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Abstract: In this paper, we study the basic theory of regular Hahn-Hamiltonian systems. In this context, we establish
an existence and uniqueness result. We introduce the corresponding maximal and minimal operators for this system
and some properties of these operators are investigated. Moreover, we give a criterion under which these operators are
self-adjoint. Finally, an expansion theorem is proved.

Key words: Regular Hahn-Hamiltonian system, maximal and minimal operators, self-adjoint operator, eigenfunction
expansion

1. Introduction
The Hahn difference operators were introduced by Hahn [11], [12]. These operators are receiving an increase
of interest since their applications in the construction of families of orthogonal polynomials and approximation
problems (see [6, 10, 18, 19, 21]). There exist some papers including the Hahn difference operator in the
literature (see [5, 8, 13–15, 23]). Recently, in [1, 2, 16], the authors studied Hahn–Dirac systems. In [5], the
authors studied matrix-valued Hahn–Sturm–Liouville equations.

In this paper, we discuss the basic properties of the regular Hahn–Hamiltonian system defined as

l (Z) := JZ [ϱ](x)−M (x)Z (x) = λN (x)Z (x) , x ∈ [ω0, a],

where the matrices

M (x) =

(
M1 (x) M∗

2 (x)
M2 (x) M3 (x)

)
and

N (x) =

(
N1 (x) 0

0 N2 (x)

)
are 2n× 2n complex Hermitian matrix-valued functions defined on [ω0, a] and are continuous at ω0; Z (x) is
2n× 1 vector-valued function and

Z [ϱ](x) =

(
Dω,qZ1 (x)

1
qD−ωq−1,q−1Z2 (x)

)
=

(
Dω,qZ1 (x)

Dω,qZ2

(
h−1 (x)

) ) ,
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where Z1,Z2 : [ω0, h
−1(a)] → Cn, h (x) := ω + qx, h−1 (x) = q−1(x− ω);

J =

(
0 −In
In 0

)
,

where In is the n × n identity matrix. In the analysis that follows, we will largely follow the development of
the theory in [4, 5, 9, 17, 22, 24].

Our paper is organized as follows. The second section introduces the fundamental concepts of Hahn
calculus. In the third section, an existence and uniqueness theorem is proved for the regular Hahn–Hamiltonian
system. We also introduce the corresponding maximal and minimal operators for this system and some
properties of these operators are investigated. In the fourth section, a criterion under which the Hahn–
Hamiltonian operators are self-adjoint is given. Finally, an expansion theorem is proved in the last section.

2. Preliminaries
In this section, we recall some necessary concepts of Hahn calculus. For more details, the reader may want to
consult [7, 8, 11, 12].

Throughout the paper, we let ω > 0 and q ∈ (0, 1) . Let I be a real interval containing ω0, where
ω0 := ω

1−q .

Definition 2.1 ([11],[12]) Let u : I → R be a function. If u is differentiable at ω0, then the Hahn difference
operator Dω,q is given by the formula

Dω,qu (x) =

{
[ω + (q − 1)x]

−1
[u (ω + qx)− u (x)] , x ̸= ω0,

u′ (ω0) , x = ω0.

Remark 2.2 The operator Dω,q unifies two well-known operators. In fact,

lim
q→1

Dω,qu (x) = ∆ωu (x) := [(ω + x)− x]
−1

[u (ω + x)− u (x)] , x ∈ R,

lim
ω→0

Dω,qu (x) = Dqu (x) := [(qx)− x]
−1

[u (qx)− u (x)] , x ̸= 0,

and
lim
q→1
ω→0

Dω,qu (x) = u′ (x) .

Now, we give some properties of the Hahn difference operator Dω,q .

Theorem 2.3 ([7]) Let u, v : I → R be ω, q -differentiable at x ∈ I . Then we have

i) Dω,q (au+ bv) (x) = aDω,qu (x) + bDω,qv (x) , a, b ∈ I,

ii) Dω,q (u\v) (x) = Dω,q(u(x))v(x)−u(x)Dω,qv(x)
v(x)v(ω+xq) ,

iii) Dω,q (uv) (x) = (Dω,qu (x)) v (x) + u (ω + xq)Dω,qv (x) ,

iv) Dω,qu
(
h−1 (x)

)
= 1

qD−ωq−1,q−1u (x) ,

where h (x) := ω + qx, h−1 (x) = q−1(x− ω), and x ∈ I.
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Definition 2.4 ( [7]) Let u : I → R be a function and a, b, ω0 ∈ I . The ω, q− integral of the function u is
given by ∫ b

a

u (x) dω,qx :=

∫ b

ω0

u (x) dω,qx−
∫ a

ω0

u (x) dω,qx,

where ∫ x

ω0

u (x) dω,qx := ((1− q)x− ω)

∞∑
n=0

qnu

(
ω
1− qn

1− q
+ xqn

)
, x ∈ I

provided that the series converges.

Next, we give the ω, q− integration by parts.

Lemma 2.5 ([7]) Let u, v : I → R be ω, q -integrable on I, a, b ∈ I, and a < b. Then the following formula
holds: ∫ b

a

u (x)Dω,qv (x) dω,q (x) +

∫ b

a

v (ω + qx)Dω,qu (x) dω,q (x)

= u (b) v (b)− u (a) v (a) .

3. Hahn–Hamiltonian systems
Consider the following Hahn–Hamiltonian system

l (Z) := JZ [ϱ](x) = [λN (x) +M (x)]Z (x) , x ∈ [ω0, a], (3.1)

where I + [ω + (q − 1)x]M2 (x) is invertible; N(x) is nonnegative definite; and λ is a complex spectral
parameter.

Let H = L2
ω,q,N ((ω0, a) ;C2n) be the Hilbert space 2n -dimensional vector-valued functions U ,V, with

the inner product and

(U ,V) =
∫ a

ω0

V∗(x)N(x)U(x)dω,qx,

and norm ∥U∥ =
√
(U ,U).

The following assumption will be needed throughout the paper. For every nontrivial solution Z of (3.1),
we have ∫ a

ω0

Z∗(x)N(x)Z(x)dω,qx > 0.

Let Cω,q((ω0, a) ;C2n) be the space of all vector-valued functions u such that u are continuous at ω0. It
is obvious that Cω,q((ω0, a) ;C2n) ⊂ H.

Theorem 3.1 Eq. (3.1) with initial condition

Z(ω0, λ) =

(
Z1 (ω0, λ)
Z2 (ω0, λ)

)
= K =

(
k1
k2

)
, (3.2)

where k1, k2 ∈ Cn, λ ∈ C, has a unique solution in Cω,q((ω0, a) ;C2n).
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Proof From (3.1), we obtain

Ẑ(x, λ) = K − q

∫ x

ω0

J [λN (h (s) , λ) +M (h (s) , λ)] Ẑ (h (s) , λ) dω,qs, (3.3)

where

Ẑ (x) =

(
Z1 (x)

Z2

(
h−1 (x)

) ) ,
and x ∈ (ω0, a) . In fact, one can easily prove that (3.3) satisfies (3.1) by using the Hahn difference operator
Dω,q . We solve (3.3) by the method of successive approximations:

Ẑ(0)(ω0, λ) = K,

Ẑ(k+1)(x, λ) = K − q

∫ x

ω0

J [λN (h (s) , λ) +M (h (s) , λ)] Ẑ(k) (h (s) , λ) dω,qs, (3.4)

where x ∈ [ω0, a] and k = 0, 1, 2, ....

We wish to show that the sequence
{
Ẑ(k)

}
k∈N

(N := {1, 2, 3, ...}) converges uniformly on each compact

subset of [ω0, a]. There exist positive numbers τ (λ) and µ (λ) such that

∥J [λN (h (s) , λ) +M (h (s) , λ)]∥C2n ≤ τ (λ) ,

∥∥∥Z(1) (x, λ)
∥∥∥
C2n

≤ µ (λ) ,

where x ∈ [ω0, a]. By induction, we obtain

∥∥∥Ẑ(k+1)(x, λ)− Ẑ(k)(x, λ)
∥∥∥
C2n

≤ q
k(k+1)

2 τ (λ)
(µ (λ)x (1− q)− ω)

k

(q; q)k
,

where (q; q)k =
k−1∏
i=0

(
1− qi+1

)
and k ∈ N. According to Weierstrass M -test, we see that

{
Ẑ(k)

}
k∈N

converges

to a function Ẑ uniformly on each compact subset of [ω0, a]. One can prove that Ẑ is continuous at ω0 . Ẑ
satisfies condition (3.2). It remains to be proved that the system (3.1)-(3.2) has a unique solution. Assume

Ŷ is another solution. Then Ŷ is continuous at ω0 . Therefore, there exists a positive number ζ such that∥∥∥Ẑ − Ŷ
∥∥∥ ≤ ζ. By induction, we conclude that

∥∥∥Ẑ (x, λ)− Ŷ(x, λ)
∥∥∥
C2n

≤ q
k(k+1)

2 ζτ (λ)
(x (1− q)− ω)

k

(q; q)k
,

where k ∈ N. Since

lim
k→∞

ζµ (λ) q
k(k+1)

2
(x (1− q)− ω)

k

(q; q)k
= 0,

320



PAŞAOĞLU ALLAHVERDİEV and TUNA/Turk J Math

we see that Ẑ = Ŷ on [ω0, a]. 2

Consider the sets

Dmax =

Z ∈ H :
Z is continuous at ω0,

JZ [ϱ](x)−M (x)Z (x) = N (x)F (x)
exists in [ω0, a] and F ∈ H

 ,

and

Dmin =
{
Z ∈ Dmax : Ẑ (ω0) = Ẑ (a) = 0

}
. (3.5)

Then the maximal operator Lmax on Dmax is defined by LmaxZ = l (Z) . Similarly, we define the minimal
operator Lmin on Dmin using the following rule LminZ = l (Z) .

Let us denote by Wh (U ,V) the Wronskian of U ,V with the rule

Wh (U ,V) (x) = V∗
2

(
h−1 (x)

)
U1 (x)− V∗

1 (x)U2

(
h−1 (x)

)
,

where

U (x) =

(
U1 (x)
U2 (x)

)
, V (x) =

(
V1 (x)
V2 (x)

)
.

One may infer that the Wronskian of any solutions of Eq. (3.1) is independent of x.
Now, we can introduce the following Green’s formula.

Theorem 3.2 For two functions U ,V ∈ Dmax we have the following relation

(LmaxU ,V)− (U , LmaxV) = [U ,V] (a)− [U ,V] (ω0) , (3.6)

where [U ,V] (x) := V̂∗(x)J Û(x) and x ∈ [ω0, a].

Proof For U ,V ∈ Dmax, there exist F,G ∈ H such that LmaxU = F and LmaxV = G. Then we have

(LmaxU ,V)− (U , LmaxV) = (F,V)− (U , G)

=

∫ a

ω0

V∗ (x)N (x)F (x) dω,qx−
∫ a

ω0

G∗ (x)N (x)U (x) dω,qx

=

∫ a

ω0

V∗ (x) {l (U)} dω,qx−
∫ a

ω0

{l (V)}∗ U (x) dω,qx
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=

∫ a

ω0

V∗ (x)
{
JU [h](x)− [λN (x) +M (x)]U (x)

}
dω,qx

−
∫ a

ω0

{
JV [h](x)− [λN (x) +M (x)]V (x)

}∗
U (x) dω,qx

=

∫ a

ω0

V∗ (x) JU [h](x)dω,qx−
∫ a

ω0

{
JV [h](x)

}∗
U (x) dω,qx

=

∫ a

ω0

{
−1

q
V∗
1 (x)D−ωq−1,q−1U2 (x) + V∗

2 (x)Dω,qU1 (x)

}
dω,qx

−
∫ a

ω0

[{
−1

q
D−ωq−1,q−1V∗

2 (x)

}
U1 (x) +Dω,qV∗

1 (x)U2 (x)

]
dω,qx

=

∫ a

ω0

{
V∗
1 (x)

[
−1

q
D−ωq−1,q−1U2 (x)

]
−Dω,qV∗

1 (x)U2 (x)

}
dω,qx

+

∫ a

ω0

[
V∗
2 (x)Dω,qU1 (x)−

{
−1

q
D−ωq−1,q−1V∗

2 (x)

}
U1 (x)

]
dω,qx.

On the other hand

Dω,q

(
V∗
1 (x)U2

(
h−1 (x)

))

=
(
V∗
1 (x)Dω,qU2

(
h−1 (x)

))
+Dω,qV∗

1 (x)U2 (x)

= V∗
1 (x)

[
1

q
D−ωq−1,q−1U2 (x)

]
+ (Dω,qV1 (x))

∗ U2 (x)

and

Dω,q

(
V∗
2

(
h−1 (x)

)
U1 (x)

)

= Dω,qV∗
2

(
h−1 (x)

)
U1 (x) + V∗

2 (x) (Dω,qU1 (x))

=

(
1

q
D−ωq−1,q−1V∗

2 (x)

)
U1 (x) + V∗

2 (x) (Dω,qU1 (x)) .
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Therefore
(LmaxU ,V)− (U , LmaxV)

=

∫ a

ω0

Dω,q

{
V∗
2

(
h−1 (x)

)
U1 (x)− V∗

1 (x)U2

(
h−1 (x)

)}
dω,qx

= V̂∗(a)J Û(a)− V̂∗(ω0)J Û(ω0) = [U ,V] (a)− [U ,V] (ω0) .

2

From (3.5) and (3.6), we obtain the following lemmas.

Lemma 3.3 The operator Lmin is Hermitian.

Lemma 3.4 The relation
(LminU ,V) = (U , LmaxV)

holds for all U ∈ Dmin and all V ∈ Dmax.

Lemma 3.5 Denote by Nul (L) and Ran (L) the null space and the range of an operator L , respectively.
Then we have the following relation

Ran (Lmin) = Nul (Lmax)
⊥
.

Proof Given any F ∈ Ran (Lmin) , there exists U ∈ Dmin such that LminU = F. For each V ∈
Nul (Lmax) , from Lemma 3.4, we see that (F,V) = (LminU ,V) = (U , LmaxV) = 0. Consequently, F ∈

Nul (Lmax)
⊥
.

Consider the following problem:

JZ [ϱ](x)−M (x)Z (x) = N (x)F (x) , Ẑ (ω0) = 0, (3.7)

where x ∈ [ω0, a] and F ∈ Nul (Lmax)
⊥
. By Theorem 3.1, Eq. (3.7) has a unique solution on [ω0, a]. Let

Ψ(x) = (ψ1, ψ2, ..., ψ2n) be the fundamental solution of the system

JZ [ϱ](x)−M (x)Z (x) = 0, Ψ̂ (a) = J,

where x ∈ [ω0, a]. It is clear that ψi ∈ Nul (Lmax) , where 1 ≤ i ≤ 2n. It follows from Theorem 3.2 that

0 = (F, ψi) =

∫ a

ω0

ψ∗
i (x)N (x)F (x) dω,qx =

∫ a

ω0

ψ∗
i (x) l (Z) (x) dω,qx

=

∫ a

ω0

ψ∗
i (x) l (Z) (x) dω,qx−

∫ a

ω0

l (ψi)
∗
(x)Z (x) dω,qx

= ψ̂∗
i (a) JẐ (a)− ψ̂∗

i (0) JẐ (0) = ψ̂∗
i (a) JẐ (a) ,

where 1 ≤ i ≤ 2n. Hence Ψ̂∗ (a) JẐ (a) = Ẑ (a) = 0, i.e.F ∈ Ran (Lmin) . 2
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Theorem 3.6 Lmin is a densely defined operator and is a symmetric operator. Furthermore L∗
min = Lmax.

Proof Suppose that F ∈ D⊥
min. Then, for all Y ∈ Dmin, we have (F,Y) = 0. Let LminY (x) = H (x) and let

Z (x) be any solution of the system

JZ [ϱ](x)−M (x)Z (x) = N (x)F (x) ,

where x ∈ [ω0, a]. From Theorem 3.2, we obtain

(Z,H)− (F,Y) =

∫ a

ω0

H∗ (x)N (x)Z (x) dω,qx−
∫ a

ω0

Y∗ (x)N (x)F (x) dω,qx

=

∫ a

ω0

(l (Y) (x))∗Z (x) dω,qx−
∫ a

ω0

Y∗ (x) l (Z) (x) dω,qx

= −Ŷ∗ (a) JẐ (a) + Ŷ∗ (ω0) JẐ (ω0) = 0.

This implies that (Z,H) = (F,Y) = 0. It follows from Lemma 3.5 that Z ∈ Ran (Lmin)
⊥

= Nul (Lmax) .

Therefore F = 0, i.e. D⊥
min = {0} . According to Lemma 3.3, Lmin is a symmetric operator.

For any given Z ∈ Dmax, we get from Lemma 3.4 (Z, LminY) = (LmaxZ,Y) , for all Y ∈ Dmin. Thus
the functional (Z, Lmin (.)) is continuous on Dmin and Z ∈ D∗

min, i.e. Dmax ⊂ D∗
min.

If Z ∈ D∗
min, then Z and H := L∗

minZ are all in H. Assume that U is a solution of the system

JU [h](x)−M (x)U (x) = N (x)H (x) . (3.8)

It follows from Lemma 3.4 that (H,Y) = (LmaxU ,Y) = (U , LminY) . Hence

(Z − U , LminY) = (Z, LminY)− (U , LminY)

= (L∗
minZ,Y)− (H,Y) = 0,

i.e.Z − U ∈ Ran (Lmin)
⊥
. According to Lemma 3.5, we get Z − U ∈ Nul (Lmax) .

From (3.8), we see that

JZ [ϱ](x)−M (x)Z (x) = JU [h](x)−M (x)U (x) = N (x)H (x) ,

where x ∈ [ω0, a]. Consequently, we conclude that Z ∈ Dmax and LmaxZ = H = L∗
minZ, due to Z,H ∈ H. 2

4. Self–adjoint operator

In this section, we introduce self-adjoint Hahn–Hamiltonian problems.

Let D =
{
Z ∈ Dmax : U Ẑ (ω0) + V Ẑ (a) = 0

}
, where U and V are m × 2n matrices such that

rank (U : V ) = m.
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Then we define the operator L on D as

LZ = F ⇔ JZ [ϱ](x)−M (x)Z (x) = N (x)F (x) ,

where x ∈ [ω0, a].

Assume that (
U V
Φ Γ

)
is a nonsingular matrix, where Φ and Γ are (4n−m)× 2n matrices such that rank (Φ : Γ) = 4n−m . Choose(
Ũ Ṽ

Φ̃ Γ̃

)
so that

(
−J 0
0 J

)
=

(
Ũ Ṽ

Φ̃ Γ̃

)∗(
U V
Φ Γ

)
. (4.1)

Then we have the following theorem.

Theorem 4.1 For Z,Y ∈ Dmax , we have

(LmaxZ,Y)− (Z, LmaxY) =
[
Ũ Ŷ(ω0) + Ṽ Ŷ(a)

]∗ [
U Ẑ(ω0) + V Ẑ(a)

]
+
[
Φ̃Ŷ(ω0) + Γ̃Ŷ(a)

]∗ [
ΦẐ (ω0) + ΓẐ(a)

]
.

Proof It follows from (3.6) and (4.1) that

Ŷ∗(a)JẐ(a)− Ŷ∗(ω0)JẐ(ω0)

=
(
Ŷ∗(ω0), Ŷ∗(a)

)( −J 0
0 J

)(
Ẑ(ω0)

Ẑ(a)

)

=
(
Ŷ∗(ω0), Ŷ∗(a)

)(
Ũ Ṽ

Φ̃ Γ̃

)∗(
U V
Φ Γ

)(
Ẑ(ω0)

Ẑ(a)

)

=

[(
Ũ Ṽ

Φ̃ Γ̃

)(
Ŷ(ω0)

Ŷ(a)

)]∗ [(
U V
Φ Γ

)(
Ẑ(ω0)

Ẑ(a)

)]

=

(
Ũ Ŷ(ω0) + Ṽ Ŷ(a)

Φ̃Ŷ(ω0) + Γ̃Ŷ(a)

)∗(
U Ẑ(ω0) + V Ẑ(a)

ΦẐ (ω0) + ΓẐ(a)

)
.

2

Now, we shall study the operator L∗.
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Theorem 4.2 Let

D∗ =

Z ∈ H :

Z is continuous at ω0,
JZ [ϱ](x)−M (x)Z (x) = N (x)G (x)

exists in [ω0, a], G ∈ H
and Φ̃Ẑ(ω0) + Γ̃Ẑ(a) = 0

 .

For Z ∈ D∗ ,
L∗Z = G if and only if JZ [ϱ](x)−M (x)Z (x) = N (x)G (x) .

Proof It is clear that Lmin ⊂ L∗ ⊂ Lmax due to Lmin ⊂ L ⊂ Lmax. By Theorem 4.1, we see that

(LZ,Y)− (Z, L∗Y) =
[
Ũ Ŷ(ω0) + Ṽ Ŷ(a)

]∗ [
U Ẑ(ω0) + V Ẑ(a)

]
+
[
Φ̃Ŷ(ω0) + Γ̃Ŷ(a)

]∗ [
ΦẐ (ω0) + ΓẐ(a)

]
,

where Z ∈ D and Y ∈ D∗. Thus

0 =
[
Φ̃Ŷ(ω0) + Γ̃Ŷ(a)

]∗ [
ΦẐ (ω0) + ΓẐ(a)

]
.

This implies that Φ̃Ŷ(ω0) + Γ̃Ŷ(a) = 0, due to ΦẐ (ω0) + ΓẐ(a) is arbitrary .
Conversely, if Z satisfies the criteria listed above then Z ∈ D∗. 2

Now, we shall give parametric boundary conditions for the sets D and D∗. Using these conditions, we
obtain a criterion under which the operator L is self-adjoint.

Note that (
U V
Φ Γ

)(
Ẑ(ω0)

Ẑ(a)

)
=

(
0
F

)
, (4.2)

where F is arbitrary. Multiplying both sides of (4.2) by the following matrices

(
−J 0
0 J

)(
Ũ Ṽ

Φ̃ Γ̃

)∗

,

we see that (
Ẑ(ω0)

Ẑ(a)

)
=

(
JΦ̃∗F

−J Γ̃∗F

)
. (4.3)

Similarly, we have the following equality

(
Ŷ∗(ω0) Ŷ∗(a)

)( Ũ Ṽ

Φ̃ Γ̃

)∗

=
(
G∗ 0

)
, (4.4)

where G is arbitrary. Multiplying both sides of (4.4) by

(
U V
Φ Γ

)(
−J 0
0 J

)
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we deduce that
Ŷ(ω0) = −JU∗G, Ŷ(a) = JV ∗G. (4.5)

Now we have the following.

Theorem 4.3 L is a self-adjoint operator if and only if

UJU∗ = V JV ∗

and
rank (U : V ) = m = 2n.

Proof Let L be a self-adjoint operator. Then Z satisfies the following boundary condition

U Ẑ (ω0) + V Ẑ (a) = 0.

From (4.5), we obtain
U (−JU∗G) + V (JV ∗G) = 0, [UJU∗ − V JV ∗]G = 0.

Hence UJU∗ = V JV ∗, due to G is arbitrary.
Conversely, let UJU∗ = V JV ∗. Then we see that

(
−UJ V J

)( U∗

V ∗

)
= 0.

It follows from (4.2) and (4.3) that

(
−UJ V J

)( Φ̃∗

Γ̃∗

)
= 0.

Thus, we have (
Φ̃∗

Γ̃∗

)
Θ =

(
U∗

V ∗

)
,

where Θ is a constant, nonsingular matrix. Then, the following boundary conditions are equivalent

U Ŷ (ω0) + V Ŷ (a) = 0, Φ̃Ŷ (ω0) + Γ̃Ŷ(a) = 0.

Since the forms of L and L∗ are the same, we reach the assertion of the theorem. 2

5. The expansion theorem
In this section, we shall give an expansion theorem.

Assume that Z (x, λ) is a fundamental matrix for the following system

JZ [ϱ](x) = [λN (x) +M (x)]Z (x)

satisfying Ẑ (ω0, λ) = I.
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Consider the following nonhomogeneous system

JZ [ϱ](x) = [λN (x) +M (x)]Z (x) +N (x)F (x) . (5.1)

We can represent the general solution of Eq. (5.1) in the form Z (x, λ) = Z (x, λ)C (x, λ) , where C (x, λ) is
2n× 1vector-valued function.

By applying the standard method of variation of constants we get

Z (x, λ) = Z (x, λ)
[
U + V Ẑ (a)

]−1

U

∫ x

ω0

[
JZ̃ (t)

]−1

N (t)F (t) dω,qt

− Z (x, λ)
[
U + V Ẑ (a)

]−1

V Ẑ (a)

∫ a

x

[
JZ̃ (t)

]−1

N (t)F (t) dω,qt,

where

Z̃ (x) =

(
Z1 (h (x))
Z2

(
h−1 (x)

) ) .
Putting

G (x, t, λ)

=

 Z (x, λ)
[
U + V Ẑ (a)

]−1

U
[
JZ̃ (t)

]−1

, ω0 ≤ t ≤ x ≤ a

−Z (x, λ)
[
U + V Ẑ (a)

]−1

V Ẑ (a)
[
JZ̃ (t)

]−1

, ω0 ≤ x ≤ t ≤ a,

we obtain

R (λ) = (L− λI)
−1
F = Z (x, λ) =

∫ a

ω0

G (x, t, λ)N (t)F (t) dω,qt. (5.2)

Theorem 5.1 Let λ /∈ R. Then the operator R (λ) defined by (5.2) exists and is a bounded operator. It exists

also for all real λ for which det
[
U + V Ẑ (a)

]
̸= 0 as a bounded operator. σ (L) , the spectrum of L, consists

entirely of isolated eigenvalues, zeros of det
[
U + V Ẑ (a)

]
= 0.

Proof It is evident that R (λ) exists for all real λ except the zeros of det
[
U + V Ẑ (a)

]
= 0. For all nonreal

λ, R (λ) exists due to L is a self-adjoint operator. Since det
[
U + V Ẑ (a)

]
is analytic in λ and is not identically

zero, σ (L) consists entirely of isolated eigenvalues, zeros of

det
[
U + V Ẑ (a)

]
= 0.

These zeros can accumulate only at ±∞.

Let F (η) = N1/2 (η)F (η) and W (x, η, λ) = N1/2 (η)G (x, t, λ)N1/2 (x) , where N1/2 is a square root
of the matrix N. Then, we see that∥∥∥(L− λI)

−1
F
∥∥∥2 = ∥Z∥2 =

∫ a

ω0

Z∗ (x)N (x)Z (x) dω,qx
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=

∫ a

ω0


[∫ a

ω0
G (x, η, λ)N (η)F (η) dω,qη

]∗
×

×N (x)
[∫ a

ω0
G (x, t, λ)N (t)F (t) dω,qt

]
 dω,qx

=

∫ a

ω0

[∫ a

ω0

F∗ (η)W∗ (x, η, λ) dω,qη

] [∫ a

ω0

W (x, t, λ)F (t) dω,qt

]
dω,qx.

Using Schwarz’s inequality, we conclude that∥∥∥(L− λI)
−1
F
∥∥∥2 ≤ ∥W∥2 ∥F∥2 ,

where

∥W∥2 =

∫ a

ω0

∫ a

ω0

n∑
i=1

n∑
j=1

|Wij (x, η, λ)|2 dω,qηdω,qx.

Theorem is proved. 2

There is no loss of generality in assuming that 0 is not an eigenvalue. Then, the solution of the following
system

JZ [ϱ](x)−M (x)Z (x) = N (x)F (x) ,

U Ẑ (ω0) + V Ẑ (a) = 0,

is given by the formula

Z (x) =

∫ a

ω0

G (x, t)N (t)F (t) dω,qt,

where G (x, t) = G (x, t, 0) .

Theorem 5.2 Let Z = ΥF = L−1F. Then Υ is bounded and

∥Υ∥ = sup

{∣∣∣∣ 1λk
∣∣∣∣ : λk ∈ σ (L)

}
.

Proof Let Lχk = λkχk, where k ∈ N . Then we have

Υχk =
1

λk
χk.

2

We will order the eigenvalues of Υ,

τk =
1

λk
,

such that |τ1| ≥ |τ2| ≥ ... ≥ |τk| ≥ ..., where

lim
k→∞

|τk| = 0. (5.3)

Then we have the following.
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Theorem 5.3 Let

ΥkF = ΥF −
k−1∑
i=1

τiχi (F, χi) .

Then we have ∥Υk∥ = |τk| , where k ∈ N, and

lim
k→∞

Υk = 0. (5.4)

Proof It is evident that

Υkχj =

{
0, if 1 ≤ j ≤ k − 1

τjχj , if k ≤ j <∞.

Since Υk is bounded and self-adjoint, we deduce that

∥Υk∥ = sup
χ∈H,∥χ∥=1

|(Υkχ, χ)| = sup
χ∈H,∥χ∥=1

χ ̸=χ1,...,χk−1

|(Υkχ, χ)| = |τk| .

From (5.3), we see that
lim
k→∞

Υk = 0.

2

Theorem 5.4 For all F ∈ H, we have

F =

∞∑
i=1

χi (F, χi) ,

and

ΥF =

∞∑
i=1

τiχi (F, χi) .

For all Z ∈ D, we have

LZ =

∞∑
i=1

λiχi (Z, χi) .

Proof From (5.4), we obtain

ΥF =

∞∑
i=1

τiχi (F, χi) . (5.5)

By (5.5), we see that

F =

∞∑
i=1

χi (F, χi) .

Further, (F, χi) = (LZ, χi) = (Z, Lχi) = λi (Z, χi) . Therefore, we obtain

LZ =

∞∑
i=1

λiχi (Z, χi) .

2
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Theorem 5.5 There exists a collection of projection operators {E (λ)} satisfying
(a)

lim
λ→∞

E (λ) = I, lim
λ→−∞

E (λ) = 0,

(b)
E (λ1) ≤ E (λ2)

when λ1 ≤ λ2,

(c) E (λ) is continuous from above,
(d)

F =

∫ ∞

−∞
dE (λ)F, Υf =

∫ ∞

−∞

1

λ
dE (λ)F,

LZ =

∫ ∞

−∞
λdE (λ)Z,

where F ∈ H and Z ∈ D.

Proof Define
PiF = χi (F, χi) , i ∈ N,

where Pi is a projection operator. If we define

E (λ)F =
∑
λi≤λ

PiF,

then E (λ) generates a Stieltjes measure. The integrals in (d) are obtained from this series. 2

References

[1] Allahverdiev BP, Tuna H. The spectral expansion for the Hahn–Dirac system on the whole line. Turkish Journal of
Mathematics 2019; 43 (39): 1668-1687. https://doi.org/10.3906/mat-1902-16

[2] Allahverdiev BP, Tuna H. The Parseval equality and expansion formula for singular Hahn–Dirac system. Emerg-
ing Applications of Differential Equations and Game Theory. Hershey, PA: IGI Global, 2020, pp. 209-235.
https://doi.org/10.4018/978-1-7998-0134-4.ch010

[3] Allahverdiev BP, Tuna H. A representation of the resolvent operator of singular Hahn–Sturm–
Liouville problem. Numerical Functional Analysis and Optimization 2020; 41 (4): 413-431.
https://doi.org/10.1080/01630563.2019.1658604

[4] Allahverdiev BP, Tuna H. q -Hamiltonian systems. Turkish Journal of Mathematics 2020; 44 (6): 2241-2258.
https://doi.org/10.3906/mat-2007-29

[5] Allahverdiev BP, Tuna H. On extensions of matrix-valued Hahn–Sturm–Liouville operators. Annales Universitatis
Mariae Curie-Sklodowska, sectio A–Mathematica [S.l.] 2021; 75 (2): 1-12. http://dx.doi.org/10.17951/a.2021.75.2.1-
12

[6] Álvarez-Nodarse R. On characterizations of classical polynomials. Journal of Computational and Applied Mathe-
matics 2006; 196 (1): 320-337. https://doi.org/10.1016/j.cam.2005.06.046

331



PAŞAOĞLU ALLAHVERDİEV and TUNA/Turk J Math

[7] Annaby MH, Hamza AE, Aldwoah KA. Hahn difference operator and associated Jackson–Nörlund integrals. Journal
of Optimization Theory and Applications 2012; 154: 133-153. https://doi.org/10.1007/s10957-012-9987-7

[8] Annaby MH, Hamza AE, Makharesh SD. A Sturm–Liouville theory for Hahn difference operator, in: Xin Li, Zuhair
Nashed (Eds.), Frontiers of Orthogonal Polynomials and q -Series, Singapore: World Scientific, 2018, pp. 35-84.

[9] Atkinson FV. Discrete and Continuous Boundary Problems. New York, USA: Academic Press, 1964.

[10] Dobrogowska A, Odzijewicz A. Second order q -difference equations solvable by factorization method. Journal of
Computational and Applied Mathematics 2006; 193 (1): 319-346. https://doi.org/10.1016/j.cam.2005.06.009

[11] Hahn W. Über orthogonalpolynome, die q -Differenzengleichungen genügen. Mathematische Nachrichten 1949; 2:
4-34. https://doi.org/10.1002/mana.19490020103

[12] Hahn W. Ein beitrag zur theorie der orthogonalpolynome. Monatshefte für Mathematik 1983; 95: 19-24.
https://doi.org/10.1007/BF01301144

[13] Hamza AE, Ahmed SA. Theory of linear Hahn difference equations. Journal of Advances in Mathematics 2013; 4
(2): 440-460. https://doi.org/10.24297/jam.v4i2.2496

[14] Hamza AE, Ahmed SA. Existence and uniqueness of solutions of Hahn difference equations. Advances in Difference
Equations 2013; 316: 1-15. https://doi.org/10.1186/1687-1847-2013-316

[15] Hamza AE, Makharesh SD. Leibniz’ rule and Fubinis theorem associated with Hahn difference operator. Journal
of Advances in Mathematics 2016; 12 (6): 6335-6345. https://doi.org/10.24297/jam.v12i6.3836

[16] Hira F. Dirac system associated with Hahn difference operator. Bulletin of the Malaysian Mathematical Sciences
Society 2020; 43: 3481-3497. https://doi.org/10.1007/s40840-019-00877-8

[17] Krall AM. Hilbert Space, Boundary value problems and orthogonal polynomials, Basel:Birkhäuser Verlag, 2002.

[18] Kwon KH, Lee DW, Park SB, Yoo BH. Hahn class orthogonal polynomials. Kyungpook Mathematical Journal 1998;
38: 259-281.

[19] Lesky PA. Eine Charakterisierung der klassischen kontinuierlichen, diskretenund q -Orthgonalpolynome.
Aachen:Shaker, 2005.

[20] Naimark MA. Linear differential operators, 2nd edn.,1969, Nauka, Moscow, English transl. of 1st. edn., 1, 2, New
York, 1968.

[21] Petronilho J. Generic formulas for the values at the singular points of some special monic classical Hq,ω -
orthogonal polynomials. Journal of Computational and Applied Mathematics 2007; 205 (1): 314-324.
https://doi.org/10.1016/j.cam.2006.05.005

[22] Shi Y. Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems. Linear Algebra and its Applica-
tions 2006; 416: 452-519. https://doi.org/10.1016/j.laa.2005.11.025

[23] Sitthiwirattham T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation
with two different q, ω−derivatives. Advances in Difference Equations 2016; 2016 (1): 116.

[24] Zettl A. Sturm–Liouville theory. in: Mathematical Surveys and Monographs, vol. 121. Providence: American
Mathematical Society, 2005.

332


	Introduction
	Preliminaries
	Hahn–Hamiltonian systems
	Self–adjoint operator
	The expansion theorem

