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Abstract: In this article, quaternions, which is a preferred and elegant method for expressing spherical rotations, are
generalized with the help of generalized scalar product spaces, and elliptical rotations on any given ellipsoid are examined
by them. To this end, firstly, we define the generalized elliptical scalar product space which accepts the given ellipsoid
as a sphere and determines skew symmetric matrices, and the generalized vector product related to this scalar product
space. Then we define the generalized elliptical quaternions by using these notions. Finally, elliptical rotations on any
ellipsoid in the space are examined by using the unit generalized elliptical quaternions. The formulas and results obtained
are supported with numerical examples.
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1. Introduction
As rotations in the Euclidean plane can be expressed with complex numbers, 3D rotations in the Euclidean
space can be expressed with the help of quaternions. Quaternions, which were defined by Hamilton in 1843
with the idea of generalizing complex numbers, attracted many researchers who studied in fields of geometry,
mechanics, kinematics, robotics, and physics [5, 14, 20, 48, 56]. It is part of a wide application area as it
is used to express rotational and reflectional movements in 3D space. One of the prominent applications of
quaternions in recent years is spherical linear interpolations, called SLERP shortly [21, 27, 52]. In addition
to Hamilton’s quaternion for the Euclidean space, many types of quaternions have been defined and their
applications in different spaces have been studied. For example, rotational motions on the standard ellipsoids
and cones are examined by the elliptical quaternions [36]. The rotational movements on hyperboloids are studied
with hyperbolic split quaternions [26, 35, 37, 53]. On the other hand, with the help of dual quaternions defined
by dual numbers, 3D rigid motions and screw motions can be examined [2–4, 43, 50, 51], and they are also
used in theoretical kinematics and 3D computer graphics, robotics and computer vision [7, 15, 17, 18, 55, 57].
Especially screw theory is an important tool in robot mechanics, multibody dynamics, and mechanical design
[7]. Dual quaternion algebra was produced by Alexander McAulay in 1898 [33] and developed by Kotelnikov’s
using them in the field of mechanics [24].

Furthermore, the idea of generalizing quaternions has been one of the aims of mathematicians. As
products of this idea, quaternions such as octonions, hyper dual quaternions [9–11], biquaternions [6, 41, 47],
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hyperbolic quaternions [25, 29], generalized quaternions [1, 22, 23, 28, 32, 42, 44, 54], elliptical quaternions
[36, 40], hyperbolic split quaternions [53], and hybrid numbers [38] are available in the literature [36]. The
elliptical and hyperbolic quaternion concepts are defined with the help of generalized scalar products. For the
generalized scalar product spaces, and for skew symmetric and orthogonal matrices defined by the generalized
scalar product, see [16, 30, 31, 34, 45, 46]. In Table 1, we give a summary of different types of quaternions
briefly. Detailed information about these quaternions and their geometry can be found in Özdemir’s book [39].

Table 1. Some types of real quaternions.

Type of reel quaternions Properties of the generators {i, j,k}
Hamiltonian quaternions H [19] i2 = j2 = k2 = ijk = −1,

Split quaternions Ĥ [8] i2 = −1, j2 = k2 = ijk = 1,

Hyperbolic quaternions HH [29] (non-associative) i2 = j2 = k2 = 1,

Segre quaternions HS [49](commutative) i2 = k2 = ijk = −1, j2 = 1,

Elliptical quaternions HE [36] i2 = −a1, j2 = −a2, k2 = −a3, ijk =
√
a1a2a3

Hyperbolic split quaternions HHS [53] i2 = −a1, j2 = a2, k2 = a3, ijk =
√

|a1a2a3|
Hybrid numbers K [38] i2 = −1, j2 = 0, k2 = 1, ik = −ki = j+ i

Generalized quaternions GH [22] i2 = α, j2 = β, k2 = ijk = −αβ

In addition to these quaternions, the quaternions obtained by taking qi numbers as generalized complex
numbers (complex C , dual D and double numbers P) are given in Table 2 below.

Table 2. Some types of generalized complex number quaternions.

Type of complex quaternions Properties of the generators {i, j,k}
Biquaternions H (C) [33] i2 = j2 = k2 = ijk = −1 qi ∈ C (complex numbers)
Dual quaternions H (D) [24] i2 = j2 = k2 = ijk = −1 qi ∈ D (dual numbers)
Perplex quaternions H (P) i2 = j2 = k2 = ijk = −1 qi ∈ P (double numbers)

Our aim in this study is to examine the elliptical rotational motions not only on the standard ellipsoids
with the equation ax2 + by2 + cz2 = r2 as in [36] but also on the rotated ellipsoids with the equation in the
most general form

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = r2, (1.1)

with the help of the generalized elliptic quaternions without using any affine transformations. Thus, the
conclusions related to quaternions derived in [36] will be special cases (for A,B,C ∈ R+ and D = E = F = 0)
of the conclusions of this study.

To achieve this aim, we will define the generalized elliptical scalar product which accepts the (1.1)

equation as a sphere, and define the generalized elliptical vector product by using the skew symmetric matrix
of this scalar product. Then we will use this information to define the generalized elliptical quaternion.

Since this study will focus on the generalization of real quaternions, let us briefly recall some information
about Hamiltonian quaternions

H =
{
q0 + q1i+ q2j+ q3k : i2 = j2 = k2 = ijk = −1

}
.
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A quaternion q = q0 + q1i + q2j + q3k can be written as q = sq + vq where the symbols sq = q0 and
vq = q1i + q2j + q3k denote the scalar and vector parts of q, respectively . If sq = 0 then q is called a pure
quaternion. The conjugate of q is denoted by q, and defined as q = sq − vq . The norm of q is defined by
√
qq =

√
qq =

√
q20 + q21 + q22 + q23 and is denoted by Nq . We say that q0 = q/Nq is a unit quaternion if q ̸= 0.

Every unit quaternion can be written in the form q0 = cos θ + ε0 sin θ where ε0 is a unit vector satisfying the
equality ε20 = −1. With the help of quaternion multiplication, rotation matrices can be easily obtained. Let
p and q be two quaternions. Then, the linear transformation Rq : H → H defined by Rq (p) = qpq−1 is an
orthogonal transformation. If q is a unit quaternion, it can be found the matrix

Rq =

 q20 + q21 − q22 − q23 −2q0q3 + 2q1q2 2q0q2 + 2q1q3
2q1q2 + 2q3q0 q20 − q21 + q22 − q23 2q2q3 − 2q1q0
2q1q3 − 2q2q0 2q1q0 + 2q2q3 q20 − q21 − q22 + q23


corresponding to the linear map Rq. This matrix is a rotation matrix in the 3-dimensional Euclidean space
and represents a rotation through angle 2θ about the axis ε0 = (q1, q2, q3) . For other types of quaternions, a
rotation matrix in different spaces can be obtained by using the quaternion product. For example, with the
help of unit timelike split quaternions, the rotation matrix R̂q is obtained as

R̂q =

 q21 + q22 + q23 + q24 2q1q4 − 2q2q3 −2q1q3 − 2q2q4
2q2q3 + 2q4q1 q21 − q22 − q23 + q24 −2q3q4 − 2q2q1
2q2q4 − 2q3q1 2q2q1 − 2q3q4 q21 − q22 + q23 − q24


in 3-dimensional Lorentzian space. It can be seen that Rq ∈ SO (3) and R̂q ∈ SO (1, 2) , since detRq =

det R̂q = 1 and RRt = I, R̂I∗R = I∗ [37].

2. Generalized elliptical inner and vector products
In this section, let us explain briefly the generalized scalar product spaces that we will use to generalize
quaternions and the concept of skew and orthogonal matrix in these spaces. If the map

B : Rn × Rn → R, (u,v) → B (u,v)

is linear in each argument, that is,

B (au+ bv,w) = aB (u,w) + bB (v,w) ,

B (u, cv + dw) = cB (u,v) + dB (u,w) ,

where, a, b, c, d ∈ R and u,v,w ∈ Rn, then it is called a bilinear form. It is possible to express a bilinear form
B in the space Rn with matrices as B (u,v) = utΩv for all u,v ∈ Rn , where the matrix Ω is called ”the matrix
associated with the form” with respect to the standard basis and it is unique. Also the number

√
|detΩ| will

be called ”constant of the scalar product” and denoted by ∆ . A bilinear form is said to be symmetric or skew
symmetric if

B (u,v) = B (v,u) or B (u,v) = −B (v,u) ,

respectively. The norm of a vector associated with the scalar product B is defined as

∥u∥B =
√

|B(u , u)|.
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The vectors u and v are called B -orthogonal if B(u,v) = 0 . In addition, if their norms are 1, then they are
called B -orthonormal vectors. If {u,v,w} is B -orthonormal base, that is ∥u∥B = ∥v∥B = ∥w∥B = 1 and
u,v,w are B -orthogonal to each others , then |det(u,v,w)| = ∆ .

Now, we will define a positive definite scalar product in the real vector space R3 , which is the 3D version
of the one we gave for R2 in [13]:

For any vectors u =(u1, u2, u3) , v =(v1, v2, v3) ∈ R3 and a positive definite real matrix

Ω =

 A D E
D B F
E F C


the map

BΩ(u,v) = uTΩv

= Au1v1 +Bu2v2 + Cu3v3 +D(u1v2 + u2v1) + E(u1v3 + u3v1) + F (u2v3 + u3v2)

is called generalized (Euclidean) elliptical inner product or BΩ -inner product, and the real vector space R3

equipped with the BΩ -inner product is denoted by R3
BΩ

. Here, Ω is the associated matrix of BΩ -scalar
product, and the constant of the scalar product is

∆ =
√
detΩ =

√
ABC + 2FDE −AF 2 − CD2 −BE2.

According to BΩ -inner product,

∥u∥BΩ
=
√
BΩ(u,u) =

√
Au2

1 +Bu2
2 + Cu2

3 + 2Du1u2 + 2Eu1u3 + 2Fu2u3

and BΩ -sphere having center at the origin and radius r has the equation

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = r2

which is an ellipsoid since detΩ > 0 and r2 > 0 . In addition, as usual, BΩ -measure of an angle between the
vectors u and v is defined by

θ = cos−1

(
BΩ(u,v)

∥u∥BΩ
∥v∥BΩ

)
.

Remark 2.1 The generalized elliptical inner product is determined by the generalized lp -metric given in [12],
for p = 2 and λi = 1 . Using the same notation of the generalized lp -metric, the associated matrix of the
BΩ -inner product is

Ω =

 v211 + v221 + v231 v11v12 + v21v22 + v31v32 v11v13 + v21v23 + v31v33
v11v12 + v21v22 + v31v32 v212 + v222 + v232 v12v13 + v22v23 + v32v33
v11v13 + v21v23 + v31v33 v12v13 + v22v23 + v32v33 v213 + v223 + v233


where v1 , v2 , and v3 are three linear independent vectors such that vi = (vi1, vi2, vi3) . In this case, Ω is a
positive definite real matrix already, since

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = 1
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is an ellipsoid, where A = v211+v221+v231 , B = v212+v222+v232 , C = v213+v223+v233 , D = v11v12+v21v22+v31v32 ,
E = v11v13 + v21v23 + v31v33 and F = v12v13 + v22v23 + v32v33 .

Before defining a generalized elliptical quaternion, we also need the generalized (Euclidean) elliptical
vector product in R3

BΩ
. It is known that skew symmetric matrices can be used to represent vector products

as matrix multiplications in three dimensional space. If BΩ(Tu,v) = −BΩ(u, Tv) for all vectors u ,v ∈ R3
BΩ

,
then T is called BΩ -skew symmetric matrix. We know that T is BΩ -skew symmetric matrix if and only if
T tΩ = −ΩT. The following theorem determines the BΩ -skew symmetric matrices of R3

BΩ
:

Theorem 2.2 In R3
BΩ

, BΩ -skew symmetric matrices are as in the following form

T = λ


(EF−CD)u3−(DF−BE)u2

detΩ
(DF−BE)u1−(BC−F 2)u3

detΩ
(BC−F 2)u2−(EF−CD)u1

detΩ
(AC−E2)u3−(DE−AF )u2

detΩ
(DE−AF )u1−(EF−CD)u3

detΩ
(EF−CD)u2−(AC−E2)u1

detΩ
(DE−AF )u3−(AB−D2)u2

detΩ
(AB−D2)u1−(DF−BE)u3

detΩ
(DF−BE)u2−(DE−AF )u1

detΩ

 (2.1)

where λ, u1, u2, u3 ∈ R.

Proof Let

T =

 t11 t12 t13
t21 t22 t23
t31 t32 t33


If T tΩ = −ΩT , then we have the following system of equations

At11 +Dt21 + Et31 = 0
Bt22 + Ft32 +Dt12 = 0
Ct33 + Ft23 + Et13 = 0
At12 +Bt21 + Ft31 +Dt11 +Dt22 + Et32 = 0
At13 + Ct31 + Ft21 + Et11 +Dt23 + Et33 = 0
Bt23 + Ct32 + Ft22 + Ft33 +Dt13 + Et12 = 0

.

If one uses the following variables

u1 = Et12 + Ft22 + Ct32 = −Dt13 −Bt23 − Ft33

u2 = At13 +Dt23 + Et33 = −Et11 − Ft21 − Ct31

u3 = Dt11 +Bt21 + Ft31 = −At12 −Dt22 − Et32

then gets the following three systems of equations At11 +Dt21 + Et31 = 0
Dt11 +Bt21 + Ft31 = u3

Et11 + Ft21 + Ct31 = −u2 At12 +Dt22 + Et32 = −u3

Dt12 +Bt22 + Ft32 = 0
Et12 + Ft22 + Ct32 = u1 At13 +Dt23 + Et33 = u2

Dt13 +Bt23 + Ft33 = −u1

Et13 + Ft23 + Ct33 = 0
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having the same coefficient matrix Ω . Solving each of them using the Cramer’s Rule, we get the matrix (2.1).
2

The matrix (2.1) is BΩ -skew symmetric for all λ ∈ R; however, we have to take

λ = ∆ =
√
detΩ =

√
ABC + 2FDE −AF 2 −BE2 − CD2 (2.2)

to make it compatible with norms of BΩ -vector product. Thus, we will consider the BΩ -skew symmetric matrix

T =


(DF−BE)u2−(EF−CD)u3

∆
(BC−F2)u3−(DF−BE)u1

∆
(EF−CD)u1−(BC−F2)u2

∆

(DE−AF )u2−(AC−E2)u3
∆

(EF−CD)u3−(DE−AF )u1
∆

(AC−E2)u1−(EF−CD)u2
∆

(AB−D2)u2−(DE−AF )u3
∆

(DF−BE)u3−(AB−D2)u1
∆

(DE−AF )u1−(DF−BE)u2
∆


or shortly

T =


∆5u2 −∆6u3 ∆3u3 −∆5u1 ∆6u1 −∆3u2

∆4u2 −∆2u3 ∆6u3 −∆4u1 ∆2u1 −∆6u2

∆1u2 −∆4u3 ∆5u3 −∆1u1 ∆4u1 −∆5u2

 (2.3)

where ∆ =
√
detΩ , ∆1 = (AB −D2)/∆ , ∆2 = (AC − E2)/∆ , ∆3 = (BC − F 2)/∆ , ∆4 = (DE − AF )/∆ ,

∆5 = (DF −BE)/∆ and ∆6 = (EF − CD)/∆ .

Now, let us define the generalized elliptical vector product or BΩ -vector product in R3
BΩ

, using the skew
symmetric matrix:

Let u = (u1, u2, u3) and v = (v1, v2, v3) be any two vectors, and let i, j,k be standard unit vectors of
R3. Then, the generalized elliptical vector product in R3

BΩ
is the function

VΩ : R3
BΩ

× R3
BΩ

→ R3
BΩ

, (u,v) → VΩ (u× v) ,

defined by

VΩ (u× v) =


∆6u3 −∆5u2 ∆5u1 −∆3u3 ∆3u2 −∆6u1

∆2u3 −∆4u2 ∆4u1 −∆6u3 ∆6u2 −∆2u1

∆4u3 −∆1u2 ∆1u1 −∆5u3 ∆5u2 −∆4u1


 v1

v2
v3



=

∣∣∣∣∣∣∣∣∣
∆3i+∆6j+∆5k ∆6i+∆2j+∆4k ∆5i+∆4j+∆1k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣
=


∆3 (u2v3 − u3v2) + ∆6 (u3v1 − u1v3) + ∆5 (u1v2 − u2v1)

∆6(u2v3 − u3v2) + ∆2 (u3v1 − u1v3) + ∆4 (u1v2 − u2v1)

∆5(u2v3 − u3v2) + ∆4(u3v1 − u1v3) + ∆1(u1v2 − u2v1)


where ∆1 = (AB − D2)/∆ , ∆2 = (AC − E2)/∆ , ∆3 = (BC − F 2)/∆ , ∆4 = (DE − AF )/∆ , ∆5 =

(DF −BE)/∆ and ∆6 = (EF −CD)/∆ . Notice that if we define î = ∆3i+∆6j+∆5k , ĵ = ∆6i+∆2j+∆4k
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and k̂ = ∆5i+∆4j+∆1k , then we have

VΩ (u× v) = (u2v3 − u3v2) î+ (u3v1 − u1v3) ĵ+ (u1v2 − u2v1) k̂,

while the well-known Euclidean vector product is

u× v =(u2v3 − u3v2) i+ (u3v1 − u1v3) j+ (u1v2 − u2v1)k.

The vector VΩ (u× v) is BΩ -orthogonal to the both of the vectors u and v . Consider two unit vectors
u and v in R3

BΩ
. As any unit vectors in R3

BΩ
, the end points of these vectors are on the unit BΩ -sphere S2

BΩ

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = 1.

It is easy to see that VΩ (u× v) is also unit vector of R3
BΩ

, and it is elliptically orthogonal to the vectors u and
v , that is ∥VΩ (u× v)∥BΩ

= 1 and BΩ(VΩ (u× v) ,u) = BΩ(VΩ (u× v) ,v) = 0 . Thus, VΩ (u× v) is rotation
axis for a BΩ -rotation which transforms the vector u to the vector v .

Remark 2.3 Note that if we take A,B,C ∈ R+ and D = E = F = 0 for the special case considered in [36],
we have the consistent following inner and vector products:

BΩ(u,v) = BA,B,C(u,v) = Au1v1 +Bu2v2 + Cu3v3

and

VΩ (u× v) = VA,B,C (u× v) = ∆

∣∣∣∣∣∣∣∣∣
i/A j/B k/C

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ =

∆/A (u2v3 − u3v2)

∆/B (u3v1 − u1v3)

∆/C(u1v2 − u2v1)


where

Ω =

 A 0 0
0 B 0
0 0 C


and ∆ =

√
detΩ =

√
ABC .

3. Generalized elliptical quaternions
For real value entries A,B,C,D,E, F of the positive definite matrix Ω , and q0, q1, q2, q3 ∈ R, consider four
basic elements {1, i, j,k} satisfying the equalities

i2 = −A, j2 = −B, k2 = −C

ij = −D +∆5i+∆4j+∆1k

ji = −D −∆5i−∆4j−∆1k

jk = −F +∆3i+∆6j+∆5k

kj = −F −∆3i−∆6j−∆5k

ki = −E +∆6i+∆2j+∆4k

ik = −E −∆6i−∆2j−∆4k
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where ∆ =
√
detΩ , ∆1 = (AB −D2)/∆ , ∆2 = (AC − E2)/∆ , ∆3 = (BC − F 2)/∆ , ∆4 = (DE − AF )/∆ ,

∆5 = (DF − BE)/∆ , ∆6 = (EF − CD)/∆. Then q = (q0, q1, q2, q3) = q0 + q1i + q2j + q3k is called a
generalized elliptical quaternion and the set of all generalized quaternions is denoted by HE

Ω . This set is an
associative, noncommutative division ring with our basic elements {1, i, j,k}. If we take A = B = C = 1 and
D = E = F = 0 , we get the usual quaternion algebra. The generalized elliptical quaternion product table is
given by

. 1 i j k
1 1 i j k
i i −A −D +∆5i+∆4j+∆1k −E −∆6i−∆2j−∆4k
j j −D −∆5i−∆4j−∆1k −B −F +∆3i+∆6j+∆5k
k k −E +∆6i+∆2j+∆4k −F −∆3i−∆6j−∆5k −C

or
. 1 i j k
1 1 i j k

i i −A −D + k̂ −E − ĵ

j j −D − k̂ −B −F + î

k k −E + ĵ −F + ĵ −C

where î = ∆3i+∆6j+∆5k, ĵ = ∆6i+∆2j+∆4k and k̂ = ∆5i+∆4j+∆1k , as defined in BΩ -vector product.
The generalized elliptic quaternion product of two quaternions p = p0 + p1i + p2j + p3k = sp + vp and

q = q0 + q1i+ q2j+ q3k = sq + vq can also be defined as

pq = p0q0 − BΩ (vp,vq) + p0vq + q0vp + VΩ (vp × vq) .

If p and q are pure, then

pq = −BΩ (vp,vq) + VΩ (vp × vq)

= − (Ap1q1+Bp2q2+Cp3q3+D(p1q2+p2q1)+E(p1q3+p3q1)+F (p2q3+p3q2))+

∣∣∣∣∣∣
î ĵ k̂
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣
The generalized elliptic quaternion product can be expressed as

Lp(q) = pq =


p0 −(Ap1+Dp2+Ep3) −(Dp1+Bp2+Fp3) −(Ep1+Fp2+Cp3)
p1 p0 + p3∆6 − p2∆5 p1∆5 − p3∆3 p2∆3 − p1∆6

p2 p3∆2 − p2∆4 p0 + p1∆4 − p3∆6 p2∆6 − p1∆2

p3 p3∆4 − p2∆1 p1∆1 − p3∆5 p0 + p2∆5 − p1∆4




q0
q1
q2
q3


or

Rp(q) = qp =


p0 −(Ap1+Dp2+Ep3) −(Dp1+Bp2+Fp3) −(Ep1+Fp2+Cp3)
p1 p0 + p2∆5 − p3∆6 p3∆3 − p1∆5 p1∆6 − p2∆3

p2 p2∆4 − p3∆2 p0 + p3∆6 − p1∆4 p1∆2 − p2∆6

p3 p2∆1 − p3∆4 p3∆5 − p1∆1 p0 + p1∆4 − p2∆5




q0
q1
q2
q3

 .

One can see that (ap) q = p (aq) = a (pq) for a ∈ R, and (pq)r = p(qr) for p, q, r ∈ HE
Ω since LpRq = RqLp .
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For example, let p, q ∈ HE
Ω where Ω =

 1 0 −1
0 2 0
−1 0 3

 . Then the generalized elliptic quaternion

product of p and q is

pq =


p0 −p1 + p3 −2p2 p1 − 3p3
p1 p0 − p2 p1 − 3p3 3p2
p2 p3 p0 −p1
p3 −p2 p1 − p3 p0 + p2




q0
q1
q2
q3

 .

For p = 1− i+ j+ 2k and q = 2 + i− 2j− k, we get pq = 16 + 9i+ j+ 7k. This can also be calculated using
the following product table

. 1 i j k
1 1 i j k
i i −1 i+ k 1− j
j j −i− k −2 3i+ k
k k 1 + j −i −3

.

Conjugate, norm, and inverse of a generalized elliptical quaternion q = q0 + q1i + q2j + q3k can be defined
similar to usual quaternions:

q = q0 − q1i− q2j− q3k

Nq =
√

qq =
√
qq =

√
q20 +Aq21 +Bq22 + Cq23 + 2Dq1q2 + 2Eq1q3 + 2Fq2q3

q−1 =
q

N2
q

.

In addition, each generalized elliptic quaternion q = q0 + q1i+ q2j+ q3k can be written in the form

q = Nq (cos θ + ε0 sin θ)

where

cos θ =
q0
Nq

and sin θ =

√
Aq21 +Bq22 + Cq23 + 2Dq1q2 + 2Eq1q3 + 2Fq2q3

Nq
.

Here,

ε0 =
(q1, q2, q3)√

Aq21 +Bq22 + Cq23 + 2Dq1q2 + 2Eq1q3 + 2Fq2q3

is a unit vector in the scalar product space R3
BΩ

satisfying the equality ε20 = −1 . For example, if q =

1 + 2i+ j+ k ∈ HΩ where

Ω =

 1 2 −1
2 2 0
−1 0 3


then Nq =

√
1 + 4 + 2 + 3 + 4(2)− 2(2) =

√
14 and we can write

q =
1√
14

+
(2, 1, 1)√

13

√
13√
14

= cos θ +
(2, 1, 1)√

13
sin θ

where ε0 =
1√
13

(2, 1, 1) is a unit vector in R3
BΩ

with ε20 = −1 .

359



ÇOLAKOĞLU and ÖZDEMİR/Turk J Math

Remark 3.1 One can easily derive the special case considered in [36]: If we take A,B,C ∈ R+ and D = E =

F = 0 , then we get the set of elliptical quaternions HE
A,B,C = {q = q0 + q1i+ q2j+ q3k : q0, q1, q2, q3 ∈ R} with

four basic elements {1, i, j,k} satisfying the equalities

i2 = −A, j2 = −B, k2 = −C

ij = ∆
C k =− ji

jk = ∆
A i = −kj

ki = ∆
B j =− ik

where ∆ =
√
ABC , and the elliptic quaternion product

pq = p0q0 − BAB,C (vp,vq) + p0vq + q0vp + VA,B,C (vp × vq) .

In addition, if we take A = B = C = 1 and D = E = F = 0 , we get the usual quaternion algebra.

Now we generate elliptical rotation matrix by using a unit generalized elliptical quaternion:

Theorem 3.2 If q = q0 + q1i + q2j + q3k = cos θ + ε0 sin θ ∈ HE
Ω is a unit generalized elliptic quaternion,

then for any v ∈R3
BΩ

, the linear map Rq
θ(v) = qvq−1 gives an elliptical rotation through the elliptical angle 2θ,

about the axis ε0. The elliptical rotation matrix corresponding to the quaternion q is

Rq
θ =


2q20 − 1 + 2(δ′q1 + q0∆

′
6,5) 2(δ′′q1 + q0∆

′′
5,3) 2(δ′′′q1 + q0∆

′′′
3,6)

2(δ′q2 + q0∆
′
2,4) 2q20 − 1 + 2(δ′′q2 + q0∆

′′
4,6) 2(δ′′′q2 + q0∆

′′′
6,2)

2(δ′q3 + q0∆
′
4,1) 2(δ′′q3 + q0∆

′′
1,5) 2q20 − 1 + 2(δ′′′q3 + q0∆

′′′
5,4)

 (3.1)

where δ′qi = qi (Aq1 +Dq2 + Eq3) , δ′′qi = qi (Dq1 +Bq2 + Fq3) , δ′′′qi = qi (Eq1 + Fq2 + Cq3) , ∆′
i,j = (∆iq3 −∆jq2) ,

∆′′
i,j = (∆iq1 −∆jq3) , ∆′′′

i,j = (∆iq2 −∆jq1) .

Proof One can see that Rθ is a linear transformation that preserves the norm. In addition, Rq
θ(v) = qvq−1 =

qvq , since Nq = 1 . Then we have Rq
θ(i) = q (Li(q)) = Lq (Li(q)) , Rq

θ(j) = Lq (Lj(q)) and Rq
θ(k) = Lq (Lk(q)) .

Then one gets

Rq
θ(i) =

(
2q20 − 1 + 2(δ′q1 + q0∆

′
6,5)
)
i+2(δ′q2 + q0∆

′
2,4)j+2(δ′q3 + q0∆

′
4,1)k

Rq
θ (j) = 2(δ′′q1 + q0∆

′′
5,3)i+

(
2q20 − 1 + 2(δ′′q2 + q0∆

′′
4,6)
)
j+2(δ′′q3 + q0∆

′′
1,5)k

Rq
θ (k) = 2(δ′′′q1 + q0∆

′′′
3,6)i+ 2(δ′′′q2 + q0∆

′′′
6,2)j+

(
2q20 − 1 + 2(δ′′′q3 + q0∆

′′′
5,4)
)
k.

Thus, we have the matrix (3.1) satisfying detRq
θ = 1 and (Rq

θ)
tΩRq

θ = Ω . Then it is an elliptical rotation
matrix on the ellipsoid Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = r2 . In addition, since vq ∥ ε0 , we have
VΩ(vq, ε0) = VΩ(ε0,vq) = 0 and so qε0 = ε0q. Then we have Rq (ε0) = qε0q

−1 = ε0qq
−1 = ε0 . Thus, ε0 is

the rotation axis. Now, let us determine the rotation angle. Let {ε0, ε1, ε2} be BΩ -orthonormal set satisfying

VΩ (ε0 × ε1) = ε2, VΩ (ε2 × ε0) = ε1 and VΩ (ε1 × ε2) = ε0.
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If ε is a vector in the plane of the ε0 and ε1 , we can write it as

ε = ε0 cosα+ ε1 sinα.

We know that ε0 is invariant under Rq
θ. Then we need to determine how ε1 changes under Rq

θ . Thus,
considering ε20 = −1 and ε0ε1 = −ε1 ε0 = ε2, we get

Rq
θ (ε1) = qε1q

= (cos θ + ε0 sin θ) ε1 (cos θ − ε0 sin θ)

= ε1 cos
2 θ − (ε1ε0) cos θ sin θ + (ε0ε1) sin θ cos θ − (ε0ε1) ε0 sin

2 θ

= ε1 cos
2 θ − (ε1ε0) cos θ sin θ − (ε1ε0) sin θ cos θ +

(
ε1ε

2
0

)
sin2 θ

= ε1 cos
2 θ + ε2 cos θ sin θ + ε2 sin θ cos θ − ε1 sin

2 θ

= ε1 cos 2θ + ε2 sin 2θ.

Then we have that ε is rotated by the transformation Rq
θ , through the elliptical angle 2θ about the vector ε0.

2

Corollary 3.3 Every unit generalized elliptical quaternion determines an elliptical rotation on an ellipsoid, and
all elliptical rotations on a given ellipsoid can be represented by unit generalized elliptical quaternions defined
by the ellipsoid.

Corollary 3.4 If A,B,C ∈ R+ and D = E = F = 0 , then ∆ =
√
ABC , ∆1 = ∆/C , ∆2 = ∆/B , ∆3 = ∆/A ,

∆4 = ∆5 = ∆6 = 0 and q20 +Aq21 +Bq22 + Cq23 = 1. Thus, we get the following elliptical rotation matrix given
in [36]:

Rq
θ =


q20 +Aq21 −Bq22 − Cq23 2

(
Bq1q2 − q0q3∆

A

)
2
(
Cq1q3 +

q0q2∆
A

)
2
(
Aq1q2 +

q0q3∆
B

)
q20 −Aq21 +Bq22 − Cq23 2

(
Cq2q3 − q0q1∆

B

)
2
(
Aq1q3 − q0q2∆

C

)
2
(
Bq2q3 +

q0q1∆
C

)
q20 −Aq21 −Bq22 + Cq23

 . (3.2)

Remark 3.5 Let p and q be two unit generalized elliptical quaternions of HE
Ω where

Ω =

 A D E
D B F
E F C

 .

Then Rp
θ1

and Rq
θ1

are two elliptical rotation matrices of R3
BΩ

. That is, Rp
θ1

and Rq
θ1

rotate a vector v

elliptically on the ellipsoid Ax2 +By2 +Cz2 + 2Dxy + 2Exz + 2Fyz = ∥v∥2BΩ
. Then the composition of these

rotation gives another elliptical rotation which can be expressed by the generalized elliptical quaternion product
qp. In another words, if Rp

θ1
(u) = v and Rq

θ2
(v) = w , then

w = Rq
θ2
(v) = Rq

θ2

(
Rp

θ1
(u)
)
= q

(
Rp

θ1
(u)
)
q−1 = q

(
pup−1)

)
q−1

= (qp)u
(
p−1q−1

)
= (qp)u (qp)

−1
= Rqp

θ3
(u).
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On the other hand, if p ∈ HΩ1 and q ∈ HΩ2 such that Ω1 ̸= Ω2 then the composition of corresponding
rotations cannot be expressed by the generalized elliptical quaternion product, since for each generalized elliptical
quaternion, the quaternion product is different.

Example 3.6 Consider the ellipsoid with the equation

5x2 + 2y2 + 4z2 − 2xy − 2xz − 4yz = 1. (3.3)

Then we have

Ω =

 5 −1 −1
−1 2 −2
−1 −2 4


and ∆ =

√
10 , ∆1 = 9/

√
10 , ∆2 = 19/

√
10, ∆3 = 4/

√
10 , ∆4 = 11/

√
10 , ∆5 = 4/

√
10 , ∆6 = 6/

√
10. For a

unit generalized elliptical quaternion p = (1/
√
2, 0, 1/2, 1/2) , one gets

p = cos (π/4) +
(
0,
√
2/2,

√
2/2
)
sin (π/4)

and then by Theorem 3.2, we obtain

Rp
π
2
=


√
5
5 − 2

5

√
5 2

√
5

5

4
√
5

5 − 1 − 3
√
5

5
3
√
5

5 + 1
√
5
5 − 1 − 2

√
5

5
2
√
5

5 + 1


which is the elliptical rotation matrix having axis of rotation ε0 =

(
0,
√
2/2,

√
2/2
)
, and elliptical angle of

rotation π/2 . For another unit generalized elliptical quaternion q = (1/2, 0,
√
6/4,

√
6/4) , one has

q = cos (π/3) +
(
0,
√
2/2,

√
2/2
)
sin (π/3)

and then we obtain

Rq
2π
3

=


√
15−5
10 −

√
15
5

√
15
5

4
√
15−15
10 − 3

√
15+5
10

3
√
15+15
10

√
15−15
10 −

√
15
5

√
15+5
5


which is the elliptical rotation matrix having axis of rotation ε0 =

(
0,
√
2/2,

√
2/2
)
, and elliptical angle of

rotation 2π/3 .

On the other hand, since BΩ(vq,vp) =
√
6/4 and VΩ(vq,vp) = 0 , we have

qp = q0p0 − BΩ(vq,vp) + q0(vp) + p0(vq) + VΩ(vq,vp)

=
(√

2−
√
6

4 , 0,
√
3+1
4 ,

√
3+1
4

)
= cos (7π/12) +

(
0,
√
2/2,

√
2/2
)
sin (7π/12) .
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Notice that Nqp = 1 and then we obtain

Rqp
7π
6

=


− 5

√
3+

√
5

10

√
5
5 −

√
5
5

− 5
√
3+4

√
5+10

10
3
√
5

10 −
√
3
2

5
√
3−3

√
5+10

10

− 5
√
3+

√
5+10

10

√
5
5

5−
√
5

5


which is the elliptical rotation matrix having axis of rotation ε0 =

(
0,
√
2/2,

√
2/2
)
, and elliptical angle of

rotation 7π/6 . One can check that
Rq

2π
3

Rp
π
2
= Rqp

7π
6

.

Now consider the vector u = (1, 2, 3) for an example. Then we get

Rp
π
2
(u) =

(
3
√
5

5 , 7
√
5+10
5 , 3

√
5+10
5

)
= v

Rq
π
2
(u) =

(
3
√
15−5
10 , 7

√
15+20
10 , 3

√
15+15
10

)
= v′

and
Rq

2π
3

(v) =
(
− 5

√
3+3

√
5

10 , 20−7
√
5

10 , 20−3
√
5−5

√
3

10

)
= w = Rqp

7π
6

(u).

Since ∥u∥2BΩ
= ∥v∥2BΩ

= ∥v′∥2BΩ
= ∥w∥2BΩ

= 15 the vectors u , v , v′ , and w are on the ellipsoid

5x2 + 2y2 + 4z2 − 2xy − 2xz − 4yz = 15.

One can find the equation of the plane in which the rotation occurs, by BΩ(x− u, ε0) = 0 , as z − x = 2 (see
Figure 1).

Figure. Elliptical rotations in the plane z − x = 2 .

Example 3.7 Consider the same ellipsoid again for the generalized elliptical quaternions p = (1/
√
2, 0, 1/2, 1/2)

and r = (0, 1/
√
5, 0, 0) . Since

r = cos (π/2) +
(
1/

√
5, 0, 0

)
sin (π/2)
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and Nr = 1 , we get

Rr
π =

 1 − 2
5 − 2

5
0 −1 0
0 0 −1


which is the elliptical rotation matrix having axis of rotation ε1 =

(
1/
√
5, 0, 0

)
, and elliptical angle of

rotation π . Now we have two different axes of rotation. Let us determine the quaternion product pr : Since
BΩ(vp,vr) = − 1

5

√
5 and VΩ(vp,vr) = (

√
2/10, 2

√
2/5,

√
2/10), we get

pr = p0r0 −B(vp,vr) + p0(vr) + r0(vp) + V (vp,vr)

=
(

1√
5
,
√
10+

√
2

10 , 2
√
2

5 ,
√
2

10

)
= cos θ +

(√
10+5

√
2

20 , 4
√
10

20 ,
√
10
20

)
+ sin θ

which gives the elliptical rotation having axis of rotation ε1 =
(√

10+5
√
2

20 , 4
√
10

20 ,
√
10
20

)
, and elliptical angle of

rotation arccos(1/
√
5) . Notice that Npr = 1. Then we obtain

Rpr
θ =


√
5
5

8
√
5

25 − 12
√
5

25

4
√
5−5
5

7
√
5+10
25 − 23

√
5+15
25

√
5−5
5

8
√
5+10
25 − 12

√
5+15
25


Now one can check that

Rp
π
2
Rr

π = Rpr
θ but Rr

πR
p
π
2
̸= Rpr

θ .

Theorem 3.8 The matrix of the elliptical rotation about the unit generalized elliptical vector n = (n1, n2, n3)

through the angle θ , occurring on the ellipsoid Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = r2, is


cos θ+δ′a(1−cos θ)+∆′

6,5 sin θ δ′′a(1− cos θ) + ∆′′
5,3 sin θ δ′′′a (1− cos θ) + ∆′′′

3,6 sin θ

δ′b(1− cos θ) + ∆′
2,4 sin θ cos θ+δ′′b (1−cos θ)+∆′′

4,6 sin θ δ′′′b (1− cos θ) + ∆′′′
6,2 sin θ

δ′c(1− cos θ) + ∆′
4,1 sin θ δ′′c (1− cos θ) + ∆′′

1,5 sin θ cos θ+δ′′′c (1−cos θ)+∆′′′
5,4 sin θ


where δ′ni

= ni (An1 +Dn2 + En3) , δ′′ni
= ni (Dn1 +Bn2 + Fn3) , δ′′′ni

= ni (En1 + Fn2 + Cn3) , ∆′
i,j =

(∆in3 −∆jn2) , ∆′′
i,j = (∆in1 −∆jn3) , ∆′′′

i,j = (∆in2 −∆jn1) .

Proof Clearly, we have

Ω =

 A D E
D B F
E F C


and ∥n∥2BΩ

= An2
1 +Bn2

2 + Cn2
3 + 2Dn1n2 + 2En1n3 + 2Fn2n3 = 1. We need unit generalized quaternion of

q = q0 + q1i+ q2j+ q3k = cos(θ/2) + (n1, n2, n3) sin(θ/2)
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for elliptical rotation about the generalized elliptical unit vector n through the angle θ . So we have q0 =

cos(θ/2) , q1 = n1 sin(θ/2) , q2 = n2 sin(θ/2) , q3 = n3 sin(θ/2) . By the previous theorem, we get the following
elliptical rotation matrix

cos θ+δ′a(1−cos θ)+∆′
6,5 sin θ δ′′a(1− cos θ) + ∆′′

5,3 sin θ δ′′′a (1− cos θ) + ∆′′′
3,6 sin θ

δ′b(1− cos θ) + ∆′
2,4 sin θ cos θ+δ′′b (1−cos θ)+∆′′

4,6 sin θ δ′′′b (1− cos θ) + ∆′′′
6,2 sin θ

δ′c(1− cos θ) + ∆′
4,1 sin θ δ′′c (1− cos θ) + ∆′′

1,5 sin θ cos θ+δ′′′c (1−cos θ)+∆′′′
5,4 sin θ


where δ′ni

= ni (An1 +Dn2 + En3) , δ′′ni
= ni (Dn1 +Bn2 + Fn3) , δ′′′ni

= ni (En1 + Fn2 + Cn3) , ∆′
i,j =

(∆in3 −∆jn2) , ∆′′
i,j = (∆in1 −∆jn3) , ∆′′′

i,j = (∆in2 −∆jn1) . 2

Example 3.9 Let us consider the ellipsoid with the equation 5x2 + 2y2 + 4z2 − 2xy − 2xz − 4yz = 1 , and find
the matrix of the elliptical rotation about the axis εq = (0,

√
2/2,

√
2/2) and the elliptical angle 2π/3. We have

n = (0,
√
2/2,

√
2/2) , θ = 2π/3 ,

Ω =

 5 −1 −1
−1 2 −2
−1 −2 4


δ′n1

= 0 , δ′n2
= δ′n3

= −1 , δ′′n1
= δ′′n2

= δ′′n3
= 0 , δ′′′n1

= 0 , δ′′′n2
= δ′′′n3

= 1 , ∆ =
√
10 , ∆1 = 9/

√
10 ,

∆2 = 19/
√
10 , ∆3 = 4/

√
10 , ∆4 = 11/

√
10 , ∆5 = 4/

√
10 , ∆6 = 6/

√
10 . Then we obtain

R
εq
2π/3 =


√
15−5
10 −

√
15
5

√
15
5

4
√
15−15
10 − 3

√
15+5
10

3
√
15+15
10

√
15−15
10 −

√
15
5

√
15+5
5


which is the elliptical rotation matrix having axis of rotation ε0 =

(
0,
√
2/2,

√
2/2
)
, and elliptical angle of

rotation 2π/3 (see Example 3.6).

3.1. An algorithm

Generating 3-dimensional elliptical rotation matrix of the ellipsoid Ax2+By2+Cz2+2Dxy+2Exz+2Fyz = r2

that rotates a given vector x = (x1, y1, z1) to given another vector y = (x2, y2, z2) on the ellipsoid.

Step 1. Write 3× 3 positive definite matrix

Ω = [ωij ]3×3 =

A D E
D B F
E F C


where A > 0 , AB−D2 > 0 and detΩ > 0 , or write three linear independent vectors v1 , v2 and v3 such that
vi = (vi1, vi2, vi3), then define matrix

Ω = [ωij ]3×3 =

 v211 + v221 + v231 v11v12 + v21v22 + v31v32 v11v13 + v21v23 + v31v33
v11v12 + v21v22 + v31v32 v212 + v222 + v232 v12v13 + v22v23 + v32v33
v11v13 + v21v23 + v31v33 v12v13 + v22v23 + v32v33 v213 + v223 + v233

 .
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In this case, the equation ω11x
2 +ω22y

2 +ω33z
2 +2ω21xy+2ω31xz+2ω32yz = 1 is an ellipsoid. If an ellipsoid

is given with the equation

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = 1

in the beginning, then write the matrix

Ω = [ωij ]3×3 =

A D E
D B F
E F C

 .

In this case, Ω is positive definite already.

Step 2. Define the generalized elliptical scalar product BΩ , generalized elliptical norm of a vector and some
constants as follows:

B (x,y,Ω) = ω11x1y1 + ω22x2y2 + ω33x3y3 + ω21(x1y2 + u2y1) + ω31(x1y3 + x3y1) + ω32(x2y3 + x3y2)

N (x,Ω) =
√
B (x,x,Ω)

∆ =
√

ω11ω22ω33 + 2ω32ω21ω31 − ω11ω2
32 − ω33ω2

21 − ω22ω2
31

∆1 = (ω11ω22 − ω2
21)/∆

∆2 = (ω11ω33 − ω2
31)/∆

∆3 = (ω22ω33 − ω2
32)/∆

∆4 = (ω21ω31 − ω11ω32)/∆

∆5 = (ω21ω32 − ω22ω31)/∆

∆6 = (ω31ω32 − ω33ω21)/∆

where x = (x1, y1, z1) and y = (x2, y2, z2) .

Step 3. Define the generalized elliptical vector product VΩ as

V (x,y,Ω) =


∆3 (x2y3 − x3y2) + ∆6 (x3y1 − x1y3) + ∆5 (x1y2 − x2y1)

∆6(x2y3 − x3y2) + ∆2 (x3y1 − x1y3) + ∆4 (x1y2 − x2y1)

∆5(x2y3 − x3y2) + ∆4(x3y1 − x1y3) + ∆1(x1y2 − x2y1)

 .

Step 4. Choose the vectors x = (x1, y1, z1) and y = (x2, y2, z2) such that ∥x∥BΩ
= ∥y∥BΩ

= r to find the
elliptical rotation matrix that rotates x to y elliptically on the ellipsoid

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = r2.

Step 5. Find, V (x,y,Ω) and norm of the vectors x, y and V (x,y,Ω) . That is, find N (x,Ω) , N (y,Ω) and
N (V (x,y,Ω) ,Ω) .
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Step 6. Find the rotation axis u =(u1, u2, u3) where

u1 =
∆3 (x2y3 − x3y2) + ∆6 (x3y1 − x1y3) + ∆5 (x1y2 − x2y1)

N (V (x,y,Ω) ,Ω)

u2 =
∆6(x2y3 − x3y2) + ∆2 (x3y1 − x1y3) + ∆4 (x1y2 − x2y1)

N (V (x,y,Ω) ,Ω)

u3 =
∆5(x2y3 − x3y2) + ∆4(x3y1 − x1y3) + ∆1(x1y2 − x2y1)

N (V (x,y,Ω) ,Ω)

Step 7. Find the elliptical rotation angle using

cos θ =
B (x,y,Ω)√

N (x,Ω)
√

N (y,Ω)

and define K = cos θ and S = sin θ where S =
√
1−K2.

Step 8. Define the set of generalized elliptical quaternions HE
Ω = {q = q0 + q1i+ q2j+ q3k, q0, q1, q2, q3 ∈ R}

with

i2 = −ω11, j2 = −ω22, k2 = −ω33

ij = −ω21 +∆5i+∆4j+∆1k

ji = −ω21 −∆5i−∆4j−∆1k

jk = −ω32 +∆3i+∆6j+∆5k

kj = −ω32 −∆3i−∆6j−∆5k

ki = −ω31 +∆6i+∆2j+∆4k

ik = −ω31 −∆6i−∆2j−∆4k.

Step 9. Find c = cos(θ/2) =

√
cos θ + 1

2
and s =

√
1− c2. Define the quaternion

q = cos(θ/2) + u sin(θ/2) = c+ su1i+ su2j+ su3k

where θ is the elliptical rotation angle and u = (u1, u2, u3) = u1i+ u2j+ u3k is the rotation axis, obtained in
Step 6 and Step 7.

Step 10. Find the elliptical rotation matrix corresponding to q = q0 + q1i + q2j + q3k that rotates x to y
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elliptically on the ellipsoid using the matrix R (q,Ω,∆) = [qij ]3×3 where

q11 = 2q20 − 1 + 2(q1 (Aq1 +Dq2 + Eq3) + q0 (∆6q3 −∆5q2))

q21 = 2(q2 (Aq1 +Dq2 + Eq3) + q0 (∆2q3 −∆4q2))

q31 = 2(q3 (Aq1 +Dq2 + Eq3) + q0 (∆4q3 −∆1q2))

q12 = 2(q1 (Dq1 +Bq2 + Fq3) + q0 (∆5q1 −∆3q3))

q22 = 2q20 − 1 + 2(q2 (Dq1 +Bq2 + Fq3) + q0∆(∆4q1 −∆6q3))

q32 = 2(q3 (Dq1 +Bq2 + Fq3) + q0 (∆1q1 −∆5q3))

q13 = 2(q1 (Eq1 + Fq2 + Cq3) + q0 (∆3q2 −∆6q1))

q23 = 2(q2 (Eq1 + Fq2 + Cq3) + q0 (∆6q2 −∆2q1))

q33 = 2q20 − 1 + 2(q3 (Eq1 + Fq2 + Cq3) + q0 (∆5q2 −∆4q1)).
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