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Abstract: Let (Hs,g1) and (Hs,g2) be the Lorentzian-Heisenberg spaces with nonflat metrics g1 and g2, and
(THs, g7), (THs,g5) be their tangent bundles with the Sasaki metric, respectively. In the present paper, we find
nontotally geodesic distributions in tangent bundles by using lifts of contact forms from the base manifold Hs. We give
examples for totally geodesic but not isocline distributions. We study the geodesics of tangent bundles by considering
horizontal and natural lifts of geodesics of the base manifold Hs. We also investigate more general classes of geodesics

which are not obtained from horizontal and natural lifts of geodesics.
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1. Introduction

Geometric properties of tangent bundles TM of (pseudo-) Riemannian manifolds (M, g) have been the subject
of much attention by researchers since the eminent work of Sasaki [15]. The metric g® introduced by Sasaki in
this paper gives a natural splitting of the tangent bundle TT'M into the horizontal distribution HT'M and the
vertical distribution VT'M by means of the Levi-Civita connection V on (M, g). It is known that the vertical
distribution VI'M is integrable but the horizontal distribution HT M is not integrable unless the base manifold
(M, g) is flat. In [5], Druta and Piu showed the totally geodesicity and isoclinity of such distributions.

An important problem on tangent bundles of pseudo-Riemannian manifolds is to find geodesics with
respect to the Riemannian metrics (for the background of the geodesics, we refer to [9, 11-13]). Geodesics
have been studied intensively with respect to various Riemannian metrics in tangent bundles (for example see
(2, 6, 7, 14, 16, 18-20]).

In this paper, we deal with the tangent bundles (T'Hs, g5) and (T Hs, g5) of nonflat Lorentzian-Heisenberg
spaces (Hs,g1) and (Hs, gs2). It is known that there exist three nonisometric left-invariant Lorentzian metrics
J1, 92,93 on the 3-dimensional Heisenberg group where g3 is flat [10]. Using contact forms in these spaces, we
find distributions which are not totally geodesic on tangent bundles, and by defining different distributions,
show that they are totally geodesic and not isocline. We study the geodesics of the tangent bundles (T'Hs, g5)
and (THs,g3) in a classical way, i.e. by considering horizontal and natural lifts of geodesics from the base
manifolds (Hs,g1) and (Hs,g2). We also search for some classes of geodesics by studying in a more general

context which are not occured from horizontal and natural lifts of geodesics.
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2. Preliminaries
2.1. Tangent bundle

We consider (M, g) to be an n—dimensional, connected, smooth pseudo-Riemannian manifold and its tangent
bundle TM has the natural projection 7 : TM — M. To any local chart (U, ¢) = (U,z*,...,2™) on M corre-
spond a local chart (7=Y(U),®) = (7~ 1(U), 2!, ...,2", 4, ...,y") on TM. Therefore, TM has a 2n— dimensional

smooth manifold structure.
The Levi Civita connection V of g on M infers the following direct sum decomposition

TTM =VTM & HTM (2.1)

of the tangent bundle to TM into the vertical distribution VI'M = Kerm, and the horizontal distribution
given by V.
The set of vector fields {6%1, ey %} on 7~ }(U) defines a local frame field for VT'M, and for HTM we

have the local frame field {%, ey 5%}, where

o _ 9 pnk 9
oxt  Oxt ki oyh

and T}, are the Christoffel symbols of g.
The set {%, o_ o ., 5%} defines a local frame on T'M, adapted to the direct sum decomposition

seey W’ @7
(2.1). Remark that

oy 0 o g 0 hok 0
((“)xi) oyt (8xi) - Oxt ki oy’

where XV € VI'M and X¥ € HTM denote the vertical and horizontal lift of the vector field X on M.
The Sasaki metric g° is defined by the following three relations:

gS(XH7YH) :g(X7Y)7
gS(XH,YV) O7
g (XY YV) = g(X,)Y), VX,Y € x(M).

The Levi-Civita connection V of the metric ¢° satisfies the following relations:

ﬁXHYH = (vXY)H - %(R(X’ Y)y)V7
VanYY = (VxY)V = J(R(Y,y) X)",
Vv Y = —L(R(X,y)Y)",
Vv YV =0, VX, Y € x(M).

(2.2)

When the metric g of M has the components g;;, the metric g° of T'M has the components
g° = gijdxidxj + giijiDyj, Yi,5=1,...,n,

where {Dy’, dz?}; j=1 ., is the dual frame of {8%“ %}i,jzlw,n. The covariant derivative of y* with respect
to V is given by
Dy’ = dy' + Fﬁbjyhdxj.

For further information about tangent bundles see [4] and [19].
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2.2. Totally geodesic and isocline distributions on tangent bundles

A distribution F' of a pseudo-Riemannian manifold (M, g) is said to be totally geodesic if every geodesic tangent
to F' at one point remains everywhere tangent to F.
A distribution F is totally geodesic if VxY + Vy X € C*(F) for all X,Y € C>(F) [17].

Definition 2.1 ([5]) Consider that F is a totally geodesic distribution and N a unit vector field normal to F.
We say that the distribution F' is isocline when for every arc-parametrized geodesic curve, the angle between the

tangent vector field 4(s) and the distribution F is constant along the geodesic.

Proposition 2.2 ([8],[5]) Let (M,g) be a pseudo-Riemannian manifold and V Levi-Civita connection of g.
In order that, a totally geodesic distribution F' is isocline it is necessary and sufficient for all vector field N
normal to F', the vector field VNN is normal to F.

Let {X;, Ny}, i=1,...,p, a=1,...,q, p+q=n, be an orthonormal frame of (M, g) for the distribution
F (X; € C®(F) and N, € C®(F%')), then F is isocline if and only if

9(Vx, X; +Vx,;Xi, No) =0 geodesicity
9(VN.Ng+ Vn,No, X;) =0,
where Zaj = 1) apaa75 = 17 e q.

Proposition 2.3 ([5]) Let (M, g) be a Riemannian manifold and (T M, g®) its tangent bundle with the Sasaki
metric. Then the horizontal distribution HT M and the vertical distribution VI'M are isocline.

2.3. Lorentzian-Heisenberg spaces

Each left-invariant Lorentzian metric on the 3-dimensional Heisenberg group Hj is isometric to one of the

following metrics:

1
g = —ﬁ(d:ﬁl)2 + (dz?)* + (2'da® + da®)?, (2.3)
1
g = ﬁ(da:l)2 + (do?)? — (2'd2® 4 d2®)?, A >0, (2.4)
g3 = (de')? + (2'de? + da®)? — (1 — xt)dx? — da®)?.

Furthermore, the Lorentzian metrics g1, g2, g3 are nonisometric and the Lorentzian metric gs is flat (see [1],[3]).

We will deal with the metrics g; and go (i.e. nonflat cases) and suppose that A =1.

2.3.1. The metric ¢y

Let {w!,w? w3} be an orthonormal coframe field defined by
wl = 2tde? + da, w? = d2?, WP = dat.
The dual orthonormal frame field {E1, Ea, F3} of {w!,w? w3} is given by

0 0 0 0
Bi=gm B=ga—v s B=g
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Moreover, the 1-form w = z'dz? + dz® is a contact form on (Hs, g1) (since w A (dw)™ # 0).
Let V and R denote the Levi-Civita connection and Riemannian curvature tensor of (Hs,gy), respec-

tively. Then we have

1 1
VElE]_ = 0, VE1E2 = §E3, VElES — §E27 (25>
1 1
Vi, B = §E3, Ve,E=0, Vg, E3 = §E1,

1 1
Ve Er = §E27VE3E2 = —§E1,VE3E3 =0,

[E, B3] = Ey, [E1, Es] = [E1,E3] =0

and
1 1 1
R(E, E3)E; = 1E2» R(E\,E2)Ey = _ZEh R(E\,E3)E| = ZE?”
1 3 3
R(E:,E3)E3 = ZEla R(E3,E3)Ey = —1E3, R(E3,E3)E3 = _ZEQ’

where the other components of R are zero.

2.3.2. The metric g
Let {6%,0% 0} be an orthonormal coframe field defined by

0! = dz?, 6% = dat, 0% = 2'da® + da®.
The dual orthonormal frame field {E;, E2, E3} of {01,602 03} is given by

o |0 0 0
Er=gp " om o= g 3= 55

Moreover, the 1-form w = z'dx? + da® is a contact form on (Hz, g2) (since w A (dw)™ # 0).
Let V and R denote the Levi-Civita connection and Riemannian curvature tensor of (Hs,gs), respec-

tively. Then we have

1 1
Ve, E1=0, Vg, By = §E37 Ve E3 = -Es, (2.6)

2
1 1
Ve, EL = —§E3, Vi,Es =0, Vi, FE3 = —§E17

1 1
Vi, Bl = §E2,VE3E2 = —§E17VE3E3 =0,

[E1, E»] = Es, [E1, E3] = [Es, E3] =0
and

3 3 1
R(E1, E)E, = *ZEz, R(E1, Ey)Esy = ZEla R(Ey,Es)Ey = —Es,

1 1
R(E1,E3)E3 = ZEla R(E, E3)Ey = ZEB’ R(Es, E3)E3 =

where the other components of R are zero.

237



ALTUNBAS/Turk J Math

3. Isocline distributions and geodesics of (T'Hs, g5)
3.1. Isoclinity

The following proposition is obtained by using the contact form w = z'dz? + dz3.

Proposition 3.1 Let w (resp. w") be the horizontal (vertical) lift of the contact form w of (Hs,g1). Then,
the 1-codimensional distribution F = Ker(w!) (resp. F = Ker(w")) is not totally geodesic in (THsz,g;).

Proof Consider the distribution Ker(w?). We can determine a basis for this distribution as {Ef, EX EY EY EY}.

Thus, we have

S(e v 1 s 1 s
91 (Ve By +VpyEJ EY') = —591((R(E279)E2)H’E1H) - 591((R(E2,y)E2)H7EfI)

= 791(R(E2,y)E2,E1) #07

where V denotes the Levi-Civita connection of the Sasaki metric given by (2.2) and y is a tangent vector in
TH;.
Now, consider the distribution Ker(w"). In this case, a basis can be chosen as {Eff, EX¥ EI EY EY1,

so we get from (2.5)

- ~ ) 1 1
G (Ve By + Ve B3 EY) = ¢}((Vie, Bs)V, EY ) = n(GELE) =5 #0.

Thus we proved the proposition. O

In the following proposition, we obtain totally geodesic distributions which are not isocline in (T Hs, g5).

Proposition 3.2 The distributions FH = L(EX E) and FV = L(EY ,EY) are totally geodesic but they are

not isocline.

Proof From (2.2) and (2.5), we easily verify the following relations:

So, the distributions F¥ and FV are totally geodesic.

We also have

S (O v 1 s 1 s
G (Vpr By + Vv B Eyl) = —§9i((R(E27y)E1)H,E2H) - §9i((R(E2,y)E1)H7E2H)

= —g1(R(E2,y)Ey, ) # 0.

. B ) 1 1 L
G (Vpy By +VpnEY  EY) = ¢i(Vie,B1), Bs") = §gl(E3,E3) =5 #0 (Fs is timelike).
This shows that these distributions are not isocline. O
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3.2. Geodesics
The Sasaki lift metric g5 of the metric g; in (2.3) is given by
g1 = =(dz')* + (d2?)? + (2 da® + dz®)* — (Dy')* + (Dy?)* + (2" Dy* + Dy*)*.
Lagrangian of the metric g; is expressed as
dz'\*  (dz?\® dz>  de®\?  (Dy*\? [ Dy*\? Dy? Dy’
L =— i + i + x1i+i _ 7y + 7y + xliijiy
dt dt dt dt dt dt dt dt
and the corresponding Euler-Lagrange equations are

- T A

ddat _de? (gdi? 4o
dt dt dt ’

d dz?  da3 da?
(x1<x1x+x)+w> =0,

dt dt ' dt dt
d ( (dz? da?
dt( ot Tar )=
4Dy’ _
dt dt
d (1, 1Dy" Dy’ Dy
dt(( dt+dt) a )=V

Let the curve v : I — THs, ~(t) = (z(t),2%(t), 23(t), y* (t),y?(t),y>(t)) be a geodesic which satisfies the initial
conditions v(0) = (0,0,0,0,0,0) and 4(0) = (u,v,w,l,m,n). Then the above Euler-Lagrange equations turn

m
i, (3.)
%ddltl - *dd%zw’ (3.2)
% (mlw + dj:) =0, (3.3)
xlDd—zz + Dd—ig =n, (3.4)
Dd—gf l, (3.5)
rin 4 Dd—zz = (3.6)
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Remark 3.3 The equations (3.1)-(5.3) are valid if and only if the curve a: I — (Hs,g1) is a geodesic which
satisfies the initial conditions «(0) = (0,0,0) and &(0) = (u,v,w).

Since 4(0) = (u,v,w,l,m,n), from equation (3.3) we get

LA
dt '
By substituting above into (3.2) we obtain
d?zt
gz Tw = 0
Solution of this equation is
1 u v v
t) = — sinh(wt) — — cosh(wt) + —. 3.7
x(t) — sin (wt) - cos (w)—i—w (3.7)
Similarly, from (3.2) and (3.3) we have
2 U v u
t) = —— cosh(wt — sinh(wt —. 3.8
x*(t) — cos (w)—i—wsm (w)—i—w (3.8)

Setting the solutions (3.7) and (3.8) in (3.1) we deduce

)2 2 _ 2
B(t) = % sinh(2wt) — % cosh(2wt) + #(u cosh(wt) — vsinhw(t)) + (U 2wu + w)t — %

If w =0, the solution of the system formed by (3.1)-(3.3) is
ot (t) = ut, 22(t) =vt, 23(t) = 0. (3.9)
Now we can express the following theorem.

Theorem 3.4 The horizontal lift C and the natural lift C of a curve C from Hs are geodesics in (T Hs, g})
if and only if C is a geodesic in (Hs,g1), and C' and C pass through the origin and satisfy C‘(O) = C’(O) =
(u,v,w,0,0,0).

Proof Let the curve C(t) = (C(t), Y (t)) be the horizontal lift to (T'Hs, ¢) of the curve C(t) = (x*(t), 23(t), 23(t))

from (Hs, g1). From the definition of the horizontal lift of a curve we have

Dyl_DyQ_Dy?’_
dt  dt  dt

0,

and then equations (3.4)-(3.6) yield I =m =n = 0.
Let the curve C(t) = (C(t), Y (t)) be the natural lift to (T'Hs, g5) of the curve C(t) = (x'(t), 22(t), 23(t))

from (Hs, g1). From the definition of the natural lift of a curve we have

h
h_dx

T
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Therefore, we can write the covariant derivative of Y as follows:

Dy B d?zh p dat dad

a a2 Tliua ar

Vi, j,h=1,2,3. (3.10)

By virtue of Remark 3.3, we see that the curve C(t) = (z!(t),z%(t),23(t)) is a geodesic in (Hz,g1) and the

expression of DTZ{L in (3.10) reduces zero, and the last three Euler-Lagrange equations (3.4)-(3.6) yield again

Il =m =mn = 0. This ends the proof. O
Now, we investigate more general examples for geodesics except for horizontal and natural lifts. To do

this, we need Christoffel symbols of the metric g;. The metric g; in (2.3) and its inverse are rewritten in matrix

form as follows:

-1 0 0 -1 0 0
= 0 1+@) o« |, go'=( 0 1 -
0 zl 1 0 —az' 1+ (2')?

Then, we easily compute the nonzero coeffiecients of the Christoffel symbols of the metric g; as follows:

1 at 1 1 x!
F%Q = 3?1, F%i’) = §a F?Q = ?a F?Z’) = 57 F%Q = 5(1 - (xl)Q)a Fllg?) =T

Therefore, equations (3.4)-(3.6) become

d 2 $1 2 3 d(El (El 1 de 1 de
y v yyde oy det Ly
2 27 dt 2 dt 2 dt

A (14 @22 det (14 @)Dyt da® | .
i s a T g trmorn=n

If the geodesic in (Hs,g1) is given as (3.9), then above equations reduce to

dy* s Y
_ t _— = l
7 + (uty” + 5 Yo =1,
dy? uty? 3 uvty!
_— _— = — t
o +( 5 + 5 Yu + 5 m — unt,

dy* | (L+ut)y? L0+ u?t?)y?t
dt 2 2

v+ ut(m — unt) = n,
in other words, we have the following system

W 4 utvys + Sys =1,
(k) 1 Gz g Uy 4 2lyy 4 Sys = m — unt,

dys (1+u’t?)v (1+u’t?)u
at 5 it 2

Yo + ut(m — unt) = n.
Remark 3.5 When u=v =0, a particular solution for the above system is obtained by

yi(t) =1Ut, ya2(t) = mt, y3(t) = nt.
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Having in mind this remark, we can express the theorem below.

Theorem 3.6 If the curve from (Hs,g1) reduces to the origin point (0,0,0), then the geodesics from (T Hs, g5)
are the curves y(t) = (0,0,0,lt, mt, nt).

We know that if a geodesic being in a fiber of the tangent bundle (T'M,¢°) of a Riemannian manifold

) defined by zh =", Yh = 1,...,n, where ¢" is a constant, then the geodesic is expressed as z" =

Mg
h yh = at + b, according to the induced coordinates {z",y"},—1 ., where a" b" ch are constants (see

(
[

19]). When we consider (T'Hs, g;) this result becomes to Theorem 3.6 , because if 2 are constants, we get

[;i’ = dd—“:, i =1,2,3, and equations (3.4)-(3.6) with the conditions %(0) =1, %(O) =m, %3(0) =n yield

' =0, i=1,2,3.
Remark 3.7 When m =n =0, a particular solution of the system (x) is given by

Having in mind above remark and equations (3.9), we may express the final theorem of this section.

Theorem 3.8 One of the geodesics of the tangent bundle (T'Hs,g;) has the form (t) = (ut,vt,0,1t,0,0).

4. Isocline distributions and geodesics of (T Hs,g5)

In this final section, we follow same way in the previous section for the metric go which is defined in (2.4).

4.1. Isoclinity

We write the following proposition by considering the contact form w = x'dz? + da®.

Proposition 4.1 Let w® (w") be the horizontal (vertical) lift of the contact form w of (Hs,g2). Then, the
1-codimensional distribution F = Ker(wf) (F = Ker(w") ) is not totally geodesic in (T Hsz,gs).

Proof If the distribution Ker(wf) is given, then one can constitute a basis as {EH, EX EY EY EY}. Thus
= = 1 1
95(VenBY +VpyE{' Ej') = —595((R(E17y)E1)HaE3H) - 595((R(E1»y)E1)HaE§I)
= _QQ(R(Elay)ElvES) 7é 07

where V is the Levi-Civita connection of the Sasaki metric given by (2.2) and y denotes a tangent vector in
TH;.
Now, let the distribution Ker(w"") is given. In this case, a basis can be formed as {Efl, EX Bl EY EY1,

so from (2.6)
. - 1 1 Ce
gg(VElyE;/ + VE;/EfI,Eg/) =g5((Vg, F2)V EY) = gg(iEg,Eg) =-3 # 0 (Ej5 is timelike).

Thus the proposition is proved. O

In the following proposition, we determine totally geodesic distributions which are not isocline in
(THs, g3)-
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Proposition 4.2 The distributions FH = L(EF , EX) and FV = L(EY ,EY) are totally geodesic but they are

not isocline.

Proof Using (2.2) and (2.6), we get the following relations:
@EfIE;I + ?EZ{’EHH = O’@EYE;/ + @E;/EY =0.

So, the distributions F* and FV are totally geodesic.

‘We also occur

S (O v 1 s 1 s
9 (VpnBY +VpyEf EY') = —592((R(E179)E3)H’E1H)—592((R(E1,Z/)E3)H7E1H)

= 792(R(E17y)E37E1) #07
- - 1 1
95(Vpy By’ + Ve By EY) = g5(Ve, B3)V , EY ) = —592(B, B1) = —5 #0.
This shows that FV and F¥ are not isocline. O

4.2. Geodesics

The Sasaki lift metric g5 of the metric g2 in (2.4) has expression
g5 = (dz')? + (da*)? — (z'da® + da®)? + (Dy')? + (Dy?)* — (z' Dy® + Dy°)*.
Lagrangian of this metric is
() () () () ) ()
and the corresponding Euler-Lagrange equations are written as

dda' _ da? ( Ldx? dx3>

datdat ~ at \" @t T ar
d 1 da? da? dx? _
dt( vt ) =0
d ( ;dx® da3
dt( dt+dt> 0
4Dy _,
dt dt ’

d 1 1D92 Dy5 Dy2 o
dt<z(x a Tt )70
d 1Dy2 DQB -
dt< a Tar )70
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Let the curve v : I — THs, ~(t) = (z(t),2%(t), 23(t), y* (t),y?(t),y>(t)) be a geodesic which satisfies the initial

conditions v(0) = (0,0,0,0,0,0) and %(0) = (u,v,w,l,m,n). Then the above Euler-Lagrange equations reduce
to

(dx? da?

i, (4.1)
4 (_mlw + d;;) o, (4.3)
L D, (4.4)
Dy, (45)

—az'ln + DTZf =m. (4.6)

Remark 4.3 The equations (4.1)-(4.3) are fulfilled if and only if the curve o : I — (Hs, ga2) is a geodesic which
satisfies the initial conditions «(0) = (0,0,0) and &(0) = (u,v,w).

Since 4(0) = (u,v,w,l, m,n), from equation (4.3) we obtain

da? L+
— =z w4+
dt
By putting above in (4.2) we obtain
d%xt 1 9
7 +z w® =0.
The solution of this equation is
1 u v v
t) = — 4 — t —. 4.7
x (t) wsm(w)—i—wcos(w)—i—w (4.7)
Similarly, from (4.2) and (4.3) we get
5 u v u
t) = —— 4 — t —. 4.8
x“(t) wcos(w)—i—wsm(w)—i—w (4.8)

Putting the solutions (4.7) and (4.8) in (4.1) we deduce

u?—o? u? + 2
(t) = 102 sin(2wt) — w( 50?

- t+ % cos(2wt).

If w =0, the solution of the system formed by (4.1)-(4.3) is
xt(t) = ut, 22(t) = vt, 23(t) = 0. (4.9)

Now we can give the following theorem.
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Theorem 4.4 The horizontal lift C and the natural lift C of a curve C' from Hs are geodesics in (T Hs, g3)
if and only if C is a geodesic in (Hs,go), and C and C pass through the origin and satisfy C( ) = C’(O) =
(u,v,w,0,0,0).

Proof Let the curve C(t) = (C(t),Y (t)) be the horizontal lift to (T'Hs, g5) of the curve C(t) = (z'(t), 22(t), 23(t))

from (Hs, g2). From the definition of the horizontal lift of a curve we have

Dy1 _ Dy2 _ Dy3
dt  dt  dt

:O’

and then equations (4.4)-(4.6) lead I =m =n = 0.
Let the curve C(t) = (C(t), Y (t)) be the natural lift to (T'Hs, g3) of the curve C(t) = (x*(t), 22(t), 23(t))

from (Hs, g2). From the definition of the natural lift of a curve we have

s
dt -
Therefore, we can write the covariant derivative of Y as follows:

Dy d?2h p dat dad
—_ = +
dt dt? Ude dt’

Vi, j,h =1,2,3. (4.10)

By virtue of Remark 4.1, we see that the curve C(t) = (z!(¢),2%(t),23(t)) is a geodesic in (Hs,gs) and the

expression of —h in (4.10) reduces zero, and the last three Euler-Lagrange equations (4.4)-(4.6) lead again
l=m=n=0. This ends the proof. O

Now, we study more general examples for geodesics except for horizontal and natural lifts. For this, we

need Christoffel symbols of the metric go. The metric go in (2.4) and its inverse are rewritten in matrix form

as follows:
1 0 0 1 0 0
g=10 1—-@=H? -2t |, ggt=[0 1 —z!
0 —a! -1 0 —a' (2H)2-1

Then, we compute the nonzero coefficients of the Christoffel symbols of the metric g as follows:

1 x! 1 .
Ty =o', Tyy = > Ih=-%Th= *571“{2 —

1 x!
5 .

S0+ @), TS =5

Therefore, equations (4.4)-(4.6) reduce to
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If the geodesic in (Hs, g2) is given as (4.9), then above equations reduce to

1 3

y
ty? + =)o =1

dy

3

dy? uty? y uvty
Yo Ly —

dt (2 2

dy | (L aR)? (e
dt 2 Y 2

i.e. we have the following system

U+ utvys + 7Y =1,
d
(o) 0§ G — = Py — Gus = m —unt,
s (1+"2t o+ (1+“2t Sy — ut(m — unt) = n.

Remark 4.5 When u=v =0, a particular solution for the above system is obtained by
yi(t) = It, ya(t) = mt, ys(t) = nt.

By virtue of this remark, we can express the theorem below.

Theorem 4.6 If the curve from (Hs, g2) reduces to the origin point (0,0,0), then the geodesics from (T Hs, g5)
are the curves v(t) = (0,0,0,lt, mt, nt).

We know that if a geodesic being in a fiber of the tangent bundle (7'M, ¢°) of a Riemannian manifold

h _ .h h _
=c' y'=

are constants. When we assume

(M, g) defined by 2" = ¢, ¥h = 1, ...,n, where c" is a constant, then the geodesic is expressed as =
a"t+b"  according to the induced coordinates {z",y"}n—1 ., where a” b, ct

(TH3,g3) this result becomes to Theorem 4.6 , since if a2 are constants, we get [2—"{ = %, i =1,2,3, and

(0) =1, “2(0) = m, %2(0) = n lead to a* =0, i = 1,2,3.

. ) . s dy?!
equations (4.4)-(4.6) with the conditions <%

Remark 4.7 When m =n =0, a special solution of the system (xx) is given by
yi(t) = 1t, y2(t) = 0, ys(t) = 0.

Having in mind above remark and equations (4.9), we conclude the final theorem of this paper.

Theorem 4.8 One of the geodesics of the tangent bundle (T Hs,g3) has the form 5(t) = (ut,vt,0,1t,0,0).
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