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Abstract: In this article, we study 3-dimensional biconservative and biharmonic submanifolds of E® with parallel

normalized mean curvature vector (PNMCV). First, we prove that the principal curvartures and principal directions of
biconservative PNMCV isometric immersions into E®> can be determined intrinsically. Then, we complete the proof of

Chen’s biharmonic conjecture for PNMCV submanifolds of E°.
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1. Introduction

The study of biharmonic submanifolds was initiated by Chen in the middle of 1980s in his program of under-
standing finite type submanifolds of Euclidean spaces as well as pseudo-Euclidean spaces [4]. In the mean time,
in [12] and [13], Jiang studied biharmonic isometric immersions between Riemannian manifolds by considering
the notion of k-harmonic maps proposed by Eells and Sampson in [9].

Chen and Jiang independently showed that there are no biharmonic surfaces in E3 except the minimal
ones. Later, this result was generalized by Dimitric in [8]. In 1991, based on these initial results, Chen claimed
that all biharmonic submanifolds of Euclidean spaces are minimal [5]. Although this claim, named as Chen’s
biharmonic conjecture, was proved to be true in a lot of partial cases (see, for example, [2, 6, 10, 11, 16]), Chen’s
original problem is still open.

On the other hand, in order to understand the geometrical properties of biharmonic submanifolds, some
geometers have shown attention to investigate biconservative submanifolds, [2, 14-16]. For example, the general
notion of biconservative submanifolds was introduced in [2]. Also, the complete classification of biconservative
hypersurfaces in Euclidean spaces with three distinct principal curvatures is obtained by the second named
author in [15].

In [16], authors studied geometrical properties of PNMCYV surfaces of E* and we also proved that a
biharmonic PNMCV surface in E* is minimal. Recently, Chen generalized this result into the Euclidean
spaces of arbitrary dimension, [6]. In this paper, we study PNMCYV isometric immersions from a 3-dimensional
Riemannian manifolds into E°. In Section 2, we give a brief summary of the basic definitions and basic facts of

theory of submanifolds. Section 3 is devoted to study some of geometrical properties of biconservative PNMCV
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submanifolds. We obtain our main result in Section 4.
The manifolds that we are dealing with are smooth and connected unless otherwise is stated.

2. Preliminaries
In this section, we would like to give some basic definitions and formulas that we will use in the remaining part

of the paper. Moreover, we recall some theorems related with our study.

2.1. Isometric immersions into E°

Let E™ = (R™, §) denote the Euclidean n-space with the metric tensor § given by

G=(..)=Y da?,
=1

where (z1,z2,...,2,) is a Cartesian coordinate system of E™.
Let ¢ : (Q,9) < E® be an isometric immersion of a 3-dimensional Riemannian manifold (£2,g) into a

Euclidean 5-space E®. Denote the Levi-Civita connections of Q and E? by V and V, respectively. Then the

Gauss and Weingarten formulas are given by

VxY = VxY +h(X,Y), (2.1)

Vxé

—A¢(X) + V¢, (2.2)

respectively, for any vector fields X,Y tangent to 2 and £ normal to €2, where h and A¢ are the second

fundamental form and the shape operator of 1 along the normal direction ¢, respectively and V* is the

normal connection. Note that h and A satisfy
9(A¢(X),Y) = g(h(X,Y),§). (2.3)

A normal vector field 7 is called parallel if V%7 = 0 whenever X is tangent to Q. On the other hand, the

Ricci tensor Ric and the scalar curvature S of (€, ¢g) are defined by
Ric(X) = tr (R(-, X)) and S =tr (Ric).

The mean curvature vector field H of 1 is defined by H = %trh and the mean curvature of 1) is given

by f = (H,H)'/2. 4 is called minimal if f vanishes identically. The covariant derivative Vh of h is defined
by
(Vxh)(Y,Z) = Vxh(Y,Z) = h(VxY,Z) = h(Y,VxZ)

for any tangent vector fields X,Y and Z on Q. If R and R stand for the curvature tensor of € and E,
- T - 1

respectively, then, the Gauss equation (R(X , Y)Z) = 0 and the Codazzi equation (R(X , Y)Z) = 0 become

R(X,Y)Z = Apy,2)X — Anx,2)Y, (2.4)

(Vxh)(Y, 2) = (Vyh)(X, Z). (2.5)
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Now, assume that 1 has parallel normalized mean curvature vector es. In this case, the Ricci equation

. T
(R(X , Y)f) = 0 yields that all the shape operators of ¢ can be diagonalized simultaneously (see [3, Propo-

sition 1.2]). Therefore, by abusing the terminology, we are going to call X as a principal direction of 1 if
Ac, X = kX, where the smooth function £ is going to be called as the corresponding principal curvature. Note

that there exists an orthonormal frame field {e,eq,e3;€e4,e5} such that
Ae4 = diag (k‘h k‘g, kg) s Ae5 = diag (ll, l2, l3) (26)

for some smooth functions k;,l; satisfying {1 +1lo+13 =0 and ki + ks + k3 = 3f.

2.2. Biconservative and biharmonic immersions
In this subsection, we present a summary about biconservative and biharmonic immersions.
A biharmonic map ¥ : (2,g9) — (N, g) between two Riemannian manifolds is a critical point of the

bienergy functional defined by
1
Baw) =5 [ )Py,
Q

where ¢ is a smooth map, v, is the volume element of Q and 7(¢) = tr Vdi is the tension field of ¢. In [13],
Jiang obtained the first and second variational formulas for Fy and proved that ¢ is biharmonic if and only if

it satisfies the Euler-Lagrange equation associated with bienergy functional given by
m2(1) =0, (2.7)
where 75 is the bitension field of v defined by
() = Ar(¢) - tr R(dy, 7(4)dy,
where A is the Rough-Laplacian. On the other hand, a mapping ¢ : (Q,9) — (N, g) satisfying the condition
(r2(¥), dyp) =0, (2.8)

that is weaker than (2.7) is said to be biconservative. When 1 is an isometric immersion, Equation (2.8) turns

into

where 75(1))T denotes the tangential part of 75(1). In this case, Q is said to be a biconservative submanifold
of N.
By considering tangential and normal components of 75(1) from (2.7), one can obtain the following

proposition (see, for example, [14]).

Proposition 2.1 [14] Let ¢ : (M,g) < N be an isometric immersion between two Riemannian manifolds.

Then, v s biharmonic if and only if the equations
mgrad ||H|* + 4tr Ag. () + 4tr (R(-, H))T =0 (2.9)

and
~AYH +trh(Ag(-),-) +tr (R(-, H) )t =0 (2.10)

are satisfied, where m is the dimension of M and A* is the Laplacian associated with V= .
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By considering Proposition 2.1, one can conclude the following well-known proposition.

Proposition 2.2 [14] Let © : (M,g) — N be an isometric immersion between two Riemannian manifolds.

Then, v is biconservative if and only if Equation (2.9) is satisfied.

The following theorem will be used later.

Theorem 2.3 [1] Let ¢ : (M, g) — N be a biharmonic map. If ¢ is harmonic on an open subset, then it is

harmonic everywhere.

3. Biconservative submanifolds

In this section, we consider biconservative PNMCV isometric immersions into E°. Let ¢ : (€,g) < E° be a

biconservative PNMCYV isometric immersion.

Remark 3.1 Since the study on biconservative hypersurfaces in B* completed in [11], we are going to assume

that ¥(Q) does not contain any open part lying on a hyperplane of ES .

Since the curvature tensor R of E® vanishes identically, by using (2.9) one can obtain that ¥ is

biconservative if and only if

Ac,(grad f) = %f(grad 1), (3.1)

where A, is the shape operator of 2 along the normalized mean curvature vector e4 of .

Remark 3.2 If the mean curvature of v is parallel, then (2.9) is satisfied trivally. Furthermore, because of
Theorem 2.3 and Equation (2.10), a biharmonic PNMCV immersion must be necessarily harmonic if ||grad f]|
vanishes on an open, nonempty subset of Q2. Therefore, we are going to call a biconservative PNMC'V immersion

as proper if ||grad f|| does not vanish.
Now, assume that v is a proper biconservative PNMCV immersion. Then, we have
Vxes = Vyes =0, (3.2)

where e5 is a unit normal vector field orthogonal to e4. On the other hand, if e; is chosen to be proportional
to grad f, then (3.1) implies

er(f) #0, ea(f) = es(f) =0 (3.3)
and k; = f%. Consequently, the matrix representations of the shape operators of 1) with respect to a suitable
frame field {e1,e2,e3} takes the form

=30 0 lh 0 0
A, = 0 ke O , Ae, = 0 I O (3.4)
0 0 ks 0 0 I

for some smooth functions ko, k3,11, 12,13 satisfying

k2+k3:%andl1+lg+l3:0. (3.5)
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3.1. Two distinct principal curvatures

In this subsection, we focus biconservative PNMCYV isometric immersion into E® with two distinct principal
curvatures. Note that if k4 = _73]‘ for A =2 or A =3 on an open subset, then the Codazzi equation (2.5)
with X =Z =e4, Y = e; give e1(f) = 0 which is a contradiction because of (3.3). Therefore, we are going
to consider the case ki # ko = k3. First, we consider the shape operators of PNMCYV biconservative isometric

immersions into E°.

Lemma 3.3 Let v : (2,g) < E® be an isometric immersion with two distinct principal curvatures, where
(Q,9) is a 3-dimensional Riemannian manifold. 1 is proper biconservative PNMCYV if and only if there exists

an orthonormal frame field {e1, ez, e3;eq4,e5} such that

=300 2¢; f9/5 0 0
A= 0 3 0 | A, = 0 —af ot fofls 0 (3.6)
0o o % 0 0 —c1 fO% — fof3/

and V+tey =0 for some smooth functions f, fa and a constant ¢y such that ex(f) = e3(f) = e1(f2) = 0, where

f does not vanish.

Proof Let v : (Q,g) — E® be an isometric immersion with two distinct principal curvatures, i.e. ks, k3 satisfy

_9f

ko = k3 1

(3.7)
In order to prove the necessary condition we assume that 1 is proper biconservative and PNMCV. Then, the

- 1L . 1
Codazzi equations (R(el,eA)q) =0 and (R(el,eA)eA) =0 give

wlA(el) = 0, eA(ll) = 0, (38&)
wialez) = %3 el;f) and (3.8b)
ei(la) = 36;}](‘) (la—1),A=2,3, (3.8¢)

respectively. By considering (3.5), we obtain
Iy = 2¢,f°/° (3.9)

from (3.8¢), for a smooth function ¢; satisfying ej(c;) = 0. By taking into account (3.8a), we get ez(cy) =

es(c1) = 0 which yields that ¢; is a constant. Moreover, from (3.8c) and (3.9) we obtain

o = —c1f*° + fof P (3.10)
for a smooth function fo satisfying e;(f2) = 0. Consequently, (3.5) implies

Iy = —c1 f° — fof 0. (3.11)

By combining (3.4) with (3.7) and (3.9)-(3.11), we obtain (3.6). This completes the proof of the necessary

condition. The converse of the lemma is trivial.
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Remark 3.4 One can observe that a frame field {e1, ea,e3;e4,€5} satisfying the conditions in Lemma 3.5 can

be globally constructed if v : (Q,g) < E° is a proper biconservative PNMCYV isometric immersion with two

distinct principal curvatures because

grad f H
_ _stadJ o4 = —

€1 = )
lgrad f f
and ez, ez can be constructed to be an eigenvalue of A.,|,, at every point of 2, where
D = (span{e: })".

Before we continue, we would like to obtain the following result of Lemma 3.3.

Lemma 3.5 Let v : (,9) < E® be a proper biconservative PNMCYV isometric immersion with two distinct

principal curvatures and put e = % , where f is the mean curvature of 1. Then,

(a) An integral curve of ey lies on a 3-plane of E°.

(b) The curvature k and torsion T of an integral curve of ey satisfy

Kk = f\/%—&—élc%fs/i (3.12a)

12 (61||gradf||f‘1/5)

5 (Trrae (3.12b)

Proof Let {ey,ea,e3;¢e4,e5} be an orthonormal frame field on €2 satisfying the properties given in Lemma 3.3
and we suppose that + is an integral curve of e; and it is parametrized by ~(s) = x(s,to). Consider the Frenet

frame {T(s), N(s), B1(s), Ba(s), Bs(s)} at a point v(s), where we put T'(s) = 7/(s). Note that we have

DT

E = H1N(S),
DN
- = —k1T(8) + K2(8)B1i(s),
s
DB
dsl = —raN(s) + r3Ba(s),
DB
7 z _ —k3B1(s) + k4 Bs(s),
s
DB
dSS = *H4B2(5)7

D
where 7s denotes the covariant derivative on v and k;(s), ¢ = 1,2,3 is the i-th curvature of .
S

By considering (3.6) with the Gauss formula, we obtain

DT 3f(s)

ds 2

ea(s) + 2c1£(s)* Pes(s), (3.13)
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where e4(s),e5(s) are restrictions of ey, e5 to v from which we get

k1 = f(s) % +4c2f(s)*® (3.14)
and
S) = 1 ;36 S C1 S 4/56 S . .
N(s) 2+%H@W5<24)+2fﬂ ) (3.15)

By a further computation using (3.3) and (3.15), we get

o - o W2<ifﬁf@f“ngadfens>+ﬁqu@>1“|gadﬂwa$)
(§+47(5)°)
— f(s) g + 4c%f(s)8/5el(s).
Therefore, we have
12 [ cilgrad £ £(s)""/°
_ - 3.16
h 5( FWETTRLE 1)
and
B(s) = 1 <201 F(s)Peq(s) + 365(5)> . (3.17)
8 a3 (s)° ’

DB
Next, we compute o5 and get k3 = 0 which yields that ~ lies on a 3-plane of E5. Moreover, k = K
S
is the curvature and 7 = ko is the torsion of 7.

Next, by using the Lemma 3.3, we obtain the following characterization of proper biconservative PNMCV
immersions.

Proposition 3.6 Let Q be a 3-dimensional submanifold of E> and v : (Q, g) < E® be an isometric immersion

with two distinct principal curvatures. Then, ¥ is proper biconservative PNMCYV if and only if it is one of the
following two classes of isometric immersions.
Case 1. An isometric immersion 11 which has an orthonormal frame field {e1,ea,e3;€4,e5} such that

-3

30 0 0 0 0
A= 0 2 0 |, A= 0 fof3® 0 , Ve, =0 (3.18)
o o0 % 0 0 —ff

and

w12(61) = W13(€1) = w12(63) = W13(€2) = w23(61) =0,

3ei(f)
ralee) Zionlea) =757 (3.19)
was(ez) = 163(}62) wos(es) = _162(f2)

2 fy 2 fo
for some smooth functions f, fo satisfying ea(f) = es(f) = e1(f2) =0, where f does not vanish.
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Case II. An isometric immersion 1y which has an orthonormal {e1,es,e3;eq,e5} such that

=L 0 0 2¢, fO/° 0 0
A, = 0 % 0 |4, = 0 —cy fO/5 0 ,Vte, =0 (3.20)
o o % 0 0 —e f°

and
wiz(er) = wiz(er) = wiz(es) = wiz(ez) = waz(ez) = waz(ez) = 0,

3e1(f) (3.21)
-5

w12(€2) = w13(€3) =

for a smooth nonvanishing function f satisfying es(f) = es(f) =0.

Proof Assume that 1 is proper biconservative PNMCV. Because of Lemma 3.3, the shape operators of
satisfies (3.6) for a constant ¢; and some smooth functions f, fo such that es(f) = e3(f) = e1(f2) = 0. Note

- 1L I
that the Codazzi equations (R(€1,62)€3> = (R(€2,63)61) =0 imply

wig(ez) = wia(es) =0

and
f20.)23(€1) =0. (322)

First, we are going to prove the following claim.

Claim 3.7 If grad fo =0 on an open, nonempty set O, then fo =0 on O and ¢y #0.

Proof of Claim 3.7. Assume that fo = co on O for a constant ¢y and toward contradiction assume that

co2 # 0. Then, on O we have ws3(e1) = 0 which implies
R(e1,e2,e2,e1) = R(ey,e3,e3,e1) = —e1(a) — a? (3.23)
because of (3.22), where o = wja(es) = wiz(es). By combining the Gauss equation (2.4) and (3.23), we get
(h(e1,e1),h(ea,ea) — h(es,e3)) =0

which implies cjcp f12/° = 0 because of (2.3) and (3.6). Therefore, we have ¢; = 0. In view of the equation of

Gauss for X = Z =e3, Y = e3, we obtain R(es, ez, es,€e3) = %fg — c3f9/5 which gives

81

012 _ Cgf6/5 o 16f2
By applying e; to this equation, we obtain
1 6 81
e1(a) = % (C§5f1/5 - 8f) e1(f). (3.24)
By combining (3.23) and (3.24), we get
6 81 27
(C§5f1/5 - 8f> e1(f) = 2a (mfz - C§f6/5) : (3.25)
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Using (3.8b), Equation (3.25) reduces to f = 0 which yields a contradiction. Therefore, we have ¢ = 0. Since
() does not contain any open part lying on a hyperplane, we have ¢; # 0.

Hence, the proof of the Claim 3.7 is completed. ]

Now, we are going to consider the cases grad fo = 0 and grad fo # 0, separately.

Case I. grad fo = 0 on . In this case, Claim 3.7 directly implies fo = 0 on Q. Consequently, (3.6)
turns into (3.20) on O. A further consideration of Codazzi equations imply (3.21). Hence, we have the Case II
of the proposition.

Case II. grad fo # 0 at a point of Q2. In this case the open subset

O = {q € Q(grad f2)(q) # 0}

of © is not empty and we have either es(f2) # 0 or ez(f2) # 0. Assume that es(f2) # 0. In this case, the
open set Oz = {q € O|f2(q) # 0} is not empty and (3.22) implies wa3(e;) =0 on O2. By considering (3.6) and

. T
(3.8a), we see that the Gauss equation (R(el, e, €1, 62)) =0 gives

272 9/5 9/5 3/5
e1(wiz(e2)) — wiz([er, e2]) = — 2af P (=af A+ 7). (3.26)

Now, by taking the derivative of Equation (3.26) with respect to es we obtain

—2c1f*Pe5(f2) = 0

which implies ¢; = 0 because of the assumptions. Consequently, (3.6) turns into (3.18). Hence, we have 1) = 1
on O, where v is the isometric immersion described in Case I of the proposition.

On the other hand, since ¢; = 0, Claim 3.7 implies that 2 — O has empty interior because of Remark
3.4. By the continuity of ¢, we have 1 =11 on  which yields the Case I of the proposition.

The proof of the converse follows from Lemma 3.3.

Next, we obtain that the mean curvature of a proper biconservative PNMCYV immersion can be computed
intrinsically as well as the other quantities appearing in the shape operators given by (3.18) and (3.20).

Theorem 3.8 Let Q be a 3-dimensional submanifold of E®> and v : (Q,g) < E® be a proper biconservative
PNMCYV isometric immersion with two distinct principal curvatures. Then, the vector field e; and the quantities

f2,c2, f2 appearing in Proposition 5.6 can be computed intrinsically.

Proof First, we assume that (€2, g) admits the biconservative PNMCV isometric immersion ¢; described in
Case I of Proposition 3.6 for some smooth functions f, fo. Then, by combining (3.18) with (2.3) we obtain

31,

h(el,el) = 9

9 ;
4, h(ez,e2) = %64 + faf*es,

9
h(es,es) = Zf&; — fofPes.

After a direct computation by considering the Gauss equation (2.4), we get

2712
R(€1762,62,61) = R(63,€2762,63) = Sf ;
(3.27)
_ 8L e
R(€2,€3,€3,€2) - 16 - fzf .
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Consequently, the Ricci tensor Ric of (2, g) satisfies Ric (e;) = A\;e; for the functions

2 2
/\1=—7Tf7)\2=/\3=

27 f2

2% p206/5
B

Hence, f? and f3 can be computed in terms of eigenvalues of Ric and

Vi

e = ——.
2N

On the other hand, if (2,¢9) admits the biconservative PNMCV isometric immersion ¢, described in

Case II of Proposition 3.6, then by a similar way we obtain the eigenvalues of Ric by

272 272
Mz—(4{+%wwﬂy&=&=£-www5

and the scalar curvature of (Q,g) is

27 f2
S=- <16 + 36?]018/5) .

Therefore, f2 and ¢ can be computed in terms of A, A\y. Moreover, we have either

VA vs . . . .
e1l, = ”Eﬁigz” or eq], = ”Evisgzﬂ at a point p € , because a direct computation yields that

e1(\1)? +e1(S)? # 0.
By considering the proof of Theorem 3.8 we have the following result.

Corollary 3.9 Let Aj, A2, A3 be eigenvalues of the Ricci tensor of a 3-dimensional Riemannian manifold (9, g)

which admits a proper biconservative PNMCYV isometric immersion 1) into E5 with two distinct principal
curvatures. If

dim (span {VA1, VA, VAs}) =1,

then ¥ = 19 and otherwise 1 = 11, where 11,v¥2 are the isometric immersions described in Proposition 3.6.

3.2. Biconservative immersions with three distinct principal curvatures

We first want to focus on the PNMCV biconservative isometric immersions with three distinct eigenvalues.
Therefore, we assume that

9f 9

ket o ket (3.28)

By considering Codazzi equations and [es, e3] (k1) = 0 similar to the computations in [11], we see that

the Levi-Civita connection of € satisfies
vel e1 =0, veleQ =0, velei’) =0,
Ve,e1 = wea, Ve, e9 = —wey + waz(ez)es, Ve,e3 = —waz(ez)es,

Vese1 = ves, Ve,ea = waz(es)es, Ve ez = —vyer — was(es)ez,
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where we put w = wia(ez) and v = wis(es). Moreover, we have

61(]62) = w(k1 — kg), 61(/€3) = ’}/(kl - kd), (329&)

el(lg) = w(ll - lg), 61(l3) = ’}/(ll — lg), (329b>

el(w) = 7w2 + %kg — lllg, (329C)
61(’}/) = —’}/2 + %kd - lllg. (329d)

Now, we are ready to prove the following result.

Proposition 3.10 Let ¢ : (9, 9) = E® be a proper biconservative immersion satisfying ko # ks and assume

that () does not contain any open part lying on a hyperplane of E3. Then, k;, l;, w and v satisfies

Xki)=X(1)=X(w)=X(y)=0 whenever g(X,e1) =0, i=2,3. (3.30)

Proof Let ¢ be a proper biconservative immersion, X be a tangent vector field such that g(X,e;) = 0.

First, we apply e; on equations in (3.5) and combine the obtained equations with (3.29) and (3.5), we

have

Y (=3f = 2k3) + w (=3f — 2ks)
(Lh=L)y+ 1 —l)w

9e1(f), (3.31)
—e1(l1)- (3.32)

We apply e; on these equations and consider (3.29), we obtain

—6ve1(f) + 72 (12f + 8k3) 4+ w? (12f + 8ka) — 92 (ko + k3) — 6wey (f) .
3.33
—6fka® — 6fks® + 6f11 (Io + I3) + 411 (kala + ksls) = 18€1(f),

3fk211 — 3f]€212 — l3 (3fk3 + 2112) + 2’)’61(11) + 4 (lg — ll) ’}/2 + 3fk3[1
(3.34)
+2w€1(l1) + 4 (12 — ll) UJ2 + 2l1l22 + 2l1l32 — 2112l2 = — 26%([1)

and a further computation give the equations

+36w?er (f) — 2 (T2f + 48k3) — 12ko%e1 (f) — 12ks%e1 (f) — 54 fkoei (f

v (—1263(f) + 126 f2ks + T2fks® + 12f1,* — T2flyl5 + 27> + 8ksly* — 48kslyl3

—54fk361(f) + 24111261(f) + 24[1[361(f) + 36’}/261(f) + w3 (—72f — 48]€2

)

tw (—12e3(f) + 126 f2ks + T2fko” + 12f11* — T2flils + 27> + 8koly® — 48kaly o) (3.35)
)

+].2fl2€1(l1) + 12f1361(ll) -+ 8]@21261(11) -+ 8]@31361(11)

= 36e3(f),
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+ (241 — 2413) v + (241; — 24lp) W — 12921 (1)) — 12w2e1 (I
+7 (=36 fksly + 36 fksls — 9f%11 + 9715 + 4eF(ly) — 4l1° + 28150, ° — 241571y
+w (=36 kaly + 36 fkaly — 9f11 + 9f%1> + def(l1) — 41> + 28151, — 2415%1) (3.36)
+12fkaer (1) + 12fkser (1) + 4l2%er (1) + 4lseq (1) — 6kalaer (f) — 6kslser(f)

+6kolier(f) + 6kslier (f) — 12011ze1 (1) — 120113e1 (1) = —€3(lh),
where we use the notation €3 (1)) = eje1(¢) and €} (¢)) = ererer () for a ¢ € C°(9Q).
Note that by combining (3.5) with (3.31) and (3.32), we get

_9ei(f) 3f _
B(w> _ ( 5 ) B:(2+k2 6f ’”). (3.37)
Y —61(11) ll — ZQ 2[1 + lg
Therefore, we have two cases: det B =10 on  and det B # 0 on an open subset of €.
Case I. det B =0 on (). In this case, we have

—2fli +5la f +2k2l; = 0. (3.38)
By applying e; to (3.38), we get
2koeq (ll) + 5[261(f) = 2e; (fll) (339)
By combining (3.38) and (3.39) we get
ko 2flk
C = 3.40
()= ) (340

2 5f

where we put C' = ( 2e1(l1) Sei(f)

> . If det C # 0, then (3.40) implies

ko =mi(f, 1, ea(f),en(ln)),
l2 = 772(f7 l1,€1<f), 61([1))

for some smooth functions 71,72. In this case, we have e4(k2) = ea(l2) =0 for A = 2,3 which completes the
proof for this subcase.

Now, we consider the case det C' = 0 which is equivalent to
lh=cf (3.41)
for a constant c¢. Substituting this equation in (3.39), we get
2cf = 5ly + 2cks. (3.42)

Note that if ¢ = 0, then (3.5), (3.41) and (3.42) imply {3 = Iy = I3 = 0 which gives A., = 0. In this case, we
have %65 = 0 which yields that () lies on a hyperplane of E® which is not possible. Therefore, we have
¢ # 0. However, by combining (3.41) and (3.42), we get

Falf)=0 (3.43)
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which is a contradiction.
Case II. det B # 0 on an open subset O of €. In this case, from (3.37) we get

9 (2[1 + ZQ) el(f) +2 (k‘z — 6f) el(ll)

o= 61, — 15 1y — Okal, :
_ 9 —h)e(f) + (3f + 2ks) e ()
7 61y — 15 1y — Okal,

on O.
By considering (3.5) and (3.44) we see that (3.33) and (3.34) turn into
75f21; (4ky — 9F) 3 — 15f (f (45€2(f) + 42k12) — 8 (9e1 (f)? + 2k212)
62 (5KZ + 412) — 1353k, + 405 f4) 1243 (41@11 (63¢1(f) + 4k213)

—3f2 (4l1 (—156%(]0) + 16/€2l% + 10kg) + 1561(f)61(l1)) — f(207l161(f)2

—20ks (e1(f)e1(ly) — 913 (f)) + 28k3013) — 2160 f kaly + 1620f°1
+12f° (55k301 + 1717) )l2 +612(— 901 (2he3 (f) + 23ex(fer(lr)) + T8KSIT
ks (30es (1h)2 + 5214) ) — 2f( + 3haly (1211 (F)e (1a) — 3611 €2(f

+2268 f*kol} — 972017 + 4k3 (5e1(11)* + 2417) — 62115e1 (f)* + 36k;! )

—144 11 + 6kaly (63l1e1(f)* + 2k2 (1der (fer(l) — el (f)) + 4k31T)
=36 (47k315 — 10e1 (1)) =
and
—T2f12 (Iy + 215) K3 + 41, (9 2 (2202 + Tloly — 2012) — 166y (Iy)2
4 (3[1 (6%([1) + 2[1 (l% + lgll + lg))) )k‘% — 6(12l1 (ll + 212) €1 (f)61 (ll)
+4f(— 11 (Ter(l)? + 10l2e3(l1)) + 10lae1 (11)* + 415 (eF(ly) — 513)
+817 — 120511 — 121313) + 3£ (201 — 5la) (387 + 17lxl; — 1013) )kg
+108f (1417 — Tloly — 1013) ex(f)e1(ly) — 64811 (11 — l2) (2l + I2) ex (£)?
+122( — 42lye1(11)? + 45lse1 (1) + (21 — 5lo)” e3(11) + 813 — 320514
F18I213 + 100313 + 5051, ) + 81f* (211 + 1) (21 — 5la)* =
respectively.
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On the other hand, by combining (3.29¢) and (3.29d) with (3.44a), (3.44b), we get

—54f11%k3 + (601 (9f7 (211 — 5lo) — 2e3 (1) + 611°1s) + 16e1(11)%) k3
2 27 3 2
+( — 541y (201 + 1) €2(F) + 6 (3111 +2002) ex (Hex () — 5 (201 — 5l)

—|—6f (—2761(11)2 + (14l1 — 5[2) e%(ll) + 6[2 (5[2 - 211) l12) )k2
(3.47a)

+9(44f2e1(11)2 320 + o) (1301 + 8la) e1 (f)? — 4122 (1)
+3f ((2[1 - 5[2) (2[1 + lz) e%(f) — (3811 + 25[2) €1<f)61(l1))

F 2005 (20 — 5lo) (20 — 512)) )

and

54112k + (1661(l1)2 — 313 (9% (131y — 1005) + 4e2(1y) + 12 (Iy + Io) lﬂ))ké
+(5411 (L —l2) €3 (f) + 6 (20l — 1111) ex (f)er(l1) — 6f (11 + 5l2) €3 (1)

18Fer (1) + 36 (11 + ls) (20 — 5la) 12 + %fs (4ly — L) (21 — 513) )k2 5.47h)
+27 (I1 — Io) (511 — 8l2) ex(£)* — 27f (21 — 5la) ((I1 — o) e (f) + er(f)er(lr))
—9f2 (61([1)2 + (211 - 5[2) (ll (2l1 - 512) (l1 + lg) - 6%([1)))

24
—Tgf4 (21, — 5l)? = 0.

First, we are going to prove the following claims.
Claim 3.11 The interior of the subset E = {p € O|l1(p) = 0} is empty.
Proof of Claim 8.11. Assume that [; =0 on an open subset Oz of O. Then, (3.46) turns into
313 (9f —4ky) =0

from which we get lo = 0. Therefore, we have [y = Iy = I3 = 0 on Oy which yields that ¥(05) is contained on
a hyperplane of E® which is a contradiction if @ is not empty.
Hence, the proof of the Claim 3.11 is completed. |

Next, we prove the following claim.

Claim 3.12 X(k2) =0 on O if and only if X(I2) =0 on O.

Proof of Claim 3.12. Assume that X (k;) = 0 and X(ls) # 0 at a point p € O. Then, the third
degree polynomial of lo appearing in left hand-side of (3.45) is a trivial polynomial. Therefore, we have
f211 (4ka — 9f) = 0 which is not possible because of (3.28) and Claim 3.11.

Conversely, if X(I3) =0 and X (kg) # 0 at a point ¢ € O, then we have fI? = 0 from the coefficient of

k3 in the left hand-side of (3.45). However, this is a contradiction.
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Hence, the proof of the Claim 3.12 is completed. |
Now, towards contradiction assume that X (k2) # 0 on an open subset of O which yields X (l3) # 0
because of Claim 3.12. By considering (3.5) and (3.44) we see that (3.35) and (3.36) turn into,

Cyly + C3l3 4 Col2 + Chly + Cy = 0 (3.48)

and

Dyks + D3k + Dok + Diky + Dy = 0, (3.49)

respectively, where C; and D; are some smooth functions satisfying X (C;) = X(D;) = 0. Next, we want to

prove the following claim.

Claim 3.13 The interior of the subsets E1 = {p € O|91(p)e1,(f) — 5f(p)e1p(l1) = 0} is empty.

Proof of Claim 3.13. Assume that the interior of F; is not empty, i.e.
l1€1 (f) — 5f€1(l1) =0

on a nonempty open subset @3 of @. Then, on O3 we have l; = ¢f5 for a constant ¢. We have ¢ # 0

because of Claim 3.13. Consequently, (3.47a) turns into
(500f19/5l2 —30f€2(f) + 48e,(f)? — 75f3l<:2> —0. (3.50)
By applying e; to (3.50) and using (3.29a), (3.29b), we get
15f3 (4c2f8/5 + 9) e1(f) — 440cf ¥ Plyey (f) + 60€3(f) f + 540 f2koer (f) — 132e1(f)e2(f) = 0. (3.51)

From (3.50) and (3.51) we get

L3 (100c2 f28/5¢, (f) + 1003 (£) £ + 225 f*e1 (f) + 576e1(f)® — 580fe1(f)e3(f))
2T 400cf1975¢, (f)

which implies X (I3) = 0 which is a contradiction. Hence, the interior of F; is empty.
On the other hand, if we assume that the interior of E5 is not empty, then we have l; = ¢f for a nonzero
constant on a nonempty open subset O4 of O.
Hence, the proof of the Claim 3.13 is completed. |
Next, we combine (3.45) with (3.48) and (3.46) with (3.49) to get

(9l1€1(f) — 5f€1(l1)) 6 (PO + Piko + ng‘% 4+ 4 P13k‘%3)

Olier(f) —5fer(l))® (Qo + Qula + Q213 + -+ + Qu315%)

Il
o

(3.52)

Il
=

(3.53)
for some P;, Q; satisfying X (P;) = X(Q;) = 0, where we have
P13 = Af4 (llel(f) — fel(ll)) (3 (35f2 —+ 16112) el(f) — 20fl161(ll)) 2,
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Q13 = Blj (liex(f) — fer(lr)) (15flrer(f) —2 (15f2 + 2112) e1(lh)) %,

for some A, B € R. Because of Claim 3.13, we have P, = @Q; = 0 for ¢ = 0,1,...,13. Note that if
lier(f) — fer(l1) # 0 at a point, then Pj3 = Q13 = 0 implies

3(35f% +160:°) e1(f) — 20 flye1(l1) =0,

15fler(f) — 2 (15f% +20:2) ex(I1) =0,

from which we get e;(f) = 0 which is a contradiction. Therefore, we have (3.41) on O, where ¢ is a nonzero

constant. By a direct computation, we see that P, Q11 and Py turn into
Py =49¢f3e ( f)2(108a§e§( 2+ er(f)( = 12a1 (11662 + 675) fe2(f)

+ 448 (8c* 4 90c? + 243) e1(f)? + 27a; (48¢* + 352¢% + 405) f4)),

Qu =31 (f)? (12ale§>(f)f2 +er(f)( — das (44c* + 261) fe2(f)

+ 9az (16¢* (¢* +6) — 9) f* + 64 (8¢* + 90¢” + 243) el(f)z))

and
Py = 4cf (405000a2 (2¢* +9)° F1063(f) + 526848 (ag + 12) &1 (f)7
— 90000 (¢ + 6) (2¢* + 9) (11az + 240) fPe1(f)ei(f)
— 1568 (1007az + 9492) fe1(f)°e3(f)
— 20000 (116¢* + 675) fe1(f)ei(f)?
— 7560 (132¢* + 295) fe1(f)%el (f)ei(f)
+ 560 (10876¢> + 66825) f2e1(f) el (f)?
+ 4704 (176¢* + 135) f2e1(f)*e(f)
(3.54)
+ 101250 (262 + 9)* (48¢* + 352¢% + 405) [2ey(f)
+ 540000 (8c* + 66¢ + 135) €3(f) fTe3 (f) + asf e (f)ei(f)
— 15000 (784c* + 8520c* + 23085) f%e3(f)%e1(f)
— 315 (9008c" + 85800c* 4 184275) foe?(f)ei(f)?

+ 180000age3 (f)e3(f)? + 151200aze3 (f)%e1(f)
— 392 (1928¢" + 103626¢” + 564975) fey( f)5)

+ 105¢ (221632c° + 4561488¢* + 30995460c” + 70038675) fe1(f)?,
where we put a; = 2415, ay = 4c®+15, a3 = 35 (32756804 + 4714920¢? + 16099965) . By a direct computation
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considering Py = Q11 = 0, we get

A= - RTelTReCl T el (3.55)
.2 3_ 4
S(f) = 32(2¢249) (baz+24)es (f)° —27as (a2+8)(az+30) f al) (3.56)

36a3 f2
By taking derivative (3.55) in the direction of e; and considering (3.56), we get

(81 —16¢*) f2e1(f) =0

which implies ¢ = %, where ¢ = +1. Consequently, the first equation in (3.55) turns into

2fe2(f) — 3e1(f)> +18f1 =0

which implies

er(f) =0v/bf3 —18f4 (3.57)
for some constants b, such that 6 = £1. By combining (3.55)-(3.57) with (3.54), we get

_ 243e

Py 2

P20 — 18f)3/2 (77824()2(6 ~1)
+ 325(1243091 — 12436790) f + 9(760492576 — T5972425) f2>

which implies that Py does not vanish outside of a set with empty interior. However, this is a contradiction.
Hence, we have X(k2) = X(l2) = 0. Consequently, (3.31),(3.32) and (3.5) imply X (k3) = X(I3) =
X(w) = X() = 0.

Similar to Theorem 3.8, we obtain the following theorem.

Theorem 3.14 Let (Q,9) be a 3-dimensional Riemannian manifold and ¢ : (Q,9) — E® be a proper
biconservative PNMCYV isometric immersion with three distinct principal curvatures. Then, the principal
directions ey, esq,e3, principal curvatures ko, ks and the functions f,l1,ls,ls can be determined intrinsically

up to their signature.

Proof By considering the Gauss equation and the shape operators of ¢, we obtain Ric of (£2,g) satisfies

Ric(e;) = —A;e; for some functions A, A2 and A3. Note that Proposition 3.10 implies e4(A\;) = 0 and we
have
272
A = 4f + 12 (3.58)

Consequently, D = span{VA;,V)\y,VA3} = span{e;} which yields that e; and A; can be determined

intrinsically. Furthermore, es,e3 and w,~ are unit eigenvectors and eigenvalues of the linear transformation
L:D* — D+ L(X) = Vxe;.
Therefore, they also can be determined intrinsically. Define 7;; by

Tij:R(ei,ej,ei,ej), 1 §Z<]§3 (359)
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By a direct computation combining Codazzi equations (3.29a) and (3.29b) with Gauss equations, we obtain

92 1
(w +’Y) ( + l%) =e] <T12 + 713 + 2)\1) + wT12 + Y713 (360)

4
From (3.58) and (3.60), we see that f and Iy can be determined intrinsically. A further computation by
considering (3.28) and (3.59), one can obtain ks, k3, l2,l5 in terms of 72,713, 723, f and ;.

Consequently, we have the following result which can be obtained using [7, Theorem 1.1 at page 7].

Corollary 3.15 If a 3-dimensional Riemannian manifold (Q,g) admits two proper biconservative PNMCV
isometric immersions into E* with three distinct principal curvatures, then these immersions differ by an

isometry of E°.

4. Biharmonic submanifolds

In this section we consider biharmonic PNMCV submanifolds of dimension 3 and prove the following theorem.

Theorem 4.1 Let ¢ : (,g) < E5 be a PNMCYV isometric immersion, where (£, g) is a three-dimensional

Riemannian manifold. Then, 1 cannot be biharmonic.

Proof Suppose that ¢ is a biharmonic PNMCV isometric immersion. It was proved in [11] that a biharmonic
hypersurface in E* is harmonic. Therefore, by considering Theorem 2.3, we assume that () does not contain
any open part lying on a hyperplane of E®.

Since v is biharmonic, it is biconservative and (2.10) is satisfied. By a direct computation considering
(2.10) and (3.4), we get

(9 e s
Af = f T + k2 + k3 5 (41&)
4loks + 4lsks + loks + Isky = 0. (4.1b)

Note that because of (3.29a), (3.29b), (3.5) and (4.1b), la, ke,l3 and ks does not vanish outside of a subset
with empty interior.

First, towards contradiction, we assume ko # k3 at a point p € . Then, on a neighborhood N,, of p,

. T
we have (3.30) because of Proposition 3.10. Therefore, the Gauss equation (R(eg, es, €, 63)) =0 gives
wy = koks+ ll;3 if ko 7é ks. (42)
By applying ey to (4.1b), (4.2), then consider (3.29), (3.5) and (4.2), we obtain

(4]€2 + k3) (5[2 + 2[3) w + (kg + 4]€3) (2[2 + 5[3) v = 0, (43&)
Py(ko, k3, b2, l3)w + Pi(ks, k2,13,l)y = 0, (4.3b)

where P is the polynomial given by

Pi(21,22,91,Y2) = —321y1 — 3T2y2 + 207 + 5x122 + 6y5 + 9y19a.
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By considering Theorem 2.3 and using (3.29a), (3.5), we observe that the interior of the set K = {p € Q :
w(p) = v(p) = 0} is empty. Therefore, (4.1b) and (4.3) imply

32k3l3 — 6k3135 — 232k3k3ls — 120kols — 135kskol3 — 958k3kols — 480ksls — 30k315
(4.4)
+36k315 — 2040k3l513 — 30k31 + 8kilz — 960ksl3l3 — 135k315l3 = 0

outside of K. We apply e; to (4.4) and use the same procedure to get
Py (ka, k3, 1o, 13)w + Ps(ka, k3, l2,13)y = 0 (4.5)

for some fourth degree polynomials P», P5. By considering (4.3a), (4.5), we obtain

—192012k5 + 224012k3 + 800lalsks 4 141615k5 + 13440k312k3 + 32848k3l2k3
+43321513k3 + T201313k3 + 89848k3lalsks + 1872013k3 + 1200ksl5k3
+13398k315k3 + 768001215 k3 + 62760k313k3 + 58896k312k3 + 700801215 k3
+50019k3l212k2 4 192001313k3 + 22260k31313k3 + 291372k21513k3 + 57600k315k:

+48960k3l3ky + 12480k215ky — 15324k213ky + 420000k3lol3 ko + 21180k3 12k, (4.6)
—65536k313ko + 837840k31515ky 4 1146k315135ks + 441600ks31513k:
+40380k31313ky + 35312k315l3ky + 14400k315 — 103680k315 + 345k315
—12240k313 — 283200k31513 + 240k313 — 21248k313 — 145920k31313

—24372k31515 + 22800k31515 — 5460k31315 — 12032k315l3 = 0

outside of K. Finally, by obtaining the resultant of the polynomials appearing on the right hand side of
(4.1b),(4.4),(4.6) with respect to Iy and I3, we get

—43200 (ks + k3)” (ko + 4k3)” (4K3 — 13ksks + 4k3) (73381632@8
—689651232k3k;" + 95630336k3ky° + 20048552092k ks° — 51528775696k 5 k3
—156852284797k3 k3> 4 662866585600k ka? + 140071434296k k'
—1622719053552k5 k3" + 2974299612642k5 k5 — 1622719053552k k3
+140071434296k3 k5 + 662866585600k32kS — 156852284797k3° kS

—51528775696k3* k5 4 20048552092k3° k3 + 95630336k3° k3

—689651232k1 ko + 73381632k§8) =0

from which we see

kg = Ckg (47)
for a constant ¢ such that ¢ ¢ {—1,1}. From (3.5), (4.1b) and (4.7) we get
9f 9cf
ko — ka —

2T 2(c+1) T2+ 1) ws)
4.8

l _ (46 -+ ].)ll l - (C+ 4)11

2T 38— P 3(e—1)°
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Finally, by combining (3.29a) and (3.29b) with (4.8), we obtain

(46 + 1)f€1(l1) — 3[161(f) ZO,
(C + 4)f€1(l1) - 3cllel(f) =0

which implies e;(f) = 0 unless ¢> — 1 = 0. However, this is a contradiction. Hence, we have ko = k3 on .
Since we have ks = k3, (3.5) and (4.1b) imply I3 = 0. Therefore, 1) is the isometric immersion given in

Case I of Proposition 3.6. Consequently, (3.19) and (4.1a) give

40fei(f) — 48er(f)* +495f* = 0. (4.9)
. T
On the other hand, the Gauss equation (R(el, €2, €1, 62)) = 0 implies

40fel(f) — 64er(f)? +225f* = 0. (4.10)

However, (4.9) and (4.10) imply 8ey(f)% + 135f* = 0 which yields a contradiction.
Combining Theorem 4.1 with [6, Theorem 1] and [10, Theorem 1.1] provides the following partial answer

for Chen’s biharmonic conjecture.

Theorem 4.2 There do not exist proper biharmonic submanifolds in E® with the parallel normalized mean
curvature vector.
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