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Abstract: In this paper, we define a  t wo-variable p olynomial i nvariant o f r egular i sotopy, M K f or a  d isoriented link 
diagram K . By normalizing the polynomial MK using complete writhe, we obtain a polynomial invariant of ambient 
isotopy, NK , for a disoriented link diagram K . The polynomial NK is a generalization of the expanded Jones polynomial 
for disoriented links and is an expansion of the Kauffman p olynomial F  to the disoriented l inks. Moreover, the polynomial 
MK is an expansion of the Kauffman p olynomial L  to the disoriented links.

Key words: Disoriented link, disoriented crossing, disoriented regular isotopy, complete writhe, disoriented link 
polynomial

1. Introduction
We encounter disoriented diagrams in both classical and virtual knot theory. In the classical knot theory, the
disoriented link diagrams emerge when calculating the polynomials of oriented links such that the Jones [6, 7]
and HOMFLY [5] using an oriented diagram structure of the state summation for the link diagrams. When
we split a crossing of an oriented knot diagrams using Kauffman’s bracket model [11–13], one of the emerging
diagrams is a disoriented one. Moreover, the disoriented diagrams appear when the bracket model is expanded
to virtual knots [8, 10] and the arrow polynomials [4] for the virtual knots are calculated and links polynomials
are derived from magnetic graphs [14, 15].

Unoriented and oriented link diagrams were considered in the studies in the knot theory until 2018. Altın-
taş [1] introduced the theory of disoriented knot in 2018. He defined new concepts such as disoriented crossing,
disoriented knot and link and complete writhe. He also extended some basic concepts such as Reidemeister
moves, linking number and Kauffman’s bracket model [11–13] to disoriented diagrams and generalized the Jones
polynomial [6, 7] to disoriented links with the help of the complete writhe.

In [1], a disoriented knot was defined as the embedding of a disoriented circle with two arcs into three
dimensional space. In [2], the concept of disoriented knot was redefined by using a circle with 2n arcs (n ∈ N)
instead of the circle with two arcs. This new definition of disoriented knot defined as an embedding of a
disoriented circle with a 2n arcs into 3−dimensional space or 3− dimensional sphere generalize the definition
of disoriented knot in [1], which is more advantageous than the definition in [1]. All possible disoriented diagrams
of a knot can be drawn using this definition. For example, neither of the last two disoriented diagrams of the
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right-hand trefoil below Definition 2.4 can be defined as the embedding of a disoriented circle with 2 arcs
into 3 -dimensional space. In contrast, each of the possible disoriented diagrams of the right-hand trefoil is an
embedding of a disoriented circle with 2n arcs, n ≤ 3 , into 3 -dimensional space. Basic diagrammatic methods
such as the connected sum of disoriented knots, minimum generating sets of disoriented Reidemeister moves,
disorientated Gaussian codes, and disoriented Gaussian diagrams are studied in [2].

In this paper, we define a two-variable Laurent polynomial with integer coefficients and prove that it is a
regular isotopy invariant for disoriented links. We denote this polynomial by MK for a disoriented link diagram
K . We prove also that the polynomial NK obtained by normalizing the polynomial MK with the help of the
complete writhe [1] is an ambient isotopy invariant for the disoriented link K . It can easily be seen that the
polynomial MK is an extension of the Kauffman [9] polynomial L to disoriented link diagrams and NK is both
a generalization of the Jones polynomial [1] for disoriented links and an expansion of the Kauffman polynomial
F to the disoriented links.

We plan this paper as follows. The second section contains some of the concepts obtained in [1] and [2],
which we will use in the other sections.

In Section 3, we define polynomials MK and NK for a disoriented link diagram K and prove that the
polynomial NK is an ambient isotopy invariant for the disoriented link diagrams. We also give some properties
of the polynomials MK and NK , and prove that the polynomials MK and NK are generalizations of uninvariate
polynomials for the disoriented links. We give a few examples at the end of the section.

Section 4 contains the proof of the well-definedness and regular isotopy invariance of the polynomial MK

for the disoriented links. Here we define the polynomial MK inductively and prove that it is a regular isotopy
invariant for the disoriented links by using the similar techniques as in [9].

2. Preliminary information

We give some concepts of the disoriented knot theory, which will be used in the next sections.

Definition 2.1 [2] For each natural number n , let us set 2n points on a circle and choose an orientation of
each arc between those points such that the consecutive arcs have the reverse orientation. Then the circle is
called a disoriented circle.

Let C be a disoriented circle with 2n arcs. Let any arc of C be denoted by Ai and its consecutive arc
by Bi . Then C can be represented by a word A1B1A2B2...AnBn such that the orientation of Ai is the reverse
of the orientation of Bj for i, j = 1, 2, ..., n (see Figure 1).

A simple disoriented diagram, disoriented circle with 4 arcs and their replacements were drawn in Figure
1. The fundamental reduction move in Figure 1 is the annihilation of consecutive two cusps on a straightforward
noose. This fundamental move allows to delete the reverse oriented arc between two points on it that are in the
same local region of the noose. Due to our present disclosure, a disoriented arc can be changed with an oriented
arc. In the same way, a disoriented circle can be changed with an oriented circle. For essential information on
disoriented configurations, disoriented relations and replacements, see the references [3, 4, 8, 10].

Definition 2.2 [2] The embedding of a disoriented circle into 3−dimensional space R3 (or 3−dimensional
sphere S3 ) is called a disoriented knot. The embedding of the disjoint union of k circles into R3 is called a
disoriented link of k -components, where at least one of the circles is disoriented.

57



ALTINTAŞ and PARLATICI/Turk J Math

Figure 1. Elementary disoriented diagrams and replacements.

Definition 2.3 [2] Let K be a disoriented knot. A crossing of K is called disoriented if its underpass and
overpass arcs have inverse orientations. Namely, let K be an embedding of a disoriented circle C . If Ai and
Bj are the arcs of C , one of the overpass and underpass arcs is Ai and the other Bj . A crossing of K is
called oriented if it is not disoriented. An oriented knot is a disoriented knot with zero disoriented crossing (see
Figure 2).

Definition 2.4 [2] Let the components of a two-component links L ring be denoted by K1 and K2 . Let us
select a disorientation of both K1 and K2 and denote two arcs of K1 by A1

i and B1
i and two arcs of K2 by

A2
i and B2

i . Then, if one of the following holds, a crossing of L is disoriented:

1. One of the overpass and underpass arcs of the crossings is A1
i , and the other is A2

i or B2
i .

2. One of the overpass and underpass arcs of the crossings is B1
i , and the other is A2

i or B2
i .

Or else, the crossing is called oriented.

0
D

1
D

2
D 3

D
4

D 5
D

Figure 2. Oriented and disoriented diagrams of the right-hand trefoil.

In Figure 2, we draw the possible disoriented diagrams of the right-hand trefoil. Note that these diagrams
are embeddings of a disoriented circle C with 2n arcs, n ≤ 3 ,n ∈ N . The diagram D0 has no disoriented
crossing. Therefore, it is an embedding of C such that only one arc of C is crossed with itself. The diagrams
D1 , D2 , and D3 are embeddings of C such that its two opposite arcs are crossed with each other. The diagram
D4 is an embedding of C such that two opposite arcs of its four arcs are crossed with each other and the other
two opposite arcs are crossed with each other. The diagram D5 is an embedding of C such that every two
consecutive opposite arcs of its six arcs are crossed with each other.
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Observation 2.1 [2] A disoriented knot with n crossings is an embedding of a disoriented circle with a maximum
of 2n arcs.

To define the connected sum of disoriented knots, we denote a disoriented knot K with n crossings in S3

by the pair (S3,K) . Suppose that Ai and Bj are the arcs of a disoriented circle C of which K is embedding.
Let P be a point on K that is different from crossing points of K . Then P either belongs to arc Ai or Bj or
is an intersection point of Ai and Bj , i, j ∈ {1, 2, ..., n} . Note that if P is an intersection point of Ai and Bj ,
then P ∈ Ai ∩Bi or P ∈ Ai ∩Bi−1 or P ∈ Ai ∩Bi+1 or P ∈ A1 ∩Bn .

Definition 2.5 [2] Let (S3,K1) and (S3,K2) be two disoriented knots, Ai
k and Bj

k be arcs of the disoriented
circles Ck which Kk are embeddings, k ∈ {1, 2} , i, j ∈ {1, 2, ..., n} . Let Pk be a point on Kk that is no
crossing point. The connected sum of the disoriented knots K1 and K2 is a disoriented knot obtained from the
disjoint union of the manifold pairs (S3 − intV 3

k , Kk − intV 1
k ) , (k = 1, 2) , by pasting their boundaries along a

disorientation reserving homeomorphism φ : (∂U3
2 , ∂U

1
2 ) → (∂U3

1 , ∂U
1
1 ) , where U3

k is a 3-ball with the center
Pk and U1

k is a 1-ball with the center Pk . The connected sum of K1 and K2 is denoted by K1#K2 .

Note that K1#K2 is independent of the points Pk . Therefore, K1#K2 is uniquely determined by K1 and K2 .
The structure can be defined as follows: K1#K2 is a disoriented knot formed by connecting any diagram

of K1 with that of K2 in Figure 3.

#

1K 2K 1 2a) # , KK K P Î
i

kA
j

kBÇ

1 2b) # , KK K P Î
i

kA 1 2c) # , KK K P Î
j

kB

Figure 3. The connected sum of two disoriented knots.

In [2], the Reidemeister moves for disoriented diagrams are given as a generalization of the Reidemeister
moves of the oriented diagrams. For collections of oriented Reidemeister moves, see Polyak [16]. Polyak proves
that the set containing Reidemeister moves Ω1a , Ω1b in Figure 4, Ω2a in Figure 5, and Ω3a in Figure 6
generate all oriented Reidemeister moves. This generating set of Reidemeister moves has the minimum number
of generators.

To create generating sets of disoriented Reidemeister moves, we need to expand the moves in the
generating sets of oriented Reidemeister moves to disoriented diagrams. We illustrate these moves in Figures
4–6. The moves Ω0a and Ω0b in Figure 4 are planar moves on disoriented diagrams.

In Figure 5, the move Ω2e is a disoriented expansion of the moves Ω2a and Ω2c . The move Ω2f is a
disoriented expansion of the moves Ω2a and Ω2b . The move Ω2g is a disoriented expansion of the move Ω2b .
The move Ω2h is a disoriented expansion of the move Ω2c . The move Ω2i is also a disoriented expansion of
the moves Ω2a , Ω2b , and Ω2c .
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W0a W0b

W1a W1b W1c

1dW W1e W1f

Figure 4. Planar and some disoriented Reidemeister moves of type I.

W W W

W W W

W W W

2a 2b 2c

2d 2e 2f

2g 2h 2i

Figure 5. Some disoriented Reidemeister moves of type II.

Definition 2.6 [2] The equivalence relation created by the moves Ω2 and Ω3 (and the planar moves) is called
regular isotopy and the equivalence relation created by the Ω1 , Ω2 , and Ω3 is called ambient isotopy on disori-
ented diagrams.
The generating set S = {Ω1a, Ω1b, Ω1e, Ω1f, Ω2a, Ω2e, Ω2f, Ω2i, Ω3ai : i ∈ {0, ..., 7}} of disoriented moves
has the minimal numbers of generators. If D and D′ are two disoriented diagrams of the same disoriented
link, then we can pass from D to D′ by planar moves and a sequence of disoriented moves in the generating set S .

Definition 2.7 [1] Suppose D is a disoriented regular diagram of a knot (or link) K . The complete writhe of
D is denoted by cw(D) an is defined by equation

cw(D) =
∑
o

ε(o)−
∑
d

ε(d).

In this equation, the first sum runs over the oriented crossings of D and latter over the disoriented crossings of

60



ALTINTAŞ and PARLATICI/Turk J Math

W W

W W

W W

W W

0
3a

1
3a

2
3a

3
3a

4
3a

5
3a

6
3a

7
3a

Figure 6. Some disoriented Reidemeister moves of type III.

D , and ε(o) denotes the sign of an oriented crossing of D and ε(d) the sign of a disoriented crossing of D .

cw(D) is an invariant of regular isotopy for the disoriented diagram D and the complete writhes of all
the disoriented diagrams of a nontrivial link are equal [1].

The bracket expansion for oriented link diagrams can be adapted as an oriented bracket state model
[4, 8]:

⟨K+⟩ = A⟨K0⟩+A−1⟨K∞⟩,
⟨K−⟩ = A−1⟨K0⟩+A⟨K∞⟩,
δ = −A2 −A−2, ⟨⃝ ⊔D⟩ = δ⟨D⟩,

(2.1)

where K+ , K− , K0 , and K∞ are diagrams in Figure 7, ⃝ is an oriented diagram with zero-crossing of unknot
and D an oriented link diagram and ⊔ is disjoint union.

K
+ K

- 0
K K¥

Figure 7. Crossings and smoothings.

We also use the model (2.1) for disoriented link diagrams and call the expanded bracket polynomial for
disoriented links [1].

Lemma 2.8 [1] ⟨I⟩ = (−A3)⟨I0⟩ and ⟨I ′⟩ = (−A3)⟨I1⟩ , where I , I0 ,I ′ , and I1 are diagrams in Figure 8.
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I 0
I 'I 1

I

Figure 8. Some Reidemeister moves of type I.

Definition 2.9 [1] Let us assume that ⟨D⟩ is the bracket polynomial of a D disoriented diagram of a link K

and cw(D) is its complete writhe number. The polynomial TK ∈ Z[A,A−1] defined by the formula

TK(A) = (−A3)−cw(D)⟨D⟩

is called the complete normalized polynomial.

The complete normalized polynomial is a ambient isotopy invariant for the disoriented link diagrams [1].

3. Polynomial invariants for disoriented links

In this section, we define a two-variable polynomial invariant of regular isotopy, MK(a, x) , for disoriented link
diagrams that generalizes the extended bracket polynomial. By normalizing the polynomial MK with complete
writhe, we obtain a polynomial invariant of ambient isotopy NK(a, x) for disoriented links. The polynomial
NK generalizes extended Jones polynomial. The polynomials MK and NK are the extensions of Kauffman [9]
polynomials L and F for the disoriented link diagrams, respectively.

Definition 3.1 Let K be a disoriented link diagram and MK ∈ Z[a, a−1, x, x−1] be a Laurent polynomial in
the variables a, x appointed to the disoriented link diagram L . The polynomial MK meets the axioms:

1. If K1 and K2 are regularly isotopic link diagrams, then MK1 =MK2 ,

2. MO = 1 ,

3. MI+ = aMI0 , MI− = a−1MI0 ,

4. MI′
+
= a−1MI′

0
, MI′

−
= aMI′

0
,

5. MK+ +MK− = x(MK0 +MK∞) ,

where K+ , K− , K0 , K∞ , I+, I−, I0, I ′+, I ′− , and I ′0 are diagrams given in Figure 9, O is the unknot with
zero-crossing.

Theorem 3.1 The polynomial MK is a well-defined polynomial of regular isotopy for the disoriented link
diagram K .

We will prove this theorem in the next section.

Definition 3.2 We define a polynomial NK ∈ Z[a, a−1, x, x−1] for a disoriented link diagram K by the equality

NK = a−cw(K)MK .
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K
+

K
- 0

K K¥

I
+

I
-

0
I 'I

+
'I

- 0
'I

Figure 9. Crossings and smoothings.

Theorem 3.2 The polynomial NK is an ambient isotopy invariant for the disoriented link diagram K .

Proof Since cw(K) is an invariant of regular isotopy, a−cw(K) is also an invariant of regular isotopy. Hence,
NK is an invariant of regular isotopy. It is then sufficient to check the behavior of NK under the disoriented move
of type I. Since cw(I+) = 1+ cw(I0) , cw(I−) = −1+ cw(I0) , cw(I ′+) = −1+ cw(I ′0) and cw(I ′−) = 1+ cw(I ′0) ,
we have

NI+ = a−cw(I+)MI+ = a−(1+cw(I0))aMI0 = a−cw(I0)MI0 = NI0 ,

NI− = a−cw(I−)MI− = a−(−1+cw(I0))a−1MI0 = a−cw(I0)MI0 = NI0 ,

NI′
+
= a−cw(I′

+)MI′
+
= a−(−1+cw(I′

0))a−1MI′
0
= a−cw(I′

0)MI′
0
= NI′

0
,

NI′
−
= a−cw(I′

−)MI′
−
= a−(−1+cw(I′

0))aMI′
0
= a−cw(I′

0)MI′
0
= NI′

0
,

where I+, I−, I0, I ′+, I ′− , and I ′0 are diagrams in Figure 9. These diagrams correspond to disoriented Reidemeis-
ter moves of type I drawn in Figure 4 2

Theorem 3.3 Let K be a disoriented diagram. Then

⟨K⟩(A) =MK(−A3, A+A−1),

TK(A) = NK(−A3, A+A−1).

Proof Let us just show that ⟨K⟩(A) = MK(−A3, A + A−1) . Others are shown similarly. From the bracket
models,

⟨K+⟩ = A⟨K0⟩+A−1⟨K∞⟩,

⟨K−⟩ = A−1⟨K0⟩+A⟨K∞⟩,

we get ⟨K+⟩+ ⟨K−⟩ = (A+A−1)(⟨K0⟩+ ⟨K∞⟩) . This is a special case of the polynomial MK by x = A+A−1 .
It is clear that the other axioms are satisfied by taking a = −A3 . 2
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Proposition 3.3 Let K∗ be the mirror image of a disoriented link diagram K . Then,

MK∗(a, x) =MK(a−1, x),

NK∗(a, x) = NK(a−1, x).

Proof Since K∗ is obtained from K by reversing all crossings, it is obvious that cw(K∗) = −cw(K) .
Moreover, this appears by replacement of a by a−1 in the axioms 3 and 4 of Definition 3.1. Thus, a calculation
of MK∗ results in an identical calculation of MK with a replaced by a−1 . Therefore, MK∗(a, x) =MK(a−1, x) .
Similarly, NK∗(a, x) = NK(a−1, x) . 2

Remark 3.4 As a consequence of Proposition 3.3, if NK(a, x) ̸= NK(a−1, x) , K is not ambient isotopic to its
mirror image.

Example 3.5 Let us calculate the polynomials M and N of the disoriented diagrams in Figure 10. From the
definitions 3.1 and 3.2, we have

MK1
= aM◦ = a, NK1

= a−cw(K1)MK1
= 1,

MK∗
1
= a−1M◦ = a−1, NK∗

1
= a−cw(K1)MK∗

1
= 1,

MK2 = a−1M◦ = a−1, NK2 = a−cw(K2)MK2 = 1,

MK∗
2
= aM◦ = a, NK∗

2
= a−cw(K2)MK∗

2
= 1.

By the relation MK+
+MK− = x(MK0

+MK∞) , we have

MK1
+MK∗

1
= x(M◦◦ +M◦)

aM◦ + a−1M◦ − xM◦ = xM◦◦

a+ a−1 − x = xM◦◦ (with M◦◦ = δM◦)

δ = (a+ a−1)x−1 − 1.

1
K

*

1
K 2

K
*

2
K

Figure 10. The disoriented unknots with one crossing.
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Example 3.6 Let L be a disoriented link in Figure 11. Then,

ML + δ = x(a+ a−1)

ML = x(a+ a−1)− x−1(a+ a−1) + 1

ML = (a+ a−1)(x− x−1) + 1

and

NL = a−cw(L)ML = a−2[(a+ a−1)(x− x−1) + 1]

NL = (a−1 + a−3)(x− x−1) + a−2.

K
-

0
K

K¥

Figure 11. A disoriented link.

Example 3.7 If K is a disoriented diagram of the trefoil knot in Figure 12, then

MK +MK1
= x(MK′ +ML)

MK = x[a−2 + (a+ a−1)(x− x−1 + 1)]− a

MK = (−2a− a−1) + (1 + a−2)x+ (a+ a−1)x2,

where MK′ +M◦ = z(MK2
+MK∗

2
) ⇒MK′ = a−2 . Since

cw(K) =
∑
o

ε(o)−
∑
d

ε(d) = 2− (−1) = 3,

NK = a−cw(K)MK

NK = (−2a−2 − a−4) + (a−3 + a−5)x+ (a−2 + a−4)x2.

Result 3.4 As a consequence of Example 3.5, it is clear that for a disoriented knot diagram K , M◦⊔K = δMK ,
N◦⊔K = δNK . Also for any disoriented knot diagrams K1 and K2 , MK1⊔K2

= δMK1
MK2

and NK1⊔K2
=

δNK1
NK2

.
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=

K
- 0

K

K¥

1
K 'K L

Figure 12. A smoothing of disoriented trefoil knot.

Proposition 3.8 Let K = K1#K2 be the connected sum of two disoriented knot diagrams K1 and K2 . Then,

MK1#K2
=MK1

MK2
, (3.1)

NK1#K2
= NK1

NK2
. (3.2)

Proof It is sufficient to prove that (3.1) is true. The equation (3.2) can be shown in a similar way. If the
diagram K1 (or K2 ) in K1#K2 is inverted according to right-hand orientation, K+

1 #K2 is obtained. If the
diagram K1 (or K2 ) in K1#K2 is inverted according to left-hand orientation, K−

1 #K2 is obtained. Moreover,
note that the diagram K1#K2 is derived from K1 ⊔K2 , see Figure 13.

If K1 has n−crossings, the diagrams K+
1 and K−

1 has n+ 1−crossings. Thus, from the relation

MK+
+MK− = x(MK0

+MK∞)

we have

MK+
1 #K2

+MK−
1 #K2

= x(MK1⊔K2
+MK1#K2

)

aMK1#K2
+ a−1MK1#K2

= xδMK1
MK2

+ xMK1#K2

[(a+ a−1)x−1 − 1]MK1#K2
= δMK1

MK2

MK1#K2
=MK1

MK2
.

2

4. Well-definedness and invariance of the polynomial M

In this section, we define the polynomial M inductively similar to the Kauffman’s inductive definition [9] for
disoriented links. For this, it is necessary to switchings and eliminations of the disoriented crossings. Here we
denote by TiK for the disoriented link acquired by switching the disoriented link K at any ith crossing, and
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1
K

2
K

1
K

2
K

1
K

2
K

1
K

2
K

1 2
#K K ò

1
K

2
K

1 2
#K K

+

1 2
#K K

-

Figure 13. Connected sum.

EiK , FiK for the oriented and disoriented splicings at the ith crossing, respectively, see Figure 14. We want
to give a definition to MK such that the identity

MK +MTiK = x(MEiK +MFiK)

is a consequence of the definition. The motivation for this definition we have adopted is demonstrated by the
following remarks. Definition 3.1 will follow these remarks.

ii

K
i

T K
i

E K
i

F K

Figure 14. Smoothing and elimination of the ith crossing.

Definition 4.1 (Inductive definition) Assume that K is a disoriented knot diagram of n+1− crossings. Label
each crossing with 0, 1, ..., n . Then, the following list of equations can be written

MK +MT0K = x(ME0K +MF0K),

MT0K +MT1T0K = x(ME1T0K +MF1T0K),

...

MTn−1···T0K +MTn···T0K = x(MEnTn−1···T0K +MFnTn−1···T0K).

We denote the result of switching all crossings by K̂ = Tn · · ·T0K and elimination operators by AiK =

EiTi−1 · · ·T0K , BiK = FiTi−1 · · ·T0K . Then, by successive addition and subtract of the above equations, we
can show that

MK = (−1)n+1MK̂ + x(

n∑
i=0

(−1)i(MAiK +MBiK)). (4.1)
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The formula (4.1) gives how to compute MK and the results of K implemented to smaller disoriented link
diagrams. We choose a switching sequence of K . Then if K is a disoriented knot, K̂ is an unknot. If K is a
disoriented link, K̂ is a split disoriented link. In calculating disoriented links, we have the precept

MK1⊔K2
= δMK1

MK2
, (4.2)

where δ = (a + a−1)z−1 − 1 as in Section 3. The best way to describe an inductive definition is to use a
normal unknot connected with a disoriented knot diagram with directed base-point. The normal unknot is built
as follows: Assume that K is a disoriented knot diagram, U is its planar shade and p is a point an arc of U .
We draw a disoriented knot diagram K̂ = K̂(U, p) by moving along U in the direction p and doing overpass
the crossing on the first pass at each crossing. This reveals a disoriented unknotted diagram as in Figure 15.

The normal unknot K̂ = K̂(U, p) is used to reveal a special unknotting sequence for the disoriented knot
diagram K . We move K from p and tick each crossing that differs from the corresponding crossing in K̂ . We
tag the ticked crossing with n, n − 1, · · · , 0 in descending order from base-point. Therefore, by switching these
crossings K̂ acquired from K and we obtain K̂ = TnTn−1 · · ·T0K . This switching sequence is specified by the
choice of directed base-point on K . Hence, the polynomial M on normal unknots is defined by the equal

MK̂(U,p) = acw(K̂(U,p)). (4.3)

In order to take advantage of formula (4.2), it is also necessary to decompose the components with a switching
sequence. the formula (4.1) can be related to a split disoriented link rather than a disoriented unknot. Now, we
have a procedure of recursive calculation using the formulas (4.1), (4.2), and (4.3) such that the calculations
finally depend only on the values of M at normal unknots. In order to formalize these processings to obtain an
inductive definition, it is helpful to make up a notation for the second side of equality (4.1).

p p
p

K U ( ),K K U p=
ÙÙ

Figure 15. Normal unknot.

Definition 4.2 Let K be a disoriented link diagram and α = (αn, αn−1, · · · , α0) be an ordered sequence of
labels for crossing of K . Let Aα

i and Bα
i be the operators given by formulas Aα

i = EiTαi
Tαi−1

· · ·Tα0
K

and Bα
i = FiTαi

Tαi−1
· · ·Tα0

K . Let K̂(α) = Tαn
Tαn−1

· · ·Tα0
K ,

∑
K

(α) =
n∑

i=0

(−1)(MAα
i K + MBα

i K) and

ψK(α) = (−1)|α|+1MK̂(α) + x
∑
K

(α) , where | α |= n . Note that we want that ψK(α) = MK . ψK(α) will be

used for logical aims.
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We now give the inductive definition of MK .

Definition 4.3 Let K = K1 ∪K2 ∪K2 ∪ · · · ∪Kn be a disoriented link of n components. K −Ki denotes the
disoriented link ejecting the i th component from K . We assume that Ki represent disoriented knot diagram
obtained from K by wiping every the components K1,K2, · · · ,Ki−1,Ki+1, · · · ,Kn .

1. If K̂ = K(U, p) is a normal unknot, then MK̂ = acw(K̂) .

2. If K1 is a disoriented knot overlaying a disoriented link diagram K2 , then MK1⊔K2
= δMK1

MK2
where

δ = (a+ a−1)x−1 − 1 .

3. Let K = K1 ∪K2 ∪K2 ∪ · · · ∪Kn be a disoriented link diagram.

a. If a component overlies the others, part (2) is applied.

b. Let no component Ki overlie the others. Assume that p1, · · · pn are directed base-points on
K1, · · · ,Kn , p̄1, · · · , p̄n are the same base-points endowed with the reversed direction, α(Pi) is
sequence of undercrossings of Ki with K −Ki such that K̂(α(pi)) = K ⊔ (K −Ki) with Ki over-
crossing the remainder of these components. Since pi determines α(pi) ,

∑
K

(α(pi) depends only on

the choice of directed base-point pi . Then, we define MK by the formula

MK =
1

2n
[

|α(pi)|∑
i=1

(−1)|α(pi)|+1δMKi
M(K−Ki) + x

∑
K

α(pi)

+

|α(p̄i)|∑
i=1

(−1)|α(p̄i|+1)δMKi
M(K−Ki) + x

∑
K

α(p̄i)].

4. Assume K is a disoriented knot diagram, p is a directed base-point for K , p̄ is the same base-point with
reversed direction, and α(p) and α(p̄) are the switching sequences determined by p and p̄ , respectively.
Then, we can define MK by the formula

MK =
1

2
[(−1)|α(p)|+1MK̂(α(p)) + x

∑
K

α(p) + (−1)|α(p̄)|+1MK̂(α(p̄)) + x
∑
K

α(p̄)].

Thus, the inductive definition of MK is complete.

Since we include summations at both of the associated orientations for each base-point, it is sufficient to prove
inductively that the definitions do not depend on the choice of base-point. Entire induction confirmations will
be established on the number of crossings of the disoriented link diagrams. Hence, in every case, we will assume
that it is verified that MK has a certain property for all diagrams with less than n crossings. We prove that
Definition 4.3 results in this property for disoriented links with n crossings.

Definition 4.4 The inductive hypothesis of MK defined in Definition 4.3 is as follows:

1. MK is independent of base-point (well defined) on disoriented link diagrams with less than n crossings.
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2. MK meets the axioms:

MI+ = aMI0 , MI− = a−1MI0 ,

MI′
+
= a−1MI′

0
, MI′

−
= aMI′

0
,

MK +MTiK = x(MEiK +MFiK),

where K has < n crossings (and I+, I−, I
′
+, I

′
− have < n crossings.)

3. MK is invariant underneath the disoriented Reidemeister moves of type II and type III that do not rise
the number of crossings of disoriented diagram. Namely, if K has < n crossings and K ′ is acquired from
K by the disoriented Reidemeister moves of type II and III that do not rise the number of crossings, then
MK =MK′ .

To prove that MK is well-defined, it is necessary to show it with respect to the base-point in 4.3 (3) and
4.3 (4). The next lemma concerns 4.3 (3)

Lemma 4.5 Assume that α = (αn, αn−1, · · · , α0) is a choice of tags for a subset of different crossings of a
disoriented link K and β = (α0, αn, αn−1 · · · , α1) . Then,

∑
K

α =
∑
K

β is defined as in Definition 4.2. That is,∑
K

α is invariant under cyclic permutation of α .

Proof The proof is similar to that of Lemma 6.6 in [9]. 2

Remark 4.6 It is obvious from Lemma 4.5 that the formula of MK given in Definition 4.3 (3) is independent
of the choice of base-point. Thus, it remains to show independence from the base-point in case Definition 4.3
(4).

Lemma 4.7 We consider the two roads of splicing a normal unknot at the first crossing past to a directed
base-point. In one of the roads, the splice uncovers an unknot and in the other it uncovers a disoriented unlink
constituted of two normal unknots with one overlying the other.

Proof Proof follows from the definition of normal unknot. We think the first crossing past the base-point.
Starting at the base-point and advancing in the direction it pointed, we advance over the crossing i . The
diagram drawn afterwards lays over the remainder of the unknot diagram.

At the crossing i , one of the oriented and disoriented separations cause a disoriented unlink and the other
a connected sum of two unknots, see Figure 16. This disoriented unknot diagram is not normal.

As seen in Figure 16, the crossing i is the first crossing encountered over advancing from the base-point of
the normal unknot K̂ . Here there are two splices EiK̂ and FiK̂ . EiK̂ is an unlink with two normal unknots,
while FiK̂ is an unknot disoriented diagram. If we say EiK̂ = K1⊔K2 , where K1 and K2 in this link diagram.
Then, FiK̂ = K1#K2 . It can be easily seen that the normal unknot corresponding to FiK̂ is K∗

1#K2 where
K∗

1 is the mirror image of K1 . A fact regarding normal unknot diagrams generalizing to diagram FiK̂ is that
normal unknot diagrams are either constituted completely of curls I+, I−, I ′+ , and I ′− or they are simplified by

the disoriented Reidemeister moves of type II and III. Consequently, we have MFiK̂
= acw(FiK̂) by applying

Definition 4.3 (3) and that the complete writhe is regular isotopy invariance. 2
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K U

( ),K K U p=
ÙÙ

Ù

'K

Ù Ù

i
E K i

F K

p p

p p

p
p

Figure 16. Normal unknot.

Remark 4.8 1. It is obvious from Lemma 4.7 that the formula of MK given in Definition 4.3(3) is
independent of the choice of base-point.

2. It can be proved similarly to the Lemma 6.9 in [9] that the formula given in Definition 4.3(4) is independent
of the choice of base-point.

Lemma 4.9 Assume that i is any crossing of a disoriented link diagram K . Then MK meets the axioms:

a. MK +MTiK = x(MEiK +MFiK)

b.

MI+ = aMI0 , MI− = a−1MI0 ,

MI′
+
= a−1MI′

0
, MI′

−
= aMI′

0
.

Proof The proof of part (a) is similar to the proof of Lemma 6.10 in [9]. To confirm part (b), note that in

71



ALTINTAŞ and PARLATICI/Turk J Math

Definition 4.3 curls will finally be part of a disoriented knot-evaluation and these curls will not change in the
corresponding normal unknot by choosing the location of the base-point. Therefore, all terms on the second
side of Definition 4.3(4) contain identical copies of these curls. Then, part (b) is followed by induction. 2

Lemma 4.10 Assume that K is any disoriented link diagram and K ′ is another link diagram that is regularly
isotopic to K . Then, MK =MK′ . Namely, MK is a regular isotopy invariant.

Proof Let K be a disoriented knot. Then, the invariance under the disoriented Reidemeister moves of type
II and III in Figures 17 and 18 can be demonstrated inductively by choosing the appropriate base-point.

1

2

1

2

K 1
T K

1
E K

1
F K

1
T K

2 1
E T K

2 1
T T K

2 1
F T K

Figure 17. Switchings and eliminations of Reidemeister move of type II.

i

i

K
i

T K
i

E K
i

F K

'K '
i

T K '
i

F K'
i

E K

Figure 18. Switchings and eliminations of Reidemeister move of type III.

2

In case of type II, it is enough only to show that the polynomials M of the diagrams in Figure 19 are
equal (Similar considerations are easily made for other moves of type II).
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Figure 19. A Reidemeister move of type II.

On first diagram, we select the base-point as in Figure 20:

P

P

Figure 20. A Reidemeister move of type II with a base point.

Thus, the two crossings inclusive in the move are not switched by switching sequence for K . MK is
invariant under the moves of type II, because we inductively suppose that (4.4 (3)) every term in the expansion
of Definition 4.3(3) is invariant under the simplifying moves of type II.

Here we supposed that invariance under simplification moves of type II is validated for every disoriented
knots and links with fewer crossings than the number of crossings of K .

If the number of components of K is more than one, then we have to consider cases of the moves of type
II where one of the strings is inclusive in the lifting sequence. The most likely case corresponds to choosing a
base point of the form of Figure 21,

1

2

P

Figure 21. A Reidemeister move of type II with a base point

where the base-point must be on the underpass in order to perform the lifting sequence. However, from Figure
17 combined with Lemma 4.9 it can be seen that

MK +MT1K = x(ME1K +MF1K),

MT1K +MT2T1K = x(ME2T1K +MF2T1K)

or
MK −MT2T1K = x(ME1K +MF1K −ME2T1K −MF2T1K)

since ME1K =ME2T1K , MF1K =MF2T1K , we obtain

MK =MT2T1K .

In the disoriented link T2T1K , the move of type II will not be inclusive in a lifting sequence. Thus,
invariance follows from induction as before.

Now we consider the moves of type III. In case of type III, it is sufficient only to show that the polynomials
of diagrams K and K ′ in Figure 18 of a component of a disoriented link are equal (Similar considerations are
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easily made for other moves of type III). For every component of link, the ideas are the same. By choosing the
base-point on K (and K ′ ), we regulate that two of three crossings are not included in the switching sequence.
Since invariant is provided under the moves of type II, we have MFiK =MFiK′ from Figure 18. Hence, it can
be easily seen that MK =MK′ (and MTiK =MTiK′ ) and the invariance is achieved under the moves of type
III by induction. Thus, the proof is complete.

References

[1] Altıntaş İ. Introduction to disoriented knot theory. Open Mathematics 2018; 16 (1): 346-357.
https://doi.org/10.1515/math-2018-0032

[2] Altıntaş İ, Parlatıcı H. Redefining disoriented knots and diagrammatic methods. Mathematical Methods in the
Applied Sciences 2022; 1-9. https://doi.org/10.1002/mma.8091

[3] Clark D, Morrison S, Walker K. Fixing the functoriality of Khovanov homology. Geometry & Topology 2009; 13
(3): 1499-1582. https://doi.org/10.2140/gt.2009.13.1499

[4] Dye HA, Kauffman LH. Virtual crossing number and the arrow polynomial. Journal of Knot Theory and its
Ramifications 2009; 18 (10): 1335-1357. https://doi.org/10.1142/s0218216509007166

[5] Freyd P, Yetter D, Hoste J, Lickorish WBR, Millett K et al. A new polynomial invariant of knots and links. Bulletin
of American Mathematical Society 1985; 12 (2): 239-246. https://doi.org/10.1090/s0273-0979-1985-15361-3

[6] Jones VFR. A new knot polynomial and von Neumann algebra. Notices of American Mathematical Society 1986;
33 (2): 219-225.

[7] Jones VFR. Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics 1987; 126
(2): 335-388. https://doi.org/10.2307/1971403

[8] Kauffman LH. An extended bracket polynomial for virtual knots and links. Journal of Knot Theory and its
Ramifications 2009; 18 (10): 1369-1422. https://doi.org/10.1142/s0218216509007543

[9] Kauffman LH. An invariant of regular isotopy. Transactions of the American Mathematical Society 1990; 318 (2):
417-471. https://doi.org/10.1090/s0002-9947-1990-0958895-7

[10] Kauffman LH. Introduction to virtual knot theory. Journal of Knot Theory and its Ramifications 2012; 21 (13): 37
pp. https://doi.org/10.1142/s021821651240007x

[11] Kauffman LH. Knots and Physics. Singapore: World Scientific, 2001.

[12] Kauffman LH. New invariants in the theory of knots. American Mathematical Monthly 1988; 95 (3): 195-242.
https://doi.org/10.1080/00029890.1988.11971990

[13] Kauffman LH. State models and the Jones polynomial. Topology 1987; 26 (3): 395-407.
https://doi.org/10.1016/0040-9383(87)90009-7

[14] Miyazawa Y. Magnetic graphs and an invariant for virtual links. Journal of Knot Theory and its Ramifications
2006; 15: 1319-1334. https://doi.org/10.1142/s0218216506005135

[15] Miyazawa Y. Link polynomials derived from magnetic graphs. Topology and its Applications 2010; 157: 228-246.
https://doi.org/10.1016/j.topol.2009.04.062

[16] Polyak M. Minimal generating sets of Reidemeister moves. Quantum Topology 2010; 1 (4): 399-411.
https://doi.org/10.4171/qt/10

74


	Introduction
	Preliminary information
	Polynomial invariants for disoriented links
	Well-definedness and invariance of the polynomial M

