Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: $296-316$
© TÜBİTAK
doi:10.55730/1300-0098.3361

Biharmonic PNMCV submanifolds in Euclidean 5-space

Rüya ŞEN $^{1, *}{ }^{\text {(D) }}$, Nurettin Cenk TURGAY ${ }^{2}$ ©
${ }^{1}$ Department of Mathematics, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, İstanbul, Turkey
${ }^{2}$ Department of Mathematics,Faculty of Science and Letters, İstanbul Technical University, İstanbul, Turkey

Received: 13.04.2022 • Accepted/Published Online: 06.12.2022 \quad Final Version: 13.01 .2023

Abstract

In this article, we study 3-dimensional biconservative and biharmonic submanifolds of \mathbb{E}^{5} with parallel normalized mean curvature vector (PNMCV). First, we prove that the principal curvartures and principal directions of biconservative PNMCV isometric immersions into \mathbb{E}^{5} can be determined intrinsically. Then, we complete the proof of Chen's biharmonic conjecture for PNMCV submanifolds of \mathbb{E}^{5}.

Key words: Biharmonic submanifolds, biconservative submanifolds, parallel normalized mean curvature vectors

1. Introduction

The study of biharmonic submanifolds was initiated by Chen in the middle of 1980s in his program of understanding finite type submanifolds of Euclidean spaces as well as pseudo-Euclidean spaces [4]. In the mean time, in [12] and [13], Jiang studied biharmonic isometric immersions between Riemannian manifolds by considering the notion of k-harmonic maps proposed by Eells and Sampson in [9].

Chen and Jiang independently showed that there are no biharmonic surfaces in \mathbb{E}^{3} except the minimal ones. Later, this result was generalized by Dimitric in [8]. In 1991, based on these initial results, Chen claimed that all biharmonic submanifolds of Euclidean spaces are minimal [5]. Although this claim, named as Chen's biharmonic conjecture, was proved to be true in a lot of partial cases (see, for example, $[2,6,10,11,16]$), Chen's original problem is still open.

On the other hand, in order to understand the geometrical properties of biharmonic submanifolds, some geometers have shown attention to investigate biconservative submanifolds, [2, 14-16]. For example, the general notion of biconservative submanifolds was introduced in [2]. Also, the complete classification of biconservative hypersurfaces in Euclidean spaces with three distinct principal curvatures is obtained by the second named author in [15].

In [16], authors studied geometrical properties of PNMCV surfaces of \mathbb{E}^{4} and we also proved that a biharmonic PNMCV surface in \mathbb{E}^{4} is minimal. Recently, Chen generalized this result into the Euclidean spaces of arbitrary dimension, [6]. In this paper, we study PNMCV isometric immersions from a 3-dimensional Riemannian manifolds into \mathbb{E}^{5}. In Section 2, we give a brief summary of the basic definitions and basic facts of theory of submanifolds. Section 3 is devoted to study some of geometrical properties of biconservative PNMCV

[^0]submanifolds. We obtain our main result in Section 4.
The manifolds that we are dealing with are smooth and connected unless otherwise is stated.

2. Preliminaries

In this section, we would like to give some basic definitions and formulas that we will use in the remaining part of the paper. Moreover, we recall some theorems related with our study.

2.1. Isometric immersions into \mathbb{E}^{5}

Let $\mathbb{E}^{n}=\left(\mathbb{R}^{n}, \tilde{g}\right)$ denote the Euclidean n-space with the metric tensor \tilde{g} given by

$$
\tilde{g}=\langle., .\rangle=\sum_{i=1}^{n} d x_{i}^{2}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a Cartesian coordinate system of \mathbb{E}^{n}.
Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be an isometric immersion of a 3 -dimensional Riemannian manifold (Ω, g) into a Euclidean 5 -space \mathbb{E}^{5}. Denote the Levi-Civita connections of Ω and \mathbb{E}^{5} by ∇ and $\tilde{\nabla}$, respectively. Then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
\widetilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{2.1}\\
\widetilde{\nabla}_{X} \xi & =-A_{\xi}(X)+\nabla_{X}^{\perp} \xi \tag{2.2}
\end{align*}
$$

respectively, for any vector fields X, Y tangent to Ω and ξ normal to Ω, where h and A_{ξ} are the second fundamental form and the shape operator of ψ along the normal direction ξ, respectively and ∇^{\perp} is the normal connection. Note that h and A_{ξ} satisfy

$$
\begin{equation*}
g\left(A_{\xi}(X), Y\right)=\tilde{g}(h(X, Y), \xi) \tag{2.3}
\end{equation*}
$$

A normal vector field η is called parallel if $\nabla \frac{\perp}{X} \eta=0$ whenever X is tangent to Ω. On the other hand, the Ricci tensor Ric and the scalar curvature S of (Ω, g) are defined by

$$
\operatorname{Ric}(X)=\operatorname{tr}(R(\cdot, X) \cdot) \quad \text { and } \quad S=\operatorname{tr}(\text { Ric })
$$

The mean curvature vector field H of ψ is defined by $H=\frac{1}{3} \operatorname{tr} h$ and the mean curvature of ψ is given by $f=\langle H, H\rangle^{1 / 2}$. ψ is called minimal if f vanishes identically. The covariant derivative $\bar{\nabla} h$ of h is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

for any tangent vector fields X, Y and Z on Ω. If R and \tilde{R} stand for the curvature tensor of Ω and \mathbb{E}^{5}, respectively, then, the Gauss equation $(\tilde{R}(X, Y) Z)^{T}=0$ and the Codazzi equation $(\tilde{R}(X, Y) Z)^{\perp}=0$ become

$$
\begin{gather*}
R(X, Y) Z=A_{h(Y, Z)} X-A_{h(X, Z)} Y \tag{2.4}\\
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.5}
\end{gather*}
$$

Now, assume that ψ has parallel normalized mean curvature vector e_{4}. In this case, the Ricci equation $(\tilde{R}(X, Y) \xi)^{T}=0$ yields that all the shape operators of ψ can be diagonalized simultaneously (see [3, Proposition 1.2]). Therefore, by abusing the terminology, we are going to call X as a principal direction of ψ if $A_{e_{4}} X=k X$, where the smooth function k is going to be called as the corresponding principal curvature. Note that there exists an orthonormal frame field $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ such that

$$
\begin{equation*}
A_{e_{4}}=\operatorname{diag}\left(k_{1}, k_{2}, k_{3}\right), \quad A_{e_{5}}=\operatorname{diag}\left(l_{1}, l_{2}, l_{3}\right) \tag{2.6}
\end{equation*}
$$

for some smooth functions k_{i}, l_{j} satisfying $l_{1}+l_{2}+l_{3}=0$ and $k_{1}+k_{2}+k_{3}=3 f$.

2.2. Biconservative and biharmonic immersions

In this subsection, we present a summary about biconservative and biharmonic immersions.
A biharmonic map $\psi:(\Omega, g) \rightarrow(N, \tilde{g})$ between two Riemannian manifolds is a critical point of the bienergy functional defined by

$$
E_{2}(\psi)=\frac{1}{2} \int_{\Omega}|\tau(\psi)|^{2} v_{g}
$$

where ψ is a smooth map, v_{g} is the volume element of Ω and $\tau(\psi)=\operatorname{tr} \nabla d \psi$ is the tension field of ψ. In [13], Jiang obtained the first and second variational formulas for E_{2} and proved that ψ is biharmonic if and only if it satisfies the Euler-Lagrange equation associated with bienergy functional given by

$$
\begin{equation*}
\tau_{2}(\psi)=0 \tag{2.7}
\end{equation*}
$$

where τ_{2} is the bitension field of ψ defined by

$$
\tau_{2}(\psi)=\Delta \tau(\psi)-\operatorname{tr} \tilde{R}(d \psi, \tau(\psi)) d \psi
$$

where Δ is the Rough-Laplacian. On the other hand, a mapping $\psi:(\Omega, g) \rightarrow(N, \tilde{g})$ satisfying the condition

$$
\begin{equation*}
\left\langle\tau_{2}(\psi), d \psi\right\rangle=0 \tag{2.8}
\end{equation*}
$$

that is weaker than (2.7) is said to be biconservative. When ψ is an isometric immersion, Equation (2.8) turns into

$$
\tau_{2}(\psi)^{T}=0
$$

where $\tau_{2}(\psi)^{T}$ denotes the tangential part of $\tau_{2}(\psi)$. In this case, Ω is said to be a biconservative submanifold of N.

By considering tangential and normal components of $\tau_{2}(\psi)$ from (2.7), one can obtain the following proposition (see, for example, [14]).

Proposition 2.1 [14] Let $\psi:(M, g) \hookrightarrow N$ be an isometric immersion between two Riemannian manifolds. Then, ψ is biharmonic if and only if the equations

$$
\begin{equation*}
m \operatorname{grad}\|H\|^{2}+4 \operatorname{tr} A_{\nabla \perp H}(\cdot)+4 \operatorname{tr}(\tilde{R}(\cdot, H) \cdot)^{T}=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
-\Delta^{\perp} H+\operatorname{tr} h\left(A_{H}(\cdot), \cdot\right)+\operatorname{tr}(\tilde{R}(\cdot, H) \cdot)^{\perp}=0 \tag{2.10}
\end{equation*}
$$

are satisfied, where m is the dimension of M and Δ^{\perp} is the Laplacian associated with ∇^{\perp}.

By considering Proposition 2.1, one can conclude the following well-known proposition.
Proposition $2.2[14]$ Let $\psi:(M, g) \hookrightarrow N$ be an isometric immersion between two Riemannian manifolds. Then, ψ is biconservative if and only if Equation (2.9) is satisfied.

The following theorem will be used later.
Theorem 2.3 [1] Let $\psi:(M, g) \rightarrow N$ be a biharmonic map. If ψ is harmonic on an open subset, then it is harmonic everywhere.

3. Biconservative submanifolds

In this section, we consider biconservative PNMCV isometric immersions into \mathbb{E}^{5}. Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a biconservative PNMCV isometric immersion.

Remark 3.1 Since the study on biconservative hypersurfaces in \mathbb{E}^{4} completed in [11], we are going to assume that $\psi(\Omega)$ does not contain any open part lying on a hyperplane of \mathbb{E}^{5}.

Since the curvature tensor \tilde{R} of \mathbb{E}^{5} vanishes identically, by using (2.9) one can obtain that ψ is biconservative if and only if

$$
\begin{equation*}
A_{e_{4}}(\operatorname{grad} f)=\frac{-3 f}{2}(\operatorname{grad} f) \tag{3.1}
\end{equation*}
$$

where $A_{e_{4}}$ is the shape operator of Ω along the normalized mean curvature vector e_{4} of ψ.
Remark 3.2 If the mean curvature of ψ is parallel, then (2.9) is satisfied trivally. Furthermore, because of Theorem 2.3 and Equation (2.10), a biharmonic PNMCV immersion must be necessarily harmonic if $\|\operatorname{grad} f\|$ vanishes on an open, nonempty subset of Ω. Therefore, we are going to call a biconservative PNMCV immersion as proper if $\|\operatorname{grad} f\|$ does not vanish.

Now, assume that ψ is a proper biconservative PNMCV immersion. Then, we have

$$
\begin{equation*}
\nabla \frac{\perp}{X} e_{4}=\nabla \frac{1}{X} e_{5}=0, \tag{3.2}
\end{equation*}
$$

where e_{5} is a unit normal vector field orthogonal to e_{4}. On the other hand, if e_{1} is chosen to be proportional to $\operatorname{grad} f$, then (3.1) implies

$$
\begin{equation*}
e_{1}(f) \neq 0, e_{2}(f)=e_{3}(f)=0 \tag{3.3}
\end{equation*}
$$

and $k_{1}=-\frac{3 f}{2}$. Consequently, the matrix representations of the shape operators of ψ with respect to a suitable frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ takes the form

$$
A_{e_{4}}=\left(\begin{array}{ccc}
\frac{-3 f}{2} & 0 & 0 \tag{3.4}\\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
l_{1} & 0 & 0 \\
0 & l_{2} & 0 \\
0 & 0 & l_{3}
\end{array}\right)
$$

for some smooth functions $k_{2}, k_{3}, l_{1}, l_{2}, l_{3}$ satisfying

$$
\begin{equation*}
k_{2}+k_{3}=\frac{9 f}{2} \text { and } l_{1}+l_{2}+l_{3}=0 \tag{3.5}
\end{equation*}
$$

3.1. Two distinct principal curvatures

In this subsection, we focus biconservative PNMCV isometric immersion into \mathbb{E}^{5} with two distinct principal curvatures. Note that if $k_{A}=\frac{-3 f}{2}$ for $A=2$ or $A=3$ on an open subset, then the Codazzi equation (2.5) with $X=Z=e_{A}, Y=e_{1}$ give $e_{1}(f)=0$ which is a contradiction because of (3.3). Therefore, we are going to consider the case $k_{1} \neq k_{2}=k_{3}$. First, we consider the shape operators of PNMCV biconservative isometric immersions into \mathbb{E}^{5}.

Lemma 3.3 Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be an isometric immersion with two distinct principal curvatures, where (Ω, g) is a 3-dimensional Riemannian manifold. ψ is proper biconservative PNMCV if and only if there exists an orthonormal frame field $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ such that

$$
A_{e_{4}}=\left(\begin{array}{ccc}
\frac{-3 f}{2} & 0 & 0 \tag{3.6}\\
0 & \frac{9 f}{4} & 0 \\
0 & 0 & \frac{9 f}{4}
\end{array}\right), A_{e_{5}}=\left(\begin{array}{ccc}
2 c_{1} f^{9 / 5} & 0 & 0 \\
0 & -c_{1} f^{9 / 5}+f_{2} f^{3 / 5} & 0 \\
0 & 0 & -c_{1} f^{9 / 5}-f_{2} f^{3 / 5}
\end{array}\right)
$$

and $\nabla^{\perp} e_{4}=0$ for some smooth functions f, f_{2} and a constant c_{1} such that $e_{2}(f)=e_{3}(f)=e_{1}\left(f_{2}\right)=0$, where f does not vanish.

Proof Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be an isometric immersion with two distinct principal curvatures, i.e. k_{2}, k_{3} satisfy

$$
\begin{equation*}
k_{2}=k_{3}=\frac{9 f}{4} . \tag{3.7}
\end{equation*}
$$

In order to prove the necessary condition we assume that ψ is proper biconservative and PNMCV. Then, the Codazzi equations $\left(\tilde{R}\left(e_{1}, e_{A}\right) e_{1}\right)^{\perp}=0$ and $\left(\tilde{R}\left(e_{1}, e_{A}\right) e_{A}\right)^{\perp}=0$ give

$$
\begin{gather*}
\omega_{1 A}\left(e_{1}\right)=0, \quad e_{A}\left(l_{1}\right)=0 \tag{3.8a}\\
\omega_{1 A}\left(e_{2}\right)=\frac{-3}{5} \frac{e_{1}(f)}{f} \text { and } \tag{3.8b}\\
e_{1}\left(l_{A}\right)=\frac{3 e_{1}(f)}{5 f}\left(l_{A}-l_{1}\right), A=2,3, \tag{3.8c}
\end{gather*}
$$

respectively. By considering (3.5), we obtain

$$
\begin{equation*}
l_{1}=2 c_{1} f^{9 / 5} \tag{3.9}
\end{equation*}
$$

from (3.8c), for a smooth function c_{1} satisfying $e_{1}\left(c_{1}\right)=0$. By taking into account (3.8a), we get $e_{2}\left(c_{1}\right)=$ $e_{3}\left(c_{1}\right)=0$ which yields that c_{1} is a constant. Moreover, from (3.8c) and (3.9) we obtain

$$
\begin{equation*}
l_{2}=-c_{1} f^{9 / 5}+f_{2} f^{9 / 5} \tag{3.10}
\end{equation*}
$$

for a smooth function f_{2} satisfying $e_{1}\left(f_{2}\right)=0$. Consequently, (3.5) implies

$$
\begin{equation*}
l_{3}=-c_{1} f^{9 / 5}-f_{2} f^{9 / 5} \tag{3.11}
\end{equation*}
$$

By combining (3.4) with (3.7) and (3.9)-(3.11), we obtain (3.6). This completes the proof of the necessary condition. The converse of the lemma is trivial.

Remark 3.4 One can observe that a frame field $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ satisfying the conditions in Lemma 3.3 can be globally constructed if $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ is a proper biconservative PNMCV isometric immersion with two distinct principal curvatures because

$$
e_{1}=\frac{\operatorname{grad} f}{\|\operatorname{grad} f\|}, \quad e_{4}=\frac{H}{f}
$$

and e_{2}, e_{3} can be constructed to be an eigenvalue of $\left.A_{e_{5}}\right|_{D}$ at every point of Ω, where

$$
D=\left(\operatorname{span}\left\{e_{1}\right\}\right)^{T}
$$

Before we continue, we would like to obtain the following result of Lemma 3.3.

Lemma 3.5 Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a proper biconservative PNMCV isometric immersion with two distinct principal curvatures and put $e_{1}=\frac{g r a d f}{\|g r a d f\|}$, where f is the mean curvature of ψ. Then,
(a) An integral curve of e_{1} lies on a 3-plane of \mathbb{E}^{5}.
(b) The curvature κ and torsion τ of an integral curve of e_{1} satisfy

$$
\begin{align*}
\kappa & =f \sqrt{\frac{9}{4}+4 c_{1}^{2} f^{8 / 5}} \tag{3.12a}\\
\tau & =\frac{12}{5}\left(\frac{c_{1}\|\operatorname{grad} f\| f^{-1 / 5}}{\frac{9}{4}+4 c_{1}^{2} f^{8 / 5}}\right) \tag{3.12b}
\end{align*}
$$

Proof Let $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ be an orthonormal frame field on Ω satisfying the properties given in Lemma 3.3 and we suppose that γ is an integral curve of e_{1} and it is parametrized by $\gamma(s)=x\left(s, t_{0}\right)$. Consider the Frenet frame $\left\{T(s), N(s), B_{1}(s), B_{2}(s), B_{3}(s)\right\}$ at a point $\gamma(s)$, where we put $T(s)=\gamma^{\prime}(s)$. Note that we have

$$
\begin{aligned}
\frac{D T}{d s} & =\kappa_{1} N(s) \\
\frac{D N}{d s} & =-\kappa_{1} T(s)+\kappa_{2}(s) B_{1}(s) \\
\frac{D B_{1}}{d s} & =-\kappa_{2} N(s)+\kappa_{3} B_{2}(s) \\
\frac{D B_{2}}{d s} & =-\kappa_{3} B_{1}(s)+\kappa_{4} B_{3}(s) \\
\frac{D B_{3}}{d s} & =-\kappa_{4} B_{2}(s)
\end{aligned}
$$

where $\frac{D}{d s}$ denotes the covariant derivative on γ and $\kappa_{i}(s), i=1,2,3$ is the i-th curvature of γ.
By considering (3.6) with the Gauss formula, we obtain

$$
\begin{equation*}
\frac{D T}{d s}=-\frac{3 f(s)}{2} e_{4}(s)+2 c_{1} f(s)^{9 / 5} e_{5}(s) \tag{3.13}
\end{equation*}
$$

where $e_{4}(s), e_{5}(s)$ are restrictions of e_{4}, e_{5} to γ from which we get

$$
\begin{equation*}
\kappa_{1}=f(s) \sqrt{\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
N(s)=\frac{1}{\sqrt{\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}}}\left(\frac{-3}{2} e_{4}(s)+2 c_{1} f(s)^{4 / 5} e_{5}(s)\right) \tag{3.15}
\end{equation*}
$$

By a further computation using (3.3) and (3.15), we get

$$
\begin{aligned}
\frac{D N}{d s}= & \frac{1}{\left(\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}\right)^{3 / 2}}\left(\frac{24}{5} c_{1}^{2} f(s)^{3 / 5}\|\operatorname{grad} f\| e_{4}(s)+\frac{18}{5} c_{1} f(s)^{-1 / 5}\|\operatorname{grad} f\| e_{5}(s)\right) \\
& -f(s) \sqrt{\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}} e_{1}(s)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\kappa_{2}=\frac{12}{5}\left(\frac{c_{1}\|\operatorname{grad} f\| f(s)^{-1 / 5}}{\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
B(s)=\frac{1}{\sqrt{\frac{9}{4}+4 c_{1}^{2} f(s)^{8 / 5}}}\left(2 c_{1} f(s)^{4 / 5} e_{4}(s)+\frac{3}{2} e_{5}(s)\right) \tag{3.17}
\end{equation*}
$$

Next, we compute $\frac{D B}{d s}$ and get $\kappa_{3}=0$ which yields that γ lies on a 3 -plane of \mathbb{E}^{5}. Moreover, $\kappa=\kappa_{1}$ is the curvature and $\tau=\kappa_{2}$ is the torsion of γ.

Next, by using the Lemma 3.3, we obtain the following characterization of proper biconservative PNMCV immersions.

Proposition 3.6 Let Ω be a 3 -dimensional submanifold of \mathbb{E}^{5} and $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be an isometric immersion with two distinct principal curvatures. Then, ψ is proper biconservative PNMCV if and only if it is one of the following two classes of isometric immersions.

Case I. An isometric immersion ψ_{1} which has an orthonormal frame field $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ such that

$$
A_{e_{4}}=\left(\begin{array}{ccc}
\frac{-3 f}{2} & 0 & 0 \tag{3.18}\\
0 & \frac{9 f}{4} & 0 \\
0 & 0 & \frac{9 f}{4}
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & f_{2} f^{3 / 5} & 0 \\
0 & 0 & -f_{2} f^{3 / 5}
\end{array}\right), \nabla^{\perp} e_{4}=0
$$

and

$$
\begin{align*}
& \omega_{12}\left(e_{1}\right)=\omega_{13}\left(e_{1}\right)=\omega_{12}\left(e_{3}\right)=\omega_{13}\left(e_{2}\right)=\omega_{23}\left(e_{1}\right)=0 \\
& \omega_{12}\left(e_{2}\right)=\omega_{13}\left(e_{3}\right)=-\frac{3}{5} \frac{e_{1}(f)}{f} \tag{3.19}\\
& \omega_{23}\left(e_{2}\right)=\frac{1}{2} \frac{e_{3}\left(f_{2}\right)}{f_{2}}, \quad \omega_{23}\left(e_{3}\right)=-\frac{1}{2} \frac{e_{2}\left(f_{2}\right)}{f_{2}}
\end{align*}
$$

for some smooth functions f, f_{2} satisfying $e_{2}(f)=e_{3}(f)=e_{1}\left(f_{2}\right)=0$, where f does not vanish.

Case II. An isometric immersion ψ_{2} which has an orthonormal $\left\{e_{1}, e_{2}, e_{3} ; e_{4}, e_{5}\right\}$ such that

$$
A_{e_{4}}=\left(\begin{array}{ccc}
\frac{-3 f}{2} & 0 & 0 \tag{3.20}\\
0 & \frac{9 f}{4} & 0 \\
0 & 0 & \frac{9 f}{4}
\end{array}\right), A_{e_{5}}=\left(\begin{array}{ccc}
2 c_{1} f^{9 / 5} & 0 & 0 \\
0 & -c_{1} f^{9 / 5} & 0 \\
0 & 0 & -c_{1} f^{9 / 5}
\end{array}\right), \nabla^{\perp} e_{4}=0
$$

and

$$
\begin{align*}
& \omega_{12}\left(e_{1}\right)=\omega_{13}\left(e_{1}\right)=\omega_{12}\left(e_{3}\right)=\omega_{13}\left(e_{2}\right)=\omega_{23}\left(e_{2}\right)=\omega_{23}\left(e_{3}\right)=0 \\
& \omega_{12}\left(e_{2}\right)=\omega_{13}\left(e_{3}\right)=-\frac{3 e_{1}(f)}{5 f} \tag{3.21}
\end{align*}
$$

for a smooth nonvanishing function f satisfying $e_{2}(f)=e_{3}(f)=0$.
Proof Assume that ψ is proper biconservative PNMCV. Because of Lemma 3.3, the shape operators of ψ satisfies (3.6) for a constant c_{1} and some smooth functions f, f_{2} such that $e_{2}(f)=e_{3}(f)=e_{1}\left(f_{2}\right)=0$. Note that the Codazzi equations $\left(\tilde{R}\left(e_{1}, e_{2}\right) e_{3}\right)^{\perp}=\left(\tilde{R}\left(e_{2}, e_{3}\right) e_{1}\right)^{\perp}=0$ imply

$$
\omega_{13}\left(e_{2}\right)=\omega_{12}\left(e_{3}\right)=0
$$

and

$$
\begin{equation*}
f_{2} \omega_{23}\left(e_{1}\right)=0 \tag{3.22}
\end{equation*}
$$

First, we are going to prove the following claim.
Claim 3.7 If grad $f_{2}=0$ on an open, nonempty set \mathcal{O}, then $f_{2}=0$ on \mathcal{O} and $c_{1} \neq 0$.
Proof of Claim 3.7. Assume that $f_{2}=c_{2}$ on \mathcal{O} for a constant c_{2} and toward contradiction assume that $c_{2} \neq 0$. Then, on \mathcal{O} we have $\omega_{23}\left(e_{1}\right)=0$ which implies

$$
\begin{equation*}
R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)=-e_{1}(\alpha)-\alpha^{2} \tag{3.23}
\end{equation*}
$$

because of (3.22), where $\alpha=\omega_{12}\left(e_{2}\right)=\omega_{13}\left(e_{3}\right)$. By combining the Gauss equation (2.4) and (3.23), we get

$$
\left\langle h\left(e_{1}, e_{1}\right), h\left(e_{2}, e_{2}\right)-h\left(e_{3}, e_{3}\right)\right\rangle=0
$$

which implies $c_{1} c_{2} f^{12 / 5}=0$ because of (2.3) and (3.6). Therefore, we have $c_{1}=0$. In view of the equation of Gauss for $X=Z=e_{2}, Y=e_{3}$, we obtain $R\left(e_{3}, e_{2}, e_{2}, e_{3}\right)=\frac{81}{16} f^{2}-c_{2}^{2} f^{6 / 5}$ which gives

$$
\alpha^{2}=c_{2}^{2} f^{6 / 5}-\frac{81}{16} f^{2}
$$

By applying e_{1} to this equation, we obtain

$$
\begin{equation*}
e_{1}(\alpha)=\frac{1}{2 \alpha}\left(c_{2}^{2} \frac{6}{5} f^{1 / 5}-\frac{81}{8} f\right) e_{1}(f) \tag{3.24}
\end{equation*}
$$

By combining (3.23) and (3.24), we get

$$
\begin{equation*}
\left(c_{2}^{2} \frac{6}{5} f^{1 / 5}-\frac{81}{8} f\right) e_{1}(f)=2 \alpha\left(\frac{27}{16} f^{2}-c_{2}^{2} f^{6 / 5}\right) \tag{3.25}
\end{equation*}
$$

Using (3.8b), Equation (3.25) reduces to $f=0$ which yields a contradiction. Therefore, we have $c_{2}=0$. Since $f(\Omega)$ does not contain any open part lying on a hyperplane, we have $c_{1} \neq 0$.

Hence, the proof of the Claim 3.7 is completed.
Now, we are going to consider the cases grad $f_{2}=0$ and grad $f_{2} \neq 0$, separately.
Case I. grad $f_{2}=0$ on Ω. In this case, Claim 3.7 directly implies $f_{2}=0$ on Ω. Consequently, (3.6) turns into (3.20) on \mathcal{O}. A further consideration of Codazzi equations imply (3.21). Hence, we have the Case II of the proposition.

Case II. grad $f_{2} \neq 0$ at a point of Ω. In this case the open subset

$$
\mathcal{O}=\left\{q \in \Omega \mid\left(\operatorname{grad} f_{2}\right)(q) \neq 0\right\}
$$

of Ω is not empty and we have either $e_{2}\left(f_{2}\right) \neq 0$ or $e_{3}\left(f_{2}\right) \neq 0$. Assume that $e_{2}\left(f_{2}\right) \neq 0$. In this case, the open set $\mathcal{O}_{2}=\left\{q \in \mathcal{O} \mid f_{2}(q) \neq 0\right\}$ is not empty and (3.22) implies $\omega_{23}\left(e_{1}\right)=0$ on \mathcal{O}_{2}. By considering (3.6) and (3.8a), we see that the Gauss equation $\left(\tilde{R}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)\right)^{T}=0$ gives

$$
\begin{equation*}
e_{1}\left(\omega_{12}\left(e_{2}\right)\right)-\omega_{12}\left(\left[e_{1}, e_{2}\right]\right)=\frac{27 f^{2}}{8}-2 c_{1} f^{9 / 5}\left(-c_{1} f^{9 / 5}+f_{2} f^{3 / 5}\right) \tag{3.26}
\end{equation*}
$$

Now, by taking the derivative of Equation (3.26) with respect to e_{2} we obtain

$$
-2 c_{1} f^{12 / 5} e_{2}\left(f_{2}\right)=0
$$

which implies $c_{1}=0$ because of the assumptions. Consequently, (3.6) turns into (3.18). Hence, we have $\psi=\psi_{1}$ on \mathcal{O}, where ψ_{1} is the isometric immersion described in Case I of the proposition.

On the other hand, since $c_{1}=0$, Claim 3.7 implies that $\Omega-\mathcal{O}$ has empty interior because of Remark 3.4. By the continuity of ψ, we have $\psi=\psi_{1}$ on Ω which yields the Case I of the proposition.

The proof of the converse follows from Lemma 3.3.
Next, we obtain that the mean curvature of a proper biconservative PNMCV immersion can be computed intrinsically as well as the other quantities appearing in the shape operators given by (3.18) and (3.20).

Theorem 3.8 Let Ω be a 3-dimensional submanifold of \mathbb{E}^{5} and $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a proper biconservative PNMCV isometric immersion with two distinct principal curvatures. Then, the vector field e_{1} and the quantities $f^{2}, c_{1}^{2}, f_{2}^{2}$ appearing in Proposition 3.6 can be computed intrinsically.

Proof First, we assume that (Ω, g) admits the biconservative PNMCV isometric immersion ψ_{1} described in Case I of Proposition 3.6 for some smooth functions f, f_{2}. Then, by combining (3.18) with (2.3) we obtain

$$
\begin{aligned}
& h\left(e_{1}, e_{1}\right)=-\frac{3 f}{2} e_{4}, \quad h\left(e_{2}, e_{2}\right)=\frac{9 f}{4} e_{4}+f_{2} f^{3 / 5} e_{5} \\
& h\left(e_{3}, e_{3}\right)=\frac{9 f}{4} e_{4}-f_{2} f^{3 / 5} e_{5}
\end{aligned}
$$

After a direct computation by considering the Gauss equation (2.4), we get

$$
\begin{align*}
& R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=R\left(e_{3}, e_{2}, e_{2}, e_{3}\right)=-\frac{27 f^{2}}{8} \\
& R\left(e_{2}, e_{3}, e_{3}, e_{2}\right)=\frac{81 f^{2}}{16}-f_{2}^{2} f^{6 / 5} \tag{3.27}
\end{align*}
$$

Consequently, the Ricci tensor Ric of (Ω, g) satisfies Ric $\left(e_{i}\right)=\lambda_{i} e_{i}$ for the functions

$$
\lambda_{1}=-\frac{27 f^{2}}{4}, \lambda_{2}=\lambda_{3}=\frac{27 f^{2}}{16}-f_{2}^{2} f^{6 / 5}
$$

Hence, f^{2} and f_{2}^{2} can be computed in terms of eigenvalues of Ric and

$$
e_{1}=\frac{\nabla \lambda_{1}}{\left\|\nabla \lambda_{1}\right\|}
$$

On the other hand, if (Ω, g) admits the biconservative PNMCV isometric immersion ψ_{2} described in Case II of Proposition 3.6, then by a similar way we obtain the eigenvalues of Ric by

$$
\lambda_{1}=-\left(\frac{27 f^{2}}{4}+4 c_{1}^{2} f^{18 / 5}\right), \lambda_{2}=\lambda_{3}=\frac{27 f^{2}}{16}-c_{1}^{2} f^{18 / 5}
$$

and the scalar curvature of (Ω, g) is

$$
S=-\left(\frac{27 f^{2}}{16}+3 c_{1}^{2} f^{18 / 5}\right)
$$

Therefore, f^{2} and c_{1}^{2} can be computed in terms of λ_{1}, λ_{2}. Moreover, we have either $\left.e_{1}\right|_{p}=\frac{\left(\nabla \lambda_{1}\right)_{p}}{\left\|\left(\nabla \lambda_{1}\right)_{p}\right\|}$ or $\left.e_{1}\right|_{p}=\frac{(\nabla S)_{p}}{\left\|(\nabla S)_{p}\right\|}$ at a point $p \in \Omega$, because a direct computation yields that

$$
e_{1}\left(\lambda_{1}\right)^{2}+e_{1}(S)^{2} \neq 0
$$

By considering the proof of Theorem 3.8 we have the following result.

Corollary 3.9 Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be eigenvalues of the Ricci tensor of a 3-dimensional Riemannian manifold (Ω, g) which admits a proper biconservative PNMCV isometric immersion ψ into \mathbb{E}^{5} with two distinct principal curvatures. If

$$
\operatorname{dim}\left(\operatorname{span}\left\{\nabla \lambda_{1}, \nabla \lambda_{2}, \nabla \lambda_{3}\right\}\right)=1
$$

then $\psi=\psi_{2}$ and otherwise $\psi=\psi_{1}$, where ψ_{1}, ψ_{2} are the isometric immersions described in Proposition 3.6.

3.2. Biconservative immersions with three distinct principal curvatures

We first want to focus on the PNMCV biconservative isometric immersions with three distinct eigenvalues. Therefore, we assume that

$$
\begin{equation*}
k_{2} \neq \frac{9 f}{4}, \quad k_{3} \neq \frac{9 f}{4} . \tag{3.28}
\end{equation*}
$$

By considering Codazzi equations and $\left[e_{2}, e_{3}\right]\left(k_{1}\right)=0$ similar to the computations in [11], we see that the Levi-Civita connection of Ω satisfies

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=0, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=0 \\
& \nabla_{e_{2}} e_{1}=\omega e_{2}, \nabla_{e_{2}} e_{2}=-\omega e_{1}+\omega_{23}\left(e_{2}\right) e_{3}, \nabla_{e_{2}} e_{3}=-\omega_{23}\left(e_{2}\right) e_{3} \\
& \nabla_{e_{3}} e_{1}=\gamma e_{3}, \nabla_{e_{3}} e_{2}=\omega_{23}\left(e_{3}\right) e_{3}, \nabla_{e_{3}} e_{3}=-\gamma e_{1}-\omega_{23}\left(e_{3}\right) e_{2}
\end{aligned}
$$

where we put $\omega=\omega_{12}\left(e_{2}\right)$ and $\gamma=\omega_{13}\left(e_{3}\right)$. Moreover, we have

$$
\begin{align*}
e_{1}\left(k_{2}\right)=\omega\left(k_{1}-k_{2}\right), & e_{1}\left(k_{3}\right)=\gamma\left(k_{1}-k_{3}\right), \tag{3.29a}\\
e_{1}\left(l_{2}\right)=\omega\left(l_{1}-l_{2}\right), & e_{1}\left(l_{3}\right)=\gamma\left(l_{1}-l_{3}\right), \tag{3.29b}\\
e_{1}(\omega)=-\omega^{2}+\frac{3 f}{2} k_{2}-l_{1} l_{2}, & \tag{3.29c}\\
e_{1}(\gamma)=-\gamma^{2}+\frac{3 f}{2} k_{3}-l_{1} l_{3} . & \tag{3.29~d}
\end{align*}
$$

Now, we are ready to prove the following result.

Proposition 3.10 Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a proper biconservative immersion satisfying $k_{2} \neq k_{3}$ and assume that $\psi(\Omega)$ does not contain any open part lying on a hyperplane of \mathbb{E}^{5}. Then, k_{i}, l_{i}, ω and γ satisfies

$$
\begin{equation*}
X\left(k_{i}\right)=X\left(l_{i}\right)=X(\omega)=X(\gamma)=0 \quad \text { whenever } g\left(X, e_{1}\right)=0, \quad i=2,3 \tag{3.30}
\end{equation*}
$$

Proof Let ψ be a proper biconservative immersion, X be a tangent vector field such that $g\left(X, e_{1}\right)=0$.
First, we apply e_{1} on equations in (3.5) and combine the obtained equations with (3.29) and (3.5), we have

$$
\begin{align*}
\gamma\left(-3 f-2 k_{3}\right)+\omega\left(-3 f-2 k_{2}\right) & =9 e_{1}(f) \tag{3.31}\\
\left(l_{1}-l_{3}\right) \gamma+\left(l_{1}-l_{2}\right) \omega & =-e_{1}\left(l_{1}\right) \tag{3.32}
\end{align*}
$$

We apply e_{1} on these equations and consider (3.29), we obtain

$$
\begin{align*}
-6 \gamma e_{1}(f)+\gamma^{2}(12 f & \left.+8 k_{3}\right)+\omega^{2}\left(12 f+8 k_{2}\right)-9 f^{2}\left(k_{2}+k_{3}\right)-6 \omega e_{1}(f) \tag{3.33}\\
& -6 f k_{2}^{2}-6 f k_{3}^{2}+6 f l_{1}\left(l_{2}+l_{3}\right)+4 l_{1}\left(k_{2} l_{2}+k_{3} l_{3}\right)=18 e_{1}^{2}(f)
\end{aligned} \begin{aligned}
3 f k_{2} l_{1}-3 f k_{2} l_{2}- & l_{3}\left(3 f k_{3}+2 l_{1}^{2}\right)+2 \gamma e_{1}\left(l_{1}\right)+4\left(l_{3}-l_{1}\right) \gamma^{2}+3 f k_{3} l_{1} \\
+ & 2 \omega e_{1}\left(l_{1}\right)+4\left(l_{2}-l_{1}\right) \omega^{2}+2 l_{1} l_{2}^{2}+2 l_{1} l_{3}^{2}-2 l_{1}^{2} l_{2}=-2 e_{1}^{2}\left(l_{1}\right)
\end{align*}
$$

and a further computation give the equations

$$
\begin{array}{r}
+36 \omega^{2} e_{1}(f)-\gamma^{3}\left(72 f+48 k_{3}\right)-12 k_{2}^{2} e_{1}(f)-12 k_{3}^{2} e_{1}(f)-54 f k_{2} e_{1}(f) \\
\gamma\left(-12 e_{1}^{2}(f)+126 f^{2} k_{3}+72 f k_{3}^{2}+12 f l_{1}^{2}-72 f l_{1} l_{3}+27 f^{3}+8 k_{3} l_{1}^{2}-48 k_{3} l_{1} l_{3}\right) \\
+\omega\left(-12 e_{1}^{2}(f)+126 f^{2} k_{2}+72 f k_{2}^{2}+12 f l_{1}^{2}-72 f l_{1} l_{2}+27 f^{3}+8 k_{2} l_{1}^{2}-48 k_{2} l_{1} l_{2}\right) \tag{3.35}\\
-54 f k_{3} e_{1}(f)+24 l_{1} l_{2} e_{1}(f)+24 l_{1} l_{3} e_{1}(f)+36 \gamma^{2} e_{1}(f)+\omega^{3}\left(-72 f-48 k_{2}\right) \\
+12 f l_{2} e_{1}\left(l_{1}\right)+12 f l_{3} e_{1}\left(l_{1}\right)+8 k_{2} l_{2} e_{1}\left(l_{1}\right)+8 k_{3} l_{3} e_{1}\left(l_{1}\right)=36 e_{1}^{3}(f)
\end{array}
$$

$$
\begin{array}{r}
\qquad+\left(24 l_{1}-24 l_{3}\right) \gamma^{3}+\left(24 l_{1}-24 l_{2}\right) \omega^{3}-12 \gamma^{2} e_{1}\left(l_{1}\right)-12 \omega^{2} e_{1}\left(l_{1}\right) \\
+\gamma\left(-36 f k_{3} l_{1}+36 f k_{3} l_{3}-9 f^{2} l_{1}+9 f^{2} l_{3}+4 e_{1}^{2}\left(l_{1}\right)-4 l_{1}^{3}+28 l_{3} l_{1}^{2}-24 l_{3}^{2} l_{1}\right) \\
+\omega\left(-36 f k_{2} l_{1}+36 f k_{2} l_{2}-9 f^{2} l_{1}+9 f^{2} l_{2}+4 e_{1}^{2}\left(l_{1}\right)-4 l_{1}^{3}+28 l_{2} l_{1}^{2}-24 l_{2}^{2} l_{1}\right) \tag{3.36}\\
+12 f k_{2} e_{1}\left(l_{1}\right)+12 f k_{3} e_{1}\left(l_{1}\right)+4 l_{2}^{2} e_{1}\left(l_{1}\right)+4 l_{3}^{2} e_{1}\left(l_{1}\right)-6 k_{2} l_{2} e_{1}(f)-6 k_{3} l_{3} e_{1}(f) \\
\quad+6 k_{2} l_{1} e_{1}(f)+6 k_{3} l_{1} e_{1}(f)-12 l_{1} l_{2} e_{1}\left(l_{1}\right)-12 l_{1} l_{3} e_{1}\left(l_{1}\right)=-e_{1}^{3}\left(l_{1}\right),
\end{array}
$$

where we use the notation $e_{1}^{2}(\psi)=e_{1} e_{1}(\psi)$ and $e_{1}^{3}(\psi)=e_{1} e_{1} e_{1}(\psi)$ for a $\psi \in C^{\infty}(\Omega)$.
Note that by combining (3.5) with (3.31) and (3.32), we get

$$
B\binom{\omega}{\gamma}=\binom{-\frac{9 e_{1}(f)}{2}}{-e_{1}\left(l_{1}\right)}, \quad B=\left(\begin{array}{cc}
\frac{3 f}{2}+k_{2} & 6 f-k_{2} \tag{3.37}\\
l_{1}-l_{2} & 2 l_{1}+l_{2}
\end{array}\right) .
$$

Therefore, we have two cases: $\operatorname{det} B=0$ on Ω and $\operatorname{det} B \neq 0$ on an open subset of Ω.
Case I. $\operatorname{det} B=0$ on Ω. In this case, we have

$$
\begin{equation*}
-2 f l_{1}+5 l_{2} f+2 k_{2} l_{1}=0 \tag{3.38}
\end{equation*}
$$

By applying e_{1} to (3.38), we get

$$
\begin{equation*}
2 k_{2} e_{1}\left(l_{1}\right)+5 l_{2} e_{1}(f)=2 e_{1}\left(f l_{1}\right) \tag{3.39}
\end{equation*}
$$

By combining (3.38) and (3.39) we get

$$
\begin{equation*}
C\binom{k_{2}}{l_{2}}=\binom{2 f l_{1}}{e_{1}\left(2 f l_{1}\right)} \tag{3.40}
\end{equation*}
$$

where we put $C=\left(\begin{array}{cc}2 l_{1} & 5 f \\ 2 e_{1}\left(l_{1}\right) & 5 e_{1}(f)\end{array}\right)$. If $\operatorname{det} C \neq 0$, then (3.40) implies

$$
\begin{aligned}
& k_{2}=\eta_{1}\left(f, l_{1}, e_{1}(f), e_{1}\left(l_{1}\right)\right), \\
& l_{2}=\eta_{2}\left(f, l_{1}, e_{1}(f), e_{1}\left(l_{1}\right)\right)
\end{aligned}
$$

for some smooth functions η_{1}, η_{2}. In this case, we have $e_{A}\left(k_{2}\right)=e_{A}\left(l_{2}\right)=0$ for $A=2,3$ which completes the proof for this subcase.

Now, we consider the case $\operatorname{det} C=0$ which is equivalent to

$$
\begin{equation*}
l_{1}=c f \tag{3.41}
\end{equation*}
$$

for a constant c. Substituting this equation in (3.39), we get

$$
\begin{equation*}
2 c f=5 l_{2}+2 c k_{2} . \tag{3.42}
\end{equation*}
$$

Note that if $c=0$, then (3.5), (3.41) and (3.42) imply $l_{1}=l_{2}=l_{3}=0$ which gives $A_{e_{5}}=0$. In this case, we have $\widetilde{\nabla} e_{5}=0$ which yields that $\psi(\Omega)$ lies on a hyperplane of \mathbb{E}^{5} which is not possible. Therefore, we have $c \neq 0$. However, by combining (3.41) and (3.42), we get

$$
\begin{equation*}
\frac{4 c}{5} e_{1}(f)=0 \tag{3.43}
\end{equation*}
$$

which is a contradiction.
Case II. $\operatorname{det} B \neq 0$ on an open subset \mathcal{O} of Ω. In this case, from (3.37) we get

$$
\begin{align*}
\omega & =\frac{9\left(2 l_{1}+l_{2}\right) e_{1}(f)+2\left(k_{2}-6 f\right) e_{1}\left(l_{1}\right)}{6 f l_{1}-15 f l_{2}-6 k_{2} l_{1}} \tag{3.44a}\\
\gamma & =\frac{9\left(l_{2}-l_{1}\right) e_{1}(f)+\left(3 f+2 k_{2}\right) e_{1}\left(l_{1}\right)}{6 f l_{1}-15 f l_{2}-6 k_{2} l_{1}} \tag{3.44b}
\end{align*}
$$

on \mathcal{O}.
By considering (3.5) and (3.44) we see that (3.33) and (3.34) turn into

$$
\begin{array}{r}
75 f^{2} l_{1}\left(4 k_{2}-9 f\right) l_{2}^{3}-15 f\left(f\left(45 e_{1}^{2}(f)+42 k_{2} l_{1}^{2}\right)-8\left(9 e_{1}(f)^{2}+2 k_{2}^{2} l_{1}^{2}\right)\right. \\
\left.+6 f^{2}\left(5 k_{2}^{2}+4 l_{1}^{2}\right)-135 f^{3} k_{2}+405 f^{4}\right) l_{2}^{2}+3\left(4 k_{2} l_{1}\left(63 e_{1}(f)^{2}+4 k_{2}^{2} l_{1}^{2}\right)\right. \\
-3 f^{2}\left(4 l_{1}\left(-15 e_{1}^{2}(f)+16 k_{2} l_{1}^{2}+10 k_{2}^{3}\right)+15 e_{1}(f) e_{1}\left(l_{1}\right)\right)-f\left(207 l_{1} e_{1}(f)^{2}\right. \\
\left.-20 k_{2}\left(e_{1}(f) e_{1}\left(l_{1}\right)-9 l_{1} e_{1}^{2}(f)\right)+28 k_{2}^{2} l_{1}^{3}\right)-2160 f^{4} k_{2} l_{1}+1620 f^{5} l_{1} \\
\left.+12 f^{3}\left(55 k_{2}^{2} l_{1}+17 l_{1}^{3}\right)\right) l_{2}+6 f^{2}\left(-9 l_{1}\left(2 l_{1} e_{1}^{2}(f)+23 e_{1}(f) e_{1}\left(l_{1}\right)\right)+78 k_{2}^{3} l_{1}^{2}\right. \tag{3.45}\\
\left.+k_{2}\left(30 e_{1}\left(l_{1}\right)^{2}+52 l_{1}^{4}\right)\right)-2 f\left(+3 k_{2} l_{1}\left(121 e_{1}(f) e_{1}\left(l_{1}\right)-36 l_{1} e_{1}^{2}(f)\right)\right. \\
\left.+2268 f^{4} k_{2} l_{1}^{2}-972 f^{5} l_{1}^{2}+4 k_{2}^{2}\left(5 e_{1}\left(l_{1}\right)^{2}+24 l_{1}^{4}\right)-621 l_{1}^{2} e_{1}(f)^{2}+36 k_{2}^{4} l_{1}^{2}\right) \\
-144 f^{3} l_{1}^{4}+6 k_{2} l_{1}\left(63 l_{1} e_{1}(f)^{2}+2 k_{2}\left(14 e_{1}(f) e_{1}\left(l_{1}\right)-9 l_{1} e_{1}^{2}(f)\right)+4 k_{2}^{2} l_{1}^{3}\right) \\
-36 f^{3}\left(47 k_{2}^{2} l_{1}^{2}-10 e_{1}\left(l_{1}\right)^{2}\right)=0
\end{array}
$$

and

$$
\begin{gather*}
-72 f l_{1}^{2}\left(l_{1}+2 l_{2}\right) k_{2}^{3}+4 l_{1}\left(9 f^{2}\left(22 l_{1}^{2}+7 l_{2} l_{1}-20 l_{2}^{2}\right)-16 e_{1}\left(l_{1}\right)^{2}\right. \\
\left.+4\left(3 l_{1}\left(e_{1}^{2}\left(l_{1}\right)+2 l_{1}\left(l_{1}^{2}+l_{2} l_{1}+l_{2}^{2}\right)\right)\right)\right) k_{2}^{2}-6\left(12 l_{1}\left(l_{1}+2 l_{2}\right) e_{1}(f) e_{1}\left(l_{1}\right)\right. \\
+4 f\left(-l_{1}\left(7 e_{1}\left(l_{1}\right)^{2}+10 l_{2} e_{1}^{2}\left(l_{1}\right)\right)+10 l_{2} e_{1}\left(l_{1}\right)^{2}+4 l_{1}^{2}\left(e_{1}^{2}\left(l_{1}\right)-5 l_{2}^{3}\right)\right. \\
\left.\left.+8 l_{1}^{5}-12 l_{2} l_{1}^{4}-12 l_{2}^{2} l_{1}^{3}\right)+3 f^{3}\left(2 l_{1}-5 l_{2}\right)\left(38 l_{1}^{2}+17 l_{2} l_{1}-10 l_{2}^{2}\right)\right) k_{2} \tag{3.46}\\
+108 f\left(14 l_{1}^{2}-7 l_{2} l_{1}-10 l_{2}^{2}\right) e_{1}(f) e_{1}\left(l_{1}\right)-648 l_{1}\left(l_{1}-l_{2}\right)\left(2 l_{1}+l_{2}\right) e_{1}(f)^{2} \\
+12 f^{2}\left(-42 l_{1} e_{1}\left(l_{1}\right)^{2}+45 l_{2} e_{1}\left(l_{1}\right)^{2}+\left(2 l_{1}-5 l_{2}\right)^{2} e_{1}^{2}\left(l_{1}\right)+8 l_{1}^{5}-32 l_{2} l_{1}^{4}\right. \\
\left.+18 l_{2}^{2} l_{1}^{3}+10 l_{2}^{3} l_{1}^{2}+50 l_{2}^{4} l_{1}\right)+81 f^{4}\left(2 l_{1}+l_{2}\right)\left(2 l_{1}-5 l_{2}\right)^{2}=0
\end{gather*}
$$

respectively.

On the other hand, by combining (3.29c) and (3.29d) with (3.44a), (3.44b), we get

$$
\begin{array}{r}
-54 f l_{1}^{2} k_{2}^{3}+\left(6 l_{1}\left(9 f^{2}\left(2 l_{1}-5 l_{2}\right)-2 e_{1}^{2}\left(l_{1}\right)+6 l_{1}^{2} l_{2}\right)+16 e_{1}\left(l_{1}\right)^{2}\right) k_{2}^{2} \\
+\left(-54 l_{1}\left(2 l_{1}+l_{2}\right) e_{1}^{2}(f)+6\left(31 l_{1}+20 l_{2}\right) e_{1}(f) e_{1}\left(l_{1}\right)-\frac{27}{2} f^{3}\left(2 l_{1}-5 l_{2}\right)^{2}\right. \\
\left.+6 f\left(-27 e_{1}\left(l_{1}\right)^{2}+\left(14 l_{1}-5 l_{2}\right) e_{1}^{2}\left(l_{1}\right)+6 l_{2}\left(5 l_{2}-2 l_{1}\right) l_{1}^{2}\right)\right) k_{2} \tag{3.47a}\\
+9\left(44 f^{2} e_{1}\left(l_{1}\right)^{2}+3\left(2 l_{1}+l_{2}\right)\left(13 l_{1}+8 l_{2}\right) e_{1}(f)^{2}-4 f^{2} e_{1}^{2}\left(l_{1}\right)\right. \\
+3 f\left(\left(2 l_{1}-5 l_{2}\right)\left(2 l_{1}+l_{2}\right) e_{1}^{2}(f)-\left(38 l_{1}+25 l_{2}\right) e_{1}(f) e_{1}\left(l_{1}\right)\right) \\
\left.+f^{2} l_{1} l_{2}\left(2 l_{1}-5 l_{2}\right)\left(2 l_{1}-5 l_{2}\right)\right)=0
\end{array}
$$

and

$$
\begin{array}{r}
54 f l_{1}^{2} k_{2}^{3}+\left(16 e_{1}\left(l_{1}\right)^{2}-3 l_{1}\left(9 f^{2}\left(13 l_{1}-10 l_{2}\right)+4 e_{1}^{2}\left(l_{1}\right)+12\left(l_{1}+l_{2}\right) l_{1}^{2}\right)\right) k_{2}^{2} \\
+\left(54 l_{1}\left(l_{1}-l_{2}\right) e_{1}^{2}(f)+6\left(20 l_{2}-11 l_{1}\right) e_{1}(f) e_{1}\left(l_{1}\right)-6 f\left(l_{1}+5 l_{2}\right) e_{1}^{2}\left(l_{1}\right)\right. \\
\left.+18 f e_{1}\left(l_{1}\right)^{2}+36 f\left(l_{1}+l_{2}\right)\left(2 l_{1}-5 l_{2}\right) l_{1}^{2}+\frac{135}{2} f^{3}\left(4 l_{1}-l_{2}\right)\left(2 l_{1}-5 l_{2}\right)\right) k_{2} \tag{3.47~b}\\
+27\left(l_{1}-l_{2}\right)\left(5 l_{1}-8 l_{2}\right) e_{1}(f)^{2}-27 f\left(2 l_{1}-5 l_{2}\right)\left(\left(l_{1}-l_{2}\right) e_{1}^{2}(f)+e_{1}(f) e_{1}\left(l_{1}\right)\right) \\
-9 f^{2}\left(e_{1}\left(l_{1}\right)^{2}+\left(2 l_{1}-5 l_{2}\right)\left(l_{1}\left(2 l_{1}-5 l_{2}\right)\left(l_{1}+l_{2}\right)-e_{1}^{2}\left(l_{1}\right)\right)\right) \\
-\frac{243}{4} f^{4}\left(2 l_{1}-5 l_{2}\right)^{2}=0
\end{array}
$$

First, we are going to prove the following claims.
Claim 3.11 The interior of the subset $E=\left\{p \in \mathcal{O} \mid l_{1}(p)=0\right\}$ is empty.
Proof of Claim 3.11. Assume that $l_{1}=0$ on an open subset \mathcal{O}_{2} of \mathcal{O}. Then, (3.46) turns into

$$
f^{3} l_{2}^{3}\left(9 f-4 k_{2}\right)=0
$$

from which we get $l_{2}=0$. Therefore, we have $l_{1}=l_{2}=l_{3}=0$ on \mathcal{O}_{2} which yields that $\psi\left(\mathcal{O}_{2}\right)$ is contained on a hyperplane of \mathbb{E}^{5} which is a contradiction if \mathcal{O} is not empty.

Hence, the proof of the Claim 3.11 is completed.
Next, we prove the following claim.
Claim 3.12 $X\left(k_{2}\right)=0$ on \mathcal{O} if and only if $X\left(l_{2}\right)=0$ on \mathcal{O}.
Proof of Claim 3.12. Assume that $X\left(k_{2}\right)=0$ and $X\left(l_{2}\right) \neq 0$ at a point $p \in \mathcal{O}$. Then, the third degree polynomial of l_{2} appearing in left hand-side of (3.45) is a trivial polynomial. Therefore, we have $f^{2} l_{1}\left(4 k_{2}-9 f\right)=0$ which is not possible because of (3.28) and Claim 3.11.

Conversely, if $X\left(l_{2}\right)=0$ and $X\left(k_{2}\right) \neq 0$ at a point $q \in \mathcal{O}$, then we have $f l_{1}^{2}=0$ from the coefficient of k_{2}^{4} in the left hand-side of (3.45). However, this is a contradiction.

Hence, the proof of the Claim 3.12 is completed.
Now, towards contradiction assume that $X\left(k_{2}\right) \neq 0$ on an open subset of \mathcal{O} which yields $X\left(l_{2}\right) \neq 0$ because of Claim 3.12. By considering (3.5) and (3.44) we see that (3.35) and (3.36) turn into,

$$
\begin{equation*}
C_{4} l_{2}^{4}+C_{3} l_{2}^{3}+C_{2} l_{2}^{2}+C_{1} l_{2}+C_{0}=0 \tag{3.48}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{4} k_{2}^{4}+D_{3} k_{2}^{3}+D_{2} k_{2}^{2}+D_{1} k_{2}+D_{0}=0 \tag{3.49}
\end{equation*}
$$

respectively, where C_{i} and D_{i} are some smooth functions satisfying $X\left(C_{i}\right)=X\left(D_{i}\right)=0$. Next, we want to prove the following claim.

Claim 3.13 The interior of the subsets $E_{1}=\left\{p \in \mathcal{O} \mid 9 l_{1}(p) e_{1 p}(f)-5 f(p) e_{1 p}\left(l_{1}\right)=0\right\}$ is empty.

Proof of Claim 3.13. Assume that the interior of E_{1} is not empty, i.e.

$$
l_{1} e_{1}(f)-5 f e_{1}\left(l_{1}\right)=0
$$

on a nonempty open subset \mathcal{O}_{3} of \mathcal{O}. Then, on \mathcal{O}_{3} we have $l_{1}=c f^{9 / 5}$ for a constant c. We have $c \neq 0$ because of Claim 3.13. Consequently, (3.47a) turns into

$$
\begin{equation*}
\left(50 c f^{19 / 5} l_{2}-30 f e_{1}^{2}(f)+48 e_{1}(f)^{2}-75 f^{3} k_{2}\right)=0 \tag{3.50}
\end{equation*}
$$

By applying e_{1} to (3.50) and using (3.29a), (3.29b), we get

$$
\begin{equation*}
15 f^{3}\left(4 c^{2} f^{8 / 5}+9\right) e_{1}(f)-440 c f^{14 / 5} l_{2} e_{1}(f)+60 e_{1}^{3}(f) f+540 f^{2} k_{2} e_{1}(f)-132 e_{1}(f) e_{1}^{2}(f)=0 \tag{3.51}
\end{equation*}
$$

From (3.50) and (3.51) we get

$$
l_{2}=\frac{3\left(100 c^{2} f^{28 / 5} e_{1}(f)+100 e_{1}^{3}(f) f^{2}+225 f^{4} e_{1}(f)+576 e_{1}(f)^{3}-580 f e_{1}(f) e_{1}^{2}(f)\right)}{400 c f^{19 / 5} e_{1}(f)}
$$

which implies $X\left(l_{2}\right)=0$ which is a contradiction. Hence, the interior of E_{1} is empty.
On the other hand, if we assume that the interior of E_{2} is not empty, then we have $l_{1}=c f$ for a nonzero constant on a nonempty open subset \mathcal{O}_{4} of \mathcal{O}.

Hence, the proof of the Claim 3.13 is completed.
Next, we combine (3.45) with (3.48) and (3.46) with (3.49) to get

$$
\begin{align*}
\left(9 l_{1} e_{1}(f)-5 f e_{1}\left(l_{1}\right)\right)^{6}\left(P_{0}+P_{1} k_{2}+P_{2} k_{2}^{2}+\cdots+P_{13} k_{2}^{13}\right) & =0 \tag{3.52}\\
\left(9 l_{1} e_{1}(f)-5 f e_{1}\left(l_{1}\right)\right)^{6}\left(Q_{0}+Q_{1} l_{2}+Q_{2} l_{2}^{2}+\cdots+Q_{13} l_{2}^{13}\right) & =0 \tag{3.53}
\end{align*}
$$

for some P_{i}, Q_{i} satisfying $X\left(P_{i}\right)=X\left(Q_{i}\right)=0$, where we have

$$
P_{13}=A f^{4}\left(l_{1} e_{1}(f)-f e_{1}\left(l_{1}\right)\right)\left(3\left(35 f^{2}+16 l_{1}^{2}\right) e_{1}(f)-20 f l_{1} e_{1}\left(l_{1}\right)\right)^{2},
$$

$$
Q_{13}=B l_{1}^{4}\left(l_{1} e_{1}(f)-f e_{1}\left(l_{1}\right)\right)\left(15 f l_{1} e_{1}(f)-2\left(15 f^{2}+2 l_{1}^{2}\right) e_{1}\left(l_{1}\right)\right)^{2},
$$

for some $A, B \in \mathbb{R}$. Because of Claim 3.13, we have $P_{i}=Q_{i}=0$ for $i=0,1, \ldots, 13$. Note that if $l_{1} e_{1}(f)-f e_{1}\left(l_{1}\right) \neq 0$ at a point, then $P_{13}=Q_{13}=0$ implies

$$
\begin{gathered}
3\left(35 f^{2}+16 l_{1}^{2}\right) e_{1}(f)-20 f l_{1} e_{1}\left(l_{1}\right)=0, \\
15 f l_{1} e_{1}(f)-2\left(15 f^{2}+2 l_{1}^{2}\right) e_{1}\left(l_{1}\right)=0,
\end{gathered}
$$

from which we get $e_{1}(f)=0$ which is a contradiction. Therefore, we have (3.41) on \mathcal{O}, where c is a nonzero constant. By a direct computation, we see that P_{11}, Q_{11} and P_{9} turn into

$$
\begin{gathered}
P_{11}=49 c f^{3} e_{1}(f)^{2}\left(108 a_{1}^{2} e_{1}^{3}(f) f^{2}+e_{1}(f)\left(-12 a_{1}\left(116 c^{2}+675\right) f e_{1}^{2}(f)\right.\right. \\
\left.\left.+448\left(8 c^{4}+90 c^{2}+243\right) e_{1}(f)^{2}+27 a_{1}\left(48 c^{4}+352 c^{2}+405\right) f^{4}\right)\right) \\
Q_{11}= \\
c^{3} f^{3} e_{1}(f)^{2}\left(12 a_{1} e_{1}^{3}(f) f^{2}+e_{1}(f)\left(-4 a_{2}\left(44 c^{2}+261\right) f e_{1}^{2}(f)\right.\right. \\
\left.\left.+9 a_{2}\left(16 c^{2}\left(c^{2}+6\right)-9\right) f^{4}+64\left(8 c^{4}+90 c^{2}+243\right) e_{1}(f)^{2}\right)\right)
\end{gathered}
$$

and

$$
\begin{align*}
P_{9}=4 c f & \left(405000 a_{2}\left(2 c^{2}+9\right)^{2} f^{10} e_{1}^{3}(f)+526848\left(a_{2}+12\right) e_{1}(f)^{7}\right. \\
& -90000\left(c^{2}+6\right)\left(2 c^{2}+9\right)\left(11 a_{2}+240\right) f^{9} e_{1}(f) e_{1}^{2}(f) \\
& -1568\left(1007 a_{2}+9492\right) f e_{1}(f)^{5} e_{1}^{2}(f) \\
& -20000\left(116 c^{2}+675\right) f^{3} e_{1}(f) e_{1}^{2}(f)^{3} \\
& -7560\left(132 c^{2}+295\right) f^{3} e_{1}(f)^{2} e_{1}^{2}(f) e_{1}^{3}(f) \\
& +560\left(10876 c^{2}+66825\right) f^{2} e_{1}(f)^{3} e_{1}^{2}(f)^{2} \\
& +4704\left(176 c^{2}+135\right) f^{2} e_{1}(f)^{4} e_{1}^{3}(f) \\
& +101250\left(2 c^{2}+9\right)^{2}\left(48 c^{4}+352 c^{2}+405\right) f^{12} e_{1}(f) \tag{3.54}\\
& +540000\left(8 c^{4}+66 c^{2}+135\right) e_{1}^{3}(f) f^{7} e_{1}^{2}(f)+a_{3} f^{5} e_{1}(f)^{3} e_{1}^{2}(f) \\
& -15000\left(784 c^{4}+8520 c^{2}+23085\right) f^{6} e_{1}^{2}(f)^{2} e_{1}(f) \\
& -315\left(9008 c^{4}+85800 c^{2}+184275\right) f^{6} e_{1}^{3}(f) e_{1}(f)^{2} \\
& +180000 a_{2} e_{1}^{3}(f) e_{1}^{2}(f)^{2}+151200 a_{2} e_{1}^{3}(f)^{2} e_{1}(f) \\
& \left.-392\left(1928 c^{4}+103626 c^{2}+564975\right) f^{4} e_{1}(f)^{5}\right) \\
& +105 c\left(221632 c^{6}+4561488 c^{4}+30995460 c^{2}+70038675\right) f^{9} e_{1}(f)^{3},
\end{align*}
$$

where we put $a_{1}=c^{2}+15, a_{2}=4 c^{2}+15, a_{3}=35\left(327568 c^{4}+4714920 c^{2}+16099965\right)$. By a direct computation
considering $P_{11}=Q_{11}=0$, we get

$$
\begin{array}{lc}
e_{1}^{2}(f)= & -\frac{-16 c^{2} e_{1}(f)^{2}+108 c^{2} f^{4}-72 e_{1}(f)^{2}+405 f^{4}}{3 a_{2} f} \\
e_{1}^{3}(f)= & \frac{32\left(2 c^{2}+9\right)\left(5 a_{2}+24\right) e_{1}(f)^{3}-27 a_{2}\left(a_{2}+8\right)\left(a_{2}+30\right) f^{4} e_{1}(f)}{36 a_{2}^{2} f^{2}} \tag{3.56}
\end{array}
$$

By taking derivative (3.55) in the direction of e_{1} and considering (3.56), we get

$$
\left(81-16 c^{4}\right) f^{2} e_{1}(f)=0
$$

which implies $c=\frac{3 \epsilon}{2}$, where $\epsilon= \pm 1$. Consequently, the first equation in (3.55) turns into

$$
2 f e_{1}^{2}(f)-3 e_{1}(f)^{2}+18 f^{4}=0
$$

which implies

$$
\begin{equation*}
e_{1}(f)=\delta \sqrt{b f^{3}-18 f^{4}} \tag{3.57}
\end{equation*}
$$

for some constants b, δ such that $\delta= \pm 1$. By combining (3.55)-(3.57) with (3.54), we get

$$
\begin{aligned}
P_{9}= & \frac{243 \epsilon}{2} f^{23 / 2}(b-18 f)^{3 / 2}\left(77824 b^{2}(\delta-1)\right. \\
& \left.+32 b(1243091-1243679 \delta) f+9(76049257 \delta-75972425) f^{2}\right)
\end{aligned}
$$

which implies that P_{9} does not vanish outside of a set with empty interior. However, this is a contradiction.
Hence, we have $X\left(k_{2}\right)=X\left(l_{2}\right)=0$. Consequently, (3.31),(3.32) and (3.5) imply $X\left(k_{3}\right)=X\left(l_{3}\right)=$ $X(\omega)=X(\gamma)=0$.

Similar to Theorem 3.8, we obtain the following theorem.
Theorem 3.14 Let (Ω, g) be a 3-dimensional Riemannian manifold and $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a proper biconservative PNMCV isometric immersion with three distinct principal curvatures. Then, the principal directions e_{1}, e_{2}, e_{3}, principal curvatures k_{2}, k_{3} and the functions f, l_{1}, l_{2}, l_{3} can be determined intrinsically up to their signature.

Proof By considering the Gauss equation and the shape operators of ψ, we obtain Ric of (Ω, g) satisfies $\operatorname{Ric}\left(e_{i}\right)=-\lambda_{i} e_{i}$ for some functions λ_{1}, λ_{2} and λ_{3}. Note that Proposition 3.10 implies $e_{A}\left(\lambda_{i}\right)=0$ and we have

$$
\begin{equation*}
\lambda_{1}=\frac{27 f^{2}}{4}+l_{1}^{2} \tag{3.58}
\end{equation*}
$$

Consequently, $D=\operatorname{span}\left\{\nabla \lambda_{1}, \nabla \lambda_{2}, \nabla \lambda_{3}\right\}=\operatorname{span}\left\{e_{1}\right\}$ which yields that e_{1} and λ_{1} can be determined intrinsically. Furthermore, e_{2}, e_{3} and ω, γ are unit eigenvectors and eigenvalues of the linear transformation

$$
L: D^{\perp} \rightarrow D^{\perp}, L(X)=\nabla_{X} e_{i}
$$

Therefore, they also can be determined intrinsically. Define $\tau_{i j}$ by

$$
\begin{equation*}
\tau_{i j}=R\left(e_{i}, e_{j}, e_{i}, e_{j}\right), \quad 1 \leq i<j \leq 3 \tag{3.59}
\end{equation*}
$$

By a direct computation combining Codazzi equations (3.29a) and (3.29b) with Gauss equations, we obtain

$$
\begin{equation*}
(\omega+\gamma)\left(\frac{9 f^{2}}{4}+l_{1}^{2}\right)=e_{1}\left(\tau_{12}+\tau_{13}+\frac{1}{2} \lambda_{1}\right)+\omega \tau_{12}+\gamma \tau_{13} \tag{3.60}
\end{equation*}
$$

From (3.58) and (3.60), we see that f and l_{1} can be determined intrinsically. A further computation by considering (3.28) and (3.59), one can obtain $k_{2}, k_{3}, l_{2}, l_{3}$ in terms of $\tau_{12}, \tau_{13}, \tau_{23}, f$ and l_{1}.

Consequently, we have the following result which can be obtained using [7, Theorem 1.1 at page 7].
Corollary 3.15 If a 3-dimensional Riemannian manifold (Ω, g) admits two proper biconservative PNMCV isometric immersions into \mathbb{E}^{4} with three distinct principal curvatures, then these immersions differ by an isometry of \mathbb{E}^{5}.

4. Biharmonic submanifolds

In this section we consider biharmonic PNMCV submanifolds of dimension 3 and prove the following theorem.

Theorem 4.1 Let $\psi:(\Omega, g) \hookrightarrow \mathbb{E}^{5}$ be a PNMCV isometric immersion, where (Ω, g) is a three-dimensional Riemannian manifold. Then, ψ cannot be biharmonic.

Proof Suppose that ψ is a biharmonic PNMCV isometric immersion. It was proved in [11] that a biharmonic hypersurface in \mathbb{E}^{4} is harmonic. Therefore, by considering Theorem 2.3, we assume that $\psi(\Omega)$ does not contain any open part lying on a hyperplane of \mathbb{E}^{5}.

Since ψ is biharmonic, it is biconservative and (2.10) is satisfied. By a direct computation considering (2.10) and (3.4), we get

$$
\begin{array}{r}
\Delta f=f\left(\frac{9 f^{2}}{4}+k_{2}^{2}+k_{3}^{2}\right) \\
4 l_{2} k_{2}+4 l_{3} k_{3}+l_{2} k_{3}+l_{3} k_{2}=0 \tag{4.1b}
\end{array}
$$

Note that because of (3.29a), (3.29b), (3.5) and (4.1b), l_{2}, k_{2}, l_{3} and k_{3} does not vanish outside of a subset Ω with empty interior.

First, towards contradiction, we assume $k_{2} \neq k_{3}$ at a point $p \in \Omega$. Then, on a neighborhood \mathcal{N}_{p} of p, we have (3.30) because of Proposition 3.10. Therefore, the Gauss equation $\left(\tilde{R}\left(e_{2}, e_{3}, e_{2}, e_{3}\right)\right)^{T}=0$ gives

$$
\begin{equation*}
\omega \gamma=k_{2} k_{3}+l_{2} l_{3} \quad \text { if } k_{2} \neq k_{3} \tag{4.2}
\end{equation*}
$$

By applying e_{1} to (4.1b), (4.2), then consider (3.29), (3.5) and (4.2), we obtain

$$
\begin{align*}
\left(4 k_{2}+k_{3}\right)\left(5 l_{2}+2 l_{3}\right) \omega+\left(k_{2}+4 k_{3}\right)\left(2 l_{2}+5 l_{3}\right) \gamma & =0 \tag{4.3a}\\
P_{1}\left(k_{2}, k_{3}, l_{2}, l_{3}\right) \omega+P_{1}\left(k_{3}, k_{2}, l_{3}, l_{2}\right) \gamma & =0 \tag{4.3b}
\end{align*}
$$

where P is the polynomial given by

$$
P_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=-3 x_{1} y_{1}-3 x_{2} y_{2}+2 x_{1}^{2}+5 x_{1} x_{2}+6 y_{1}^{2}+9 y_{1} y_{2}
$$

By considering Theorem 2.3 and using (3.29a), (3.5), we observe that the interior of the set $K=\{p \in \Omega$: $\omega(p)=\gamma(p)=0\}$ is empty. Therefore, (4.1b) and (4.3) imply

$$
\begin{align*}
32 k_{2}^{3} l_{3}-6 k_{2}^{2} l_{3}^{2}-232 k_{3} k_{2}^{2} l_{3}-120 k_{2} l_{3}^{3}-135 k_{3} k_{2} l_{3}^{2}-958 k_{3}^{2} k_{2} l_{3}-480 k_{3} l_{3}^{3}-30 k_{3}^{2} l_{2}^{2} \\
+36 k_{3}^{2} l_{3}^{2}-2040 k_{3} l_{2} l_{3}^{2}-30 k_{3}^{3} l_{2}+8 k_{3}^{3} l_{3}-960 k_{3} l_{2}^{2} l_{3}-135 k_{3}^{2} l_{2} l_{3}=0 \tag{4.4}
\end{align*}
$$

outside of K. We apply e_{1} to (4.4) and use the same procedure to get

$$
\begin{equation*}
P_{2}\left(k_{2}, k_{3}, l_{2}, l_{3}\right) \omega+P_{3}\left(k_{2}, k_{3}, l_{2}, l_{3}\right) \gamma=0 \tag{4.5}
\end{equation*}
$$

for some fourth degree polynomials P_{2}, P_{3}. By considering (4.3a), (4.5), we obtain

$$
\begin{array}{r}
-1920 l_{2}^{2} k_{2}^{4}+2240 l_{3}^{2} k_{2}^{4}+800 l_{2} l_{3} k_{2}^{4}+1416 l_{3}^{3} k_{2}^{3}+13440 k_{3} l_{2}^{2} k_{2}^{3}+32848 k_{3} l_{3}^{2} k_{2}^{3} \\
+4332 l_{2} l_{3}^{2} k_{2}^{3}+720 l_{2}^{2} l_{3} k_{2}^{3}+89848 k_{3} l_{2} l_{3} k_{2}^{3}+18720 l_{3}^{4} k_{2}^{2}+1200 k_{3} l_{2}^{3} k_{2}^{2} \\
+13398 k_{3} l_{3}^{3} k_{2}^{2}+76800 l_{2} l_{3}^{3} k_{2}^{2}+62760 k_{3}^{2} l_{2}^{2} k_{2}^{2}+58896 k_{3}^{2} l_{3}^{2} k_{2}^{2}+70080 l_{2}^{2} l_{3}^{2} k_{2}^{2} \\
+50019 k_{3} l_{2} l_{3}^{2} k_{2}^{2}+19200 l_{2}^{3} l_{3} k_{2}^{2}+22260 k_{3} l_{2}^{2} l_{3} k_{2}^{2}+291372 k_{3}^{2} l_{2} l_{3} k_{2}^{2}+57600 k_{3} l_{2}^{4} k_{2} \\
+48960 k_{3} l_{3}^{4} k_{2}+12480 k_{3}^{2} l_{2}^{3} k_{2}-15324 k_{3}^{2} l_{3}^{3} k_{2}+420000 k_{3} l_{2} l_{3}^{3} k_{2}+21180 k_{3}^{3} l_{2}^{2} k_{2} \tag{4.6}\\
-65536 k_{3}^{3} l_{3}^{2} k_{2}+837840 k_{3} l_{2}^{2} l_{3}^{2} k_{2}+1146 k_{3}^{2} l_{2} l_{3}^{2} k_{2}+441600 k_{3} l_{2}^{3} l_{3} k_{2} \\
+40380 k_{3}^{2} l_{2}^{2} l_{3} k_{2}+35312 k_{3}^{3} l_{2} l_{3} k_{2}+14400 k_{3}^{2} l_{2}^{4}-103680 k_{3}^{2} l_{3}^{4}+345 k_{3}^{3} l_{2}^{3} \\
-12240 k_{3}^{3} l_{3}^{3}-283200 k_{3}^{2} l_{2} l_{3}^{3}+240 k_{3}^{4} l_{2}^{2}-21248 k_{3}^{4} l_{3}^{2}-145920 k_{3}^{2} l_{2}^{2} l_{3}^{2} \\
-24372 k_{3}^{3} l_{2} l_{3}^{2}+22800 k_{3}^{2} l_{2}^{3} l_{3}-5460 k_{3}^{3} l_{2}^{2} l_{3}-12032 k_{3}^{4} l_{2} l_{3}=0
\end{array}
$$

outside of K. Finally, by obtaining the resultant of the polynomials appearing on the right hand side of (4.1b),(4.4),(4.6) with respect to l_{2} and l_{3}, we get

$$
\begin{array}{r}
-43200\left(4 k_{2}+k_{3}\right)^{2}\left(k_{2}+4 k_{3}\right)^{3}\left(4 k_{2}^{2}-13 k_{3} k_{2}+4 k_{3}^{2}\right)\left(73381632 k_{2}^{18}\right. \\
-689651232 k_{3} k_{2}^{17}+95630336 k_{3}^{2} k_{2}^{16}+20048552092 k_{3}^{3} k_{2}^{15}-51528775696 k_{3}^{4} k_{2}^{14} \\
-156852284797 k_{3}^{5} k_{2}^{13}+662866585600 k_{3}^{6} k_{2}^{12}+140071434296 k_{3}^{7} k_{2}^{11} \\
-1622719053552 k_{3}^{8} k_{2}^{10}+2974299612642 k_{3}^{9} k_{2}^{9}-1622719053552 k_{3}^{10} k_{2}^{8} \\
+140071434296 k_{3}^{11} k_{2}^{7}+662866585600 k_{3}^{12} k_{2}^{6}-156852284797 k_{3}^{13} k_{2}^{5} \\
-51528775696 k_{3}^{14} k_{2}^{4}+20048552092 k_{3}^{15} k_{2}^{3}+95630336 k_{3}^{16} k_{2}^{2} \\
\left.-689651232 k_{3}^{17} k_{2}+73381632 k_{3}^{18}\right)=0
\end{array}
$$

from which we see

$$
\begin{equation*}
k_{2}=c k_{3} \tag{4.7}
\end{equation*}
$$

for a constant c such that $c \notin\{-1,1\}$. From (3.5), (4.1b) and (4.7) we get

$$
\begin{align*}
k_{2}=\frac{9 f}{2(c+1)}, & k_{3}=\frac{9 c f}{2(c+1)} \\
l_{2}=-\frac{(4 c+1) l_{1}}{3(c-1)}, & l_{3}=\frac{(c+4) l_{1}}{3(c-1)} \tag{4.8}
\end{align*}
$$

Finally, by combining (3.29a) and (3.29b) with (4.8), we obtain

$$
\begin{aligned}
& (4 c+1) f e_{1}\left(l_{1}\right)-3 l_{1} e_{1}(f)=0 \\
& (c+4) f e_{1}\left(l_{1}\right)-3 c l_{1} e_{1}(f)=0
\end{aligned}
$$

which implies $e_{1}(f)=0$ unless $c^{2}-1=0$. However, this is a contradiction. Hence, we have $k_{2}=k_{3}$ on Ω.
Since we have $k_{2}=k_{3}$, (3.5) and (4.1b) imply $l_{1}=0$. Therefore, ψ is the isometric immersion given in Case I of Proposition 3.6. Consequently, (3.19) and (4.1a) give

$$
\begin{equation*}
40 f e_{1}^{2}(f)-48 e_{1}(f)^{2}+495 f^{4}=0 \tag{4.9}
\end{equation*}
$$

On the other hand, the Gauss equation $\left(\tilde{R}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)\right)^{T}=0$ implies

$$
\begin{equation*}
40 f e_{1}^{2}(f)-64 e_{1}(f)^{2}+225 f^{4}=0 \tag{4.10}
\end{equation*}
$$

However, (4.9) and (4.10) imply $8 e_{1}(f)^{2}+135 f^{4}=0$ which yields a contradiction.
Combining Theorem 4.1 with [6, Theorem 1] and [10, Theorem 1.1] provides the following partial answer for Chen's biharmonic conjecture.

Theorem 4.2 There do not exist proper biharmonic submanifolds in \mathbb{E}^{5} with the parallel normalized mean curvature vector.

References

[1] Branding V, Oniciuc C. Unique continuation theorems for biharmonic maps. Bulletin of the London Mathematical Society 2019; 51 (4): 603-621. doi: 10.1112/blms. 12240
[2] Caddeo R, Montaldo S, Oniciuc C, Piu P. Surfaces in the three-dimensional space forms with divergence-free stressbienergy tensor. Annali di Matematica Pura ed Applicata 2014; 193: 529-550. doi: 10.1007/s10231-012-0289-3
[3] Chen BY. Geometry of submanifolds. Marcel Dekker 1973; New York.
[4] Chen BY. Total mean curvature and submanifolds of finite type. World Scientific 1984; Singapore.
[5] Chen BY. Some open problems and conjectures on submanifolds of finite type. Soochow Journal of Mathematics 1991; 17 (2): 169-188.
[6] Chen BY. Chen's biharmonic conjecture and submanifolds with parallel normalized mean curvature vector, Mathematics 2019; 7 (8): 710. doi: 10.3390/math7080710
[7] Dajczer M. Submanifolds and isometric immersions. Publish or Perish 1990; Houston.
[8] Dimitrić I. Submanifolds of \mathbb{E}^{n} with harmonic mean curvature vector. Bulletin of the Institute of Mathematics Academia Sinica 1992; 20: 53-65.
[9] Eells J, Sampson JH. Harmonic mappings of Riemannian manifolds. American Journal of Mathematics 1964; 86, 109-160.
[10] Gupta RS, Sharfuddin A. Biharmonic hypersurfaces in Euclidean space E^{5}. Journal of Geometry 2016; 107: 685705. doi: 10.1007/s00022-015-0310-2
[11] Hasanis T, Vlachos I. Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field. Mathematische Nachrichten 1995; 172 : 145-169. doi: 10.1002/mana. 19951720112
[12] Jiang GY. 2-harmonic isometric immersions between Riemannian manifolds. Chinese Annals of Mathematics Series A 1986; 7 (2): 130-144.
[13] Jiang GY. 2-harmonic maps and their first and second variational formulas. Chinese Annals of Mathematics Series A 1986; 7 (4): 389-402.
[14] Montaldo S, Oniciuc C, Ratto A. Biconservative surfaces. Journal of Geometric Analysis 2016; 26 (1): 313-329. doi: 10.1007/s12220-014-9551-9
[15] Turgay NC. H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces. Annali di Matematica Pura ed Applicata 2015; 194: 1795-1807. doi: 10.1007/s10231-014-0445-z
[16] Yeğin Şen R, Turgay NC. On biconservative surfaces in 4-dimensional Euclidean space. Journal of Mathematical Analysis and Applications 2018 ; 460 (2): 565-581. doi: 10.1016/j.jmaa.2017.12.009

[^0]: *Correspondence: ruya.yegin@medeniyet.edu.tr
 2010 AMS Mathematics Subject Classification: 53C42

