.8 One of the geodesics of the tangent bundle (TH3, g
s
2) has the form γ̃(t) = (ut, vt, 0, lt, 0, 0).
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