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Abstract: In this study, the approximate solution of the nonlinear differential equation with variable delays is investi-
gated by means of a collocation method based on the truncated Pell-Lucas series. In the first stage of the method, the
assumed solution form (the truncated Pell-Lucas polynomial solution) is expressed in the matrix form of the standard
bases. Next, the matrix forms of the necessary derivatives, the nonlinear terms, and the initial conditions are written.
Then, with the help of the equally spaced collocation points and these matrix relations, the problem is reduced to a
system of nonlinear algebraic equations. Finally, the obtained system is solved by using MATLAB. The solution of this
system gives the coefficient matrix in the assumed solution form. Moreover, the error analysis is performed. Accordingly,
two theorems about the upper limit of the errors and the error estimation are given and these theorems are proven. In
addition, the residual improvement technique is presented. The presented methods are applied to three examples. The
obtained results are displayed in tables and graphs. Also, the obtained results are compared with the results of other
methods in the literature. All results in this study have been calculated by using MATLAB.

Key words: Collocation method, collocation points, delay differential equations, error analysis, nonlinear differential
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1. Introduction

The differential equations are important not only in the mathematics but also in many fields such as science and
engineering. Analytical solutions of many differential equations either do not exist or they are quite difficult to
obtain. Therefore, the approximation methods are needed to solve these problems. For this reason, the numerical
methods are important for this type of the equations. Various numerical methods [4-6, 8, 9, 18, 21, 30, 32, 38—40]
related to the nonlinear differential equations are available in the literature.

On the other hand, the time-delayed differential equations are also important in many fields such as
science and engineering. For example, in biological systems, the delay is of a few hundred milliseconds, which
is the human response process. In a significant transaction, the delays can be very significant, whether they
are measured in microseconds or less. A theoretical time delay is a property of the same form as the efficiency
gained by energizing a machine. The time-delay differential equations arise in population dynamics, bioscience
problems, control problems, neural network modeling, and economic systems where the decisions and the effects

are separated by some time interval. The examples of some important numerical methods developed to date
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for this type of the equations are the variable multistep methods [25, 26], Chebyshev polynomials for the
pantograph differential equation [33], a spectral Galerkin method for the nonlinear delayed convection-diffusion
reaction equations [23], the power series method [2], the differential transformation method (DTM) [20], and
various other methods [3, 10, 11, 13-15, 19, 22, 2729, 33-35, 41-47, 50].

Sahin and Sezer studied the approximate solutions of high-order linear functional differential equations
with hybrid delays by using the Pell-Lucas polynomials [36]. Yiizbagi and Yildirim used the Pell-Lucas poly-
nomials to find approximate solutions of two population models [48] and high-order linear Fredholm-Volterra
integro-differential equations [49]. Dénmez Demir et al. investigated the solutions of Fredholm-type delay
integro-differential equations with variable delays with the help of the Pell-Lucas polynomials [7]. However,
until now, there is no study in the literature to examine the approximate solutions of the nonlinear differential
equations with variable delays by using the Pell-Lucas polynomials.

In this work, we investigate the Pell-Lucas polynomial solutions of the nonlinear differential equations

with variable delays

2 1 2 P
SN M (0™t — 1 (£) + D> Nyg(0)y® (£)y' @ () = g(t) (1.1)
k=0 j5=0 p=0¢=0
under the initial conditions
y(@)=X and y(a)=p (1.2)

where y(©) () = y(t) is the unknown function and My;(t), Np,(t) and g(t) are the continuous functions
on the interval 0 < a <t < b. Also, the variable delays Tkj(t) are the continuous functions on the interval
0<a<t<bfor 7;(t) > 0. The aim of this study is to present the Pell-Lucas collocation method to find
the approximate solution of the problem (1.1)-(1.2). Therefore, we seek approximate solution of the problem
(1.1)-(1.2) in the truncated Pell-Lucas series of the form

N
y() = yn(t) = 3 anQut), a<t<b (1.3)
n=0

Here, a,(n =0,1,...N) are the Pell-Lucas coefficients. N is a cut-off limit, which is any positive integer. Also,
Qn(t)(n=0,1,...N) are the Pell-Lucas polynomials and it is defined by

e/ n (n—~k
_ n—2k_ " n—2k
Qu(t) = ) 2 n—k< L )t .

k=0
The recurrence relation of the Pell-Lucas polynomials is represented as
Qn(t> = 2th71(t) + Q’an(t)a n > 2,

where Qo(t) =2 and Q4 (¢t) = 2t. In addition, the derivatives of the Pell Lucas polynomials have the recurrence

relation

Qo () = 2tQ, 1 (t) + Qu_o(t) +2Qu-1(t), n>2 (1.4)

where Qq(t) = 0 and Q;(t) = 2. Please have a look at [16, 17] for more properties of the Pell-Lucas polynomials.

This study is summarized as follows:
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e In Section 2, the matrix form of the assumed solution and the required other matrix relations are created.

Based on these relations, the matrix form of the problem (1.1)-(1.2) is formed.

e In Section 3, the Pell-Lucas collocation method is created by using the theorems in Section 2 and the

collocation points. Thus, the problem (1.1)-(1.2) is reduced to an algebraic matrix system.
e In Section 4, the two theorems about the error analysis are given and proven.

e In Section 5, the methods in Sections 3 and 4 are tested for three examples by using MATLAB. The
obtained results are discussed in tables and graphs.

e In Section 6, the results of this study are highlighted.

2. Basic matrix relations

In this section, some basic matrix relations are created to be used in the method of solution.

Lemma 2.1 The vector Qn(t) is written as follows:

Qn(t) =Tn(t)Dy (2.1)
where Ty(t)=[1 ¢ t* - N ] and if N is odd
(20 22 0 233 o 0]
0 Q) 0 230 0 250 o 2R
00 25Q 0 25() 0 0
N+3
Dy=[0 0 0 2O 0 2y o 2GR |
0 0 0 0 2440 0 0
00 0 0 0 0 NI ]
and if N is even
(20 2%() 0 2043 o 243 ]
0 2iM) 0 230 0 230 0
00 25 0 2%5() 0 2 w7 (222
Dy=|0 0 0 233 o 25 - 0
N+4
0000 Y 0 e 2 (E)
Lo 0 0 0 0 0 2NN

Proof: By multiplying the vector T n(¢) by the matrix Dy from the right side, the vector Qn(t) = Tn(¢t)Dn
is gained.

Lemma 2.2 The approzimate solution based on the Pell-Lucas polynomials in (1.3) is expressed in the matriz

form
y(t) 2 yn(t) = Tn(t)DnAN (2.2)
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where

ANZ[QO a - an ]T7i20,1,...,N.
Here, the matrices Tn(t) and Dy are as in Lemma (2.1).

Proof: The vector Qn(t) = Tn(¢)Dy in the Lemma (2.1) is multiplied by the vector Ay from the right and

so the relation (2.2) is obtained.

Lemma 2.3 The matriz representations for the derivatives of the assumed solution form (2.2) are given as

Y (t) = yy(t) = Tn(t)ByDyAy (2.3)
and
y'(t) = yy(t) = Ty ()BI DAy (2.4)
where
01 0 0
0 0 2 0
BN = . . . . .
o 00 .- N
000 --- 0

Here, the matrices Tn(t) Dy and Ay are as in Lemmas (2.1) and (2.2).

Proof: Firstly, by taking the first and second derivatives of Eq. (2.2), we have, respectively

’

Y (t) = yn(t) = Ty(t)DyAy (2.5)

and

1"

y (1) 2 yn(t) = Ty(H)DyAN. (2.6)

Secondly, if the first and second derivatives of the matrix T n(¢) is taken, the following relations are found,

respectively

Ty (t) = Tn(t)By (2.7)

and
T'y () = Ty (t)B. (2.8)

Finally, by substituting the relation (2.7) in (2.5) and by substituting the relation (2.8) in (2.6), we get the

matrix representations for the first and second derivatives of the assumed solution form (2.2).

Lemma 2.4 The matriz representations of the terms with variable delay in Eq. (1.1) are, respectively

y(t — 715 () = yn(t — 1% (t)) = T (t)Sn(—7x;(t)) DNAN, (2.9)

Y (t = 75(1) & yn(t — 75 (1)) = T (6)Sn (=7 (1)) By Dy Ay (2.10)
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and
Y (t = () = yy (t — 75(t) = T (8)Sn(—715(t)) BA Dy Ay (2.11)
where
(0) (=g () () (=g (1) () (=75 ()N
0 (1) (=7a5 ()" (P (=g
Sy (=74 (1)) = 0 0 (3) (=7 ()N 2
0 0 () (=75 (1))°

Here Tn(t), By, Dy, and A are as in Lemmas (2.2) and (2.3).

Proof: If t — 74;(t) is written instead of ¢ in (2.2), (2.3), and (2.4), it becomes, respectively

y(t — Tkj(t)) =~ yN(t — Tk-j(t)) = TN(t — Tkj(t))DNAN, (212)
Y (t = 7i(t) = yn (t — 75 (t)) = T (t — 75(t)) ByDy Ay (2.13)

and
Y (t — i (£) =y (t — (1)) = T (t — 72,5 (£)) B3 Dy An. (2.14)

On the other hand, if we multiply the matrix Ty (¢) by the matrix Sy (—74;(¢)) from the right side, we get the

relation
TN(t—Tkj) ZTN(t)SN(—Tkj(t)). (2.15)

Hence, by substituting the relation (2.15) in (2.12), (2.13), and (2.14), the desired results are obtained.

Lemma 2.5 The matriz representations of the nonlinear terms in Eq. (1.1) are expressed as follows:

(¥©(1))* = Tn()DyANTy ()Dy A, (2.16)
y D (t)y ) (t) = Ty () ByDyANTN(H)DyAN, (2.17)
y P (t)y O (t) = Tn()BYDyANTN(H)DyAy, (2.18)
(yV (1) = Tn () BNyDyANTx (1) ByDy Ay, (2.19)
y P (t)y M (1) = Tn()BYDNANT N () ByDyAy (2:20)
and
(¥?(1)* = Tn(t)B3DyANT N (t)B3DyAy. (2.21)

Here Tn(t), By, Dy, and An are as in Lemmas (2.2) and (2.3).

Proof: If the relations in Lemmas (2.2) and (2.3) are substituted, respectively, for y©(¢), ) (t) and y?(t)
in Eq. (1.1), the proof is completed.
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Theorem 2.6 It is assumed that we seek the solution of Eq. (1.1) in the solution form (2.2). Then we have

the matriz relation

2 1

SN M ()TN (SN (—7; (1)) BEDNAN + > > " Nyy(t) Ty (1) (B )" DyAT (1) (By)! Dy Ay = g(t).
k=0 j=0 p=0 q=0

(2.22)
Here, Tn(t), Sn(—7x;(t)), By, Dy, and Ay are as in Lemmas (2.2), (2.3) and (2.4).

Proof: The matrix representations (2.9), (2.10), and (2.11) and the matrix representations (2.16)—(2.21) are
written in Eq. (1.1), and so Eq. (2.22) is obtained. That is, the term y*) (t —73,;(¢)) in Eq. (1.1) is replaced by
Egs. (2.9), (2.10), and (2.11) and the term y® (t)y(@(¢) in Eq. (1.1) is replaced by the equation (2.16)—(2.21).
Thus, the proof of the theorem is completed. O

Lemma 2.7 The matriz representations based on the solution form (1.3) of the initial conditions (1.2) become
as follows

UlAN = )\, U1 = TN(a)DN

2.23
UsAny =p, Uz =Ty(a)ByDn (2.23)

Here, Tn(a), By, Dy, and Ay are as in Lemmas (2.2), (2.3) and (2.4).

Proof: If a is written instead of ¢ in Eq. (2.2), y(a) ® yn(a) = Ty(a)DyAy is found. This is the matrix
representation of the first condition in Eq. (1.2). So, UjAx =)\, U; = Tx(a)Dy. Similarly, if a is written
instead of ¢ in Eq. (2.3), 4 (a) = yy(a) = Ty (a)ByDyAy is found. This is the matrix representation of the
second condition in Eq. (1.2). That is, UsAxy =, Uz =Tpx(a)ByDx.

3. The Pell-Lucas collocation method

The purpose of this section is to construct a method based on the evenly spaced collocation points by using the
Pell-lucas polynomials. For this purpose, firstly, evenly spaced collocation points are defined. Next, the method
of solution is created by using the matrix relations in the Section (2) and the collocation points. The evenly

spaced collocation points are defined by

b—a
N

ti=a+ i, i=0,1,..,N. (3.1)
It is assumed that the solution of the problem (1.1)-(1.2) is sought in the form of Eq. (2.2). Firstly, if the
collocation points defined in Eq. (3.1) are used in Eq. (2.22), it becomes

2 1 2 p
DN My ()T (t)Sn (— 75 (£:)) BADN AN+ Y Npg(t:) T (t:) (By)? DyANT N () (By)! DyAy = g(t:)
k=0 j=0 p=0 ¢=0
(3.2)

D My TiyAN+ Y Y NpgTpAy =G (3.3)

k=0 j5=0 p=0¢=0
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where
. . T
My, = diag(Mp;(t:) (v+1)x(N+1)s  Npg = diag(Npg(t:)) v+ 1< (v+1), G =[ glto) g(tr) -~ g(tn) |,
T (to)Sn(—7kj(to)) BX,Dn Tn(to) (By)’ DNANT N (to) (By)! Dy
T (t1)Sn(—=7;(t1))BE Dy _ Tn(t1) (By)" DNANTN(t1) (By)? Dy
Tk] = : ’ qu = :
TN(tN)SN(kaj(tN))Bﬁ,DN Tn(tn) (BN)p DNANTN(tN) (BN)q Dy

Here, Tn(t), Snv(—7%;(t)), By, Dy, and Ay are as in Theorem (2.6). On the other hand, Eq. (3.3) is briefly

written as

W Ay + WAy =G (34)
where
2 1 2 p -
W= MyTi, Wa=> > NpgTy,
k=0 j5=0 p=0 g=0

Let us express the algebraic matrix system in Eq. (3.4) as [W1; W2; G]. In addition, let us write the
system in Eq. (2.23) as [Uy;0; A\] and [Usg;0; u]. Here, the matrix 0 is the zeros matrix of size 1 x (N + 1).
Now, instead of any two rows of the matrix [W1; Wa; G], the matrices [Uj;0;A] and [Us;0; u] are written.

The obtained new matrix system is called [Wl; Wg; CN}} . Hence, we have the expanded matrix

It should be noted that when obtaining the the expanded matrix [Wl; Wg; é} , any two rows of the matrix

[W1; Wy; G] can be used instead of the last two rows. This obtained system is solved by using MATLAB and
so the coefficient matrix Ay is calculated. Finally, by substituting the calculated coefficient matrix Ay in Eq.

(2.2), the approximate solution based on the Pell-Lucas polynomials is obtained.

4. Error analysis
In this section, two important theorems are given and proven. The first theorem is about the upper boundary

of errors. In the second theorem, the error estimation is made by using the residual function. In addition, the

residual improved technique is presented.

Theorem 4.1 (Upper Boundary of Errors) It is assumed that y(t), yn(t), and y¥ (t) are the ezact solution,
the Pell-Lucas polynomial solution with N — th degree of the problem (1.1)-(1.2) and the expansion of the
generalized Maclaurin series with N — th degree of y(t), respectively. Then the absolute error of the Pell-Lucas
polynomial solution for 0 < a <t < b is bounded by the inequality

bN+1

m“y(]vﬂ)(ct)ﬂoo (4.1)

ly(8) = yn (Do < kn(1AN oo + DX ool Anlloo) +

where | Tx(t)]oo < max{bN,1} := kn, An represents the coeffcient matriz of the yNo(t) and AAyx =
[ANt1lloo = [[ANoo -
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Proof: Firstly, we add and subtract the Maclaurin expansion y3 (t) with N — th degree from y(t) — yn(t).

Next, by using the triangle inequality, we can write

ly(®) = yn (D)l = ly(t) = y¥ () +yx (8) = yn (B)lloo < () = yn Olloc + [ly¥ (€)= yn (t)l]oo- (4.2)

We know that the Pell-Lucas polynomial solution yy(¢) is written in the matrix form as yn(t) = Ty (:)DyAy

from Lemma (2.2) and the expansion of the Maclaurin series with N — th degree of y(t) is written as

yNM(t) =T N(t);& ~ - Accordingly, we have the following expression:

Il (&) = yv (O)lloc = ITA (AN ~ DyAMlloe < ITN Ol ([AN]oo + IDxllolAnl) . (43)
Because of 0 <t <b, we can write |Tn(f)||co in the inequality (4.3) as
TN (t)]|oo < max {bV,1} := kn (4.4)

From here, the inequality (4.3) becomes
A () = yn (oo < kv (1A lloe + D oo Al ) (4.5)

As for the term |ly(t) — yA (t)]|o in Eq. (4.2), since the remainder term of the Maclaurin series y2!(¢) with

N — th degreee is

tN+1 N
my( +1) (Ct), 0 S a S t S b, (46)

the term ||y(t) — yA (t)||o in Eq. (4.2) can be written as

bN+1

() = yN ()l < mllyw“)(q)llw (4.7)

As a result, by writing the inequalities (4.5) and (4.7) in (4.2), we get

bN+1

ly(2) = yn (Do < kn(|AN oo + DX llocllANloo) + illy ™ (el oo (4.8)

(N+1)
which completes the proof of theorem. O

Theorem 4.2 (Error Estimation) Let y(t) be the exact solution and yy(x) be the Pell-Lucas polynomial
solution with N — th degree of the problem (1.1)-(1.2). In this case, we have the error problem

{ e Xm0 Mig ()R (8 = 7y (1)) + Yi_g on (1)l + 3050 o Nog(D)ell (1) = —Ruv (#) (49)
en(@)=0 and ey(a)=0,
where

ao(t) = 2Noo (Dyw (£) + Nio(£)y (8) + Nao(t)yy (¢),

a1(t) = Nio(t)yn(t) + 2N11(t)§/N(t) + N21(t)y{y(t),

Oéz(t) = Ngo(t)yN(t) + Ngl(t)yN(t) + 2N22(t)yN(t).

Here, en(t) = y(t) —yn(t) and Ry(t) is the residual function of the problem (1.1)-(1.2).
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Proof: Inasmuch as the Pell-Lucas polynomial solution (1.3) provides Eq. (1.1), we can write

Z Z M0y (t = 1 (0) + 3> Nog(0)y (052 (8) — g(t) (4.10)

k=0 53=0 p=0 g=0
Ry(t) + Z Z My (By (= 1 (1) + 3D Nog () ()5 (2). (4.11)
k=0 53=0 p=0 ¢=0

Similarly, since the Pell-Lucas polynomial solution (1.3) provides the initial conditions (1.2), we can write

yn(a)=A and yy(a) = p. (4.12)

We know that en(t) = y(t) — yn(t). If we subtract the problem (4.11)-(4.12) from the problem (1.1)-(1.2) and
if we write y(t) — en(t) + yn(t), then we get the error problem

{ S0 Xm0 Mg ()R (¢ - m( )+ Simo k(e + X520 Tim Npa el () = =B (@) 4 1)
en(a)=0 and ey(a)=

Hence, the desired result is achieved. O

Corollary 4.1 When we solve the error problem (4.9) according to the method in Section (3), we gain the

estimated error function ey a(t).

Corollary 4.2 If we add the Pell-Lucas polynomial solution yn(t) with the estimated error function en a(t),

then we have the improved approzimate solution yn p(t).

Corollary 4.3 The error function for the improved approzimate solution is calculated by

Ena(t) = y(t) — ynm (). (4.14)

5. Applications and discussions

In this section, the methods presented in the previous sections (3)-(4) are tested for the three examples. The
obtained results are shown in tables and graphs. The comparisons are also made with other methods in the
literature. All results are calculated by using MATLAB.

In this work, y(t) represents the exact solution, yy(t) represents the Pell-Lucas polynomial solution,
y~,m(t) represents the improved approximate solution, |ex(t)| represents the actual absolute error function,
len,am(t)| represents the estimated absolute error function and |En s (t)| represents the improved absolute error

function.

Example 5.1 Firstly, we consider the second order nonlinear differential equation with variable delays t3,t2

_1
and —3

V) =)yt )~ (4 ) = o) (1)
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and the conditions

y(0)=1, y(0)=1 (5.2)

where g(t) = # —t(t+1)2 -

The exact solution of Eq. (5.1) under the conditions (5.2) is % +t+ 1. Now, let us investigate the solution of

the problem (5.1)-(5.2) for N =2 in the form
2
t) = Z anQn(t)' (53)
n=0

For N = 2, the collocation points are to = 0, t; = 1/2 and ¢t2 = 1. According to the method in Section (3),

from Eq. (3.4) the fundamental matrix equation becomes
WiA; + WA, =G (5.4)
where

W, = My T+ MgoToo+MoiTo1, Wz =Ny;T11, My = eye(3,3), Mgy = eye(3,3), Mo = —eye(3,3),

[ T2 (to)S2(to/2)B2Do, T (to)S2(—t3)B2D,, T (to)S2(—t3)B2Ds,,
Too = | T2(t1)S2(t1/2)B3Do, |, To1 = | Ta(t1)S2(—13)B3Ds, |, Tao= | Ta(t1)S2(—t3)B3Dy, |,
| Ta(t2)S2(t2/2)B3Ds, T2 (t2)S2(—t3)B3Dy, Ty (t2)S2(—13)B3 Dy,
_ [ Tg(to)BQDgAQTg(to)BQDQ O 0 O ap 1
T11 = Tg(tl)BngAng(tl)BgDQ s Nll = 0 —1/2 0 s A2 = ai s G = —7/8 s
T2(t2)B2D2A2T2(t2)B2D2 0 0 -1 an *45/8
2 0 2 01 0 117
Do=|02 0|, Bo=|0 0 2|, To(t)=| &
00 4 00 0 2

Also, the matrix representations of the conditions (5.2) are as follows:
[U;;0;1]=[2 0 2 ; 0 0 0 ; 1],
[Uy;0;1]=[0 2 0 ; 0 0 0 ; 1].

Instead of the last two lines of the system [Wi; Wa; GJ, the matrix forms of conditions [Uy;0;1] and [Usg; 05 1]
are written. Here, 0 = [ 0 0 0 ] . The obtained system is solved by using MATLAB and so the Pell-Lucas

coefficients matrix is calculated as

A,=[3/8 12 1/8]"

It should be noted that any two lines can be changed instead of the last two lines. By substituting this coefficients

matrix A in Eq. (5.3), we get the approximate solution as % 4+t + 1, which is the exact solution.

46



YUZBASI and YILDIRIM/Turk J Math

Example 5.2 For the second example, let us take the second order nonlinear differential equation with variable
delay t —t3/8
3

v O+ (5 ) 4200 - 0 =90, cefon 5:5)

and the initial conditions

Here, g(t) = sin(t3/8) + sin(t) — sin?(t).

The exact solution of this problem is sin(t). Now, we find the Pell-Lucas polynomial solution of the problem

(5.5)-(5.6) for N =4 in the truncated serial form

4
)= anQn(t). (5.7)
n=0

For N = 4, the collocation points are tg =0, t; = 1/4, to = 1/2, t3 = 3/4 and t4 = 1. By using Eq. (3.4),
we determine the basic matrix equation as
WA, + WA =G (5.8)

where

W, = MayoTao+MgoToo+Mo1To1, Wy =Nq3T1y, Mg =eye(5,5), Moo = eye(5,5), Moy = 2eye(5, 5),

T4(to)B3Da, T4 (to)Sa(—(to — t3/8))B3iDy, ao
T4(t1)BiD4, T4(t1)S4( (tl — t3/8))B2D4, aq
Ni1 = —eye(5,5), Tao= | Ta(t2)BiDy, |, Too= | Ta(t2)Sa(— (tg—t/S))B2D4, , Ay=| ax |,
T4(t3)BiD4, T4(t3)S4( (tg —t /8))B2D4, as
T4(t4)B421D4, T4(t4)S4( (t4 - t4/8))B421D4, Qy
T4 (to)Da, Ty(to) Dy A4 Ty(tg)Dy 2 0 2 0 2 1
T4 (t1)Dy, B Ty(t1)DygA4T4(t1)Dy 02 0 6 0 t;
To1 = | Ta(ta)Da, |, Ti= | Tu(t2)DsAyTy(tz)Dy |, Dy=|0 0 4 0 16 |, Ty(t;)=| &
T4(t3)Dy, Ty(t3)DsAsTy(t5)Dy 0 0 0 8 O t3
Ty (t4)Dy, Ty(ts)DyA4T4(t4)Dy 00 0 0 16 t
0 01 0 0 O
1324/7037 00 2 00
G = | 567/2138 , Bs4=10 0 0 3 0
725/2688 0 0 0 0 4
1071/4150 00 0 0O

Also, the matrix representations of the conditions (5.6) are as follows:
[U;;0;0)=[2 0 2 0 2 ; 00000 ; 0],
[Ug;0;1]=[0 2 0 6 0 ; 0 0 0 0 0 ; 1].

47



YUZBASI and YILDIRIM/Turk J Math

From here, instead of the last two lines of the system [Wi;Way; G|, the matrix forms of conditions [Uy;0;0]
and [Us;0;1] are written. Here, 0 = [ 00 0 0 O ] . By solving the obtained system with the help of a
code written in MATLAB, the Pell-Lucas coefficients matrix is calculated. Finally, this coefficients matrix A4

is substituted in Eq. (5.7) and so we obtain the approximate solution as
ya(t) = 1.0241e — 02t* — 1.7004e — 01¢® 4 2.4731e — 13t* + ¢.

In Table 1, the exact solution, the approximate solution and the improved approximate solution of the
problem (5.5)-(5.6) for various values of N and M are given. According to Table 1, it can be observed that

the results of the method are quite successful.

Table 1. Numerical results of the exact solution, the approximate solution for N = 4,7,10, and the improved
approximate solution for (N, M) = (4,5),(7,8),(10,11) of the problem (5.5)-(5.6).

Exact solution Approximate solution
ti | y(ti) = sin(t;) ya(t) yr(t:) Y1o(ts)
0 0 0 6.3527471044073e-22 | 1.2914357313484e-22
0.2 | 0.19866933079506 | 0.19865610054763 | 0.19866933151654 0.19866933079517
0.4 | 0.38941834230865 | 0.38937988888193 | 0.38941834378405 0.38941834230888
0.6 | 0.56464247339504 | 0.56459953516704 | 0.56464247554152 0.56464247339537
0.8 | 0.71735609089952 | 0.71713646306981 | 0.71735609360186 0.71735609089992
1 0.84147098480790 | 0.84020534975983 | 0.84147087741528 0.84147098482352
Exact solution Improved approximate solution
ti | y(ti) = sin(t;) Ya5(t:) yr.8(ti) Yy10,11(t:)
0 0 0 1.8674429508997e-20 | 1.6933938102609e-22
0.2 | 0.19866933079506 | 0.19866912034635 | 0.19866933070487 0.19866933079506
0.4 | 0.38941834230865 | 0.38941761237277 | 0.38941834213530 0.38941834230866
0.6 | 0.56464247339504 | 0.56464000940943 | 0.56464247319947 0.56464247339505
0.8 | 0.71735609089952 | 0.71735218324262 | 0.71735609082121 0.71735609089956
1 0.84147098480790 | 0.84149662243629 | 0.84147097448162 0.84147098480771

Figure 1 compares the actual absolute error function for N = 5 with the results of LWM [15] in the
literature. In Figure 1, the estimated error function for (N, M) = (5,6) is also compared. When the present
method is compared with LWM [15], similar results are obtained. In addition, when Figure 1 is examined, it is
observed that the error estimation method is also effective.

In Table 2, the actual absolute errors, the estimated absolute errors and the improved absolute errors
are given. According to Table 2, we can infer three important conclusions. The first important result is that
the errors decrease as the value of N increases. The second important consequence is that the results of the
estimated absolute errors are quite close to the results of the actual absolute errors. From this result, it can
be said that the error estimation method described in Section 4 is effective. The final important result is that
the improved absolute errors yield better results than the actual absolute errors at most points in the given
range. From this result, it can be concluded that the technique of improving approximate solutions based on

the residual function is effective.
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Figure 1. Comparison of the absolute error functions of the prob. (5.5)-(5.6) with LWM [15].

Table 2. Comparison of the absolute errors for (N, M) = (4,5), (4,6),
(5.5)-(5.6).

(7,8), (7,9), (10,11), (10,12) of the problem

Absolute errors for the Estimated errors for the | Absolute errors for the improved
approximate solution approximate solution approximate solution

ti | |ea(ts)] = |y(ti) — yalts)) leas(ts)] leas(ti)] |Eas(t:)] |Eae(t:)]

0 0 0 1.2197e-19 | 0 1.2197e-19
0.2 | 1.3230e-05 1.3020e-05 | 1.3315e-05 | 2.1045e-07 | 8.5129e-08
0.4 | 3.8453e-05 3.7723e-05 | 3.8330e-05 | 7.2994e-07 | 1.2347e-07
0.6 | 4.2938e-05 4.0474e-05 | 4.1512e-05 | 2.4640e-06 | 1.4264e-06
0.8 | 2.1963e-04 2.1572e-04 | 2.1464e-04 | 3.9077e-06 | 4.9918e-06
1 1.2656e-03 1.2913e-03 | 1.2549e-03 | 2.5638e-05 | 1.0696e-05
t; ler(t:)] = |y(t:) — yz(ts)| le7.s(ts)] le7.0(ts)| |Er s(ts)] |Ero(ts)]

0 6.3527e-22 1.931e-20 2.3164e-20 | 1.8674e-20 | 2.2529e-20
0.2 | 7.2149e-10 8.1166e-10 | 7.227e-10 9.0154e-11 | 1.1937e-12
0.4 | 1.4754e-9 1.6487¢-9 1.4650e-9 1.7332e-10 | 1.0459e-11
0.6 | 2.1464e-9 2.3420e-9 | 2.0777e-9 1.9566e-10 | 6.8667e-11
0.8 | 2.7024e-9 2.7807e-9 2.4807e-9 7.8217e-11 | 2.2169e-10
1 1.07390e-7 9.7066e-8 | 1.0813e-7 1.0326e-8 7.4124e-10
t; lero(ts)| = |y(t:) — yro(t)| | eroan(ts)| | leroa2(ts)| | [Broan(ts)| | |Eroa2(t)]
0 1.2914e-22 2.9848e-22 | 5.9177e-22 | 1.6934e-22 | 7.2091e-22
0.2 | 1.4211e-13 1.0755e-13 | 1.0891e-13 | 2.8422e-14 | 2.8422e-14
0.4 | 2.8422e-13 2.2242e-13 | 2.2524e-13 | 5.6843e-14 | 5.6843e-14
0.6 | 2.2737e-13 3.1878e-13 | 3.2283e-13 | 1.1369e-13 | 1.1369e-13
0.8 | 4.5475e-13 3.6246e-13 | 3.6751e-13 | 1.1369e-13 | 1.1369e-13
1 1.5689¢-11 1.5817e-11 | 1.5581e-11 | 1.1369e-13 | 1.1369e-13

49



YUZBASI and YILDIRIM/Turk J Math

Example 5.3 The third example is the second order nonlinear differential equation with variable delays t2
and —t/2

1"

y () +y (t—t%) -yt + %) —y (t)y(t) + (y (t))2 =g(t), 0<t<1 (5.9)

and the initial conditions
y(0)=1, y(0)=1 (5.10)

where g(t) = et + et =t" — 2¢3t/2

The problem (5.9)-(5.10) has the exact solution e’. We seek the approximate solution of the problem
(5.9)-(5.10) for N =4 in the truncated Pell-Lucas serial form

4
ya(t) =Y anQu(t). (5.11)
n=0
The collocation points are to = 0, t; = 1/4, to = 1/2, t3 = 3/4, and t4, = 1 for N = 4. When we use Eq.
(3.4), we obtain the fundamental matrix equation
WA+ WA, =G (5.12)
where

W, = My Too+MyoT10+MgoToo, Wz = NyoT10+N11T11, My = eye(5,5), My = eye(5,5),

Nio = —eye(5,5), Ni1 = eye(5,5), A4:[a0 a1 az az aq4 ]T,
T4 (to)B2D, T.(to)Sn(—(£2))B4Dy 2 11"
T4(t1)BiDy T4 (t1)Sn(—(t7))B4Dy 703/293 ti
Ty = | Tu(t2)BiDy |, Tio= | Tu(t2)Sn(—(t3))BsDy |, G = | 3437/1430 |, Tu(t:))=| t7 | ,
Ty(t3)B3Dy Ty(t3)Sn(—(t3))B4Dy 2405/1512 t}
T4(ta)BiDy T4 (ta)Sn(—(t1))B4Dy —242/317 t}
0 0 0 0 0 T4 (to)Sn (—(—t0/2))Dy4 0100 0
0 -5z 0 0 0 Ty (t1)Sn(—(—t1/2))Dy 00200
Mp=|0 0 -3 0 0 |, Top=/| Ta(t2)Sn(—(—t2/2))Dy |, B4=|[0 0 0 3 0 [,
0 0 0 —5 0 T4 (t3)Sn(—(—t3/2))Dy 00 0 0 4
0 0 0 0 1 T4(ts)Sn(—(—ts/2))Dy 00000
T4(t0)B4D4AT4(t0)D4 T4(t0)B4D4AT4(t0)B4DN 2 0 2 0 2
_ T4(t1)B4D4AT4(t1)D4 _ T4(t1)B4D4AT4(t1)B4DN 0 2 0 6 0
T10: T4(t2)B4D4AT4(t2)D4 5 T11: T4(t2)B4D4AT4(t2)B4DN 5 D4= 0 0 4 0 16
Ti(t3)B4D4ATy(t3)Dy Tu(t3)B4D4AT,y(t3)B,Dy 0008 0
T4(t4)B4D4AT4(t4)D4 T4(t4)B4D4AT4(t4)B4DN 0 0 0 0 16

The matrix representations of the conditions (5.10) become in the following matrix forms:
[U;;0;1]=[2 0 2 0 2 ; 00000 ; 1],

[Ug;0;1]=[0 2 0 6 0 ; 0 0 0 0 0 ; 1].
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Accordingly, we write the matrix forms of conditions [Uj;0;1] and [Usq;0;1] instead of the last two lines of
the system [W7; Wy; G]. Here, 0 = [ 0 00 0O ] . Then, we solve the obtained system by using a code
written in MATLAB and so we calculate the Pell-Lucas coefficients matrix. Consequently, by substituting this

coefficients matrix A4 in Eq. (5.11), we get the approximate solution as
ya(t) = 5.3299¢ — 02t* + 1.6290e — 01> 4 5.0000e — 01¢% + ¢ + 1.

Table 3 compares the approximate solutions of the problem (5.9)-(5.10) for N = 5, N = 7 with the exact
solution. In addition, Table 3 compares the actual absolute errors for N = 5 and N = 7 and the estimated
absolute errors for (N, M) = (5,6) and (N, M) = (7,8). Figure 2 compares the actual absolute error functions
for N =5 N =7,and N = 11. Accordingly, it can be said that a more accurate result is obtained if a
larger number value of N is selected. Moreover, Table 3 compares the actual absolute errors for N = 5 and
N =7 with the results of LM [12] in the literature. When the present method is compared with LM [12], more

successful results are achieved at more points by using the present method.

Table 3. Comparison of the solutions and the absolute errors of the problem (5.9)-(5.10) with LM [12].

z; | Exact solution Approximate solution | Actual absolute | Estimated absolute | Actual absolute
for PM error for PM error for PM error for LM[12]
y(t) ys(t) les(t)] les,6(1)] les (8)]
0.2 | 1.2214027581602 | 1.2214037379204 9.7976e-7 1.1918e-6 2.05e-06
0.4 | 1.4918246976413 | 1.4918264106894 1.7130e-6 2.3238e-6 6.22e-06
0.6 | 1.8221188003905 | 1.8221213633236 2.5629e-6 3.5678e-6 1.37e-05
0.8 | 2.2255409284925 | 2.2255350651018 5.8634e-6 4.6792e-6 1.85e-05
1 2.718281828459 | 2.7181382540537 1.4357e-04 1.3939e-04 9.09e-05
y(t) y7(t) ez ()] le7,5(2)] ez ()]
0.2 | 1.2214027581602 | 1.2214027605892 2.4290e-9 2.8969¢-9 2.79e-09
0.4 | 1.4918246976413 | 1.4918247017708 4.1296e-9 5.4339e-9 5.53e-09
0.6 | 1.8221188003905 | 1.8221188056232 5.2326e-9 7.4407e-9 8.75e-09
0.8 | 2.2255409284925 | 2.2255409256982 2.7944e-9 4.4515e-10 4.84e-09
1 2.718281828459 | 2.7182812712682 5.5719e-7 5.5707e-7 5.35e-07

6. Conclusions

This article presents a collocation method for the nonlinear differential equations with the variable delays. In
the method, the approximate solution is investigated depending on the N — th order truncated Pell-Lucas
polynomials. In addition to the Pell-Lucas collocation method, error analysis is performed. The method is
tested for three examples. After applying the method to the first example, the exact solution is obtained.
Because the exact solution of the first example is of polynomial type, this result is an important advantage of
the method. After applying the method to the second example, three important results are obtained. The first
important result is that the errors decrease as the value of N increases, and this result is observed from Table
2. The second important result is that the results of the estimated absolute errors are quite close to the results

of the actual absolute errors. From here, it can be said that the error estimation method is effective and this
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Figure 2. Comparison of the actual absolute error functions of the problem (5.9)-(5.10).

result can be observed from Table 2. The final important result is that the results of the improved approximate
solution give better results than the Pell-Lucas polynomial solution at most points. From this, it is concluded
that the results of the improved absolute errors give more accurate results than the results of the actual absolute
errors, and this result can be observed from Table 2. As a result of the last example, the comments made for
the second example can be said. These results are observed from Table 3 and Figure 2. In the last example,
the present method is compared with the result obtained from another method in the literature for N =5 and
N = 7. Accordingly, it can be said that the present method is more successful, albeit with a small difference.
All calculations and graphics in this study have been obtained in a short time by using MATLAB. According
to all these results, it can be said that the method is quite successful, effective, and reliable. Moreover, the
method can also be applied for the fractional-order derivative differential equations after the necessary matrix

relations are made and MATLAB codes are created.
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