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Abstract: In this article, we study 3-dimensional biconservative and biharmonic submanifolds of E5 with parallel
normalized mean curvature vector (PNMCV). First, we prove that the principal curvartures and principal directions of
biconservative PNMCV isometric immersions into E5 can be determined intrinsically. Then, we complete the proof of
Chen’s biharmonic conjecture for PNMCV submanifolds of E5 .

Key words: Biharmonic submanifolds, biconservative submanifolds, parallel normalized mean curvature vectors

1. Introduction
The study of biharmonic submanifolds was initiated by Chen in the middle of 1980s in his program of under-
standing finite type submanifolds of Euclidean spaces as well as pseudo-Euclidean spaces [4]. In the mean time,
in [12] and [13], Jiang studied biharmonic isometric immersions between Riemannian manifolds by considering
the notion of k -harmonic maps proposed by Eells and Sampson in [9].

Chen and Jiang independently showed that there are no biharmonic surfaces in E3 except the minimal
ones. Later, this result was generalized by Dimitric in [8]. In 1991, based on these initial results, Chen claimed
that all biharmonic submanifolds of Euclidean spaces are minimal [5]. Although this claim, named as Chen’s
biharmonic conjecture, was proved to be true in a lot of partial cases (see, for example, [2, 6, 10, 11, 16]), Chen’s
original problem is still open.

On the other hand, in order to understand the geometrical properties of biharmonic submanifolds, some
geometers have shown attention to investigate biconservative submanifolds, [2, 14–16]. For example, the general
notion of biconservative submanifolds was introduced in [2]. Also, the complete classification of biconservative
hypersurfaces in Euclidean spaces with three distinct principal curvatures is obtained by the second named
author in [15].

In [16], authors studied geometrical properties of PNMCV surfaces of E4 and we also proved that a
biharmonic PNMCV surface in E4 is minimal. Recently, Chen generalized this result into the Euclidean
spaces of arbitrary dimension, [6]. In this paper, we study PNMCV isometric immersions from a 3-dimensional
Riemannian manifolds into E5 . In Section 2, we give a brief summary of the basic definitions and basic facts of
theory of submanifolds. Section 3 is devoted to study some of geometrical properties of biconservative PNMCV
∗Correspondence: ruya.yegin@medeniyet.edu.tr
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submanifolds. We obtain our main result in Section 4.
The manifolds that we are dealing with are smooth and connected unless otherwise is stated.

2. Preliminaries
In this section, we would like to give some basic definitions and formulas that we will use in the remaining part
of the paper. Moreover, we recall some theorems related with our study.

2.1. Isometric immersions into E5

Let En = (Rn, g̃) denote the Euclidean n -space with the metric tensor g̃ given by

g̃ = ⟨ ., . ⟩ =
n∑

i=1

dx2i ,

where (x1, x2, . . . , xn) is a Cartesian coordinate system of En .
Let ψ : (Ω, g) ↪→ E5 be an isometric immersion of a 3 -dimensional Riemannian manifold (Ω, g) into a

Euclidean 5 -space E5 . Denote the Levi-Civita connections of Ω and E5 by ∇ and ∇̃ , respectively. Then the
Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −Aξ(X) +∇⊥
Xξ, (2.2)

respectively, for any vector fields X,Y tangent to Ω and ξ normal to Ω , where h and Aξ are the second
fundamental form and the shape operator of ψ along the normal direction ξ , respectively and ∇⊥ is the
normal connection. Note that h and Aξ satisfy

g(Aξ(X), Y ) = g̃(h(X,Y ), ξ). (2.3)

A normal vector field η is called parallel if ∇⊥
Xη = 0 whenever X is tangent to Ω . On the other hand, the

Ricci tensor Ric and the scalar curvature S of (Ω, g) are defined by

Ric (X) = tr (R(·, X)·) and S = tr (Ric ) .

The mean curvature vector field H of ψ is defined by H = 1
3 trh and the mean curvature of ψ is given

by f = ⟨H,H⟩1/2. ψ is called minimal if f vanishes identically. The covariant derivative ∇̄h of h is defined
by

(∇̄Xh)(Y, Z) = ∇⊥
Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

for any tangent vector fields X,Y and Z on Ω . If R and R̃ stand for the curvature tensor of Ω and E5 ,

respectively, then, the Gauss equation
(
R̃(X,Y )Z

)T
= 0 and the Codazzi equation

(
R̃(X,Y )Z

)⊥
= 0 become

R(X,Y )Z = Ah(Y,Z)X −Ah(X,Z)Y, (2.4)

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z). (2.5)
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Now, assume that ψ has parallel normalized mean curvature vector e4 . In this case, the Ricci equation(
R̃(X,Y )ξ

)T
= 0 yields that all the shape operators of ψ can be diagonalized simultaneously (see [3, Propo-

sition 1.2]). Therefore, by abusing the terminology, we are going to call X as a principal direction of ψ if
Ae4X = kX , where the smooth function k is going to be called as the corresponding principal curvature. Note
that there exists an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 = diag (k1, k2, k3) , Ae5 = diag (l1, l2, l3) (2.6)

for some smooth functions ki, lj satisfying l1 + l2 + l3 = 0 and k1 + k2 + k3 = 3f .

2.2. Biconservative and biharmonic immersions
In this subsection, we present a summary about biconservative and biharmonic immersions.

A biharmonic map ψ : (Ω, g) → (N, g̃) between two Riemannian manifolds is a critical point of the
bienergy functional defined by

E2(ψ) =
1

2

∫
Ω

|τ(ψ)|2vg ,

where ψ is a smooth map, vg is the volume element of Ω and τ(ψ) = tr∇dψ is the tension field of ψ . In [13],
Jiang obtained the first and second variational formulas for E2 and proved that ψ is biharmonic if and only if
it satisfies the Euler-Lagrange equation associated with bienergy functional given by

τ2(ψ) = 0, (2.7)

where τ2 is the bitension field of ψ defined by

τ2(ψ) = ∆τ(ψ)− tr R̃(dψ, τ(ψ))dψ,

where ∆ is the Rough-Laplacian. On the other hand, a mapping ψ : (Ω, g) → (N, g̃) satisfying the condition

⟨τ2(ψ), dψ⟩ = 0, (2.8)

that is weaker than (2.7) is said to be biconservative. When ψ is an isometric immersion, Equation (2.8) turns
into

τ2(ψ)
T = 0,

where τ2(ψ)
T denotes the tangential part of τ2(ψ) . In this case, Ω is said to be a biconservative submanifold

of N .
By considering tangential and normal components of τ2(ψ) from (2.7), one can obtain the following

proposition (see, for example, [14]).

Proposition 2.1 [14] Let ψ : (M, g) ↪→ N be an isometric immersion between two Riemannian manifolds.
Then, ψ is biharmonic if and only if the equations

mgrad ∥H∥2 + 4trA∇⊥
· H(·) + 4tr (R̃(·,H)·)T = 0 (2.9)

and
−∆⊥H + trh(AH(·), ·) + tr (R̃(·,H)·)⊥ = 0 (2.10)

are satisfied, where m is the dimension of M and ∆⊥ is the Laplacian associated with ∇⊥ .
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By considering Proposition 2.1, one can conclude the following well-known proposition.

Proposition 2.2 [14] Let ψ : (M, g) ↪→ N be an isometric immersion between two Riemannian manifolds.
Then, ψ is biconservative if and only if Equation (2.9) is satisfied.

The following theorem will be used later.

Theorem 2.3 [1] Let ψ : (M, g) → N be a biharmonic map. If ψ is harmonic on an open subset, then it is
harmonic everywhere.

3. Biconservative submanifolds
In this section, we consider biconservative PNMCV isometric immersions into E5 . Let ψ : (Ω, g) ↪→ E5 be a
biconservative PNMCV isometric immersion.

Remark 3.1 Since the study on biconservative hypersurfaces in E4 completed in [11], we are going to assume
that ψ(Ω) does not contain any open part lying on a hyperplane of E5 .

Since the curvature tensor R̃ of E5 vanishes identically, by using (2.9) one can obtain that ψ is
biconservative if and only if

Ae4(grad f) =
−3f

2
(grad f), (3.1)

where Ae4 is the shape operator of Ω along the normalized mean curvature vector e4 of ψ .

Remark 3.2 If the mean curvature of ψ is parallel, then (2.9) is satisfied trivally. Furthermore, because of
Theorem 2.3 and Equation (2.10), a biharmonic PNMCV immersion must be necessarily harmonic if ∥grad f∥
vanishes on an open, nonempty subset of Ω . Therefore, we are going to call a biconservative PNMCV immersion
as proper if ∥grad f∥ does not vanish.

Now, assume that ψ is a proper biconservative PNMCV immersion. Then, we have

∇⊥
Xe4 = ∇⊥

Xe5 = 0, (3.2)

where e5 is a unit normal vector field orthogonal to e4 . On the other hand, if e1 is chosen to be proportional
to grad f , then (3.1) implies

e1(f) ̸= 0, e2(f) = e3(f) = 0 (3.3)

and k1 = − 3f
2 . Consequently, the matrix representations of the shape operators of ψ with respect to a suitable

frame field {e1, e2, e3} takes the form

Ae4 =

 −3f
2 0 0
0 k2 0
0 0 k3

 , Ae5 =

 l1 0 0
0 l2 0
0 0 l3

 (3.4)

for some smooth functions k2, k3, l1, l2, l3 satisfying

k2 + k3 =
9f

2
and l1 + l2 + l3 = 0. (3.5)
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3.1. Two distinct principal curvatures

In this subsection, we focus biconservative PNMCV isometric immersion into E5 with two distinct principal
curvatures. Note that if kA = −3f

2 for A = 2 or A = 3 on an open subset, then the Codazzi equation (2.5)
with X = Z = eA , Y = e1 give e1(f) = 0 which is a contradiction because of (3.3). Therefore, we are going
to consider the case k1 ̸= k2 = k3 . First, we consider the shape operators of PNMCV biconservative isometric
immersions into E5 .

Lemma 3.3 Let ψ : (Ω, g) ↪→ E5 be an isometric immersion with two distinct principal curvatures, where
(Ω, g) is a 3-dimensional Riemannian manifold. ψ is proper biconservative PNMCV if and only if there exists
an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

 , Ae5 =

 2c1f
9/5 0 0

0 −c1f9/5 + f2f
3/5 0

0 0 −c1f9/5 − f2f
3/5

 (3.6)

and ∇⊥e4 = 0 for some smooth functions f, f2 and a constant c1 such that e2(f) = e3(f) = e1(f2) = 0 , where
f does not vanish.

Proof Let ψ : (Ω, g) ↪→ E5 be an isometric immersion with two distinct principal curvatures, i.e. k2, k3 satisfy

k2 = k3 =
9f

4
. (3.7)

In order to prove the necessary condition we assume that ψ is proper biconservative and PNMCV. Then, the

Codazzi equations
(
R̃(e1, eA)e1

)⊥
= 0 and

(
R̃(e1, eA)eA

)⊥
= 0 give

ω1A(e1) = 0, eA(l1) = 0, (3.8a)

ω1A(e2) =
−3

5

e1(f)

f
and (3.8b)

e1(lA) =
3e1(f)

5f
(lA − l1) , A = 2, 3, (3.8c)

respectively. By considering (3.5), we obtain

l1 = 2c1f
9/5 (3.9)

from (3.8c), for a smooth function c1 satisfying e1(c1) = 0 . By taking into account (3.8a), we get e2(c1) =

e3(c1) = 0 which yields that c1 is a constant. Moreover, from (3.8c) and (3.9) we obtain

l2 = −c1f9/5 + f2f
9/5 (3.10)

for a smooth function f2 satisfying e1(f2) = 0 . Consequently, (3.5) implies

l3 = −c1f9/5 − f2f
9/5. (3.11)

By combining (3.4) with (3.7) and (3.9)-(3.11), we obtain (3.6). This completes the proof of the necessary
condition. The converse of the lemma is trivial.
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Remark 3.4 One can observe that a frame field {e1, e2, e3; e4, e5} satisfying the conditions in Lemma 3.3 can
be globally constructed if ψ : (Ω, g) ↪→ E5 is a proper biconservative PNMCV isometric immersion with two
distinct principal curvatures because

e1 =
grad f

∥grad f∥
, e4 =

H

f

and e2, e3 can be constructed to be an eigenvalue of Ae5 |D at every point of Ω , where

D = (span {e1})T .

Before we continue, we would like to obtain the following result of Lemma 3.3.

Lemma 3.5 Let ψ : (Ω, g) ↪→ E5 be a proper biconservative PNMCV isometric immersion with two distinct
principal curvatures and put e1 = gradf

∥gradf∥ , where f is the mean curvature of ψ . Then,

(a) An integral curve of e1 lies on a 3-plane of E5 .

(b) The curvature κ and torsion τ of an integral curve of e1 satisfy

κ = f

√
9

4
+ 4c21f

8/5, (3.12a)

τ =
12

5

(
c1∥grad f∥f−1/5

9
4 + 4c21f

8/5

)
. (3.12b)

Proof Let {e1, e2, e3; e4, e5} be an orthonormal frame field on Ω satisfying the properties given in Lemma 3.3
and we suppose that γ is an integral curve of e1 and it is parametrized by γ(s) = x(s, t0). Consider the Frenet
frame {T (s), N(s), B1(s), B2(s), B3(s)} at a point γ(s) , where we put T (s) = γ′(s) . Note that we have

DT

ds
= κ1N(s),

DN

ds
= −κ1T (s) + κ2(s)B1(s),

DB1

ds
= −κ2N(s) + κ3B2(s),

DB2

ds
= −κ3B1(s) + κ4B3(s),

DB3

ds
= −κ4B2(s),

where D

ds
denotes the covariant derivative on γ and κi(s) , i = 1, 2, 3 is the i-th curvature of γ .

By considering (3.6) with the Gauss formula, we obtain

DT

ds
= −3f(s)

2
e4(s) + 2c1f(s)

9/5
e5(s), (3.13)
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where e4(s), e5(s) are restrictions of e4, e5 to γ from which we get

κ1 = f(s)

√
9

4
+ 4c21f(s)

8/5 (3.14)

and

N(s) =
1√

9
4 + 4c21f(s)

8/5

(
−3

2
e4(s) + 2c1f(s)

4/5
e5(s)

)
. (3.15)

By a further computation using (3.3) and (3.15), we get

DN

ds
=

1(
9
4 + 4c21f(s)

8/5
)3/2 (24

5
c21f(s)

3/5∥grad f∥e4(s) +
18

5
c1f(s)

−1/5∥grad f∥e5(s)
)

− f(s)

√
9

4
+ 4c21f(s)

8/5
e1(s).

Therefore, we have

κ2 =
12

5

(
c1∥grad f∥f(s)−1/5

9
4 + 4c21f(s)

8/5

)
(3.16)

and

B(s) =
1√

9
4 + 4c21f(s)

8/5

(
2c1f(s)

4/5
e4(s) +

3

2
e5(s)

)
. (3.17)

Next, we compute DB

ds
and get κ3 = 0 which yields that γ lies on a 3 -plane of E5 . Moreover, κ = κ1

is the curvature and τ = κ2 is the torsion of γ .
Next, by using the Lemma 3.3, we obtain the following characterization of proper biconservative PNMCV

immersions.

Proposition 3.6 Let Ω be a 3-dimensional submanifold of E5 and ψ : (Ω, g) ↪→ E5 be an isometric immersion
with two distinct principal curvatures. Then, ψ is proper biconservative PNMCV if and only if it is one of the
following two classes of isometric immersions.

Case I. An isometric immersion ψ1 which has an orthonormal frame field {e1, e2, e3; e4, e5} such that

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

, Ae5 =

 0 0 0
0 f2f

3/5 0
0 0 −f2f3/5

, ∇⊥e4 = 0 (3.18)

and
ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e1) = 0,

ω12(e2) = ω13(e3) = −3

5

e1(f)

f
,

ω23(e2) =
1

2

e3(f2)

f2
, ω23(e3) = −1

2

e2(f2)

f2

(3.19)

for some smooth functions f, f2 satisfying e2(f) = e3(f) = e1(f2) = 0 , where f does not vanish.
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Case II. An isometric immersion ψ2 which has an orthonormal {e1, e2, e3; e4, e5} such that

Ae4 =

 −3f
2 0 0

0 9f
4 0

0 0 9f
4

, Ae5 =

 2c1f
9/5 0 0

0 −c1f9/5 0
0 0 −c1f9/5

,∇⊥e4 = 0 (3.20)

and
ω12(e1) = ω13(e1) = ω12(e3) = ω13(e2) = ω23(e2) = ω23(e3) = 0,

ω12(e2) = ω13(e3) = −3e1(f)

5f

(3.21)

for a smooth nonvanishing function f satisfying e2(f) = e3(f) = 0 .

Proof Assume that ψ is proper biconservative PNMCV. Because of Lemma 3.3, the shape operators of ψ
satisfies (3.6) for a constant c1 and some smooth functions f, f2 such that e2(f) = e3(f) = e1(f2) = 0 . Note

that the Codazzi equations
(
R̃(e1, e2)e3

)⊥
=
(
R̃(e2, e3)e1

)⊥
= 0 imply

ω13(e2) = ω12(e3) = 0

and
f2ω23(e1) = 0. (3.22)

First, we are going to prove the following claim.

Claim 3.7 If grad f2 = 0 on an open, nonempty set O , then f2 = 0 on O and c1 ̸= 0 .

Proof of Claim 3.7. Assume that f2 = c2 on O for a constant c2 and toward contradiction assume that
c2 ̸= 0 . Then, on O we have ω23(e1) = 0 which implies

R(e1, e2, e2, e1) = R(e1, e3, e3, e1) = −e1(α)− α2 (3.23)

because of (3.22), where α = ω12(e2) = ω13(e3) . By combining the Gauss equation (2.4) and (3.23), we get

⟨h(e1, e1), h(e2, e2)− h(e3, e3)⟩ = 0

which implies c1c2f12/5 = 0 because of (2.3) and (3.6). Therefore, we have c1 = 0 . In view of the equation of
Gauss for X = Z = e2 , Y = e3 , we obtain R(e3, e2, e2, e3) =

81
16f

2 − c22f
6/5 which gives

α2 = c22f
6/5 − 81

16
f2.

By applying e1 to this equation, we obtain

e1(α) =
1

2α

(
c22

6

5
f1/5 − 81

8
f

)
e1(f). (3.24)

By combining (3.23) and (3.24), we get(
c22

6

5
f1/5 − 81

8
f

)
e1(f) = 2α

(
27

16
f2 − c22f

6/5

)
. (3.25)
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Using (3.8b), Equation (3.25) reduces to f = 0 which yields a contradiction. Therefore, we have c2 = 0 . Since
f(Ω) does not contain any open part lying on a hyperplane, we have c1 ̸= 0 .

Hence, the proof of the Claim 3.7 is completed. ■
Now, we are going to consider the cases grad f2 = 0 and grad f2 ̸= 0 , separately.
Case I. grad f2 = 0 on Ω . In this case, Claim 3.7 directly implies f2 = 0 on Ω . Consequently, (3.6)

turns into (3.20) on O . A further consideration of Codazzi equations imply (3.21). Hence, we have the Case II
of the proposition.

Case II. grad f2 ̸= 0 at a point of Ω . In this case the open subset

O = {q ∈ Ω|(grad f2)(q) ̸= 0}

of Ω is not empty and we have either e2(f2) ̸= 0 or e3(f2) ̸= 0 . Assume that e2(f2) ̸= 0 . In this case, the
open set O2 = {q ∈ O|f2(q) ̸= 0} is not empty and (3.22) implies ω23(e1) = 0 on O2 . By considering (3.6) and

(3.8a), we see that the Gauss equation
(
R̃(e1, e2, e1, e2)

)T
= 0 gives

e1(ω12(e2))− ω12([e1, e2]) =
27f2

8
− 2c1f

9/5(−c1f9/5 + f2f
3/5). (3.26)

Now, by taking the derivative of Equation (3.26) with respect to e2 we obtain

−2c1f
12/5e2(f2) = 0

which implies c1 = 0 because of the assumptions. Consequently, (3.6) turns into (3.18). Hence, we have ψ = ψ1

on O , where ψ1 is the isometric immersion described in Case I of the proposition.
On the other hand, since c1 = 0 , Claim 3.7 implies that Ω − O has empty interior because of Remark

3.4. By the continuity of ψ , we have ψ = ψ1 on Ω which yields the Case I of the proposition.
The proof of the converse follows from Lemma 3.3.
Next, we obtain that the mean curvature of a proper biconservative PNMCV immersion can be computed

intrinsically as well as the other quantities appearing in the shape operators given by (3.18) and (3.20).

Theorem 3.8 Let Ω be a 3-dimensional submanifold of E5 and ψ : (Ω, g) ↪→ E5 be a proper biconservative
PNMCV isometric immersion with two distinct principal curvatures. Then, the vector field e1 and the quantities
f2, c21, f

2
2 appearing in Proposition 3.6 can be computed intrinsically.

Proof First, we assume that (Ω, g) admits the biconservative PNMCV isometric immersion ψ1 described in
Case I of Proposition 3.6 for some smooth functions f, f2 . Then, by combining (3.18) with (2.3) we obtain

h(e1, e1) = −3f

2
e4, h(e2, e2) =

9f

4
e4 + f2f

3/5e5,

h(e3, e3) =
9f

4
e4 − f2f

3/5e5.

After a direct computation by considering the Gauss equation (2.4), we get

R(e1, e2, e2, e1) = R(e3, e2, e2, e3) = −27f2

8
,

R(e2, e3, e3, e2) =
81f2

16
− f22 f

6/5.

(3.27)
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Consequently, the Ricci tensor Ric of (Ω, g) satisfies Ric (ei) = λiei for the functions

λ1 = −27f2

4
, λ2 = λ3 =

27f2

16
− f22 f

6/5.

Hence, f2 and f22 can be computed in terms of eigenvalues of Ric and

e1 =
∇λ1

∥∇λ1∥
.

On the other hand, if (Ω, g) admits the biconservative PNMCV isometric immersion ψ2 described in
Case II of Proposition 3.6, then by a similar way we obtain the eigenvalues of Ric by

λ1 = −
(
27f2

4
+ 4c21f

18/5

)
, λ2 = λ3 =

27f2

16
− c21f

18/5

and the scalar curvature of (Ω, g) is

S = −
(
27f2

16
+ 3c21f

18/5

)
.

Therefore, f2 and c21 can be computed in terms of λ1, λ2 . Moreover, we have either

e1|p =
(∇λ1)p

∥(∇λ1)p∥ or e1|p =
(∇S)p

∥(∇S)p∥ at a point p ∈ Ω , because a direct computation yields that

e1(λ1)
2 + e1(S)

2 ̸= 0.

By considering the proof of Theorem 3.8 we have the following result.

Corollary 3.9 Let λ1, λ2, λ3 be eigenvalues of the Ricci tensor of a 3-dimensional Riemannian manifold (Ω, g)

which admits a proper biconservative PNMCV isometric immersion ψ into E5 with two distinct principal
curvatures. If

dim (span {∇λ1,∇λ2,∇λ3}) = 1,

then ψ = ψ2 and otherwise ψ = ψ1 , where ψ1, ψ2 are the isometric immersions described in Proposition 3.6.

3.2. Biconservative immersions with three distinct principal curvatures
We first want to focus on the PNMCV biconservative isometric immersions with three distinct eigenvalues.
Therefore, we assume that

k2 ̸= 9f

4
, k3 ̸= 9f

4
. (3.28)

By considering Codazzi equations and [e2, e3] (k1) = 0 similar to the computations in [11], we see that
the Levi-Civita connection of Ω satisfies

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = ωe2,∇e2e2 = −ωe1 + ω23(e2)e3,∇e2e3 = −ω23(e2)e3,

∇e3e1 = γe3,∇e3e2 = ω23(e3)e3,∇e3e3 = −γe1 − ω23(e3)e2,
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where we put ω = ω12(e2) and γ = ω13(e3) . Moreover, we have

e1(k2) = ω(k1 − k2), e1(k3) = γ(k1 − k3), (3.29a)

e1(l2) = ω(l1 − l2), e1(l3) = γ(l1 − l3), (3.29b)

e1(ω) = −ω2 +
3f

2
k2 − l1l2, (3.29c)

e1(γ) = −γ2 + 3f

2
k3 − l1l3. (3.29d)

Now, we are ready to prove the following result.

Proposition 3.10 Let ψ : (Ω, g) ↪→ E5 be a proper biconservative immersion satisfying k2 ̸= k3 and assume
that ψ(Ω) does not contain any open part lying on a hyperplane of E5 . Then, ki , li , ω and γ satisfies

X(ki) = X(li) = X(ω) = X(γ) = 0 whenever g(X, e1) = 0 , i = 2, 3. (3.30)

Proof Let ψ be a proper biconservative immersion, X be a tangent vector field such that g(X, e1) = 0 .
First, we apply e1 on equations in (3.5) and combine the obtained equations with (3.29) and (3.5), we

have

γ (−3f − 2k3) + ω (−3f − 2k2) = 9e1(f), (3.31)

(l1 − l3) γ + (l1 − l2)ω = −e1(l1). (3.32)

We apply e1 on these equations and consider (3.29), we obtain

−6γe1(f) + γ2 (12f + 8k3) + ω2 (12f + 8k2)− 9f2 (k2 + k3)− 6ωe1(f)

−6fk2
2 − 6fk3

2 + 6fl1 (l2 + l3) + 4l1 (k2l2 + k3l3) = 18e21(f),
(3.33)

3fk2l1 − 3fk2l2 − l3
(
3fk3 + 2l1

2
)
+ 2γe1(l1) + 4 (l3 − l1) γ

2 + 3fk3l1

+2ωe1(l1) + 4 (l2 − l1)ω
2 + 2l1l2

2 + 2l1l3
2 − 2l1

2l2 =− 2e21(l1)
(3.34)

and a further computation give the equations

+36ω2e1(f)− γ3 (72f + 48k3)− 12k2
2e1(f)− 12k3

2e1(f)− 54fk2e1(f)

γ
(
−12e21(f) + 126f2k3 + 72fk3

2 + 12fl1
2 − 72fl1l3 + 27f3 + 8k3l1

2 − 48k3l1l3
)

+ω
(
−12e21(f) + 126f2k2 + 72fk2

2 + 12fl1
2 − 72fl1l2 + 27f3 + 8k2l1

2 − 48k2l1l2
)

−54fk3e1(f) + 24l1l2e1(f) + 24l1l3e1(f) + 36γ2e1(f) + ω3 (−72f − 48k2)

+12fl2e1(l1) + 12fl3e1(l1) + 8k2l2e1(l1) + 8k3l3e1(l1) = 36e31(f),

(3.35)
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+(24l1 − 24l3) γ
3 + (24l1 − 24l2)ω

3 − 12γ2e1(l1)− 12ω2e1(l1)

+γ
(
−36fk3l1 + 36fk3l3 − 9f2l1 + 9f2l3 + 4e21(l1)− 4l1

3 + 28l3l1
2 − 24l3

2l1
)

+ω
(
−36fk2l1 + 36fk2l2 − 9f2l1 + 9f2l2 + 4e21(l1)− 4l1

3 + 28l2l1
2 − 24l2

2l1
)

+12fk2e1(l1) + 12fk3e1(l1) + 4l2
2e1(l1) + 4l3

2e1(l1)− 6k2l2e1(f)− 6k3l3e1(f)

+6k2l1e1(f) + 6k3l1e1(f)− 12l1l2e1(l1)− 12l1l3e1(l1) = −e31(l1),

(3.36)

where we use the notation e21(ψ) = e1e1(ψ) and e31(ψ) = e1e1e1(ψ) for a ψ ∈ C∞(Ω) .
Note that by combining (3.5) with (3.31) and (3.32), we get

B

(
ω
γ

)
=

(
− 9e1(f)

2
−e1(l1)

)
, B =

(
3f
2 + k2 6f − k2
l1 − l2 2l1 + l2

)
. (3.37)

Therefore, we have two cases: detB = 0 on Ω and detB ̸= 0 on an open subset of Ω .
Case I. detB = 0 on Ω . In this case, we have

−2fl1 + 5l2f + 2k2l1 = 0. (3.38)

By applying e1 to (3.38), we get
2k2e1(l1) + 5l2e1(f) = 2e1(fl1). (3.39)

By combining (3.38) and (3.39) we get

C

(
k2
l2

)
=

(
2fl1

e1(2fl1)

)
, (3.40)

where we put C =

(
2l1 5f

2e1(l1) 5e1(f)

)
. If detC ̸= 0 , then (3.40) implies

k2 = η1(f, l1, e1(f), e1(l1)),

l2 = η2(f, l1, e1(f), e1(l1))

for some smooth functions η1, η2 . In this case, we have eA(k2) = eA(l2) = 0 for A = 2, 3 which completes the
proof for this subcase.

Now, we consider the case detC = 0 which is equivalent to

l1 = cf (3.41)

for a constant c . Substituting this equation in (3.39), we get

2cf = 5l2 + 2ck2. (3.42)

Note that if c = 0 , then (3.5), (3.41) and (3.42) imply l1 = l2 = l3 = 0 which gives Ae5 = 0 . In this case, we

have ∇̃e5 = 0 which yields that ψ(Ω) lies on a hyperplane of E5 which is not possible. Therefore, we have
c ̸= 0 . However, by combining (3.41) and (3.42), we get

4c

5
e1(f) = 0 (3.43)
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which is a contradiction.
Case II. detB ̸= 0 on an open subset O of Ω . In this case, from (3.37) we get

ω =
9 (2l1 + l2) e1(f) + 2 (k2 − 6f) e1(l1)

6fl1 − 15fl2 − 6k2l1
, (3.44a)

γ =
9 (l2 − l1) e1(f) + (3f + 2k2) e1(l1)

6fl1 − 15fl2 − 6k2l1
(3.44b)

on O .
By considering (3.5) and (3.44) we see that (3.33) and (3.34) turn into

75f2l1 (4k2 − 9f) l32 − 15f
(
f
(
45e21(f) + 42k2l

2
1

)
− 8

(
9e1(f)

2 + 2k22l
2
1

)
+6f2

(
5k22 + 4l21

)
− 135f3k2 + 405f4

)
l22 + 3

(
4k2l1

(
63e1(f)

2 + 4k22l
2
1

)
−3f2

(
4l1
(
−15e21(f) + 16k2l

2
1 + 10k32

)
+ 15e1(f)e1(l1)

)
− f

(
207l1e1(f)

2

−20k2
(
e1(f)e1(l1)− 9l1e

2
1(f)

)
+ 28k22l

3
1

)
− 2160f4k2l1 + 1620f5l1

+12f3
(
55k22l1 + 17l31

) )
l2 + 6f2

(
− 9l1

(
2l1e

2
1(f) + 23e1(f)e1(l1)

)
+ 78k32l

2
1

+k2
(
30e1(l1)

2 + 52l41
) )

− 2f
(
+ 3k2l1

(
121e1(f)e1(l1)− 36l1e

2
1(f)

)
+2268f4k2l

2
1 − 972f5l21 + 4k22

(
5e1(l1)

2 + 24l41
)
− 621l21e1(f)

2 + 36k42l
2
1

)
−144f3l41 + 6k2l1

(
63l1e1(f)

2 + 2k2
(
14e1(f)e1(l1)− 9l1e

2
1(f)

)
+ 4k22l

3
1

)
−36f3

(
47k22l

2
1 − 10e1(l1)

2
)
= 0

(3.45)

and

−72fl21 (l1 + 2l2) k
3
2 + 4l1

(
9f2

(
22l21 + 7l2l1 − 20l22

)
− 16e1(l1)

2

+4
(
3l1
(
e21(l1) + 2l1

(
l21 + l2l1 + l22

))) )
k22 − 6

(
12l1 (l1 + 2l2) e1(f)e1(l1)

+4f
(
− l1

(
7e1(l1)

2 + 10l2e
2
1(l1)

)
+ 10l2e1(l1)

2 + 4l21
(
e21(l1)− 5l32

)
+8l51 − 12l2l

4
1 − 12l22l

3
1

)
+ 3f3 (2l1 − 5l2)

(
38l21 + 17l2l1 − 10l22

) )
k2

+108f
(
14l21 − 7l2l1 − 10l22

)
e1(f)e1(l1)− 648l1 (l1 − l2) (2l1 + l2) e1(f)

2

+12f2
(
− 42l1e1(l1)

2 + 45l2e1(l1)
2 + (2l1 − 5l2)

2
e21(l1) + 8l51 − 32l2l

4
1

+18l22l
3
1 + 10l32l

2
1 + 50l42l1

)
+ 81f4 (2l1 + l2) (2l1 − 5l2)

2
= 0,

(3.46)

respectively.
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On the other hand, by combining (3.29c) and (3.29d) with (3.44a), (3.44b), we get

−54fl1
2k32 +

(
6l1
(
9f2 (2l1 − 5l2)− 2e21(l1) + 6l1

2l2
)
+ 16e1(l1)

2
)
k22

+
(
− 54l1 (2l1 + l2) e

2
1(f) + 6 (31l1 + 20l2) e1(f)e1(l1)−

27

2
f3 (2l1 − 5l2)

2

+6f
(
−27e1(l1)

2 + (14l1 − 5l2) e
2
1(l1) + 6l2 (5l2 − 2l1) l1

2
) )
k2

+9
(
44f2e1(l1)

2 + 3 (2l1 + l2) (13l1 + 8l2) e1(f)
2 − 4f2e21(l1)

+3f
(
(2l1 − 5l2) (2l1 + l2) e

2
1(f)− (38l1 + 25l2) e1(f)e1(l1)

)
+f2l1l2 (2l1 − 5l2) (2l1 − 5l2)

)
= 0

(3.47a)

and

54fl1
2k32 +

(
16e1(l1)

2 − 3l1
(
9f2 (13l1 − 10l2) + 4e21(l1) + 12 (l1 + l2) l1

2
))
k22

+
(
54l1 (l1 − l2) e

2
1(f) + 6 (20l2 − 11l1) e1(f)e1(l1)− 6f (l1 + 5l2) e

2
1(l1)

+18fe1(l1)
2 + 36f (l1 + l2) (2l1 − 5l2) l1

2 +
135

2
f3 (4l1 − l2) (2l1 − 5l2)

)
k2

+27 (l1 − l2) (5l1 − 8l2) e1(f)
2 − 27f (2l1 − 5l2)

(
(l1 − l2) e

2
1(f) + e1(f)e1(l1)

)
−9f2

(
e1(l1)

2 + (2l1 − 5l2)
(
l1 (2l1 − 5l2) (l1 + l2)− e21(l1)

))
−243

4
f4 (2l1 − 5l2)

2 = 0.

(3.47b)

First, we are going to prove the following claims.

Claim 3.11 The interior of the subset E = {p ∈ O|l1(p) = 0} is empty.

Proof of Claim 3.11. Assume that l1 = 0 on an open subset O2 of O . Then, (3.46) turns into

f3l2
3 (9f − 4k2) = 0

from which we get l2 = 0 . Therefore, we have l1 = l2 = l3 = 0 on O2 which yields that ψ(O2) is contained on
a hyperplane of E5 which is a contradiction if O is not empty.

Hence, the proof of the Claim 3.11 is completed. ■
Next, we prove the following claim.

Claim 3.12 X(k2) = 0 on O if and only if X(l2) = 0 on O .

Proof of Claim 3.12. Assume that X(k2) = 0 and X(l2) ̸= 0 at a point p ∈ O . Then, the third
degree polynomial of l2 appearing in left hand-side of (3.45) is a trivial polynomial. Therefore, we have
f2l1 (4k2 − 9f) = 0 which is not possible because of (3.28) and Claim 3.11.

Conversely, if X(l2) = 0 and X(k2) ̸= 0 at a point q ∈ O , then we have fl21 = 0 from the coefficient of
k42 in the left hand-side of (3.45). However, this is a contradiction.
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Hence, the proof of the Claim 3.12 is completed. ■
Now, towards contradiction assume that X(k2) ̸= 0 on an open subset of O which yields X(l2) ̸= 0

because of Claim 3.12. By considering (3.5) and (3.44) we see that (3.35) and (3.36) turn into,

C4l
4
2 + C3l

3
2 + C2l

2
2 + C1l2 + C0 = 0 (3.48)

and

D4k
4
2 +D3k

3
2 +D2k

2
2 +D1k2 +D0 = 0, (3.49)

respectively, where Ci and Di are some smooth functions satisfying X(Ci) = X(Di) = 0 . Next, we want to
prove the following claim.

Claim 3.13 The interior of the subsets E1 = {p ∈ O|9l1(p)e1p(f)− 5f(p)e1p(l1) = 0} is empty.

Proof of Claim 3.13. Assume that the interior of E1 is not empty, i.e.

l1e1(f)− 5fe1(l1) = 0

on a nonempty open subset O3 of O . Then, on O3 we have l1 = cf9/5 for a constant c . We have c ̸= 0

because of Claim 3.13. Consequently, (3.47a) turns into

(
50cf19/5l2 − 30fe21(f) + 48e1(f)

2 − 75f3k2

)
= 0. (3.50)

By applying e1 to (3.50) and using (3.29a), (3.29b), we get

15f3
(
4c2f8/5 + 9

)
e1(f)− 440cf14/5l2e1(f) + 60e31(f)f + 540f2k2e1(f)− 132e1(f)e

2
1(f) = 0. (3.51)

From (3.50) and (3.51) we get

l2 =
3
(
100c2f28/5e1(f) + 100e31(f)f

2 + 225f4e1(f) + 576e1(f)
3 − 580fe1(f)e

2
1(f)

)
400cf19/5e1(f)

which implies X(l2) = 0 which is a contradiction. Hence, the interior of E1 is empty.
On the other hand, if we assume that the interior of E2 is not empty, then we have l1 = cf for a nonzero

constant on a nonempty open subset O4 of O .
Hence, the proof of the Claim 3.13 is completed. ■
Next, we combine (3.45) with (3.48) and (3.46) with (3.49) to get

(9l1e1(f)− 5fe1(l1))
6
(
P0 + P1k2 + P2k

2
2 + · · ·+ P13k

13
2

)
= 0, (3.52)

(9l1e1(f)− 5fe1(l1))
6
(
Q0 +Q1l2 +Q2l

2
2 + · · ·+Q13l

13
2

)
= 0, (3.53)

for some Pi, Qi satisfying X(Pi) = X(Qi) = 0 , where we have

P13 = Af4 (l1e1(f)− fe1(l1))
(
3
(
35f2 + 16l1

2
)
e1(f)− 20fl1e1(l1)

)
2,
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Q13 = Bl41 (l1e1(f)− fe1(l1))
(
15fl1e1(f)− 2

(
15f2 + 2l1

2
)
e1(l1)

)
2,

for some A,B ∈ R . Because of Claim 3.13, we have Pi = Qi = 0 for i = 0, 1, . . . , 13 . Note that if
l1e1(f)− fe1(l1) ̸= 0 at a point, then P13 = Q13 = 0 implies

3
(
35f2 + 16l1

2
)
e1(f)− 20fl1e1(l1) =0,

15fl1e1(f)− 2
(
15f2 + 2l1

2
)
e1(l1) =0,

from which we get e1(f) = 0 which is a contradiction. Therefore, we have (3.41) on O , where c is a nonzero
constant. By a direct computation, we see that P11 , Q11 and P9 turn into

P11 =49cf3e1(f)
2
(
108a21e

3
1(f)f

2 + e1(f)
(
− 12a1

(
116c2 + 675

)
fe21(f)

+ 448
(
8c4 + 90c2 + 243

)
e1(f)

2 + 27a1
(
48c4 + 352c2 + 405

)
f4
))
,

Q11 =c3f3e1(f)
2
(
12a1e

3
1(f)f

2 + e1(f)
(
− 4a2

(
44c2 + 261

)
fe21(f)

+ 9a2
(
16c2

(
c2 + 6

)
− 9
)
f4 + 64

(
8c4 + 90c2 + 243

)
e1(f)

2
))

and

P9 = 4cf
(
405000a2

(
2c2 + 9

)2
f10e31(f) + 526848 (a2 + 12) e1(f)

7

− 90000
(
c2 + 6

) (
2c2 + 9

)
(11a2 + 240) f9e1(f)e

2
1(f)

− 1568 (1007a2 + 9492) fe1(f)
5e21(f)

− 20000
(
116c2 + 675

)
f3e1(f)e

2
1(f)

3

− 7560
(
132c2 + 295

)
f3e1(f)

2e21(f)e
3
1(f)

+ 560
(
10876c2 + 66825

)
f2e1(f)

3e21(f)
2

+ 4704
(
176c2 + 135

)
f2e1(f)

4e31(f)

+ 101250
(
2c2 + 9

)2 (
48c4 + 352c2 + 405

)
f12e1(f)

+ 540000
(
8c4 + 66c2 + 135

)
e31(f)f

7e21(f) + a3f
5e1(f)

3e21(f)

− 15000
(
784c4 + 8520c2 + 23085

)
f6e21(f)

2e1(f)

− 315
(
9008c4 + 85800c2 + 184275

)
f6e31(f)e1(f)

2

+ 180000a2e
3
1(f)e

2
1(f)

2 + 151200a2e
3
1(f)

2e1(f)

− 392
(
1928c4 + 103626c2 + 564975

)
f4e1(f)

5
)

+ 105c
(
221632c6 + 4561488c4 + 30995460c2 + 70038675

)
f9e1(f)

3,

(3.54)

where we put a1 = c2+15 , a2 = 4c2+15 , a3 = 35
(
327568c4 + 4714920c2 + 16099965

)
. By a direct computation
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considering P11 = Q11 = 0 , we get

e21(f) = −−16c2e1(f)
2+108c2f4−72e1(f)

2+405f4

3a2f
, (3.55)

e31(f) =
32(2c2+9)(5a2+24)e1(f)

3−27a2(a2+8)(a2+30)f4e1(f)

36a2
2f

2 . (3.56)

By taking derivative (3.55) in the direction of e1 and considering (3.56), we get(
81− 16c4

)
f2e1(f) = 0

which implies c = 3ϵ
2 , where ε = ±1 . Consequently, the first equation in (3.55) turns into

2fe21(f)− 3e1(f)
2 + 18f4 = 0

which implies

e1(f) = δ
√
bf3 − 18f4 (3.57)

for some constants b, δ such that δ = ±1 . By combining (3.55)-(3.57) with (3.54), we get

P9 =
243ε

2
f23/2(b− 18f)3/2

(
77824b2(δ − 1)

+ 32b(1243091− 1243679δ)f + 9(76049257δ − 75972425)f2
)

which implies that P9 does not vanish outside of a set with empty interior. However, this is a contradiction.
Hence, we have X(k2) = X(l2) = 0 . Consequently, (3.31),(3.32) and (3.5) imply X(k3) = X(l3) =

X(ω) = X(γ) = 0 .
Similar to Theorem 3.8, we obtain the following theorem.

Theorem 3.14 Let (Ω, g) be a 3-dimensional Riemannian manifold and ψ : (Ω, g) ↪→ E5 be a proper
biconservative PNMCV isometric immersion with three distinct principal curvatures. Then, the principal
directions e1, e2, e3 , principal curvatures k2, k3 and the functions f, l1, l2, l3 can be determined intrinsically
up to their signature.

Proof By considering the Gauss equation and the shape operators of ψ , we obtain Ric of (Ω, g) satisfies
Ric(ei) = −λiei for some functions λ1 , λ2 and λ3 . Note that Proposition 3.10 implies eA(λi) = 0 and we
have

λ1 =
27f2

4
+ l21. (3.58)

Consequently, D = span {∇λ1,∇λ2,∇λ3} = span {e1} which yields that e1 and λ1 can be determined
intrinsically. Furthermore, e2, e3 and ω, γ are unit eigenvectors and eigenvalues of the linear transformation

L : D⊥ → D⊥, L(X) = ∇Xei.

Therefore, they also can be determined intrinsically. Define τij by

τij = R(ei, ej , ei, ej), 1 ≤ i < j ≤ 3. (3.59)
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By a direct computation combining Codazzi equations (3.29a) and (3.29b) with Gauss equations, we obtain

(ω + γ)

(
9f2

4
+ l21

)
= e1

(
τ12 + τ13 +

1

2
λ1

)
+ ωτ12 + γτ13. (3.60)

From (3.58) and (3.60), we see that f and l1 can be determined intrinsically. A further computation by
considering (3.28) and (3.59), one can obtain k2, k3, l2, l3 in terms of τ12, τ13, τ23, f and l1 .

Consequently, we have the following result which can be obtained using [7, Theorem 1.1 at page 7].

Corollary 3.15 If a 3-dimensional Riemannian manifold (Ω, g) admits two proper biconservative PNMCV
isometric immersions into E4 with three distinct principal curvatures, then these immersions differ by an
isometry of E5 .

4. Biharmonic submanifolds
In this section we consider biharmonic PNMCV submanifolds of dimension 3 and prove the following theorem.

Theorem 4.1 Let ψ : (Ω, g) ↪→ E5 be a PNMCV isometric immersion, where (Ω, g) is a three-dimensional
Riemannian manifold. Then, ψ cannot be biharmonic.

Proof Suppose that ψ is a biharmonic PNMCV isometric immersion. It was proved in [11] that a biharmonic
hypersurface in E4 is harmonic. Therefore, by considering Theorem 2.3, we assume that ψ(Ω) does not contain
any open part lying on a hyperplane of E5 .

Since ψ is biharmonic, it is biconservative and (2.10) is satisfied. By a direct computation considering
(2.10) and (3.4), we get

∆f = f

(
9f2

4
+ k22 + k23

)
, (4.1a)

4l2k2 + 4l3k3 + l2k3 + l3k2 = 0. (4.1b)

Note that because of (3.29a), (3.29b), (3.5) and (4.1b), l2, k2, l3 and k3 does not vanish outside of a subset Ω

with empty interior.
First, towards contradiction, we assume k2 ̸= k3 at a point p ∈ Ω . Then, on a neighborhood Np of p ,

we have (3.30) because of Proposition 3.10. Therefore, the Gauss equation
(
R̃(e2, e3, e2, e3)

)T
= 0 gives

ωγ = k2k3 + l2l3 if k2 ̸= k3. (4.2)

By applying e1 to (4.1b), (4.2), then consider (3.29), (3.5) and (4.2), we obtain

(4k2 + k3) (5l2 + 2l3)ω + (k2 + 4k3) (2l2 + 5l3) γ = 0, (4.3a)

P1(k2, k3, l2, l3)ω + P1(k3, k2, l3, l2)γ = 0, (4.3b)

where P is the polynomial given by

P1(x1, x2, y1, y2) = −3x1y1 − 3x2y2 + 2x21 + 5x1x2 + 6y21 + 9y1y2.
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By considering Theorem 2.3 and using (3.29a), (3.5), we observe that the interior of the set K = {p ∈ Ω :

ω(p) = γ(p) = 0} is empty. Therefore, (4.1b) and (4.3) imply

32k32l3 − 6k22l
2
3 − 232k3k

2
2l3 − 120k2l

3
3 − 135k3k2l

2
3 − 958k23k2l3 − 480k3l

3
3 − 30k23l

2
2

+36k23l
2
3 − 2040k3l2l

2
3 − 30k33l2 + 8k33l3 − 960k3l

2
2l3 − 135k23l2l3 = 0

(4.4)

outside of K . We apply e1 to (4.4) and use the same procedure to get
P2(k2, k3, l2, l3)ω + P3(k2, k3, l2, l3)γ = 0 (4.5)

for some fourth degree polynomials P2, P3 . By considering (4.3a), (4.5), we obtain

−1920l22k
4
2 + 2240l23k

4
2 + 800l2l3k

4
2 + 1416l33k

3
2 + 13440k3l

2
2k

3
2 + 32848k3l

2
3k

3
2

+4332l2l
2
3k

3
2 + 720l22l3k

3
2 + 89848k3l2l3k

3
2 + 18720l43k

2
2 + 1200k3l

3
2k

2
2

+13398k3l
3
3k

2
2 + 76800l2l

3
3k

2
2 + 62760k23l

2
2k

2
2 + 58896k23l

2
3k

2
2 + 70080l22l

2
3k

2
2

+50019k3l2l
2
3k

2
2 + 19200l32l3k

2
2 + 22260k3l

2
2l3k

2
2 + 291372k23l2l3k

2
2 + 57600k3l

4
2k2

+48960k3l
4
3k2 + 12480k23l

3
2k2 − 15324k23l

3
3k2 + 420000k3l2l

3
3k2 + 21180k33l

2
2k2

−65536k33l
2
3k2 + 837840k3l

2
2l

2
3k2 + 1146k23l2l

2
3k2 + 441600k3l

3
2l3k2

+40380k23l
2
2l3k2 + 35312k33l2l3k2 + 14400k23l

4
2 − 103680k23l

4
3 + 345k33l

3
2

−12240k33l
3
3 − 283200k23l2l

3
3 + 240k43l

2
2 − 21248k43l

2
3 − 145920k23l

2
2l

2
3

−24372k33l2l
2
3 + 22800k23l

3
2l3 − 5460k33l

2
2l3 − 12032k43l2l3 = 0

(4.6)

outside of K . Finally, by obtaining the resultant of the polynomials appearing on the right hand side of
(4.1b),(4.4),(4.6) with respect to l2 and l3 , we get

−43200 (4k2 + k3)
2
(k2 + 4k3)

3 (
4k22 − 13k3k2 + 4k23

) (
73381632k182

−689651232k3k
17
2 + 95630336k23k

16
2 + 20048552092k33k

15
2 − 51528775696k43k

14
2

−156852284797k53k
13
2 + 662866585600k63k

12
2 + 140071434296k73k

11
2

−1622719053552k83k
10
2 + 2974299612642k93k

9
2 − 1622719053552k103 k

8
2

+140071434296k113 k
7
2 + 662866585600k123 k

6
2 − 156852284797k133 k

5
2

−51528775696k143 k
4
2 + 20048552092k153 k

3
2 + 95630336k163 k

2
2

−689651232k173 k2 + 73381632k183

)
= 0

from which we see
k2 = ck3 (4.7)

for a constant c such that c /∈ {−1, 1} . From (3.5), (4.1b) and (4.7) we get

k2 =
9f

2(c+ 1)
, k3 =

9cf

2(c+ 1)
,

l2 = − (4c+ 1)l1
3(c− 1)

, l3 =
(c+ 4)l1
3(c− 1)

.

(4.8)
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Finally, by combining (3.29a) and (3.29b) with (4.8), we obtain

(4c+ 1)fe1(l1)− 3l1e1(f) =0,

(c+ 4)fe1(l1)− 3cl1e1(f) =0

which implies e1(f) = 0 unless c2 − 1 = 0 . However, this is a contradiction. Hence, we have k2 = k3 on Ω .
Since we have k2 = k3 , (3.5) and (4.1b) imply l1 = 0 . Therefore, ψ is the isometric immersion given in

Case I of Proposition 3.6. Consequently, (3.19) and (4.1a) give

40fe21(f)− 48e1(f)
2 + 495f4 = 0. (4.9)

On the other hand, the Gauss equation
(
R̃(e1, e2, e1, e2)

)T
= 0 implies

40fe21(f)− 64e1(f)
2 + 225f4 = 0. (4.10)

However, (4.9) and (4.10) imply 8e1(f)
2 + 135f4 = 0 which yields a contradiction.

Combining Theorem 4.1 with [6, Theorem 1] and [10, Theorem 1.1] provides the following partial answer
for Chen’s biharmonic conjecture.

Theorem 4.2 There do not exist proper biharmonic submanifolds in E5 with the parallel normalized mean
curvature vector.
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