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Abstract: The aim of this paper is to introduce the notions of hereditarily disconnected and totally disconnected
objects in a topological category and examine the relationship as well as interrelationships between them. Moreover,
we characterize each of T2 , connected, hereditarily disconnected, and totally disconnected objects in some topological
categories and compare our results with the ones in the category of topological spaces.
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1. Introduction
For a topological space A , we have:
(1) A is connected;
(2) A and ∅ are the only subsets of A which are both open and closed;
(3) Every continuous function from A into a discrete space must be constant.
The fact (3) is used by several authors [13, 14, 24, 25] to motivate similar situations in a more general cate-
gorical setting. Baran, in [2, 3], introduced the notion of (strong) closedness in topological categories by using
initial, final, discrete, and indiscrete structures which are available in a topological category and used them to
generalize the fact (2) as well as each of compact, sober, Ti, i = 1, 2, 3, 4 objects in topological categories in
[2, 5, 11]. In view of this, it will be useful to present important theorems in general topology such as the Tietze
Extension Theorem, the Tychonoff Theorem, and the Urysohn Lemma among others in setting of a topological
category. In 2021 and 2022, the presentation of the Tietze Extension Theorem and the Urysohn Lemma is given
in [19, 21].
There is also another approach introduced by Clementino and Tholen in [14] to define the notion of connected-
ness in a complete category E [16, 25]. If the diagonal morphism δA = ⟨1A, 1A⟩ : A → A× A is c -dense, then
an object A of E is called c -connected, where c is a closure operator of E [15].
The characterization of each of these various forms of connected objects as well as the relationships among these
forms in some topological categories are studied in [5, 12].
One of the other important notions of topology to deal with is the notion of disconnectedness which is used
in Boolean algebra, functional analysis, logic, and algebraic geometry [1]. The two most common notions of
disconnectedness, which are equivalent in the realm of compact T2 spaces, are: (a) hereditarily disconnected
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spaces (those A with connected subspaces consist of at most one point [17]) which were introduced by Hausdorff
[20] and (b) totally disconnected spaces which go also by the name totally separated spaces (those A with the
quasicomponent of any point a ∈ A consists of the point a alone [1, 16? ] which were introduced by Sierpinski
[27].
In this paper, we introduce various forms of hereditarily disconnected and totally disconnected objects in a
topological category. Moreover,

(i) we examine the interrelationships as well as the relationships among these forms.

(ii) we show that the notion of closedness induces a closure operator in the categories of RRel (resp.PBorn)
of all reflexive relation (resp. prebornological) spaces and there is a partition of a reflexive space consisting of
strongly closed subsets.

(iii) we give the characterization of each of T2 , connected, hereditarily disconnected, and totally disconnected
objects in these categories and compare our results with those in the category of topological spaces. Moreover,
in the realm of KT2 reflexive spaces, closed and open subsets are the same and there is a partition of a space
consisting of closed subsets.

2. Preliminaries
The category PBorn of prebornological spaces has as objects (A1,F) , where F is a family of subsets of A1

that contains all finite subsets of A1 and is closed under finite union and as morphisms f : (A1,F) → (B1,G)
are functions such that f(C) ∈ G if C ∈ F . It is a topological category [23].

The category RRel of reflexive relation spaces (spatial graphs) has as objects (A1, R) , where R is a
reflexive relation on a set A1 and as morphisms f : (A1, R) → (B1, S) are relation preserving functions, i.e. if
sRt , then f(s)Sf(t) for all s, t ∈ A1 [16, 25].

An epimorphism f : (A1, R) −→ (B1, S) is final in RRel iff for all s, t ∈ B1 , sSt holds in B1 precisely
when there exist u, v ∈ A1 such that uRv and f(u) = s and f(v) = t [25].
A source fi : (A1, R) −→ (Bi, Ri), i ∈ I is initial in RRel for all u, v ∈ A1 , uRv iff fi(u)Rifi(v) for all i ∈ I

[16, 25]. RRel is a topological category.

Let B be a set, x ∈ B , and the infinity wedge
∨∞

x B (resp. B2
∨

∆ B2 ) be taking countably many
disjoint copies of B and identifying them at the point x (resp. two distinct copies of B2 identified along the
diagonal ∆) [2].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(a, b)1 = (a, b, a) and A(a, b)2 = (a, a, b) and
the skewed axis map S : B2 ∨∆ B2 → B2 is given by S(a, b)1 = (a, b, b) and S(a, b)2 = (a, a, b) . The fold map
∇ : B2

∨
∆ B2 → B2 is given by ▽((a, b)i) = (a, b) for i = 1, 2 .

The skewed x -axis map Sx : B
∨

x B → B2 is given by Sx(a1) = (a, a) and Sx(a2) = (x, a) . The fold
map at x , ∇x : B

∨
x B → B is given by ∇x(ai) = a for i = 1, 2 .
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A∞
x :

∨∞
x B → B∞ is given by A∞

x (ai) = (x, ..., x, a, x, x, ...) , where ai is in the i -th component of∨∞
x B and B∞ = B × B × ... is the countable cartesian product of B , and ▽∞

x :
∨∞

x B −→ B is given by
▽∞

x (ai) = a for all i ∈ I , where I is the index set {i : ai is in the i -th component of
∨∞

x B} [2].

Definition 2.1 (cf.[2, 5]) Let U : E → Set be topological, A be an object in E with x ∈ U(A) = B , and
Z ⊂ A .

(1) If the initial lift of the U-source {A∞
x : ∨∞

x B → B∞ = U(A∞) and ▽∞
x : ∨∞

x B → UD(B) = B} is
discrete, then {x} is said to be closed, where D is the discrete functor.

(2) If {∗} , the image of Z , is closed in A/Z or or Z = ∅ , then Z is said to be closed, where A/Z is
the final lift of the epi U -sink Q : U(A) = B → B/Z = (B\Z) ∪ {∗}, identifying Z with a point *.

(3) If the initial lift of the U-source {Sx : B
∨

x B → U(A2) = B2 and ∇x : B
∨

x B → UD(B) = B} is
discrete, then A is called T1 at x .

(4) If A/Z is T1 at * or Z = ∅ , then Z is said to be strongly closed.

(5) If ZC , the complement of Z is strongly closed, then Z is said to be strongly open.

(6) If ZC , the complement of Z is closed, then Z is said to be open.

Remark 2.2 (1) For the category Top of topological spaces and continuous functions, the notion of openness
(resp. closedness) coincides with the usual openness (resp. closedness) and if a space is T1 , then the notions of
openness (resp. closedness) and strong openness (resp. closedness) coincide [2, 5].

(2) For the category PBorn , by Theorem 3.9 of [3], closedness (resp. openness) implies strong closedness
(resp. strong openness).

Theorem 2.3 Let (A,R) be a reflexive space, x ∈ A , and Z ⊂ A .

(a) (A,R) is T1 at x iff for each s ∈ A if sRx or xRs , then s = x .

(b) {x} is closed iff for each s ∈ A if sRx and xRs , then s = x .

(c) Z is closed iff for each s ∈ A if there exist t, u ∈ Z such that sRt and uRs , then s ∈ Z .

(d) Z is strongly closed iff for each s ∈ A if there exist t ∈ Z such that sRt or tRs , then s ∈ Z .

(e) Z is open iff for each s ∈ A if there exist t, u ∈ ZC such that sRt and uRs , then s ∈ ZC .

(f) Z is strongly closed iff Z is strongly open.

Proof The proof of Parts (a) and (d) is similar to the proof of Lemma 3.5 and Theorem 3.6 of [9] and Parts
(b) and (c) are proved in [11]. The proof of Part (e) follows from (c).
(f) Suppose Z is strongly closed and for each s ∈ A there exist t ∈ ZC such that sRt or tRs . If s /∈ ZC , then
s ∈ Z . Since Z is strongly closed and sRt or tRs , by (d), t ∈ Z , a contradiction. Hence, s ∈ ZC and by (d),
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ZC is strongly closed and by 2.1, Z is strongly open. Similarly, if Z is strongly open, then it is strongly closed.
Note that by Theorem 2.3 (f), there is a partition of a reflexive space consisting of strongly closed subsets. 2

Theorem 2.4 Let (A,R) be a reflexive space.

(1) If Z ⊂ A is (strongly) closed and M ⊂ Z is (strongly) closed, then M ⊂ A is (strongly) closed.

(2) If Mi ⊂ A, i ∈ I is (strongly) closed for each i ∈ I , then
∩

i∈I Mi is (strongly) closed.

(3) If Mi ⊂ A, i ∈ I is strongly closed for each i ∈ I , then
∪

i∈I Mi is strongly closed.

(4) If Z1 and Z2 are closed, then Z1 ∪ Z2 may not be closed.

(5) If Mi ⊂ (Ai, Ri), i ∈ I is (strongly) closed for each i ∈ I , then
∏

i∈I Mi is (strongly) closed in
∏

i∈I Ai .

(6) If f : (A1, S) → (B1, R) is a relation preserving function and Z ⊂ B1 is (strongly) closed (open), so
also is f−1(Z) .

Proof (1) Suppose Z ⊂ A and M ⊂ Z are strongly closed. Let RZ (resp. RM ) be the initial structure on
Z (resp. M ) induced by the inclusion map i : Z → (A,R) (resp. i : M → (Z,RZ)). Suppose M ⊂ Z and
Z ⊂ A are strongly closed and for each x ∈ A , there exists a ∈ M such that xRMa or aRMx . Note that
xRMa = xRZa = xRa and aRMx = aRZx = aRx . Since a ∈ Z , xRa or aRx , and Z ⊂ A is strongly closed,
by Theorem 2.3(c), x ∈ Z . Since a ∈ M , xRZa or aRZx , and M ⊂ Z is strongly closed, by Theorem 2.3(c),
x ∈ M .
The proof for openness and closedness is similar.

(2) Suppose Mi ⊂ A, i ∈ I is strongly closed for each i ∈ I and for each x ∈ A there exists a ∈ M =
∩

i∈I Mi

such that xRa or aRx . It follows that a ∈ Mi for all i ∈ I . Since a ∈ Mi , xRa or aRx and Mi are strongly
closed for all i ∈ I , by Theorem 2.3, x ∈ Mi for all i ∈ I and hence, x ∈ M . By Theorem 2.3, M is strongly
closed. The proof for closedness is similar.

The proof for (3) can be done similarly.

(4) Let A = {x, y, z} and define a reflexive relation R as follows:
R = {(x, x), (y, y), (z, z), (x, y), (x, z), (z, y)} . By Theorem 2.3, Z1 = {x} , and Z2 = {y} are closed but
Z1 ∪ Z2 = {x, y} is not closed since zRy and xRz but z /∈ Z1 ∪ Z2 .

(5) Suppose Mi ⊂ Ai are strongly closed for all i ∈ I and for each x ∈ A =
∏

i∈I Ai there is a ∈ M =
∏

i∈I Mi

such that xRa or aRx , where R is the product structure on A . It follows that for each i ∈ I , xiRi
ai or

aiRi
xi . Since each Mi is strongly closed, by Theorem 2.3, xi ∈ Mi for each i ∈ I and consequently, x ∈ M .

Hence, by Theorem 2.3, M is strongly closed.

(6) Suppose Z ⊂ B1 is strongly closed. If f−1(Z) = ∅ , then by Definition 2.1, f−1(Z) is strongly closed. Sup-
pose f−1(Z) ̸= ∅ and for each x ∈ A1 there exists a ∈ f−1(Z) such that xSa or aSx . Note that f(x) ∈ B1 ,
f(a) ∈ Z and f(x)Rf(a) or f(a)Rf(x) (f is a relation preserving map). Since Z ⊂ B1 is strongly closed, by
Theorem 2.3, f(x) ∈ Z . Hence, x ∈ f−1(Z) and by Theorem 2.3, f−1(Z) is strongly closed.
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The proof for closedness and (strong) openness is similar. 2

3. T2 Objects

We give the characterization of each of PreT ′
2, P reT 2,KT2 , and NT2 reflexive relation spaces and show that

the notion of closedness induces a closure operator of RRel and PBorn .

Let U : E → Set be topological and X ∈ E with U(X) = B .
Let AW (resp. SW ) be the initial lift of the U -source A(resp. S) : B2

∨
∆ B2 → U(X3) = B3 and (B2

∨
∆ B2)

′

be the final lift of the U -sink {q ◦ i1, q ◦ i2 : U(X2) = B2 → B2 ∨∆ B2}, where ik : B2 → B2
⨿

B2, k = 1, 2 are
the canonical injection maps and q : B2

⨿
B2 → B2

∨
∆ B2 is the quotient map.

Definition 3.1 ( cf. [2, 4, 22])
(1) If X does not contain an indiscrete subspace with (at least) two points, then X is said to be a T0 object.

(2) If the initial lift of the U -source {id : B2 ∨∆ B2 → U(B2 ∨∆ B2)
′
= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 →

U(D(B2)) = B2} is discrete, then X is said to be a T ′
0 object.

(3) If AW = SW , then X is said to be a PreT 2 object.

(4) If (B2
∨

∆ B2)
′
= SW , then X is said to be a PreT ′

2 object.

(5) If X is T ′
0 and PreT 2 , then X is said to be a KT2 object.

(6) If X is T0 and PreT 2 , then X is said to be a NT2 object.

Theorem 3.2 Let (A,R) be a reflexive space.

(1) The following are equivalent:

(i) (A,R) is preT 2 .

(ii) (A,R) is KT2 .

(iii) R is symmetric and transitive.

(2) The following are equivalent:

(i) (A,R) is PreT ′
2 .

(ii) (A,R) is NT2 .

(iii) (A,R) is discrete.

Proof (1) By Theorem 3.8 of [11] and Definition 3.1, we get (i) =⇒ (ii) .

(ii) =⇒ (iii) Suppose (A,R) is KT2 and xRy for x, y ∈ A . We have
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π1A(x, y)1Rπ1A(y, x)2 = xRy = π1S(x, y)1Rπ1S(y, x)2,

π2A(x, y)1Rπ2A(y, x)2 = yRy = π2S(x, y)1Rπ2S(y, x)2,

π3A(x, y)1Rπ3A(y, x)2 = xRx , and π3S(x, y)1Rπ3S(y, x)2 = yRx , where πi : B
3 → B are the projections,

i = 1, 2, 3 . Since (A,R) is KT2 , by Definition 3.1, it is preT 2 and π3S(x, y)1Rπ3S(y, x)2 = yRx ; thus, R is
symmetric.
Suppose xRy and yRz for x, y, z ∈ A .

π1A(x, y)1Rπ1A(y, z)2 = xRy = π1S(x, y)1Rπ1S(y, z)2,

π2A(x, y)1Rπ2A(y, z)2 = yRy = π2S(x, y)1Rπ2S(y, z)2,

π3A(x, y)1Rπ3A(y, z)2 = xRz, and π3S(x, y)1Rπ3S(y, z)2 = yRz.

Since (A,R) is KT2 , R is transitive.

(iii) =⇒ (i) Suppose R is symmetric and transitive, and s, t are any points in the wedge. We show (A,R) is
PreT 2 , i.e.

π1A(s)Rπ1A(t), π2A(s)Rπ2A(t),

and π3A(s)Rπ3A(t) if and only if
π1S(s)Rπ1S(t), π2S(s)Rπ2S(t),

and π3S(s)Rπ3S(t) . We have s = (x, y)1, (x, y)2 or (x, x) and t = (z, w)1, (z, w)2 or (z, z) for x, y, w, z ∈ A .
If s = (x, y)1 and t = (z, w)1 , then

π1A(s)Rπ1A(t) = xRz = π1S(s)Rπ1S(t),

π2A(s)Rπ2A(t) = yRw = π2S(s)Rπ2S(t),

π3A(s)Rπ3A(t) = xRz , and π3S(s)Rπ3S(t) = yRw .
If s = (x, y)1 and t = (z, w)2 , then

π1A(s)Rπ1A(t) = xRz = π1S(s)Rπ1S(t), π2A(s)Rπ2A(t) = yRz = π2S(s)Rπ2S(t).

Note that π3A(s)Rπ3A(t) = xRw iff π3S(s)Rπ3S(t) = yRw (because R is symmetric and transitive). If
s = (x, y)1 and t = (z, z) , then

π1A(s)Rπ1A(t) = xRz = π1S(s)Rπ1S(t),

π2A(s)Rπ2A(t) = yRz = π2S(s)Rπ2S(t), π3A(s)Rπ3A(t) = xRz,

and π3S(s)Rπ3S(t) = yRz .
Suppose s = (x, y)2 or (x, x) and t = (z, w)1, (z, w)2 or (z, z) . Since R is symmetric and transitive, we have

π1A(s)Rπ1A(t), π2A(s)Rπ2A(t)

and π3A(s)Rπ3A(t) iff π1S(s)Rπ1S(t), π2S(s)Rπ2S(t) and π3S(s)Rπ3S(t) . Hence, by Definition 3.1, (A,R)

is PreT 2 .
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(2) (i) =⇒ (ii) If (A,R) is PreT ′
2 , then by Theorem 3.1 of [6], (A,R) is PreT 2 . It remains to show

that (A,R) is T0 . By Theorem 3.8 of [11], we show R is antisymmetric. Suppose yRx and xRy for x, y ∈ A .
Let s = (x, y)1 and t = (y, x)2 . π1S(s)Rπ1S(t) = xRy π2S(s)Rπ2S(t) = yRy, and π3S(s)Rπ3S(t) = yRx .
Since (A,R) is PreT ′

2 , by Definition 3.1, (x, y)R2(y, x) and q ◦ ik(x, y) = s, q ◦ ik(y, x) = t for some k = 1 or
2 . Hence, we must have x = y and by Definition 3.1, (A,R) is NT2 .

(ii) =⇒ (iii) Suppose (A,R) is NT2 and xRy for x, y ∈ A . Since (A,R) is PreT 2 , by Part(1), we have
yRx . Since (A,R) is T0 , by Theorem 3.8 of [11], R is antisymmetric. Hence, x = y and (A,R) is discrete.

(iii) =⇒ (i) Suppose (B,R) is discrete. We show (A,R) is PreT ′
2 , i.e. by Definition 3.1, (I) and (II)

are equivalent: for any pair s and t in the wedge, (I) there exists a pair (a1, a2), (b1, b2) in A2 such that
(a1, a2)R

2(b1, b2) (R2 is the product structure on A2 ) and q ◦ ik(a1, a2) = s, q ◦ ik(b1, b2) = t for some k = 1

or 2 iff (II) π1S(s)Rπ1S(t), π2S(s)Rπ2S(t) , and π3S(s)Rπ3S(t) . If (I) holds, then it follows that a1Rb1 and
a2Rb2 . Since (A,R) is discrete, a1 = b1 , a2 = b2 ,s = t and (II) holds.
Similarly, if (A,R) is discrete, one can show easily that (II) implies (I) . Hence, (A,R) is PreT ′

2 . 2

Theorem 3.3 Let (A,R) be a reflexive space.
(1) Every strongly closed subset of A is closed.

(2) If (A,R) is NT2 , then all subsets of A are (strongly) open and (strongly) closed.

(3) If (A,R) is KT2 , then a subset of A is strongly closed iff it is closed.

Proof (1) If Z is strongly closed, then Theorem 2.3, If it is closed. Let A = {a, b} and define a reflexive
relation R as follows: R = {(a, a), (b, b), (b, a)} . By Theorem 2.3, {b} is closed but it is not strongly closed.

(2) Suppose (A,R) is NT2 and Z ⊂ A . By Theorem 3.2, R is discrete and by Theorem 2.3, Z is (strongly)
open and (strongly) closed.

(3) If Z is strongly closed, then by Part (1), Z is closed.
Suppose (A,R) is KT2 and Z is closed. If Z = ∅ , then by Definition 2.1, Z is strongly closed. Suppose Z ̸= ∅
and for each x ∈ A there exists c ∈ Z such that xRc or cRx . If xRc , then cRx since (A,R) is KT2 . Since
xRc , cRx and Z is closed, by Theorem 2.3, x ∈ Z . Similarly, if cRx , then x ∈ Z . Hence, Z is strongly
closed. 2

Remark 3.4 (1) For the category Top , T ′
0 and T0 (resp. NT2 and KT2 ) are equivalent and they reduce to

the usual T0 (resp. T2 ) axiom [2, 22].

(2) For the category PBorn , by Theorem 3.6 of [11] and Theorem 2.6 of [4], T0 = NT2 ⇒ KT2 ⇒ T ′
0 .

(3) For the category RRel , by Theorem 3.8 of [11] and Theorem 3.2, T0 ⇒ T ′
0 and NT2 ⇒ KT2 . Moreover,

by Theorem 2.3(f), there is a partition of a space consisting of strongly closed subsets and by Theorem 3.2(1),
there is a bijection between KT2 structures and partitions of a space. Also, in the realm of KT2 reflexive
spaces, by Theorems 2.3(f) and 3.3(3), closed and open subsets are the same and there is a partition of a space
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consisting of closed subsets.

(4) In any topological category, there is no implication between T0 and T
′

0 [3, 4] and by Theorem 3.1 of
[6], PreT ′

2 implies PreT 2 .

Definition 3.5 Let A be an object in a topological category E and Z ⊂ A . The (strong) closure cl(Z) (resp.
scl(Z)) of Z is the intersection of all (strongly) closed subsets of A containing Z .
The (strong) quasicomponent closure Q(Z) (resp. SQ(Z)) of Z is the intersection of all (strongly) open and
(strongly) closed subsets of A containing Z .

The notion of (strong) closedness induces appropriate closure operator in some categories [8, 10, 18, 19,
26].

Theorem 3.6 (1) cl , scl , and SQ are idempotent, weakly hereditary, productive, and hereditary closure op-
erators of RRel and scl = SQ .

(2) scl = δ = SQ and cl = ι = Q , where ι is the indiscrete closure operator of PBorn .

(3) Let (A,R) be a reflexive space and Z ⊂ A .
scl(Z) = {x ∈ A : U ∩ Z ̸= ∅ for all strongly open subsets U of A containing x } = SQ(Z) .
cl(Z) = {x ∈ A : U ∩ Z ̸= ∅ for all open subsets U of A containing x }.
Q(M) = {x ∈ A : U ∩ Z ̸= ∅ for all closed and open subsets U of A containing x}.

Proof (1) It follows from Exercise 2.D, Propositions 2.5 and 3.6 of [16], and Theorem 2.4. By Theorem 2.3
(f), scl = SQ .
The proof of Part (2) follows from Theorem 3.9 of [3].

(3) The proof is the same as the proof in the case of Top .

Let c be a closure operator of E .
T1(c) = { A ∈ E : c({a}) = {a} for each a ∈ A}.
△(c) = {A ∈ E : c(∆) = ∆ , the diagonal}.
∇(c) = {A ∈ E : c(∆) = A2 } [16], p.250. 2

Let E = Top , K be the ordinary closure and Q be the quasicomponent closure. Then T1(K) , △(K) ,
∇(Q) , and T1(Q) = △(Q) are the class of T1 -spaces, T2 -spaces, connected spaces, and totally disconnected
spaces, respectively [16].

Let TE be the full subcategory of a topological category E consisting of all T objects, where E = RRel

or PBorn and T = T0, P reT 2, NT2,KT2 .

Theorem 3.7 (A) (1) T1(cl) = T0RRel and they are hereditary and productive.

(2) T1(SQ) = △(cl) = △(scl) = △(SQ) = △(Q) = NT2RRel and they are hereditary and productive.
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(3) T′
0RRel = RRel , KT2RRel = PreT2RRel and they are topological categories.

(B) (1) T1(cl) = T1(Q) = △(cl) = △(Q) = T0PBorn = NT2PBorn and they are hereditary and pro-
ductive.

(2) T1(scl) = T1(SQ) = △(scl) = △(SQ) = PBorn and they are topological categories.

(3) KT2PBorn = PreT2PBorn = Born , the category of bornological spaces.

Proof (A) (1) (A,R) ∈ T1(cl) iff cl({a}) = {a} for each a ∈ A iff {a} is closed for each a ∈ A iff, by
Theorem 3.8 of [11], R is antisymmetric, i.e. (A,R) is T0 .

(2) Suppose (A,R) ∈ T1(scl) and aRb for a, b ∈ A . Since (A,R) ∈ T1(scl) , scl({a}) = {a} for each a ∈ A ,
i.e. {a} is strongly closed for each a ∈ A . Since aRb , by Theorem 2.3, a = b and thus, (A,R) is discrete.
If (A,R) is discrete, then, by Theorems 3.2(2) and 3.3(2), {a} is strongly closed for each a ∈ A , i.e.
(A,R) ∈ T1(scl) .

Suppose (A,R) ∈ △(scl) and xRy for x, y ∈ A . Then (x, y)R2(y, y) or (x, x)R2(x, y) . Since ∆ ⊂ A2

is strongly closed, by Theorem 2.3(d), (x, y) ∈ △(scl) = ∆ . Hence, (A,R) is discrete. Conversely, if (A,R) is
discrete, then, by Theorems 2.3(d) and 3.3(2), ∆ ⊂ A2 is strongly closed, and thus, (A,R) ∈ △(scl) .
Suppose (A,R) ∈ △(cl) and xRy . (x, y)R2(y, y) and (x, x)R2(x, y) . Since (A,R) ∈ △(cl) , by Theorem 2.3(c),
(x, y) ∈ ∆ . Hence, (A,R) is discrete.
If (A,R) is discrete, then ∆ ⊂ A2 is closed (by Theorem 3.3). Hence, (A,R) ∈ △(cl) .
By Theorem 3.6(1), d scl = SQ and consequently, △(scl) = △(SQ) and T1(scl) = T1(SQ .

(B) Combine Remark 3.4, Theorem 3.6, and Theorem 2.6 of [4]. 2

Example 3.8 (1) Let A = {x, y} and define a reflexive relation R as follows: R = {(x, x), (y, y), (y, x)} . By
Theorem 2.3, all subsets of A are open and closed but ∅ and A are the only strongly open and strongly closed
subsets of A . By Theorem 3.7, (A,R) ∈ T1(Q) and (A,R) /∈ T1(SQ) .

(2) Let (Z, P (Z)) be the indiscrete prebornological space, where Z is the set of integers. By Remark 3.4
and Theorem 3.7, (Z, P (Z)) ∈ T1(SQ) and it is KT2 but (Z, P (Z)) /∈ T1(Q) and it is neither NT2 nor T0 .

(3) By Remark 3.4 and Theorem 3.7, every discrete prebornological space (X,F = the set of all finite subsets
of X ) [23] is KT2 but it is not NT2 if |X| > 1 .

4. Connected objects

There are various generalizations of the notion of connectedness in a topological category [5, 13, 14, 24, 25]. In
this section, we characterize each of these various connected objects in RRel and PBorn .

Definition 4.1 ( [5, 13, 14, 24, 25]) Let A be an object in a topological category E .
(1) If the only subsets of A both (strongly) open and (strongly) closed are A and ∅ , then A is said to be strongly
connected (resp. connected).
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(2) If any morphism from A to discrete object is constant, then A is said to be D -connected.

(3) If X ∈ ∇(c) , then X is called c-connected, where c is a closure operator of E .

In Top , D -connectedness, strong connectedness, and Q-connectedness coincides with the usual connectedness
[5, 14] and if a space is T1 , then all the notions of connectedness coincide [5].

Let TPBorn be the full subcategory of PBorn consisting of T objects, where T = SC = strongly
connected, T = C = connected, or T = DC = D -connected.

Theorem 4.2 (1) ∇(scl) = CPBorn = ∇(SQ) = DCPBorn contains only trivial spaces (spaces of cardi-
nality at most 1).

(2) ∇(cl) = ∇(Q) = SCPBorn = PBorn .

Proof By Theorem 3.6(2), scl = δ = SQ and cl = ι = Q . Hence, by Theorem 3.7 and Definition 4.1,
∇(scl) = CPBorn = ∇(SQ) = DCPBorn and ∇(cl) = ∇(Q) = SCPBorn = PBorn . 2

Theorem 4.3 A reflexive space (A,R) is connected iff it is D -connected.

Proof Suppose (A,R) is connected, (C, S) is a discrete reflexive space, and f : (A,R) → (C, S) is a relation
preserving map. If |C| = 1 , then f is constant. Suppose |C| > 1 and f is not constant. Then there exist
a, b ∈ A with a ̸= b such that f(a) ̸= f(b) . By Theorems 3.2(2) and 3.3(2), {f(a)} is strongly closed (open)
and by Theorem 2.4(6), Z = f−1{f(a)} is also strongly closed (open). Since (A,R) is connected, by Definition
4.1, Z = ∅ or Z = A . If Z = ∅ , then f(x) = f(b) for all x ∈ A and if Z = A , then f(x)) = f(a) for all x ∈ A ,
a contradiction since f(a) ̸= f(b) . Hence, f must be constant and by Definition 4.1, (A,R) is D -connected.
Suppose (A,R) is D -connected and there exists a nonempty proper strongly closed (open) subset Z of A .
Let (C, S) be a discrete space and |C| > 1 . Define f : (A,R) → (C, S) by

f(x) =

{
u if x ∈ Z
v if x /∈ Z

for x ∈ A . Let x, y ∈ A and (x, y) ∈ R . If x, y ∈ Z or x, y ∈ ZC , then (f(x), f(y)) = (u, u) ∈ S or
(f(x), f(y)) = (v, v) ∈ S . If x ∈ Z and (x, y) ∈ R , then by Theorem 2.3(d), y ∈ Z (because Z is strongly
closed) and (f(x), f(y)) = (u, u) ∈ S . If x ∈ ZC and (x, y) ∈ R , then by Theorem 2.3(d) and (f), y ∈ ZC and
(f(x), f(y)) = (v, v) ∈ S . Hence, f is a relation preserving map but it is not constant, a contradiction. Thus,
(A,R) is connected. 2

Theorem 4.4 A reflexive space (A,R) is strongly connected iff for any nonempty proper subset Z of A either
the conditions (I) or (II) holds.
(I) For some x ∈ B if (x, a) /∈ R or (b, x) /∈ R for all a, b ∈ Z , then x /∈ Z .

(II) For some x ∈ B if (x, a) /∈ R or (b, x) /∈ R for all a, b ∈ ZC , then x ∈ Z .

Proof By Theorem 2.3 and Definition 4.1, we get the result. 2
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Theorem 4.5 A reflexive space (A,R) is SQ-connected iff (B,R) is scl -connected iff for any x, y ∈ A with
x ̸= y , there exists z ∈ A such that either ((x, z) ∈ R and (y, z) ∈ R) or ((z, x) ∈ R and (z, y) ∈ R) holds.

Proof By Theorem 3.6, SQ = scl .
Suppose (A,R) is scl -connected and there exist x, y ∈ A with x ̸= y , both ((x, z) /∈ R or (y, z) /∈ R) and
((z, x) /∈ R or (z, y) /∈ R) hold for all z ∈ A . Let M = {(z, w) : z, w ∈ A, z ̸= x or w ̸= y} . Note that ∆ ⊂ M ,
(x, y) /∈ M and ((x, y), (z, z)) /∈ R2 and ((z, z), (x, y)) /∈ R2 for all z ∈ A , where R2 is the product structure
on A2 . By Theorem 2.3(d), M is strongly closed and by Definition 3.5, (x, y) /∈ scl(∆) = B2 , a contradiction.
Suppose the condition holds and (x, y) ∈ A2 with x ̸= y . By assumption, there exists z ∈ A such that either
((x, z) ∈ R and (y, z) ∈ R) or ((z, x) ∈ R and (z, y) ∈ R) holds. If the first case holds, then ((x, y), (z, z)) ∈ R2

and by Theorem 2.3(d), (x, y) ∈ scl(∆) since by Theorem 3.6, scl(∆) is strongly closed. If the second case
holds, then ((z, z), (x, y)) ∈ R2 and by Theorem 2.3(d), (x, y) ∈ scl(∆) since by Theorem 3.6, scl(∆) is strongly
closed. Hence, scl(∆) = B2 , i.e. (A,R) is scl -connected. 2

Theorem 4.6 A reflexive space (A,R) is cl -connected iff for any x, y ∈ A with x ̸= y there exist z, w ∈ A

such that both ((x, z) ∈ R and (y, z) ∈ R) and ((w, x) ∈ R and (w, y) ∈ R) hold.

Proof Combine Theorems 2.3(c) and 3.6(1) and Definition 4.1. 2

Theorem 4.7 (1) If (A,R) is strongly connected, then (A,R) is connected.

(2) If (A,R) is cl -connected, then (A,R) is scl -connected.

Proof (1) Suppose (A,R) is strongly connected and Z ⊂ A is strongly closed (open). By Theorems 2.3(f)
and 3.3(1), Z is closed and open. Since (A,R) is strongly connected, by Definition 4.1, Z = ∅ or Z = A . For
the converse implication, take Example 3.8(1) and by Theorems 4.3 and 4.4, (A,R) is connected but it is not
strongly connected.

(2) Suppose (A,R) is cl -connected and x, y ∈ A with x ̸= y . Since (A,R) is cl -connected, by Theorem
4.6, there exist a, b ∈ A such that both ((x, a) ∈ R and (y, a) ∈ R) and ((b, x) ∈ R and (b, y) ∈ R) hold. By
Theorem 4.5, (A,R) is scl -connected.
Let (A,R) be the Example in 3.8(1). By Theorems 4.5 and 4.6, (A,R) is scl -connected but it is not cl -
connected. 2

Remark 4.8 (1) In PBorn , by Theorem 4.2, the notion of connectedness, D -connectedness, SQ-connectedness,
and scl -connectedness (resp. strong connectedness, Q-connectedness, and cl -connectedness) are equivalent.
Moreover, by Theorem 4.2 and Theorem 3.6 of [11], a prebornological space is strongly connected iff it is qua-
sisober iff it is irreducible.

(2) For the category RRel , by Theorems 4.3–4.7, strong connectedness (resp. cl -connectedness) implies
connectedness = D -connectedness (resp. scl -connectedness). If a reflexive space is KT2 , then by Theorems
2.3(f), 3.3(3), and 4.3–4.7, connectedness, D -connectedness, and strong connectedness (resp. scl -connectedness
and cl -connectedness) are equivalent. For the converse implication see Example 3.8. If a reflexive space is NT2 ,
then by Theorems 3.3(2) and 4.3–4.7, all the notions of connectedness are equivalent. Moreover, by Theorems
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2.3 and 4.3, and Definition 5.1 of [12], a reflexive space is connected iff it is strongly irreducible.

(3) In any topological category, by Parts (2) and (3), there are no implications between the notion of strong
connectedness (resp. cl -connectedness) and connectedness (resp. scl -connectedness).

5. Hereditary disconnectedness and total disconnectedness
In this section, we define various forms of hereditarily disconnected and totally disconnected objects in a
topological category and give the characterization of them in PBorn and RRel . Moreover, we compare our
results with results in Top .

Definition 5.1 Let A ∈ E and c be a closure operator of E .
(1) If the only connected (resp. strongly connected, c-connected, or D -connected) subspaces of A are singletons
and ∅ , then A is said to be hereditarily disconnected (resp. strongly hereditarily disconnected, hereditarily
c-disconnected, or hereditarily D -disconnected).

(2) If every quasicomponent of A contains only one point, then A is said to be totally disconnected.

(3) If every strongly quasicomponent of A contains only one point, then A is said to be strongly totally
disconnected.

In Top , the notions of strong hereditary disconnectedness, hereditary D -disconnectedness, and hered-
itary Q -disconnectedness (resp. total disconnectedness) coincide with the usual hereditary disconnectedness
[5, 17] (resp. total disconnectedness [1, 5, 14, 17]) and if a space is T1 , then hereditary disconnectedness (resp.
total disconnectedness) and strong hereditary disconnectedness (resp. strong total disconnectedness) coincide.

Theorem 5.2 Suppose (A,R) is a reflexive space.
(1)(A,R) is hereditarily disconnected iff (A,R) is hereditarily D -disconnected.

(2) If (A,R) is strongly totally disconnected, then (A,R) is totally disconnected and if (A,R) is KT2 , then
the converse implication also holds.

(3) If (A,R) is hereditarily disconnected, then (A,R) is strongly hereditarily disconnected and if (A,R) is
KT2 , then the converse implication also holds.

(4) If (A,R) is hereditarily scl -disconnected, then (A,R) is hereditarily cl -disconnected and if (A,R) is
KT2 , then the converse implication also holds.

(5) If (A,R) is strongly totally disconnected, then (A,R) is both strongly hereditarily disconnected and NT2 .

Proof (1) It follows from Theorem 4.3.

(2) Since (A,R) is strongly totally disconnected, SQ(x) = {x} for all x ∈ A . By Theorem 2.4 (2), {x}
is strongly closed (open) and by Theorems 2.3(f) and 3.3(3), {x} is open and closed. Hence, Q(x) = {x} for
all x ∈ A and by Definition 5.1, (A,R) is totally disconnected.
Suppose (A,R) is a totally disconnected KT2 . Then Q(x) = {x} for all x ∈ B . By Theorem 2.4 (2), {x} is
closed. Since (A,R) is KT2 , by Theorem 3.3 (2), {x} is strongly closed and by Theorems 2.3, {x} is strongly
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open. Hence, SQ(x) = {x} for all x ∈ A and by Definition 5.1, (A,R) is strongly totally disconnected. If
(A,R) is not KT2 , then the converse implication may not hold. Take Example 3.8 and Q(a) = {a}, Q(b) = {b} ,
and SQ(a) = A = SQ(b) .

(3) Suppose (A,R) is hereditarily disconnected and Z ⊂ A is strongly connected. By Theorem 4.7, Z is
connected and since (A,R) is hereditarily disconnected, by Definition 5.1, Z = ∅ or Z = {a} for some a ∈ A .
For the converse implication, take the Example in (1).
Suppose (A,R) is a strongly hereditarily disconnected KT2 space and Z ⊂ A is connected. Since (A,R) is
KT2 , by Remark 4.8, Z ⊂ A is strongly connected and by Definition 5.1, Z = ∅ or Z = {a} for some a ∈ A .

(4) It follows from Theorems 3.3 and 4.7 and Remark 4.8.

(5) Suppose (A,R) is strongly totally disconnected and Z ⊂ A is strongly connected. Since (A,R) is to-
tally strongly disconnected, SQ(x) = {x} for all x ∈ A and by Theorem 2.4 (2), {x} is strongly closed for all
x ∈ A . By Theorems 3.2 and 3.7, (A,R) is NT2 and by Theorem 3.3, all subsets of Z are open and closed.
Since Z ⊂ A is strongly connected, Z = ∅ or Z = {a} for some a ∈ A . Hence, (A,R) is hereditarily strongly
disconnected. 2

Let T1(Q) (resp. T1(SQ) be a class of totally disconnected (resp. strongly totally disconnected) objects and
T = HDC = hereditarily D -disconnected, T = HC = hereditarily disconnected, or T = HSC = strongly
hereditarily disconnected.

Theorem 5.3 (1) TPBorn = T1(SQ) = PBorn for T = HDC,HC and they are topological categories.

(2) HSCPBorn = T1(Q) contains only trivial spaces.

(3) HCRRel = HDCRRel , HCRRel ⊂ HSCRRel , and T1(SQ) ⊂ T1(Q) .

Proof Combine Remark 4.8 and Theorems 3.7, 4.2, and 5.2. 2

Remark 5.4 (A) Let (B,R) be a reflexive space.
(1) By Theorems 3.2 and 5.2, (B,R) is totally strongly disconnected iff it is NT2 .

(2) By Theorems 3.2 and 3.7, totally disconnected (resp. strongly hereditarily disconnected) space may not
be NT2 (see Example 3.8).

(3) By Theorems 3.3, 3.7, and 5.2, if (A,R) is KT2 , then all the notions of hereditary disconnectedness
are equivalent and by Theorem 5.2, total disconnectedness implies hereditary disconnectedness.

(4) By Theorem 5.2, Part (1), and Theorem of 3.8 of [11], if (B,R) is strongly totally disconnected, then
it is quasisober and T0 sober.

(B) Let (X,F) be a prebornological space.

(1) By Theorems 3.7 and 5.3 and Theorem of 3.6 of [11], (X,F) is totally disconnected iff it is strongly
hereditarily disconnected iff it is NT2 iff it is T0 sober.
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(2) By Theorems 3.7(B) and 5.3 and Theorem of 3.6 of [11], (X,F) is strongly totally disconnected iff it
is hereditarily disconnected iff it is T ′

0 sober.

(3) By Remark 3.4 and Theorems 3.7 (B) and 5.3, if (X,F) is totally disconnected, then it is hereditarily
disconnected, strongly totally disconnected and KT2 . By Example 3.8, the reverse implication is not true.

We now state some results [1, 5, 16, 17] in Top .

Theorem 5.5 (1) Every totally disconnected space is hereditarily disconnected.

(2) Hereditary disconnectedness and total disconnectedness are equivalent in the realm of nonempty compact T2

spaces.

(3) A totally disconnected space is Hausdorff.

(4) Every discrete space is hereditarily disconnected.

(5) Every hereditarily disconnected is T1 .

(6) A space B is T1 iff {a} is closed for each a ∈ B .

(7) Every strongly totally disconnected space is totally disconnected and in the realm of T1 spaces they are
equivalent.

(8) Every hereditarily disconnected space is strongly hereditarily disconnected and if a topological space is
T1 , they coincide.

(9) ∇(c) ∩△(c) contains only trivial spaces, where c is any closure operator of Top .

(10) △(c) ⊂ T1(c) and T1(c) ∩∇(c) may contains nontrivial spaces.

We can infer:

(1) By Theorem 5.3, a totally disconnected prebornological space is strongly totally disconnected. Moreover,
By Remark 5.4 and Theorem 5.3, the prebornological space (Z, P (Z)) is both strongly totally disconnected and
hereditarily disconnected but it is neither strongly hereditarily disconnected nor NT2 nor T0 . This shows The-
orem 5.5(1),(3),(5), and (7) do not hold in PBorn . By Theorem 5.3, every nontrivial discrete prebornological
space (X,F) is hereditarily disconnected but it is not totally disconnected. This shows Theorem 5.5 (4) holds
in PBorn .

In the realm of NT2 prebornological spaces, by Remark 5.4 and Theorem 5.3, all the notions of hereditary
disconnectedness and total disconnectedness are equivalent.
By Theorems 3.6(2), 3.7 (B), and 4.2,
△(c) ∩∇(c) and T1(c) ∩∇(c) for c = cl, scl, Q, SQ contain only trivial spaces.
△(cl) = T1(cl) = △(Q) = T1(Q) ⊂ △(scl) = T1(scl) = △(SQ) == T1(SQ) .
This shows Theorem 5.5 (9) and (10) hold in PBorn .

(2) In CP , the category of pairs (A1, B1) , where B1 ⊂ A1 and functions f : (A1, B1) → (C1, D1) such
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that f(B1) ⊂ D1 [3].
All of T ′

0, P reT 2, P reT ′
2 and KT2 are equivalent. Indeed, for a pair space (Z,W ) , it is not hard to see the final

structure on Z2 ∨∆ Z2 induced by q ◦ i1, q ◦ i2 and the initial structures on Z2 ∨∆ Z2 induced by the maps A

and S are the same, namely,

(q ◦ i1)(W 2)
∪

(q ◦ i2)(W 2) = W 2 ∨∆ W 2

= (π1S)
−1(W )

∩
(π2S)

−1(W )
∩

(π3S)
−1(W )

= (π1A)−1(W )
∩

(π2A)−1(W )
∩

(π3A)−1(W ).

The result follows from these and Theorem 3.7 of [11]. Moreover, T0 = NT2 ⇒ KT2 .
By Definition 3.5 and Theorem 3.8 of [3], scl = δ = cl = Q = SQ , where δ is the discrete closure operator of
CP .
T1(c) = △(c) = KT2CP = CP and they are topological categories, where c = scl, cl, Q or c = SQ .
By Definition 5.1, all the notions of hereditary disconnectedness and total disconnectedness are equivalent in
CP . A totally disconnected pair space is not NT2 , as an example, a pair space (R,Z) is not NT2 but it is
hereditarily disconnected. This shows Theorem 5.5 (3) does not hold in CP .
△(c) ∩∇(c) and T1(c) ∩∇(c) for c = cl, scl, Q, SQ

contain only trivial spaces and this shows Theorem 5.5 (9) and (10) hold in CP .

(3) In pqsMet , the category of extended pseudo-quasisemi metric spaces and nonexpansive maps, by Def-
inition 3.5 and Theorem 3.10 of [12],
△(scl) = T1(scl) = T1(SQ) ⊂ △(cl) = T1(cl) = T1(Q) .
Hence, every strongly totally disconnected extended pseudo-quasi-semi metric space is totally disconnected but
the reverse implication is not true. Let A = {a, b} and e be given as e(a, a) = 0 = e(b, b), e(b, a) = ∞ and
e(a, b) = 11 . By Theorem 3.4 of [12], Q(a) = {a}, Q(b) = {b} , and SQ(a) = A = SQ(b) and Definition 3.5,
(A, e) ∈ T1(Q) but (A, e) /∈ T1(SQ) . Also, by Theorem 3.2 of [21], (A, e) is not T1 and by Theorem 3.13 of
[21], (A, e) is not KT2 . Hence, Theorem 5.5(3) and (6) are not valid in pqsMet .
If a space is NT2 , then by Definitions 3.5 and 5.1, Theorem 3.10 of [12], and Theorem 3.14 of [21], T1(SQ) =

T1(Q) and HCpqsMet = HSCpqsMet . If a space is in △(scl) , then by Theorem 4.10 of [12], all the notions
of connectedness are equivalent; hence, by Definition 5.1, all the notions of hereditary disconnectedness and
total disconnectedness are equivalent.

In FCO , the category of filter convergence spaces and continuous maps, by Definition 5.1 and Theorem
2.9 of [8], △(scl) ⊂ T1(scl) = △(cl) = T1(cl) and thus Theorem 5.5 (6) hold in FCO . If a filter convergence
space X is T1 , then, by Remark 4.13 of [5] and by Definition 5.1, total disconnectedness and strong hereditary
disconnectedness are equivalent. If a filter convergence space is PreT ′

2 , then, by Theorem 4.10 of [7] and Defi-
nition 5.1, all the notions of hereditary disconnectedness and total disconnectedness are equivalent.

(4) By Theorems 3.2, 3.3, 3.7, and 5.2, Parts (1) and (4) of Theorem 5.5 hold in RRel and by Theorems
2.3 and 3.7, Part (6) of Theorem 5.5 does not hold in RRel . By Remark 5.4, totally disconnected (resp.
strongly hereditarily disconnected) space may not be NT2 and T1 which shows Theorem 5.5 (3) and (5) do not
hold in RRel . If a reflexive space is KT2 , then by Theorem 5.2, the notions of hereditary disconnectedness
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(resp. total disconnectedness) and strong hereditary disconnectedness (resp. strong total disconnectedness) are
equivalent and total disconnectedness implies hereditary disconnectedness. Thus, Parts (7) and (8) of Theorem
5.5 hold in RRel
If a reflexive space is NT2 , then, by Theorem 5.2 and Remark 5.4, all the notions of hereditary disconnectedness
and total disconnectedness are equivalent.
By Theorems 3.7 and 4.2, △(C) ∩ ∇(C) for C = cl, scl,Q, SQ contains only trivial spaces and T1(cl) ∩ ∇(cl)

may contains nontrivial spaces. Let A = {x, y} and R = {(x, x), (y, y), (x, y)} . By Theorems 2.3, 3.7 and 4.6,
(A,R) ∈ T1(cl) ∩∇(cl) . This shows Theorem 5.5 (9) and (10) hold in RRel .

(5) In any topological category, by Parts (1) and (4), there are no implications between the notion
of strong total disconnectedness (resp. strong hereditary disconnectedness) and total disconnectedness (resp.
hereditary disconnectedness). By (2) all the notions of hereditary disconnectedness and total disconnectedness
could always be equivalent.
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