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Abstract: In this study, we establish a link of the coupled dispersionless (CD) equations system with the motion of Bertrand
curve pairs. Moreover, we find the Lax equations that provide the integrability of these equations. By taking an appropriate
choice of variables we show the link of the short pulse (SP) equation with the motion of Bertrand curve pairs via the reciprocal
(hodograph) transformation. Finally, we prove that the conserved quantity of the corresponding coupled dispersionless equations
obtained from each of these curve pairs is constant.
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1. Introduction
Curves and surfaces in 3-dimensional Euclidean space are fundamental subjects of differential geometry. It is
known that curve pairs can be obtained by correlating the Frenet frames of the curves. One of the notable
curve pairs is the Bertrand curve pair. In 1845, de Saint Venant brought forward an argument that whether a
second curve with the principal normal vector field of a curve in Euclidean space would exist [30]. In the paper
published by Bertrand in 1850, a second curve with the same principal normal vector field was required to exist.
Bertrand stated that the condition of λκ+ µτ = 1 for λ, µ ∈ R must be satisfied where the curvatures of the
curve are denoted with κ and τ [6]. Afterwards, the Bertrand curve was named for the first curve and the
Bertrand conjugate curve for the second curve [23]. Bertrand curves in different dimensional Euclidean spaces
have been researched and many characteristic features have been given by [7, 8, 10, 19, 28, 33]. Also, the curve
pairs in various spaces have been investigated with a variety of approaches [1–5, 11, 15, 26, 34]. Many problems
modeling physical phenomena in nature are expressed by systems of differential equations. As a solution
to a differential equation indicates a family of curves and a family of curves expresses the differential equation
[9, 14, 24, 25, 29]. One of these differential equations is coupled dispersionless (CD) equation. Studies on coupled
dispersionless equations play an important role in solving problems encountered in physics, mathematics, and
various engineering disciplines. CD equations were first presented and solved by Konno and Oono using the
inverse scattering transform method (IST) [20, 22]. The coupled dispersionless (CD) equations which are
nonlinear differential equations are

uys = ρu,
ρs + uuy = 0

(1.1)
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where u is a real-valued function, the subscripts y and s denote partial differentiations [20, 22]. The generalized
and complex versions of these CD equations were investigated in [17, 18]. The real and complex coupled
dispersionless equations were obtained from the space curve family by Shen, Feng, and Ohta [32]. The Lax pair
of these CD equations are expressed as

ψy = Uψ, ψs = V ψ, (1.2)

U = −iλ1
(

ρ uy
uy −ρ

)
, V =

( i
4λ1

− 1
2u

1
2u − i

4λ1

)
. (1.3)

Here, Us − Vy + [U, V ] = 0 is provided [32]. Also, it is known that the CD equations system is equivalent to
the short pulse (SP) equation [31]

uxt = u+
1

6

(
u3

)
xx

(1.4)

with the reciprocal (hodograph) transformation (y, s) → (x, t) given by

∂x

∂y
= ρ,

∂x

∂s
= −1

2
q2 (1.5)

which is the transformation between the Lagrangian and the Eulerian coordinates [32].
The complex coupled dispersionless equation is obtained from the timelike curve according to the Darboux

frame in Minkowski space [12]. In 1968 some formulas providing the integrability of nonlinear differential
equations were expressed by P.D. Lax and these formulas are called Lax formulas. Using these Lax equations,
the integrability conditions of these equations in Euclidean and Minkowski spaces were presented in [13, 21, 27].
In these regards, this study aims to research the coupled dispersionless equations of the motion of Bertrand
curve pairs.

2. Preliminaries
Let γ = γ (y) be a regular unit speed curve in Euclidean 3-space. If T , N , and B denote the tangent, principal
normal, and binormal unit vectors at the point γ(y) of the curve γ , respectively. Then the Frenet formulas are
given  T

N
B


y

=

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 (2.1)

where κ = ⟨T ′, N⟩ and τ = −⟨N,B′⟩ are the curvature and the torsion of the curve γ , respectively and “ ′ ”
denotes the differentiation according to the parameter y . Let us give the definitions and theorems related to
Bertrand curves which are the subject of many studies in differential geometry.

Definition 2.1 Let γ and γ̃ be regular unit speed two curves in the Euclidean 3-space at any points γ (y) and
γ̃ (y) . If the principal normal vectors of the curve γ and the curve γ̃ are linearly dependent, the (γ, γ̃) is called
the Bertrand partner curves [8, 33].

The Frenet frames of the curves γ and γ̃ will be denoted by {T,N,B} and
{
T̃ , Ñ , B̃

}
, respectively.

The equation of the curve γ̃ is
γ̃ (y) = γ (y) + λ(y)N (y) (2.2)
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where λ(y) is a real-valued function [8, 33].

Theorem 2.2 Let γ and γ̃ be Bertrand partner curves, then the angle between the tangent vectors of these
curves at corresponding points is constant [8, 33].

Theorem 2.3 Let γ and γ̃ be Bertrand partner curves, then the relation between the curvature κ and the
torsion τ of the curve γ is

λκ+ µτ = 1. (2.3)

[33].

Theorem 2.4 Let γ and γ̃ be Bertrand partner curves and the Frenet frames of the curves γ and γ̃ be

{T,N,B} and
{
T̃ , Ñ , B̃

}
, respectively, then the relationship between the Frenet frames of the curves γ and γ̃

is
T̃ = cos θT − sin θB,

Ñ = N,

B̃ = sin θT + cos θB,

(2.4)

where
⟨
T, T̃

⟩
= cos θ [33].

Theorem 2.5 Let γ and γ̃ be Bertrand partner curves and the curvature and torsion of the curves γ and γ̃

be κ, τ and κ̃, τ̃ , respectively, then the relationships between the curvatures and the torsions of these curves are

κ̃ = λκ−sin θ2

λ(1−λκ) ,

τ̃ = sin θ2

λ2τ ,
(2.5)

where
⟨
T, T̃

⟩
= cos θ [33].

3. The link of the coupled dispersionless equations with Bertrand curves
In this part of the study, we investigate the correlation between the families of Bertrand curves and the equations
of CD. Let us assume that

γ(y, s) : [0, l]× [0, S] → E3

is a family of space curves, where y ∈ [0, l] is the arc-length parameter and s represents the time. The time
evolution of the orthonormal frame {T,N,B} of the curve γ(y, s) in matrix form is given as T

N
B


s

=

 0 α β
−α 0 δ
−β −δ 0

 T
N
B

 (3.1)

where α, β and δ are functions of y and s [32].

Theorem 3.1 Let γ(y, s) be a space curve family, then the coupled dispersionless equation corresponds to the
set {κ, τ, α, β, δ} =

{
cρ, cuy,−c−1, u, 0

}
[32].
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Corollary 3.2 Let γ and γ̃ be families of Bertrand partner curves, then we can write the equation

c (λρ+ µuy) = 1. (3.2)

Also, the Frenet formulae for γ̃ is given as

 T̃

Ñ

B̃


y

=

 0 κ̃ 0
−κ̃ 0 τ̃
0 −τ̃ 0

 T̃

Ñ

B̃

 (3.3)

and also, the time evolution of the frame
{
T̃ , Ñ , B̃

}
is written

 T̃

Ñ

B̃


s

=

 0 ε η
−ε 0 ξ
−η −ξ 0

 T̃

Ñ

B̃

 , (3.4)

where ε, η and ξ are functions of y and s .

Theorem 3.3 Let γ and γ̃ be families of Bertrand partner curves and θ be an angle between the tangent
vectors of γ and γ̃ . Then θ satisfies

θ = arctan
(

λcuy

λcρ−1

)
,

where λ ̸= 1
cρ = 1

κ .

Proof Considering the equations (2.1), κ = cρ and τ = cuy , if we take differentiation of the equation (2.2)
with respect to arc-length parameter y , we get

γ̃′ = (1− λcρ)T + (λcuy)B.

The norm of this equation is found as

∥γ̃′∥ =
√

1− 2λcρ+ λ2c2
(
ρ2 + u2y

)
.

So, we obtain the Frenet vectors of γ̃ as

T̃ =
(1−λcρ)T+λcuyB√

1−2λcρ+λ2c2(ρ2+u2
y)
,

Ñ = N,

B̃ =
−λcuyT+(1−λcρ)B√
1−2λcρ+λ2c2(ρ2+u2

y)
.

(3.5)

By comparing this last equation (3.5) with the equation (2.4), we get

sin θ =
−λcuy√

1−2λcρ+λ2c2(ρ2+u2
y)

and cos θ = 1−λcρ√
1−2λcρ+λ2c2(ρ2+u2

y)
.
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Thus this easily completes the proof. 2

We know µ = 1−λcρ
cuy

from the equation (3.2) and if we substitute this equation into the equation (3.5),

we can give the following corollary.

Corollary 3.4 Let γ and γ̃ be families of Bertrand partner curves, then the relationships between the Frenet
frames’ fields of γ and γ̃ are

T̃ = µT+λB√
µ2+λ2

,

Ñ = N,

B̃ = −λT+µB√
µ2+λ2

.

(3.6)

Theorem 3.5 Let γ and γ̃ be families of Bertrand partner curves, then the curvature and torsion of γ̃ are

κ̃ =
µρ− λuy

uy (λ2 + µ2)
and τ̃ =

µuy + λρ

uy (λ2 + µ2)
, (3.7)

respectively.

Proof If we take derivative of the equation (2.2) and considering the equations κ = cρ and τ = cuy , then we
get

T̃
dỹ

dy
= (1− λcρ)T + λcuyB.

From the inner product of this last equation with the vector T̃ , we get the arc-length of the curve γ̃ as

dỹ

dy
=

√
(1− λcρ)

2
+ (λcuy)

2
.

So, we obtain

dỹ

dy
= cuy

√
λ2 + µ2.

In this way, considering the equations (3.3) and (3.6), we find

dT̃
dỹ = dT̃

dỹ
dỹ
dy = c√

λ2+µ2
(µρ− λuy)N,

dT̃
dỹ = 1

uy(λ2+µ2) (µρ− λuy)N.

From the inner product of this last equation with the vector Ñ , we get the curvature of the curve γ̃ as
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κ̃ =
µρ− λuy

uy (λ2 + µ2)
.

Similarly, considering the equations (3.3) and (3.6), we find

dB̃
dỹ = dB̃

dỹ
dỹ
dy = − c√

λ2+µ2
(µuy + λρ)N,

dB̃
dỹ = − 1

uy(λ2+µ2) (µuy + λρ)N.

From the inner product of this last equation with the vector Ñ , we get the torsion of the curve γ̃ as

τ̃ =
µuy + λρ

uy (λ2 + µ2)
.

2

Theorem 3.6 Let γ and γ̃ be families of Bertrand partner curves and
{
T̃ , Ñ , B̃

}
denotes the Frenet frame

of any Bertrand conjugate curve γ̃ , then the following statement provides the CD equation: T̃

Ñ

B̃


s

=

 0 −ω−1 q
ω−1 0 0
−q 0 0

 T̃

Ñ

B̃

 , (3.8)

where ω ̸= 0 is constant and q is a real function.

Proof From the Frenet derivative formulae and the time evolution for the Frenet frame given in (3.3) and
(3.4), respectively, we write

T̃y =
(

µρ−λuy

uy(λ2+µ2)

)
T̃ ,

Ñy =
(
− µρ−λuy

uy(λ2+µ2)

)
T̃ +

(
1

cuy(λ2+µ2)

)
B̃,

B̃y =
(
− 1

cuy(λ2+µ2)

)
Ñ .

and
T̃s = εÑ + ηB̃,

Ñs = −εT̃ + ξB̃,

B̃s = −ηT̃ − ξÑ .

Thus, under favorable conditions T̃sy = T̃ys, Ñsy = Ñys, B̃sy = B̃ys , we have

εy =

(
µρ− λuy

uy (λ2 + µ2)

)
s

+

(
1

cuy (λ2 + µ2)

)
η, (3.9)

ηy =

(
µρ− λuy

uy (λ2 + µ2)

)
ξ −

(
1

cuy (λ2 + µ2)

)
ε, (3.10)

ξy =

(
1

cuy (λ2 + µ2)

)
s

−
(

µρ− λuy
uy (λ2 + µ2)

)
η. (3.11)

92



EREN/Turk J Math

By the hypothesis ε = −ω−1 , η = q and ξ = 0 are satisfied and then the equations (3.9)-(3.11) become

(
µρ− λuy

uy (λ2 + µ2)

)
s

= −q
(

1

cuy (λ2 + µ2)

)
, (3.12)

qy = ω−1

(
1

cuy (λ2 + µ2)

)
, (3.13)

(
1

cuy (λ2 + µ2)

)
s

=

(
µρ− λuy

uy (λ2 + µ2)

)
q, (3.14)

respectively. If we take derivative of the equation (3.13), we have
(

1
cuy(λ2+µ2)

)
s
= ωqys . By substituting this

equation into the equation (3.14), we find
qys = pq, (3.15)

where

p =
1

ω

(
µρ− λuy

uy (λ2 + µ2)

)
. (3.16)

By substituting the equations (3.13) and (3.16) into the equation (3.12), respectively, we have

ps + qqy = 0. (3.17)

As a result, the equations (3.15) and (3.17) express the CD equations and this completes the proof. 2

Corollary 3.7 Let γ and γ̃ be families of Bertrand partner curves, then there are the following relations for
the curvature κ̃ and the torsion τ̃ of the curve γ̃

κ̃ = ωp and τ̃ = ωqy. (3.18)

Corollary 3.8 Let γ and γ̃ be families of Bertrand partner curves and κ̃ denotes the curvature of γ̃ . If ω = 1

in (3.8) under the setting of the CD equation then a transformation (y, s) → (x, t) given by

x =

y∫
0

κ̃ (y′, s′)dy′ , t = s

provides the SP equation qxt = q + 1
6

(
q3
)
xx
.

Proof Let x =
y∫
0

κ̃ (y′, s′)dy′ t = s , and ω = 1 , we get x =
y∫
0

p (y′, s′)dy′ from Corollary (3.7). This

implies that ∂x
∂y = p and ∂x

∂s =
y∫
0

ps′ (y
′, s′)dy′ = −

y∫
0

(q (y′, s′) qy′ (y′, s′))dy′ = − 1
2

y∫
0

(q (y′, s′))y′dy′ = − 1
2q

2.

Thus, it is easily seen that the reciprocal (hodograph) transformation (1.5) is satisfied and there is the relation
∂x(∂t − 1

2u
2∂x)q = q . This relation produces the SP equation (1.4) and this completes the proof. 2

Now, let us give the Lax pair which provides integrability of CD equations by the following theorem.
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Theorem 3.9 Let γ and γ̃ be families of Bertrand partner curves, then the Lax pair of the CD equations is

ψy = Pψ,ψs = Qψ (3.19)

such that P = −κ̃e3 − τ̃ e1, Q = −εe3 + ηe2 , where ψ = ψ (y, s) is a function with SO (3) value. Here

κ̃ =
⟨
T̃y, Ñ

⟩
, τ̃ = −

⟨
B̃y, Ñ

⟩
, ε =

⟨
T̃s, Ñ

⟩
, η =

⟨
T̃s, B̃

⟩
.

Proof The Lax pair of the CD equations is

P = −iλ2
(

p qy
qy −p

)
, Q =

( i
4λ2

−q
2

q
2 − i

4λ2

)
. (3.20)

Also, the compatibility condition Py −Qs +PQ−QP = 0 satisfies the CD equations [32]. The basis of SU (2)

and SO (3) are

e1 =
1

2i

(
0 1
1 0

)
, e2 =

1

2i

(
0 −i
i 0

)
, e3 =

1

2i

(
1 0
0 −1

)
and

L1 =

 0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

 0 −1 0
1 0 0
0 0 0

 ,

respectively and there is an isomorphism between the Lie algebras SU (2) and SO (3) . Under this isomorphism,
the CD equations provide the equation (3.19). The functions P and Q are found as

P = −κ̃e3 − τ̃ e1 = −ωpe3 − ωqye2 = −iλ2
(

p qy
qy −p

)
= −iλ2

 1
ω

(
µρ−λuy

uy(λ2+µ2)

)
1
ω

(
1

cuy(λ2+µ2)

)
1
ω

(
1

cuy(λ2+µ2)

)
− 1

ω

(
µρ−λuy

uy(λ2+µ2)

)  ,

and

Q = −εe3 + ηe2 = ω−1e3 + qe2 =

( i
4λ2

−q
2

q
2 − i

4λ2

)
=

 i
4λ2

−1
2

∫
1
ω

(
1

cuy(λ2+µ2)

)
dy

1
2

∫
1
ω

(
1

cuy(λ2+µ2)

)
dy − i

4λ2


where ω = −2λ2 , µ = 1−λcρ

cuy
. They provide a Lax pair of the CD equations as it is desired. 2

Let us give the geometric interpretation of the conserved quantity of the CD equations by the following
theorem.
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Theorem 3.10 Let γ and γ̃ be families of Bertrand partner curves, then the conserved quantity of the CD
equations is constant,

I = p2 + q2y

where p = 1
ω

(
µρ−λuy

uy(λ2+µ2)

)
= κ̃

ω , qy = 1
ω

(
1

cuy(λ2+µ2)

)
= τ̃

ω , κ̃ and τ̃ are the Frenet frame curvatures of the

space curve γ̃(y, s) .

Proof Let γ and γ̃ be families of Bertrand partner curves, then the conserved quantity of the CD equations
with the curve γ is I = ρ2 + u2y . From the equation (3.18), we find

d

ds

(
κ̃2 + τ̃2

)
=

d

ds

(
(ωp)

2
+ (ωqy)

2
)
= ω2 d

ds

(
p2 + q2y

)
.

On the other hand, from the equation (3.12) and (3.14), we have κ̃s = −qτ̃ and τ̃s = κ̃q . In that case, we find

d

ds

(
κ̃2 + τ̃2

)
= 2κ̃κ̃s + 2τ̃ τ̃s = 2κ̃ (−qτ̃) + 2τ̃ (κ̃q) = 0.

As a result, we get

d

ds

(
p2 + q2y

)
= 0,

where p = 1
ω

(
µρ−λuy

uy(λ2+µ2)

)
and qy = ω−1

(
1

cuy(λ2+µ2)

)
. Hence, we can easily see that the conserved quantity of

the CD equations with the curve γ̃ is constant. 2

Corollary 3.11 Let γ and γ̃ be families of Bertrand partner curves, then the conserved quantity of the CD
equations with the curve γ and the curve γ̃ is constant.

4. Conclusion
Although the connections of the integrable models to the motion of space curves can be found in the literature
in various ways, the perspective in this paper is focused on the conjugate of a Bertrand curve since the curve
pairs are necessary for mechanics, kinematics, and physics. Based on the connection between the coupled
dispersionless (CD) equations system with the motion of Bertrand curve pairs, the Lax equations have been
obtained. Moreover, it has been proved that the conserved quantity of the corresponding coupled dispersionless
equations of each of these curve pairs is constant.
Today, the CD-type equations and the SP-type equations are active study areas. In a recent paper [16], the
modified types of these equations are considered and their links of the motions of space curves are expressed.
Moreover, the integrability of these equations is verified by constructing their Lax pairs geometrically. Thus,
CD-type equations and the SP-type equations of the motion of known curve pairs should be considered further
in future research.
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