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Abstract: In this article, we prove a new compactness criterion in the Lebesgue spaces Lp(R+), 1 ≤ p < ∞ and use
such criteria to construct a measure of noncompactness in the mentioned spaces. The conjunction of that measure with
the Hausdroff measure of noncompactness is proved on sets that are compact in finite measure. We apply such measure
with a modified version of Darbo fixed point theorem in proving the existence of monotonic integrable solutions for a
product of n -Hammerstein integral equations n ≥ 2 .
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1. Introduction
There are two methodologies for tackling different types of integral, differential, partial differential, or functional
equations and their applications, to be specific they are the traditional fixed point hypotheses including
theories from topology and analysis and the fixed point hypotheses concerning the utilization of measures
of noncompactness.

In [25], Kuratowski introduced the first definition of measures of noncompactness and Darbo utilized this
idea to present his fixed point hypothesis in 1955 (cf. [17]). Such methodology was utilized to contemplate the
presence of solutions of various types of problems in different function spaces, for example, in the space C[a, b]

(cf. [3, 16]), in the space BC(R+) (cf. [5, 7]), in the space of Lebesgue integrable functions Lp on bounded or
unbounded domains (cf. [15, 27, 30]), and in Orlicz spaces (cf. [28, 29]).

Recently, there have been many manuscripts that developed and constructed new measures of noncom-
pactness in various function spaces and applying these results to study the existence theorems of numerous
integral equations.

Let us mention that some new measures of noncompactness were defined and demonstrated in the
Banach algebras C(I), BC(R+) satisfying condition (m) [6], in the space of regular functions on bounded
and unbounded domains [13, 18, 26], in the space of Lebesgue integrable functions L1(RN ) [10], in the space of
all locally integrable functions L1

loc(R+) [32], in general Lebesgue spaces Lp(RN ) [1], and in the Sobolev space
W k,1(I) [24]. Moreover, Erzakowa in [19, 20] uses the notion of compact in measure to define a measure of
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noncompactness in Lp -spaces, 1 ≤ p < ∞ on bounded intervals.
In this manuscript, we characterize new criteria and define a new measure of noncompactness on un-

bounded domain in the spaces Lp(R+), 1 ≤ p < ∞ utilizing the concept of compactness in the finite measure.
The conjunction of that measure with the Hausdorff measure of noncompactness is demonstrated, then an
adjusted adaptation of the Darbo fixed point hypothesis identified with our outcomes is given. The technique
presented in this paper is not difficult to apply for studying various problems in Lp -spaces under a general set
of assumptions which permits us to skip some restrictions presented in the former literature.

The importance of studying Lp -spaces, 1 ≤ p < ∞ is that they are the most suitable spaces when we
study the problems related to the integral equations where the studied operators need only to be integrable
(not necessary to be continuous).

As an application, we apply our outcomes to examine the solutions of the equation

x(t) = h(t, x(t)) +
n∏

i=1

(
gi(t, x(t)) + fi(t, x(t)) · |x(t)|

p
qi ·
∫ ∞

0

Ki(t, s)ui(s, x(s)) ds

)
(1.1)

in the spaces Lp(R+), 1 ≤ p < qi < ∞, n ≥ 2 .
Recall that, in [11, 21], the authors discussed the presence and the uniqueness of a continuous solution

to the equation

x(t) = k

(
p(t) +

∫ t

0

A(t− s)x(s) ds

)(
q(t) +

∫ t

0

B(t− s)x(s) ds

)
, t > 0. (1.2)

Model (1.2) emerges in the investigation of the spread of diseases that do not induce permanent immunity.
However, various models of infectious diseases contain data functions that are discontinuous, so it is

better to inspect that model in Lp -spaces.
Additionally, the authors in [31] discussed the presence and uniqueness of a continuous solution to the

equation

x(t) =

n∏
i=1

(
gi(t) +

∫ t

a

Ki(t, s, x(s)) ds

)
, t ∈ [a, b].

The authors in [23] discussed the presence of monotonic solutions in the space L1[0, τ ] for the equation

x(t) =

(
h1(t) + g(t) · (Tx)(t)

)
·

(
h2(t) +

|x(t)|
1
p

Γ(α)

∫ t

0

f(s, x(s))

(t− s)1−α

)
,

where T (x) is a general operator, by using a proper measure of noncompactness.
The existence of L1 -solution on unbounded interval was studied in [9] utilizing the measure of weak

noncompactness for the equation

x(t) = f(t, x(t)) +

n∏
i=1

fi

(
t,

∫ t

a

Ki(t, s, x(s)) ds

)
, t > 0.

This manuscript is motivated by extending and generalizing the outcomes introduced in the former literature
to the case of σ -finite measures and applying these outcomes to examine the discontinuous monotonic solutions
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for a product of n -Hammerstein integral equations n ≥ 2 in Lp(R+) . An example to show the applicability of
our outcomes is included.

2. Notation and auxiliary facts

Let R be the field of real numbers, R+ = [0,∞) , and J = [a, b] .
We denote by Lp = Lp(R+), 1 ≤ p < ∞ the Banach space of equivalence classes of measurable functions

on R+ such that
∫∞
0

|x(s)|p ds < ∞ with the norm

||x||p =

(∫ ∞

0

|x(s)|p ds

) 1
p

.

Definition 2.1 [2] Assume that a function f : R+ × R → R satisfies the Carathéodory conditions, i.e. it is
measurable in t for any x ∈ R and continuous in x for almost all t ∈ R+ . Then to every measurable function
x , we may assign the function

Ff (x)(t) = f(t, x(t)).

The operator Ff in such a way is called the superposition (Nemytskii) operator generated by the function f .

Theorem 2.2 [2] Let f satisfy the Carathéodory conditions. The superposition operator Ff generated by the
function f maps continuously the space Lp into Lq (p, q ≥ 1) if and only if

|f(t, x)| ≤ a(t) + b · |x|
p
q (2.1)

for all t ∈ R+ and x ∈ R , where a ∈ Lq and b ≥ 0 .

Theorem 2.3 [22, Theorem 6.2] The operator K0x(t) =
∫∞
0

K(t, s)x(s) ds preserves the monotonicity of
functions iff for any l > 0 the following condition holds true

t1 < t2 =⇒
∫ l

0

K(t1, s) ds ≥
∫ l

0

K(t2, s) ds, t1, t2 ∈ R+.

Lemma 2.4 [12] Let n ≥ 2 . If 1 ≤ p, pi < ∞ for i = 1, · · · , n , then the following statements are equivalent:

1.
∑n

i=1
1
pi

= 1
p .

2.
∥∥∏n

i=1 ui

∥∥
p
≤
∏n

i=1 ∥ui∥pi for every ui ∈ Lpi , i = 1, · · · , n .

3. For every ui ∈ Lpi
, then

∏n
i=1 ui ∈ Lp.

Denote by Br the closed ball centered at zero element θ and with radius r and let S = S(J) be the set
of measurable (in Lebesgue sense ) functions on J . Identifying the functions equal almost everywhere the set
S is furnished with the metric

d(x, y) = inf
a>0

[a+meas{s : |x(s)− y(s)| ≥ a}]
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becomes a complete metric space. Moreover, the convergence in measure on J is equivalent to the convergence
with respect to the metric d (Proposition 2.14 in [34]). Concerning the case of R+ , as the measure is σ -finite,
a notion of convergence in finite measure is used and it means that (xn) is convergent to x in finite measure if
and only if it converges to x on each set T ⊂ R+ of finite measure. The compactness in such spaces is called a
”compactness in measure” (”in finite measure”).

Let X be a bounded subset of Lp(J) . Assume that there is a family of subsets (Ωc)0≤c≤b−a of the
interval J such that measΩc = c for every c ∈ [0, b−a] , and for every x ∈ X , x(t1) ≥ x(t2), (t1 ∈ Ωc, t2 ̸∈ Ωc) .
Such a family is equimeasurable (cf. [4]) and then the set X is compact in measure in Lp(J) . It is clear that by
putting Ωc = [0, c)∪Z or Ωc = [0, c)\Z , where Z is a set with measure zero, this family contains nonincreasing
functions (possibly except for a set Z ).

We will call the functions from this family ”a.e. nonincreasing” functions. This is the case, when we
choose an integrable and nonincreasing function y and all functions are equal a.e. to y satisfies the above
condition. Thus, we can write that elements from Lp(J) belong to this class of functions. Clearly, the same
holds true for R+ .

Theorem 2.5 [15] Let X be a bounded subset of Lp(J) consisting of functions that are a.e. nondecreasing (or
a.e. nonincreasing) on the interval J . Then X is compact in measure in Lp(J) .

Corollary 2.6 Let X be a bounded subset of Lp consisting of functions which are a.e. nondecreasing (or a.e.
nonincreasing) on R+ . Then X is compact in the finite measure in Lp .

Proof Let us assume that Lp(T ) for σ -finite measure space T , then there is some equivalent finite measure
ν (ν(R+) < ∞) (Proposition 2.1. in [34] or Corollary 2.20 in [34]). Then the convergence of sequences in S

are the same for the metric d and

dν(x, y) = inf
a>0

[a+ ν{s : |x(s)− y(s)| ≥ a}]

(Proposition 2.2 in [33]). Let (xn) ⊂ X be an arbitrary bounded sequence. As a subset of a metric space X

= (Lp(R+), dν ) the sequence is compact in this metric space (Theorem 2.5). Then there exists a subsequence
(xnk

) of (xn) which is convergent in the space X to some x , i.e.

dν(xnk
, x)

k→∞−→ 0.

Since the two metrics have the same convergent sequences, then

d(xnk
, x)

k→∞−→ 0.

This means that X is compact in finite measure in Lp . 2

Remark 2.7 Let Qr be the set of all functions x ∈ Lp which are a.e. nonincreasing (or a.e. nondecreasing)
on R+ . Then Qr is nonempty, bounded, closed and convex subset of Lp such that ∥x∥p ≤ r, r > 0 . Moreover,
the set Qr is compact in finite measure (cf. [8] and [14, Lemma 4.10]).
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3. Main results.
We need to present a new measure of noncompactness in Lp -spaces, so we shall prove the following criteria.
We will start by expanding Erzakova results [19, 20] from the case of finite measure space to σ -finite measures.

Theorem 3.1 (cf. [20]) (Compactness criterion in Lp )
Fix any 1 ≤ p < ∞ . A bounded subset X of Lp is relatively compact if and only if it is compact in finite
measure and has uniformly equicontinuous norm in Lp , i.e. the following conditions hold true:

1. for measurable subset D ⊂ R+

lim sup
ε→0

sup
mesD≤ε

sup
x∈X

∥x · χD∥p = 0,

2.
lim

T→∞
sup
x∈X

∥x · χ[T,∞)∥p = 0,

where χA denotes the characteristic function of a measurable subset A of R+ .

Proof One implication is known: if a set X is relatively compact in Lp , then it is compact in finite measure.
Indeed, if W is a measurable subset of R+ having finite measure and that convergence on W implies convergence
in measure on W , so X is relatively compact in finite measure. Moreover, such a set X satisfies condition 1.
(cf. [20, Theorem 1], [34]) and for condition 2. (cf. [8]).

To prove the converse implication, it is sufficient to apply the Krasnoselskii theorem ([34, Theorem 3.19].
Indeed, as Lp is a regular ideal space and X has a uniformly equicontinuous norm, it is sufficient to prove that
any sequence in X has a.e. convergent subsequence, but the last property is a consequence of the compactness
in finite measure for σ -finte measure spaces ([34, Corollary 2.19]) and we are done. 2

Due to observation made in the above proof, we get:

Corollary 3.2 Theorem 3.1 can be extended to the case of regular ideal spaces, so it holds also for Lorentz
spaces and Orlicz spaces whose generating function satisfies a ∆2 -condition.

Corollary 3.3 For a nonempty and bounded subset X of the space Lp , ε > 0 and let

c(X) = lim sup
ε→0

sup
mesD≤ε

sup
x∈X

∥x · χD∥p

and
d(X) = lim

T→∞
sup
x∈X

∥x · χ[T,∞)∥p.

Then the measure
µ(X) = c(X) + d(X) (3.1)

has the following properties:

(a) X ⊂ Y =⇒ µ(X) ≤ µ(Y ).

(b) µ(X
⋃

Y ) = max{µ(X), µ(Y )} .
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(c) µ(X̄) = µ(convX) = µ(X), where X̄ and convX refer to the closure and convex closure of X ,
respectively.

(d) µ(λX) = |λ| µ(X), for λ ∈ R.

(e) µ(X + Y ) ≤ µ(X) + µ(Y ) , here X + Y = {x+ y : x ∈ X and y ∈ Y } .

(f) |µ(X)−µ(Y )| ≤ k dist(X,Y ) , where dist(X,Y ) denotes the Hausdorff distance, and the constant k does
not depend on X and Y .

(g) That X is relatively compact implies that µ(X) = 0 , the converse is not true i.e. µ(X) = 0 does not
imply that X is relatively compact.

Proof The proof can be directly done by applying equation (3.1) with the help of Theorem 3.1 (cf. [20]). 2

Remark 3.4 The measure µ satisfies µ(Br) = 2r (cf. [8]).

Definition 3.5 [2] Let X ̸= ∅ be a bounded subset of Lp . The Hausdroff measure of noncompactness χ(X) is
defined as

χ(X) = inf{r > 0 : there exists a finite subset Y of E such that X ⊂ Y +Br}.

Remark 3.6 The measure χ has all properties of µ mentioned above; for measure-compact sets as distinct
from the Hausdorff measure of noncompactness χ(X) = 0 ⇒ X is compact, while the equality µ(X) = 0 is
possible on noncompact sets.

We are in a position to present the relation between the measures of noncompactness µ and χ .

Theorem 3.7 Let X ̸= ∅ be a bounded subset of Lp , which is also compact in finite measure, then

χ(X) ≤ µ(X) ≤ 2χ(X).

Proof Suppose χ(X) = r and ε > 0 is arbitrary. Then we can find a finite set Y ⊂ Lp such that
X ⊂ Y + (r + ε)B1 . From the properties of µ , we have

µ(X) ≤ µ(Y ) + (r + ε)µ(B1) = 2(r + ε)

and since ε is arbitrary, we get
µ(X) ≤ 2χ(X). (3.2)

Further, let X be a subset of Lp which is compact in finite measure and that χ(X) = r and c(X) = r1, d(X) =

r2 , where r1 + r2 = r .
Fix an arbitrary η > 0 . Then there exist T > 0 and ε > 0 such that

∥x · χD∥p ≤ r1 + η (3.3)

and
sup
x∈X

∥x · χ[T,∞)∥p ≤ r2 + η (3.4)
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for any x ∈ X and for any measurable subset D ⊂ [0, T ] with measD ≤ ϵ .
Denote by

Ω(x, h) = {t ∈ [0, T ] : |x(t)| ≥ h}

for an arbitrary h ≥ 0 and x ∈ X . Since X is bounded, we have

lim
h→∞

{sup[measΩ(x, h) : x ∈ X]} = 0.

Then, for any x ∈ X , we can choose h0 ≥ 0 such that

measΩ(x, h0) ≤ ε. (3.5)

By applying (3.3) for an arbitrary x ∈ X , we have

∥x · χΩ(x,h0)∥p ≤ r1 + η. (3.6)

Next, for any x ∈ X denote by xh0 , the function

xh0
(t) =

 0 for t ≥ T
t for t ∈ [0, T ]− Ω(x, h0)
h0 sign x(t) for t ∈ Ω(x, h0).

Since X is compact in finite measure, we conclude that Xh0
= {xh0

: x ∈ X} is also compact in finite
measure. Moreover, one can easily check that c(Xh0) = d(Xh0) = 0 , which implies µ(Xh0) = 0 . Thus, by
Theorem 3.1, the set Xh0 is compact in Lp .

Consequently,
χ(Xh0

) = 0.

Now, applying (3.4), we infer

∥x− xh0
∥p = ∥(x− xh0

) · χ[0,T )∥p + ∥x · χ[T,∞)∥p

≤ ∥(x− xh0) · χ[0,T )∥p + r2 + η. (3.7)

Moreover, by (3.6), we get
∥(x− xh0

) · χ[0,T )∥p ≤ ∥x · χΩ(x,h0)∥p ≤ r1 + η.

Hence, by (3.7), we have

∥x− xh0
∥p ≤ r1 + r2 + 2η

and consequently
X ⊂ Xh0 +Br+2η.

Thus,
χ(X) ≤ (r + 2η)χ(B1) = r + 2η

and since η is arbitrary, we have

χ(X) ≤ µ(X).

Combining the above inequality with (3.2), we obtain the proof. 2

Next, we present an adjusted adaptation of Darbo-type fixed point theorem.
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Corollary 3.8 Let Q be a nonempty, bounded, closed, and convex subset of Lp . Also, assume Q consists of
functions which are a.e. nondecreasing (or a.e. nonincreasing) on R+ . Suppose H : Q → Q is a continuous
operator and takes a.e. nondecreasing (or a.e. nonincreasing) functions on R+ into functions of the same type.
Finally suppose there exists a constant k, 0 ≤ k < 1

2 with

µ(H(X)) ≤ kµ(X)

for any nonempty subset X of Q . Then H has at least one fixed point in Q .

Proof Let X be a subset of Q . Note from Remark 2.7 that X and H(X) are compact in finite measure in
Lp . Then from Theorem 3.7, we have

µ(HX) ≤ 2χ(HX) ≤ 2k · χ(X) ≤ 2k · µ(X).

Now, by applying the classical Darbo fixed point theorem with 0 ≤ k < 1
2 , we get the thesis. 2

4. Applications

We will apply the results presented in Section 3 to prove the existence of monotonic integrable solutions for
equation (1.1).

Rewrite equation (1.1) as follows

x(t) = Hx(t) = Fhx(t) +

n∏
i=1

Hix(t), where

Hi(x) = Fgi(x) +Ai(x), Ai(x) = Ffi(x) · Ui(x),

Ui(x) = |x|
p
qi ·K0iFui

(x), and K0i =

∫ ∞

0

Ki(t, s)x(s) ds,

such that Fh, Fgi , Ffi , and Fui
are the superposition operators as in Definition 2.1.

Assume that 1
p =

∑n
i=1

1
pi

, where 1
pi

= 1
qi

+ 1
q′i

associated with the next assumptions:

(i) The functions h, gi, fi, ui : R+ × R → R satisfy Carathéodory conditions. Moreover, assume that
h(t, x) ≥ 0, gi(t, x) ≥ 0, fi(t, x) ≥ 0, ui(t, x) ≥ 0, for a.e. (t, x) ∈ R+ × R and h, gi, fi, ui, i = 1, · · · , n
are nonincreasing with respect to both variables t and x separately.

(ii) There exist positive constants d, di, ci, li and functions b ∈ Lp, bi ∈ Lq′i
, ai ∈ Lpi and ei ∈ Lqi such that

|h(t, x)| ≤ b(t) + d|x|, |fi(t, x)| ≤ bi(t) + di|x|
p

q′
i

and

|gi(t, x)| ≤ ai(t) + ci|x|
p
pi , |ui(t, x)| ≤ ei(s) + li|x|

p
qi , i = 1, · · · , n.
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(iii) Assume that the functions Ki are measurable in (t, s) and assume that the linear integral operators K0i

with kernels Ki(t, s) map Lqi → L∞ and K0i are continuous with

∥K0i∥∞ = ess sup
0≤t<∞

(∫ ∞

0

|Ki(t, s)|q
′′
i ds

) 1
q′′
i
,

where 1
qi

+ 1
q′′i

= 1, i = 1, · · · , n .

(iv) For any l > 0 and i = 1, · · · , n , we have

t1 < t2 =⇒
∫ l

0

Ki(t1, s) ds ≥
∫ l

0

Ki(t2, s) ds, t1, t2 ∈ R+.

(v) Assume there exists a number r > 0 fulfills

d+

n∏
i=1

(
ci + di · ∥K0i∥∞

(
∥ei∥qi + li · r

p
qi

))
<

1

2

and

∥b∥p + d · r +
n∏

i=1

[
∥ai∥pi

+
(
ci + di∥K0i∥∞∥ei∥qi

)
r

p
pi (4.1)

+∥K0i∥∞∥bi∥q′i∥ei∥qir
p
qi + li∥K0i∥∞∥bi∥q′ir

2p
qi + dili∥K0i∥∞r

p
pi

+ p
qi

]
≤ r.

Remark 4.1 Equation (4.1) takes the form a+ d · r +
∏n

i=1

(
Bi + Cir

p
pi +Dir

p
qi + Eir

2p
qi +Gir

p
pi

+ p
qi

)
≤ r .

For example, for r = 1 , we would need a+ d+
∏n

i=1

(
Bi + Ci +Di + Ei +Gi

)
≤ 1 .

Remark 4.2 Assumptions (ii) and (iii) imply that the operators Ui : Lp → Lqi are continuous and satisfying

∥Ui(x)∥qi ≤ ∥K0i∥∞
(
∥ei∥qi + li∥x∥

p
qi
p

)
∥x∥

p
qi
p , i = 1, · · · , n.

Indeed, for x ∈ Lp, i = 1, · · · , n , we have

∥Ui(x)∥qi =

∥∥∥∥|x(t)| p
qi

∫ ∞

0

Ki(t, s)u(s, x(s)) ds

∥∥∥∥
qi

≤
∥∥∥∥|x(t)| p

qi

∫ ∞

0

Ki(t, s)
(
ei(s) + li · |x(s)|

p
qi

)
ds

∥∥∥∥
qi

≤
∥∥∥∥|x(t)| p

qi ∥Ki(t, ·)∥q′′∥ei + li · |x|
p
qi ∥qi

∥∥∥∥
qi

≤ ∥K0i∥∞
(
∥ei∥qi + li · ∥x

p
qi ∥qi

)∥∥∥∥|x| p
qi

∥∥∥∥
qi

= ∥K0i∥∞
(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x∥

p
qi
p ,
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where ∥x
p
qi ∥qi = ∥x∥

p
qi
p .

Similarly, if D ⊂ R+ , we have

∥Ui(x) · χD∥qi ≤ ∥K0i∥∞
(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x · χD∥

p
qi
p .

Theorem 4.3 Let assumptions (i) - (v) be satisfied, then there exists a solution x ∈ Lp of (1.1) which is a.e.
nonincreasing on R+ .

Proof Step I. In what follows, let i = 1, · · · , n . Assumption (i), (ii) and Theorem 2.2 imply that the operators
Fh : Lp → Lp, Fgi : Lp → Lpi

, Ffi : Lp → Lq′i
and Fui

: Lp → Lqi are continuous. The operators Ui map Lp

into Lqi continuously (thanks to Remark 4.2). From the Hölder inequality, the operators Ai : Lp → Lpi
are

continuous, which implies that Hi : Lp → Lpi are continuous. By using Corollary 2.4, we can deduce that the
operator H = Fh +

∏n
i=1 Hi maps continuously Lp into itself.

Step II. For x ∈ Lp and by using assumptions (i) - (iii) and Remark 4.2, we have

∥Hi(x)∥pi
≤ ∥Fgi∥pi

+ ∥Aix∥pi

≤ ∥ ai + ci · |x|
p
pi ∥pi + ∥Ffi(x)Ui(x)∥pi

≤ ∥ai∥pi
+ ci · ∥x

p
pi ∥pi

+ ∥Ffi(x)∥q′i∥Ui(x)∥qi

≤ ∥ai∥pi
+ ci · ∥x∥

p
pi
p +

∥∥∥∥bi + di · |x|
p

q′
i

∥∥∥∥
q′i

∥K0i∥∞
(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x∥

p
qi
p

≤ ∥ai∥pi + ci · ∥x∥
p
pi
p + ∥K0i∥∞

(
∥bi∥q′i + di · ∥x∥

p

q′
i

p

)(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x∥

p
qi
p .

By using Corollary 2.4, we have

∥H(x)∥p ≤
∥∥∥∥Fh(x)

∥∥∥∥
p

+

∥∥∥∥ n∏
i=1

Hi(x)

∥∥∥∥
p

≤
∥∥∥∥b+ d · |x|

∥∥∥∥
p

+

n∏
i=1

∥∥∥∥Hi(x)

∥∥∥∥
pi

≤ ∥b∥p + d · ∥x∥p +
n∏

i=1

[
∥ai∥pi

+ ci · ∥x∥
p
pi
p + ∥K0i∥∞

(
∥bi∥q′i + di · ∥x∥

p

q′
i

p

)(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x∥

p
qi
p

]
.

Thus, H : Lp → Lp . Let r be as in equation (4.1) and let x ∈ Br , where Br = {m ∈ Lp : ∥m∥p ≤ r} , then

∥b∥p + d · r +
n∏

i=1

[
∥ai∥pi

+ ci · r
p
pi + ∥K0i∥∞

(
∥bi∥q′i + di · r

p

q′
i

)(
∥ei∥qi + li · r

p
qi

)
r

p
qi

]
≤ r,

which indicate that H : Br → Br is continuous.
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Step III. Let Qr be a subset of Br containing all functions which are a.e. nonincreasing on R+ . This
set is a nonempty, bounded, convex, and closed set in Lp . Moreover, by Remark 2.7, the set Qr is compact in
finite measure.

Step IV. Now, we show that H preserves the monotonicity of functions. Take x ∈ Qr , then x is a.e.
nonincreasing on R+ and by assumption (ii) the functions Fh, Fgi , Ffi , and Fui

are also a.e. nonincreasing.
Further, assumption (iv) implies that Ui(x) are a.e. nonincreasing on R+ , then we have Ai,Hi are also a.e.
nonincreasing on R+ . This implies that H : Qr → Qr is continuous.

Step V. Assume that ∅ ̸= X ⊂ Qr is nonempty set and let ε > 0 be arbitrary fixed constant. Then for
an arbitrary x ∈ X and for a set D ⊂ R+ , meas D ≤ ε , we obtain

∥Hi(x) · χD∥pi ≤ ∥Fgi · χD∥pi + ∥Ai · χD∥pi

≤ ∥Fgi · χD∥pi
+ ∥Ffi · χD∥q′i · ∥Ui(x) · χD∥qi

≤ ∥(ai + ci · |x|
p
pi ) · χD∥pi

+ ∥
(
bi + di · |x|

p

q′
i

)
· χD∥q′i∥K0i∥∞

(
∥ei∥qi + li · ∥x∥

p
qi
p

)
∥x · χD∥

p
qi
p

≤ ∥ai · χD∥pi
+ ci · ∥x · χD∥

p
pi
p + ∥K0i∥∞

(
∥bi · χD∥q′i + di · ∥x · χD∥

p

q′
i

p

)(
∥ei∥qi + li · r

p
qi

)
∥x · χD∥

p
qi
p .

By using Corollary 2.4, we have

∥H(x) · χD∥p ≤
∥∥∥∥Fh(x) · χD

∥∥∥∥
p

+

n∏
i=1

∥∥∥∥Hi(x) · χD

∥∥∥∥
pi

≤ ∥b · χD∥p + d · ∥x · χD∥p +
n∏

i=1

[
∥ai · χD∥pi

+ ci · ∥x · χD∥
p
pi
p

+∥K0i∥∞
(
∥bi · χD∥q′i + di · ∥x · χD∥

p

q′
i

p

)(
∥ei∥qi + li · r

p
qi

)
∥x · χD∥

p
qi
p

]
.

Hence, taking into account that b ∈ Lp, ai ∈ Lpi , and bi ∈ Lq′i
, then

lim
ε→0

{ sup
mes D≤ε

[sup
x∈X

{∥b · χD∥p}]} = 0, lim
ε→0

{ sup
mes D≤ε

[sup
x∈X

{∥ai · χD∥pi
}]} = 0,

and lim
ε→0

{ sup
mes D≤ε

[sup
x∈X

{∥bi · χD∥q′i}]} = 0, i = 1, · · · , n.

By using the definition of c(x) , we get

c(H(X)) ≤
[
d+

n∏
i=1

(
ci + di · ∥K0i∥∞

(
∥ei∥qi + li · r

p
qi

))]
c(X). (4.2)
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For T > 0 and x ∈ X , we have the following estimate

∥H(x).χ[T,∞)∥p ≤ ∥b.χ[T,∞)∥p + d∥x.χ[T,∞)∥p

+

n∏
i=1

[
∥ai.χ[T,∞)∥pi

+ ci∥x.χ[T,∞)∥
p
pi
p + ∥K0i∥∞

(
∥bi · χ[T,∞)∥q′i

+di · ∥x · χ[T,∞)∥
p

q′
i

p

)(
∥ei∥qi + li · r

p
qi

)
∥x · χ[T,∞)∥

p
qi
p

]
.

Now as T → ∞ , we get

d(H(X)) ≤
[
d+

n∏
i=1

(
ci + di · ∥K0i∥∞

(
∥ei∥qi + li · r

p
qi

))]
d(X). (4.3)

Combining (4.2) and (4.3), we have

µ(H(X)) ≤
[
d+

n∏
i=1

(
ci + di · ∥K0i∥∞

(
∥ei∥qi + li · r

p
qi

))]
µ(X).

The above inequality with

d+

n∏
i=1

(
ci + di · ∥K0i∥∞

(
∥ei∥qi + li · r

p
qi

))
<

1

2

and the properties of H on Qr allow us to apply Corollary 3.8. This fulfills the proof. 2

5. Example
Finally, we illustrate an example to show the applicability of our results.

Example 5.1 Consider the following product of integral equations in L2(R+)

x(t) =
1

50
e

−t
2 +

1

50
· |x(t)|
1 + x2(t)

(5.1)

+

[(
1

50
e

−t
4 +

1

50

x
2
4 (t)

1 + x2(t)

)
+

(
e

−t
8

50
+

1

50

x
2
8 (t)

1 + x2(t)

)(
|x(t)| 28

∫ ∞

0

e
−7(s+t)

8

(
1

50(1 + t2)
1
8

+
1

50

x
2
8 (t)

1 + x2(t)

))]

×

[(
1

50
e

−t
8 +

1

50

x
2
8 (t)

1 + x2(t)

)
+

(
1

50
e

−t
16 +

1

50

x
2
16 (t)

1 + x2(t)

)(
|x(t)| 2

16

∫ ∞

0

e
−15(s+t)

16

(
1

50(1 + t2)
1
16

+
1

50

x
2
16 (t)

1 + x2(t)

))]2
.

Let p1 = 4, q1 = q′1 = 8, q′′1 = 8
7 and p2 = p3 = 8 with q2 = q3 = q′2 = q′3 = 16, q′′2 = q′′3 = 16

15 , then we have

1. |h(t, x)| ≤ 1
50e

−t
2 + 1

50 · |x| with d = 1
50 and ∥b∥2 = ∥ 1

50e
−t
2 ∥2 = 1

50 .

2. |g1(t, x)| ≤ 1
50e

−t
4 + 1

50 |x|
2
4 , |g2(t, x)| = |g3(t, x)| ≤ 1

50e
−t
8 + 1

50 |x|
2
8 with c1 = c2 = c3 = 1

50 and

∥a1∥4 = ∥ 1
50e

−t
4 ∥4 = 1

50 , ∥a2∥8 = ∥a3∥8 = ∥ 1
50e

−t
8 ∥8 = 1

50 .
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3. |f1(t, x)| ≤ 1
50e

−t
8 + 1

50 |x|
2
8 , |f2(t, x)| = |f3(t, x)| ≤ 1

50e
−t
16 + 1

50 |x|
2
16 with d1 = d2 = d3 = 1

50 and

∥b1∥8 = ∥ 1
50e

−t
8 ∥8 = 1

50 , ∥b2∥16 = ∥b3∥16 = ∥ 1
50e

−t
16 ∥16 = 1

50 .

4. |u1(t, x)| ≤ 1

50(1+t2)
1
8
+ 1

50 |x|
2
8 , |u2(t, x)| = |u3(t, x)| ≤ 1

50(1+t2)
1
16

+ 1
50 |x|

2
16 with l1 = l2 = l3 = 1

50 and

∥e1∥8 =

∥∥∥∥ 1

50(1+t2)
1
8

∥∥∥∥
8

= 1
50

8
√

π
2 , ∥e2∥16 = ∥e3∥16 =

∥∥∥∥ 1

50(1+t2)
1
16

∥∥∥∥
16

= 1
50

16
√

π
2 .

5. K1 = e
−7(s+t)

8 , K2 = K3 = e
−15(s+t)

16 with
∥∥K01

∥∥
∞ ≤ 1,

∥∥K02

∥∥
∞ ≤ 1,

∥∥K03

∥∥
∞ ≤ 1.

6. Let r = 1 and note

d+

3∏
i=1

(
ci + di∥K0i∥∞

(
∥ei∥qi + li

))

≤ 1

50

[
1 +

1

2500

(
1 +

1

50

(
8

√
π

2
+ 1
))(

1 +
1

50

(
16

√
π

2
+ 1
))2]

<
1

2
.

Also note

∥b∥2 + d+

3∏
i=1

(
∥ai∥pi

+ ci + ∥K0i∥∞
(
∥bi∥q′i + di

)(
∥ei∥qi + li

))

≤ 2

50

[
1 +

1

625

(
1 +

1

50

(
8

√
π

2
+ 1
))(

1 +
1

50

(
16

√
π

2
+ 1
))2]

≤ 1,

so assumption (v) holds.

Hence, Theorem 4.3 implies that (5.1) has a solution x ∈ L2 which is a.e. nonincreasing on R+ .
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