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Abstract: In this study, a random walk process (X (t)) with normally distributed interference of chance is considered.
In the literature, this process has been shown to be ergodic and the limit form of the ergodic distribution has been
found. Here, unlike previous studies, the moments of the X (t) process are investigated. Although studies investigating
the moment problem for various stochastic processes (such as renewal-reward processes) exist in the literature, it has
not been considered for random walk processes, as it requires the use of new mathematical tools. Therefore, in this
study, firstly, the exact formulas for the first four moments of the ergodic distribution of the X (t) process, which is a
modification of the random walk process, are found. Due to the extremely complex mathematical structure of the exact
formulas, in the second part of the study, three-term asymptotic expansions are attained for these moments. Based
on the asymptotic expansions, simple and useful approximation formulas, for the moments of the process X (t) are
proposed. In order to show that the approximate formulas are close enough to the exact formulas, a special example is
given at the end of the study and the accuracy of the approximate formulas is examined on this example.

Key words: Random walk, discrete interference of chance, ergodic distribution, approximation formulas, normal
distribution

1. Introduction
A number of interesting problems arising in reliability, queuing, inventory, stock control theories, mathematical
insurance, financial mathematics, mathematical biology, and physics can be expressed by renewal, renewal-
reward, random walk processes and their various modifications. A large number of important studies on renewal
and renewal-reward processes exist in the literature (Aliyev et al. [2, 5]; Bektas et al. [7]; Borovkov [8]; Brown
and Solomon [9]; Feller [12]; Hanalioglu et al. [16, 17]; Kamislik et al. [19]; Khaniyev et al. [21]; Khaniyev and
Mammadova [22] and etc.). There are also many valuable studies in the literature that investigated random
walks (Aliyev et al. [2]; Aliyev and Khaniyev [3, 4]; Borovkov [8]; Chang [10]; Chang and Peres [11]; Feller [12];
Gihman and Skorohod [13]; Janssen and van Leeuwaarden [18]; Khaniyev [20]; Lotov [23]; Rogozin [24]; Spitzer
[25] and etc.).

In this study, a special class of stochastic processes defined by A. N. Kolmogorov and known as “Stochastic
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processes with a discrete interference of chance” is investigated. Gihman and Skorohod [13] proved the
general ergodic theorem for this class. However, the simplified expressions for the ergodic distribution and
its characteristics have not been achieved so far because mathematical structures of the exact expressions of the
probability and numerical characteristics of the process are very complex. To overcome these difficulties, the
studies using approximation methods have increased in recent years (Aliyev et al. [5]; Alsmeyer [6]; Borovkov [8];
Chang [10]; Chang and Peres [11]; Gokpinar et al. [14]; Hanalioglu et al.[15, 17]; Janssen and van Leeuwaarden
[18]; Khaniyev and Mammadova [22]; Lotov [23] etc.). Particularly, Chang and Peres’s [11], Janssen and
Leeuwaarden’s [18], and Lotov’s [23] studies, which aimed to present approximation results for the boundary
functionals of the random walk, are of great interest. Lotov [23] found the simple approximation formulas for
the first three moments of ladder height of Gaussian random walk. Chang and Peres [11], studied ladder heights
of random walk using Reimann zeta-function. In the study of Janssen and Leeuwaarden [18], the cumulants of
the boundary functional of the random walk were investigated.

As is seen, in most of the studies conducted so far, only the boundary functionals of the random walk were
examined. However, to investigate the asymptotic behavior of the stationary characteristics of the random walk
process is also important for solving various applied problems. However, studies are rare on this topic. For this
reason, in this study, a semi-Markovian random walk (X (t)) with normally distributed interference of chance
is considered and approximation formulas are proposed for the first four moments of the ergodic distribution of
the process X (t) .

Note that it is possible to describe many stochastic models that arise in applied fields with random walk
process and its modifications. Let us take the following model as an example.

The Model. Consider the motion of a high-energy particle in one-dimensional space. Suppose that the particle
in a state z > 0 at the initial time. Moreover, assume that the particle change its state upwards–downwards
(or right and left ) with random jumps {ηn, n = 1, 2, . . . } at random times Tn ≡

∑n
i=1 ξi, n = 1, 2, . . . . Also,

assume that there is a special barrier at the zero level. When the particle reaches this barrier, intervention is
made immediately to the particle’s “natural motion”and the one is brought to a new random initial state (ζ1) .
Then, starting from the new random state ζ1 , the particle continues its motion similar to first period. In this
study, it is assumed that the discrete interference of chance is expressed by truncated normal distribution. The
motivation of choosing normally distributed interference of chance can be explained as follows. The new initial
state ζ1 forms under the influence of many physical factors, the distribution of the random variable ζ1 can be
accepted as normal distribution according to the central limit theorem. Such an assumption is reasonable and
acceptable according to main principles of probability theory. Thus, the above-described motion of high-energy
particle can be expressed by a random walk process X (t) under normal intervention. Examining the stochastic
behavior of this particle, which continues its motion for a long time, is of interest in terms of both mathematics
and physics.

Also, the random walk process X (t) with normally distributed interference of chance may represent the
variation of capital of an insurance company over time in reinsurance models. Another example of interfering
stochastic processes is the random variation of the “resources” of a mechanical system operating under a periodic
maintenance and repair policy over time.

Similar problems that can be expressed by means of random walk processes and their modifications can
also be encountered in stock control, queue, stochastic finance and other areas.

Let us now give mathematical definition of the stochastic process X (t) , which can express the above-
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mentioned models.

2. Mathematical construction of process X(t)

Let {(ξn, ηn, ζn) , n = 1, 2, . . . } be a sequence of random triples defined on some probability space (Ω,F , P ) ,

such that triples are independent and identically distributed. ξn, n ≥ 1, take only positive values; ηn, n ≥ 1,

take both positive and negative values. Suppose that the random variables ξn, ηn , and ζn are mutually
independent from each other. Moreover, ζn = max {0; Yn} , n ≥ 1 , where {Yn, n = 1, 2, . . . } is a sequence of
normally distributed random variables with parameters

(
a, σ2

)
, a > 0, σ > 0 . In other words, the probability

density function of Yn can be written as follows:

fY (x) =
1

σ
φ

(
x− a

σ

)
, φ (x) =

1√
2π

exp

(
−x2

2

)
, x ∈ R. (2.1)

Here, φ (x) is the probability density function of standard normal distribution. Let us denote the
distribution function of ζn by π (z) . Then, it holds that π (z) = P {ζn ≤ z} = Φ((z − a)/σ) , when z ≥ 0

and π (z) = P {ζn ≤ z} = 0 when z < 0. Here, Φ(x) is the cumulative distribution function of standard normal
distribution. Note that the random variable ζn represents the discrete interference of chance.

Let us define the renewal sequence {Tn} and random walk {Sn} as follows, respectively

T0 = S0 = 0; Tn ≡
n∑

i=1

ξi; Sn ≡
n∑

i=1

ηi, n = 1, 2, . . . .

Now we can define a sequence of integer-valued random variables {Nn} , n = 0, 1, 2, . . . as

N0 = 0, N1 ≡ N (z) = inf {n ≥ 1 : z − Sn < 0} , z > 0;

Nn+1 ≡ inf {k ≥ Nn + 1 : ζn − (Sk − SNn
) < 0} , n = 1, 2, 3, . . . .

and inf{∅} = +∞ is stipulated.

Let τ0 ≡ 0, τ1 ≡ τ1 (z) ≡
∑N(z)

i=1 ξi , . . . , τn ≡
∑Nn

i=1 ξi , n = 1, 2, . . . .
and define ν (t) as ν (t) ≡ max {n ≥ 0 : Tn ≤ t} , t > 0 .
Now we can construct the desired stochastic process X(t) as follows:

X (t) ≡ ζn −
(
Sν(t) − SNn

)
, τn ≤ t < τn+1, n = 0, 1, 2, 3, . . . , t > 0. (2.2)

Here, ζ0 ≡ z > 0 , ζn is a sequence of random variables which have truncated normal distribution (see
Eq. (2.1)).

The process X (t) defined by Eq. (2.2) is called “A semi-Markovian random walk with normally
distributed interference of chance”. A sample path of the process X(t) is given in the figure below.
Remark. The main purpose of this study is to obtain simple and useful approximation formulas for the
moments of the ergodic distribution of the process X (t) . To achieve this goal, it is first necessary to express
the characteristic function of the ergodic distribution of the process in terms of the characteristic function of
boundary functional SN(z) . Note that, in the study [15], the same process X (t) was discussed and it was shown
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Figure. A realization of the process X(t).

that this process is ergodic. Moreover, the limiting form of ergodic distribution is found. However, unlike [15],
in this study, not the ergodic distribution itself, but its moments is examined. Let us also emphasize that
from the limit form of the ergodic distribution, only the one-term asymptotic expansion for moments can be
obtained. Unlike distributions, one-term expansions for moments (especially higher-order moments) often give
very imprecise approximations. On the other hand, three-term asymptotic expansions allow more precise and
accurate approximations to be derived.

Note that the similar problem of moments has also been discussed and studied earlier in [17]. However,
the stochastic process examined in [17] is a modification of the renewal–reward process. Unlike [17], the X (t)

process discussed in this study is a modification of the random walk process. As is known, all trajectories of
the renewal–reward process are monotonous with probability 1 and are, therefore, relatively easy to analyze
mathematically. On the other hand, the trajectories of the random walk processes and their modifications are
not monotonous. For this reason, the moments of the X (t) process are quite challenging to analyze. Therefore,
in this study, the moments of a modification of the random walk process were investigated using different and
more complex mathematical tools than in [17].

3. Exact expressions for moments of ergodic distribution of process X(t)

Now, let us begin our investigation by first considering the exact formula of the characteristic function of ergodic
distribution, from study [15].

Lemma 3.1 (Hanalioglu et al. [15], Lemma 3.1, p.66) Let the initial sequences of the random variables {ξn}
and {ηn} satisfy the following supplementary conditions: i) E (ξ1)<∞, ii) E (η1)>0, iii) E

(
η21
)
< +∞ , iv)

η1 is a non-arithmetic random variable. Then, for each θ ∈ R/ {0} , the characteristic function φX (θ) of the
ergodic distribution of the process X (t) can be expressed by means of characteristic functions of boundary
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functional SN(z) and random variable η1 , as follows:

φX (θ) ≡ lim
t→∞

E (exp (iθX (t)) ) =
1

E (N (ζ1))

∫ ∞

0

eiθz
φSN(z)

(−θ)− 1

φη (−θ)− 1
dπ (z) ,

where φη (−θ) = E (exp (−iθη1) ) ; φSN(z)
(−θ) = E

(
exp

(
−iθSN(z)

) )
; θ ∈ R/ {0} .

Note that, Lemma 3.1 provides the basis to express the first four moments of the ergodic distribution of
the process X (t) by means of moments of the boundary functional SN(z) and some related integrals.

Now, to express the moments of the ergodic distribution (E (Xn) ; n = 1, 2, 3, 4) of the process X (t)

via moments of the boundary functional SN(z) . For this, we should introduce the following notations:

E
(
Xk

)
≡ lim

t→∞
E
(
Xk (t)

)
;mk ≡ E

(
ηk1

)
;mk1 ≡ mk

km1
;Mk (z) ≡ E

(
Sk
N(z)

)
;Mk1 (z) ≡

Mk (z)

kM1 (z)
; k = 1, 2, 3, . . . .

Here, Sn ≡
∑n

i=1 ηi, n = 1, 2, 3, ..., SN(z) ≡
∑N(z)

i=1 ηi, N (z) ≡ min {n ≥ 1 : Sn > z} , z > 0.

Theorem 3.2 Let, in addition to the assumptions of the Lemma 3.1, the condition E
(
η61
)
< ∞ and E

(
X4

)
<

∞ be satisfied. Then, the first four moments of ergodic distribution of the process X (t) can be expressed by
means of the moments of boundary functional SN(z) as follows:

E (X) =
1

E (M1 (ζ1))

{
E (ζ1M1 (ζ1))−

1

2
E (M2 (ζ1))

}
+A1, (3.1)

E
(
X2

)
=

1

E (M1 (ζ1))

{
E
(
ζ1

2M1 (ζ1)
)
− E (ζ1M2 (ζ1)) +

1

3
E (M3 (ζ1))

+ A1 [2E (ζ1M1 (ζ1))− E (M2 (ζ1))]} −A2, (3.2)

E
(
X3

)
=

1

E (M1 (ζ1))

{
E
(
ζ1

3M1 (ζ1)
)
− 3

2
E
(
ζ1

2M2 (ζ1)
)
+ E (ζ1M3 (ζ1))−

1

4
E (M4 (ζ1))

}
+

3A1

E (M1 (ζ1))

{
E
(
ζ1

2M1 (ζ1)
)
− E (ζ1M2 (ζ1)) +

1

3
E (M3 (ζ1))

}
− 3A2

E (M1 (ζ1))

{
E (ζ1M1 (ζ1))−

1

2
E (M2 (ζ1))

}
+A3, (3.3)

E
(
X4

)
=

1

E (M1 (ζ1))

{
E
(
ζ41M1 (ζ1)

)
− 2E

(
ζ31M2 (ζ1)

)
+ 2E

(
ζ21M3 (ζ1)

)
− E (ζ1M4 (ζ1)) +

1

5
E (M5 (ζ1))

}
+

2A1

E (M1 (ζ1))

{
2E

(
ζ31M1 (ζ1)

)
− 3E

(
ζ21M2 (ζ1)

)
+ 2E (ζ1M3 (ζ1))−

1

2
E (M4 (ζ1))

}
− 6A2

E (M1 (ζ1))

{
E
(
ζ21M1 (ζ1)

)
− E (ζ1M2 (ζ1)) +

1

3
E (M3 (ζ1))

}
+

2A3

E (M1 (ζ1))
{2E (ζ1M1 (ζ1))− E (M2 (ζ1))} −A4. (3.4)

Here, A1 ≡ m21 , A2 ≡ m31 − 2m2
21 , A3 ≡ m41 − 6m31m21 + 6m3

21 ,
and A4 ≡ m51 − 8m41m21 + 36m31m

2
21 − 6m2

31 − 24m4
21 .
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Proof In order to prove this theorem, we should initially write the Taylor expansion of the characteristic
function φX (θ) , as θ → 0. Since the condition E

(
η61
)
< ∞ is met, the following expansion can be written

(Feller [12], p.514):

φη (−θ) ≡ E (exp (−iθη1) )

= 1− iθm1 +
(iθ)

2

2!
m2 −

(iθ)
3

3!
m3 +

(iθ)
4

4!
m4 −

(iθ)
5

5!
m5 +R1 (iθδ) . (3.5)

Here, R1 (iθδ) is Lagrange form of remainder term of Taylor expansion for the φη (−θ) and R1 (iθδ) can

be represented as follows: R1 (iθδ) =
(iθ)6

6! H1 (iθδ) where H1 (iθδ) ≡ E
(
η61e

−iθδη1
)
, 0 < δ < 1, θ ∈ R.

On the other hand, it is known that E(S6
N(z)) < ∞ when provided the condition E

(
η61
)
< ∞ (Feller

[12], p.514). Then, the following expansion can be written for the characteristic function of SN(z) (Feller [12],
p.514):

φSN(z)
(−θ) ≡ E

(
exp

(
−iθSN(z)

) )
= 1− iθM1 (z) +

(iθ)
2

2!
M2 (z)−

(iθ)
3

3!
M3 (z) +

(iθ)
4

4!
M4 (z)

− (iθ)
5

5!
M5 (z) +R2 (iθδ; z) . (3.6)

Here, R2 (iθδ; z) is Lagrange form of remainder term of Taylor expansion for the φSN(z)
(−θ) and it can

be represented as follows:

R2 (iθδ; z) =
(iθ)

6

6!
H2 (iθδ; z) ,

where H2 (iθδ; z) ≡ E
(
S6
N(z)e

−iθδSN(z)

)
, 0 < δ < 1, θ ∈ R, z ∈ (0,∞) .

From Eqs. (3.5) and (3.6), the following expansion is derived, when θ → 0 :

φSN(z)
(−θ)− 1

φη (−θ)− 1
=

M1 (z)

m1
+

iθ

1!
.
M1 (z)

m1
[m21 −M21 (z)]

+
(iθ)

2

2!
.
M1 (z)

m1

[
2m2

21m31 − 2m21M21 (z) +M31 (z)
]

+
(iθ)

3

3!
.
M1 (z)

m1

[
m41 − 6m31m21 + 6m3

21 −
(
6m2

21 − 3m31

)
M21 (z) + 3m21M31 (z)−M41 (z)

]
+

(iθ)
4

4!
.
M1 (z)

m1

[
−m51 + 8m41m21 + 6m2

31 − 36m31m
2
21 + 24m4

21

−
(
4m41 − 24m31m21 + 24m3

21

)
M21 (z) +

(
12m2

21 − 6m31

)
M31 (z)

− 4m21M41 (z) +M51 (z) +R3 (iθδ; z) . (3.7)
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Here, R3 (iθδ; z) =
(iθ)5

5! H3 (iθδ; z) ; |H3 (iθδ; z)| ≤ c1E
(
η61
)
+ c2E

(
S6
N(z)

)
;

Also the coefficients c1 and c2 are finite positive numbers.

In this case, the conditions E
(
η61
)
< ∞ and E

(
S6
N(z)

)
< ∞ are satisfied because |H3 (iθδ; z)| < ∞ .

Therefore, asymptotic relation R3 (iθδ; z) = o
(
(iθ)

5
)

is true.

On the other hand, under the condition E
(
X4

)
< ∞ , the following expansion can be written, as θ → 0 :

(Feller [12], p. 514) :

φX (θ) ≡ E (exp (iθX) ) = lim
t→∞

E (exp (iθX (t)) )

= 1 + iθE (X) +
(iθ)

2

2!
E
(
X2

)
+

(iθ)
3

3!
E
(
X3

)
+

(iθ)
4

4!
E
(
X4

)
+ o

(
θ4
)
. (3.8)

Using Eq. (3.7) and Eq. (3.8), the exact expressions for the first four moments of the ergodic distribution
of the process X(t) can be derived as Eqs. (3.1)–(3.4). 2

Remark. As it is seen even in the basic cases, it is not easy to calculate exact expressions from Theorem
3.2. To overcome this difficulty, it became necessary to find simpler and more convenient approximate formulas
for the moments of the ergodic distribution of the process X(t) . For this reason, we will first try to derive
asymptotic expansions for the moments of the boundary functional SN(z) .

4. Asymptotic expansions for moments and related characteristics of boundary functional
SN(z)

For investigation of the boundary functional SN(z), we should define the first ladder epoch
(
ν+1

)
and the first

ladder height
(
χ+
1

)
of the random walk {Sn} , n ≥ 0 as:

ν+1 ≡ min {n ≥ 1 : Sn > 0} , χ+
1 ≡ Sν+

1
≡

ν+
1∑

i=1

η1.

Let (ν+n , χ+
n ) , n = 2, 3, . . . be independent pairs with the same distribution as

(
ν+1 , χ+

1

)
(see Feller

[12], p.392).
Now, a stochastic process H (z) generated by the sequence {χ+

n } , n = 1, 2, . . . can be defined as follows:

H (z) ≡ min

{
n ≥ 1 :

n∑
i=1

χ+
i > z

}
, z ≥ 0.

The stochastic process H (z) is a renewal process (see Feller [12], p.184). According to Dynkin principle,
the boundary functionals N (z) and SN(z) can be represented as follows (Rogozin [24]):

N (z) ≡
H(z)∑
i=1

ν+i and SN(z) ≡
H(z)∑
i=1

χ+
i .
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The main goal of this section is to study the asymptotic behavior of the following auxiliary integrals:

E (ζn1 Mk (ζ1)) ≡
∫ ∞

z=0

znMk (z) dπ (z); n = 0, 1, 2, . . . ; k = 1, 2, 3, . . . . (4.1)

Here, π (z) is a distribution function of the random variable ζ1 that expresses a discrete interference of
chance and ζ1 = max (0, Y1) ;Y1 ∼ N

(
a, σ2

)
, a > 0, σ > 0 .

Let us give the following important properties related to standard normal distribution, before obtaining
the asymptotic results for the integrals in Eq. (4.1).

Proposition 4.1 The following equalities are true for all n = 1, 2, 3 . . . and a > 0 :

∫ ∞

a

znφσ (z − a) dz =

n∑
k=0

(
n
k

)
an−kσkbk.

Here, bk ≡
∫∞
0

xkφ (x) dx < ∞, k = 0, 1, dots, n;σ2 = Var (Y1) ,a= E(Y1) ;

φσ (z) ≡
1

σ
φ
( z

σ

)
, φ (x) =

1√
2π

exp

(
−x2

2

)
, x ∈ R.

The following corollaries can be easily derived from Proposition 4.1.

Corollary 4.2 The following exact expressions can be written:

1)
∫∞
a

φσ (z − a) dz = 1
2 ,

2)
∫∞
a

zφσ (z − a) dz = a
2 + σ√

2π
,

3)
∫∞
a

z2φσ (z − a) dz = a2

2 + 2σa√
2π

+ σ2

2 .

Corollary 4.3 The following approximation expressions are derived for n = 3, 4, . . .

∫ ∞

a

znφσ (z − a) dz =
1

2
an +

nσ√
2π

an−1 +
n (n− 1)σ

2

4
an−2 +Rn (a) .

Here, Rn(a)
an−2 → 0 , when a → ∞ .

Lemma 4.4 Let the function g (z) (g : R+ → R) be a bounded function that converges to zero, as z → ∞ .
Then, the following asymptotic relations are satisfied, as a → ∞ :

∫ ∞

a

zng (z)φσ (z − a) dz = o (an) , n = −1, 0, 1, 2, . . . .
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Proof Let us firstly prove lemma for n = −1 . It is possible to select a finite number b = b (ε) , for all
ε > 0, so that the inequality |g (z)| ≤ ε is satisfied, for all z ≥ b (ε) , because of that limz→∞ g (z) = 0 }. Also,
parameter a can be chosen sufficiently large so that the inequality a ≥ b (ε) is satisfied, for all ε > 0. Thus,
the following inequality is provided as a ≥ b (ε) :∣∣∣∣∫ ∞

a

1

z
g (z)φσ (z − a) dz

∣∣∣∣ ≤ ∫ ∞

a

1

z
|g (z)|φσ (z − a) dz ≤ ε

∫ ∞

a

1

z
φσ (z − a) dz

≤ ε

a

∫ ∞

a

φσ (z − a) dz =
ε

2a
.

Then, we can obtain the following inequality, when a → ∞ :∣∣∣∣a ∫ ∞

a

1

z
g (z)φσ (z − a) dz

∣∣∣∣ ≤ ε

2
.

Because ε > 0 is arbitrarily selected, the following asymptotic relation can be written, when a → ∞ :

a

∫ ∞

a

1

z
g (z)φσ (z − a) dz = o (1)

or ∫ ∞

a

1

z
g (z)φσ (z − a) dz = o

(
1

a

)
.

In a similar manner, the remaining part of the Lemma 4.4 can be proved. 2

Proposition 4.5 Let the function φ̃σ (λ) be Laplace transform of the function φσ (z) . Then, the following
three-term asymptotic expansion holds, as λ → 0 :

φ̃σ (λ) =
1

2
− σ√

2π
λ+

σ2

4
λ2 + o

(
λ2

)
. (4.2)

Proof This proposition is given in the work of Hanalioglu et al. ([15], p.67). Therefore, we do not give the
proof of Proposition 4.5 here. 2

Let us now restate the following proposition regarding moments of boundary functional SN(z) , taken
from the work of Khaniyev and Mammadova [22].

Proposition 4.6 (Khaniyev and Mammadova [22]) Let the condition µ3 ≡ E
(
χ+3
1

)
< +∞ be satisfied. Then,

the following asymptotic expansions for the first five moments of SN(z) can be written, as z → ∞ :

M1 (z) = z + µ21 + o

(
1

z

)
,

Mn (z) = zn +

(
n
1

)
µ21z

n−1 +

(
n
2

)
µ31z

n−2 + o
(
zn−2

)
, n = 2, 3, 4, 5.

Here, Mk (z) ≡ E
(
Sk
N(z)

)
, k = 1, 5; µk ≡ E

(
χ+k
1

)
, µk1 ≡ µk

kµ1
, k = 1, 2, 3.
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Using this proposition, we can derive the asymptotic results for the integrals defined in Eq. (4.1), which
is the main goal of this section. The following lemma is dedicated to this aim.

Lemma 4.7 Suppose that the condition µ3 ≡ E
(
χ+3
1

)
< +∞ is satisfied. Then, the following three-term

asymptotic expansions can be written for all n = 0, 1, 2, . . . , when a → ∞ :

E (ζn1 M1 (ζ1)) = an+1 + µ21a
n +

1

2
n (n+ 1)σ2an−1 + o

(
an−1

)
. (4.3)

Proof We can represent the auxiliary integral E (ζn1 M1 (ζ1)) , defined in Eq. (4.1) as the following Lebesgue–
Stiltijes integral: E (ζn1 M1 (ζ1)) =

∫∞
0

znM1 (z) dπ (z) .

Here the distribution function π (z) = Φ
(
z−a
σ

)
ϵ (z) has a positive jump at z = 0 .

Moreover, ϵ (z) =

{
1 z ≥ 0
0 z < 0

and Φ(x) is the cumulative distribution function of standard normal

distribution. Also, the height of this jump is h ≡ limθ→0 (π (+θ)− π (−θ)) = Φ
(−a

σ

)
.

According to the definition of the Lebesgue-Stiltijes integral for any continuous function G (z) , that is
finite at the zero point, the following relationship can be written:

∫ ∞

−0

G (z))dπ (z) ≡ G (0)h+

∫ ∞

+0

G (z))dπ (z)

= G (0)Φ

(
−a

σ

)
+

∫ ∞

+0

G (z))φσ (z − a) d (z) .

Assuming G (z) = znM1 (z) , based on the property of the Lebesgue-Stiltijes integral, characteristics
E (ζn1 M1 (ζ1)) can be written as follows, for all n = 0, 1, 2, . . . .

E (ζn1 M1 (ζ1)) =

∫ ∞

0

znM1 (z)φσ (z − a) dz + µ1Φ(−a/σ) δn. (4.4)

Here δn =

{
1, if n = 0
0, if n ̸= 0;

; µ1 ≡ E
(
χ+
1

)
= limz→ +0 M1 (z) .

Now, let us define the following notations:

I1n (a) ≡
∫ a

0

M1n (z)φσ (z − a)dz = M1n(a) ∗ φσ (a) ; I2n (a) ≡
∫ ∞

a

M1n (z)φσ (z − a)dz.

Here, M1n (z) ≡ znM1 (z) , n = 0, 1, 2, . . . .
Let us study the asymptotic behavior of integrals I1n (a) and I2n (a) . Firstly, we need to examine the

asymptotic behavior of integrals I1n (a) . According to the Tauber-Abel theorem, to study the asymptotic
behavior of Ĩ1n (λ) , as λ → 0, is equivalent to investigate the asymptotic behavior of I1n (a) , when a → ∞ .
Here, Ĩ1n (λ) is Laplace transform of I1n (a) . Then, we can write Ĩ1n (λ) as follows:

Ĩ1n (λ) = M̃1n (λ) φ̃σ (λ) . (4.5)
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The Laplace transform (φ̃σ (λ)) of the function φσ (z) has been found in Proposition 4.5 (see, Eq. (4.2)).
Also, using Proposition 4.6, we can write the following expansion for all n = 0, 1, 2, . . .

M1n (z) ≡ znM1 (z) = zn+1 + µ21z
n + o

(
zn−1

)
Then, the asymptotic expansion of M̃1n (λ) can be written as follows, when λ → 0. :

M̃1n (λ) =
(n+ 1)!

λn+2
+ µ21

n!

λn+1
+ o

(
1

λn

)
=

(n+ 1)!

λn+2

{
1 +

µ21

n+ 1
λ+ o

(
λ2

)}
. (4.6)

Substituting Eqs. (4.2) and (4.6) into Eq. (4.5), the following expansion can be written:

Ĩ1n (λ) =
(n+ 1)!

2λn+2
+

[
µ21

n+ 1
− 2σ√

2π

]
(n+ 1)!

2λn+1
+

[
σ2

2
− 2σµ21

(n+ 1)
√
2π

]
(n+ 1)!

2λn
+ o

(
1

λn

)
.

Using Tauber-Abel theorem for Ĩ1n (λ) , the following asymptotic expansion for I1n (a) is found, as
a → ∞ :

I1n (a) =
1

2
an+1 +

[
1

2
µ
21

− σ(n+ 1)√
2π

]
an +

n

4

[
(n+ 1)σ2 − 4σµ21√

2π

]
an−1 + o

(
an−1

)
. (4.7)

Now, we can investigate asymptotic behavior of the integral

I2n (a) ≡
∫ ∞

a

M1n (z)φσ (z − a) dz,

as a → ∞ .
As stated above, the following asymptotic expansion holds for M1n (z) , when z → ∞ :

M1n (z) = zn+1 + µ21z
n + zn−1g1 (z) . (4.8)

Here, g1 (z) ≡ z[M1 (z)− z − µ21] and limz→∞ g1 (z) = 0 .
Substituting Eq. (4.8) into the integral I2n (a) , the following equation is achieved:

I2n (a) ≡
∫ ∞

a

zn+1φσ (z − a) dz + µ21

∫ ∞

a

znφσ (z − a) dz +

∫ ∞

a

zn−1g1 (z)φσ (z − a) dz. (4.9)

If we consider Corollary 4.3 and Lemma 4.4 in Eq. (4.9), the following asymptotic expansions can be
derived, when a → ∞ :

I2n (a) =
an+1

2
+

[
µ21

2
+

σ (n+ 1)√
2π

]
an +

n (n+ 1)

4

[
σ2 +

4σµ21√
2π (n+ 1)

]
an−1 + o

(
an−1

)
. (4.10)

In order to complete the proof of the Lemma 4.4, we just need to investigate the expression µ1Φ(−a/σ) δn .
For this, let us denote T ≡ a/σ → ∞ , as a → ∞ . Using the asymptotic properties of error function (see,
Abramowitz and Stegun [1], p. 298), we can write the following expansion:

Φ(−T ) = 1− Φ(T ) =
φ (T )

T
(1 + o (1)) = o

(
1

T

)
= o(

1

a
).
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Under the condition µ1 ≡ E
(
χ+
1

)
< ∞ , we have found the following expansions, for all n = 0, 1, 2, . . . ,

as a → ∞ :

µ1Φ(−T ) δn = o

(
1

a

)
. (4.11)

The expression in Eq. (4.4) can be rewritten as follows:

E (ζn1 M1 (ζ1)) = I1n (a) + I2n (a) + µ1Φ(−a/σ) δn. (4.12)

Using the results of Eqs. (4.7), (4.10), and (4.11) in Eq. (4.12), the asymptotic expansions for
E (ζn1 M1 (ζ1)) can be derived in the form of Eq. (4.3).

2

Lemma 4.8 Suppose that, the condition µ3 ≡ E
(
χ+3
1

)
< +∞ is satisfied. Then, the following asymptotic

expansions can be written for all n = 0, 1, 2, . . . and k = 2, 3, 4, 5 when a → ∞:

E (ζn1 Mk (ζ1)) = an+k +

(
k
1

)
µ21a

n+k−1 +

[(
k
2

)
µ31 +

(
n+ k
2

)
σ2

]
an+k−2 + o

(
an+k−2

)
.

Proof This lemma can be derived by using a similar scheme for Lemma 4.7. 2

5. Asymptotic expansions for first four moments of ergodic distribution of X(t)

In this section, it is aimed to derive three-term asymptotic expansions for the first four moments of the ergodic
distribution of the process X (t) . These results are given in the following theorem.

Theorem 5.1 Let, in addition to the conditions of Lemma 3.1, the condition E
(
|η1|n+2

)
< ∞, (n = 1, 2, 3, 4)

be satisfied. Then, the following three-term asymptotic expansions for the first four moments of the ergodic
distribution of X(t) can be written as follows, as a → ∞ :

E (Xn) =
an

n+ 1
+ cn1a

n−1 + cn2a
n−2 + o

(
an−2

)
; n = 1, 2, 3, 4.

Here, c11 ≡ m21 − 1
2µ21; c12 ≡ 1

2

(
σ2 + µ2

21 − µ31

)
; cn1 ≡ m21 − 1

n+1µ21;

cn2 ≡ n

2
σ2 +

1

n+ 1
µ2
21 −

n

2
m31 + nm2

21 −m21µ21; n = 2, 3, 4;

mk1 ≡ mk

km1
; mk ≡ E

(
ηk1

)
; µk1 =

µk

kµ1
; µk = E

(
χ+k
1

)
; k = 1, 2, 3; σ2 = Var (Y1) ; a = E (Y1) .

Proof The exact expressions for the first four moment of the ergodic distribution are obtained as Eqs.
(3.1)–(3.4) in Section 3.

Moreover, the following asymptotic expansion can be given using Lemma 4.8, when a → ∞ :

1

E (M1 (ζ1))
=

1

a

{
1− µ21

a
+

µ2
21

a2
+ o

(
1

a2

)}
. (5.1)
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Taking advantage of Lemma 4.7 and Lemma 4.8, the following asymptotic expansion can be written, as
a → ∞ :

E (ζ1M1 (ζ1))−
1

2
E (M2 (ζ1)) =

a2

2

{
1 +

σ2 − µ31

a2
+ o

(
1

a2

)}
. (5.2)

Substituting Eqs. (5.1) and (5.2) into Eq. (3.1), the following asymptotic result is derived for E (X) :

E (X) =
a

2
+ c11 +

c12
a

+ o

(
1

a

)
.

Now, it is aimed to find the asymptotic expression for the second moment of the ergodic distribution of
the process X (t) . The exact expression for the second moment of the ergodic distribution of the process X (t)

had been found in Section 3, as Eq. (3.2). Using Lemma 4.7 and Lemma 4.8, the following asymptotic result
can be written,when a → ∞ :

E
(
ζ21M1 (ζ1)

)
− E (ζ1M2 (ζ1)) +

1

3
E (M3 (ζ1)) =

a3

3
+ σ2a+ o (a) . (5.3)

Substituting Eqs. (5.1)–(5.3) into Eq. (3.2), the asymptotic expansion for E(X2) can be found as follows,
when a → ∞ :

E(X
2
) =

a2

3
+ c21a+ c22 + o (1)

The third and fourth moments of the ergodic distribution of the process can be derived similarly.
2

6. Proposed approximate formulas and an example of their closeness to exact expressions
In this section, we will propose approximate formulas for the moments of the ergodic distribution of the process
X(t) using the asymptotic formulas in Theorem 5.1. For this, the part consisting of the first three terms
(without remainder terms) in the asymptotic expansions of ergodic moments will be denoted with the notation
Ẽ (Xn) . Therefore, the suggested approximate formulas are written as follows:

Ẽ (Xn) =
an

n+ 1
+ cn1a

n−1 + cn2a
n−2, n = 1, 2, 3, 4. (6.1)

The exact forms of the coefficients cn1 and cn2 are given in Theorem 5.1. These formulas are much
simpler and easier to calculate in comparison of exact expressions. However, in addition to the simplicity of the
proposed formulas, knowing that they are close enough to the exact expressions is an important feature for the
approximate formulas. To illustrate this feature, a specific example is addressed below. In Example 6.1, the
difference between the exact expression of the expected value of the ergodic distribution of the process X (t)

and its approximate formula is examined.
Example 6.1. The random variables V1n and V2n are assumed to be exponentially distributed with parameters
λ1 = 1 and λ2 = 2 , respectively. It is assumed that these variables are independent of each other. Let us
also define the random variable ηn = V1n − V1n by means of these random variables. The random sequence
Sn ≡

∑n
i=1 ηi, n = 1, 2, . . . forms a random walk. Here, E (ηn) = E (V1n − V1n) =

1
2 > 0 . Also, the random
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variable Y1 denoting the interference has a normal distribution with parameters (a, σ2 = 9) . According to
Theorem 3.2, the exact expression of the expected value of the ergodic distribution of the process X(t) is as
follows:

E (X) =
1

E (M1 (ζ1))

{
E (ζ1M1 (ζ1))−

1

2
E (M2 (ζ1))

}
+A1, (6.2)

where A1 ≡ m21 = m2

2m1
,mk = E

(
ηk1

)
, k = 1, 2.

In this case, it is possible to write the exact expression of E (X) in a simpler way. Due to the memoryless
property of the exponential distribution, the boundary functional SN(z) can be written as: SN(z) = z + H1 .
Here the random variable H1 is a random variable that has the same distribution as the random variables V1n .
Therefore, the moments of the boundary functional SN(z) can be calculated as follows:

M1 (z) = E
(
SN(z)

)
= E (z +H1) = z + 1;

M2 (z) = E
(
S2
N(z)

)
= E (z +H1)

2
= z2 + 2z + 2.

Note that the random variable ζ1 ≡ max {0; Y1} has a truncated normal distribution with (a, σ2 = 9)

parameters. Considering the asymptotic expansion of the error function, the first three moments of random
variable ζ1 can be written as follows (see Abramowitz and Stegun [1], p. 298):

E (ζ1) = a+ σφ (t)− aΦ̄ (t) = a+O

(
1

a2
exp

(
− a2

2σ2

))
∼= a;

E
(
ζ21
) ∼= a2 + σ2;E

(
ζ31
) ∼= a3 + 3σ2.

Here, a = E (Y1) , σ
2 = V ar (Y1) .

Now we can write the following expressions:

E (M1 (ζ1)) = E
(
SN(ζ1)

)
= E (ζ1) + 1 ∼= a+ 1;E (ζ1M1 (ζ1)) ∼= a2 + a+ σ2;

E (M2 (ζ1)) = E
(
S2
N(ζ1)

)
= E

(
ζ21
)
+ 2E (ζ1) + 2 ∼= a2 + 2a+

(
2 + σ2

)
.

Considering the above results, we can calculate the exact expression of E (X) with the following formula:

E (X) ∼=
a2 + 3a+ 12

2 (a+ 1)
(6.3)

On the other hand, in Eq. (6.1), the proposed approximate formula for the expected value of the ergodic
distribution of the process X (t) is as follows:

Ẽ (X) =
a

2
+ c11 +

c12
a

Here, c11 ≡ m21 − 1
2µ21; c12 ≡ 1

2

(
σ2 + µ2

21 − µ31

)
;σ2 = Var (Y1) = 9;
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m1 = E (η1) =
1

2
;m2 = E

(
η21
)
=

3

2
;m21 =

m2

2m1
=

3

2
.

According to the memoryless property of the exponential distribution,

µ1 = E (H1) = 1;µ2 = E
(
H2

1

)
= 2;µ3 = E

(
H3

1

)
= 6.

Then, µ21 = µ2

2µ1
= 1;µ31 = µ3

3µ1
= 2; c11 = 1; c12 = 5

2 .

Now, we can rewrite the proposed approximate formula of the expected value of the ergodic distribution
of the process X(t) by the following formula:

Ẽ (X) =
a2 + 2a+ 5

2a
(6.4)

Now, the absolute and relative errors between the exact expression and approximate formula given in
Eqs. (6.3) and (6.4) can be defined as follows, respectively:

∆ ≡
∣∣∣E (X)− Ẽ (X)

∣∣∣ ; δ ≡ ∆

E (X)
100%

Also, let us define the parameter called accuracy percentage with AP ≡ 100%− δ to measure how close
the suggested approximate formula for the expected value is to the exact expression.

In Table below, the absolute and relative errors and accuracy percentage (AP ) are calculated for expected
value E (X) .

Table . Comparison of the exact and the approximation results for different a values.

a 30 20 15 10 9 8 7 6 5 4
∆ 0.08 0.11 0.15 0.21 0.22 0.25 0.27 0.29 0.33 0.37
δ (%) 0.50 0.98 1.65 3.17 3.67 4.50 5.26 6.16 7.62 9.25
AP (%) 99.50 99.02 98.35 96.83 96.33 95.50 94.74 93.84 92.38 90.75

Remark. As seen from Table 1, the accuracy of the expected value is more than 90% when a ≥4; more than
95% when a ≥8; more than 99% when a ≥20. This is an indication that the approximate formulas we have
proposed show a good approximation even at not very large values of the parameter a .

7. Conclusion
In this study, a random walk process X (t) with normal interference of chance was discussed and the moments
of the ergodic distribution of the process were examined. Note that the process X (t) is also investigated in
study [15]. However, in the study [15], only the ergodic distribution of the process X (t) was examined and the
limit form of the ergodic distribution was found.

As it is known, although the distribution is the most important probability characteristic in probability
theory, moments are equally important in terms of application. In particular, characteristics such as the
expected value and variance of the process are parameters that are frequently used in practice. Therefore, in
this study, in Section 3, exact expressions are found for the first four moments of the ergodic distribution of the
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process X (t) . However, these expressions turned out to be very complex and difficult to calculate. In order
to overcome this difficulty, in Section 5, three term asymptotic expansions are derived for the moments of the
process X (t) . Then, based on these asymptotic expansions, in Section 6, approximation formulas are proposed
for the moments of the ergodic distribution of the process X (t) . These proposed formulas are much simpler
and more useful than the exact expressions. As is known, in addition to the simplicity of approximate formulas,
one of the requested features is that these formulas must be close enough to exact expressions.

In general, it is known that approximate formulas derived from three-term asymptotic expansions are
much closer to exact expressions than approximation formulas derived from one-term expansions. To illustrate
this, a special example is given at the end of the study and on this example it is examined how close the proposed
approximate formula for the expected value is to the exact expression.

The calculation results for the expected value of the process X (t) are given in Table 1 above and it is
observed that the proposed approximation formula is close enough to the exact expression even at not very large
values of parameter a . Especially when a ≥ 8, the degree of closeness (AP ) of the approximation formulas
to exact expressions is over 95%. This means that formulas that are both approximate and very simple can
be used, without making major errors, rather than exact but very complex formulas. This provides a great
computational convenience for researchers using the random walk process (X (t)) with normally distributed
interference, especially in the field of high energy physics.

As a continuation of this work, modeling the motion of high-energy particles between two barriers and
studying the random process (X (t)) by asymptotic methods can be of interest from both scientific and practical
points of view. In particular, obtaining analytical and asymptotic results for the process (X (t)) describing the
motion of high-energy particles when both barriers are reflecting can make an important contribution to high
energy physics.
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