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Abstract: Using (p, q) -Lucas polynomials and bi-Bazilevic̆ type functions of order ρ + iξ, we defined a new subclass
of biunivalent functions. We obtained coefficient inequalities for functions belonging to the new subclass. In addition
to these results, the upper bound for the Fekete-Szegö functional was obtained. Finally, for some special values of
parameters, several corollaries were presented.
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1. Introduction
Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the unit disk U = {z ∈ C : |z| < 1} and normalized by the conditions f(0) = 0 and
f ′(0) = 1. Let S be the subclass of A consisting of functions univalent in A . It is known that if f ∈ S ,
then there exists the inverse function f−1. Because of the normalization f(0) = 0 , f−1 is defined in some
neighborhood of the origin.

If the functions f and g ∈ A , then f is said to be subordinate to g if there exists a Schwarz function
w ∈ Θ , where

Θ = {w : w(0) = 0 and |w(z)| < 1 (z ∈ U)},

such that
f(z) = g (w(z)) (z ∈ U).

This subordination is shown by
f ≺ g or f(z) ≺ g(z) (z ∈ U).

If g is univalent function in U , then this subordination is equivalent to

f(0) = g(0), f (U) ⊂ g (U) .
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Let P denote the class of functions of the form

t(z) = 1 + t1z + t2z
2 + t3z

3 + · · · (z ∈ U)

which are analytic and ℜ (t(z)) > 0 . Here the function t(z) is called Carathéodory function.
We now turn to the Koebe one-quarter theorem (see [11]), which ensures that the image of U under

every function in the normalized univalent function class S contains a disk of radius 1
4 . Thus, clearly, every

such univalent function has an inverse f−1 which satisfies the following conditions:

f−1(f(z)) = z (z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f), r0(f) ≥

1

4

)
,

where
f−1(w) = w − a2w

2 +
(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · := g(w).

A function f ∈ A is called biunivalent function in U if both f and f−1are univalent in U . The class of
biunivalent functions defined in the open unit disk U is denoted by Σ . Comprehensive information and some
interesting examples of the class Σ can be found in the pioneering work [22] written by Srivastava et al. in
2010. As indicated in [22], the following examples can be given for functions in the class Σ :

z

1− z
,− log (1− z) ,

1

2
log

(
1 + z

1− z

)

and so on. However, the familiar Koebe function and also the functions

z − z2

2
and z

1− z2

are not biunivalent although they are univalent. Several important coefficient estimates of the functions in the
class Σ were given by many authors. For example, Lewin gave a bound for second coefficient of the class Σ

as |a2| ≤ 1.51 in [17], while, motivated by Lewin’s work, in [9] Brannan and Clunie presented a conjecture
that |a2| ≤

√
2. In the literature, one of the most important open problems for the class Σ is the coefficient

estimates on |an| , n ∈ N, n ≥ 3 , (see [22]). In recent years, Brannan and Taha studied certain subclasses of the
class Σ and gave some coefficient estimates. In addition, motivated by the pioneering paper of Srivastava et
al. [22], the authors in [1, 4, 5, 13–15, 20, 22, 28, 29] and the references therein defined some subclasses of the
class Σ and they gave nonsharp estimates on initial coefficients of mentioned subclasses. These subclasses were
defined by using some polynomials such as Faber, Fibonacci, Lucas, Chebyshev, Pell, Lucas-Lehmer, orthogonal
polynomials and their generalizations. Special polynomials and their generalizations are of great importance
in a variety of branches such as physics, engineering, architecture, nature, art, number theory, combinatorics
and numerical analysis. These polynomials have been studied in several papers from a theoretical point of view
(see, for example, [25, 27–29, 31] and the references therein). In addition, some subclasses were also defined by
making use of certain differential operators like Sălăgean, Hohlov, and Frasin.
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This paper is organized as follows: The rest of this section is devoted to some basic definitions and
preliminaries. Section 2 deals with initial coefficient estimates on new subclass introduced, while we investigate
Fekete-Szegö problem for this new class in Section 3.

For f(z) given by (1.1) and g(z) defined by

g(z) = z +

∞∑
k=2

bkz
k, bk ≥ 0

the Hadamard product (or convolution) (f ∗ g)(z) of the functions f(z) and g(z) is defined by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k = (g ∗ f)(z), (z ∈ U).

Let f ∈ A . In [19], Sălăgean considered the following differential operator:

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

...
Dτf(z) = D(Dτ−1f(z)). (τ ∈ N0 = N ∪ {0}).

Note that

Dτf(z) = z +

∞∑
k=2

kτakz
k (τ ∈ N0 = N ∪ {0}) . (1.2)

Consider the function

fδ(z) =

∫ z

0

(
1 + r

1− r

)δ
1

1− r2
dr = z +

∞∑
k=2

bk (δ) z
k, δ > 0, z ∈ U , (1.3)

where

b2 (δ) = δ and b3 (δ) =
1

3

(
2δ2 + 1

)
.

It is worth mentioning that for δ < 1 , the function zf ′
δ(z) is starlike with two slits. Moreover, since

zf ′
δ(z) is the Koebe function, all functions fδ for 0 ≤ δ ≤ 1 are univalent and convex. More details about the

function fδ can be found in [26].
For f ∈ A , given by (1.1), we define the function hδ (δ > 0) as follows:

hδ(z) = (f ∗ fδ) (z) = z +

∞∑
k=2

bk (δ) akz
k = (fδ ∗ f) (z), z ∈ U . (1.4)

For Dτf(z) given by (1.2) and hδ(z) given by (1.4), we define the function F(z) as follows:

F(z) = Dτhδ(z) = z +

∞∑
k=2

bk (δ) k
τakz

k. (1.5)
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In that case every such function F(z) ∈ S has an inverse F−1(z), which satisfies

F−1(w) =w − b2 (δ) 2
τa2w

2 + (b22 (δ) 2
2τ+1a22 − b3 (δ) 3

τa3)w
3

−
(
5b32 (δ) 2

3τa32 − 5b2 (δ) 2
τ b3 (δ) 3

τa2a3 + b4 (δ) 4
τa4

)
w4 + · · · := G(w).

The following is the definition of (p, q) -Lucas polynomials introduced by Lee and Ascı [16] and it is related to
our study.

Definition 1.1 [16] Let p(x) and q(x) be polynomials with real coefficients. The (p, q)-Lucas Polynomials
Lp,q,n(x) are defined by the recurrence relation

Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x) (n ≥ 2),

from which the first few Lucas polynomials can be expressed as below:

Lp,q,0(x) = 2, Lp,q,1(x) = p(x), Lp,q,2(x) = p2(x) + 2q(x). (1.6)

For the special cases of p(x) and q(x) , the (p, q) - Lucas polynomials reduce to the special polynomials
below: Lx,1,n(x) ≡ Ln(x) Lucas Polynomials, L2x,1,n(x) ≡ Dn(x) Pell-Lucas Polynomials, L1,2x,n(x) ≡
Jn(x) Jacobsthal-Lucas Polynomials, L3x,−2,n(x) ≡ Fn(x) Fermat-Lucas Polynomials, L2x,−1,n(x) ≡ Tn(x)

Chebyshev Polynomials of the first kind.

Lemma 1.2 [16] Let G{Ln(x)}(z) be the generating function of the (p, q)-Lucas Polynomials Sequence Lp,q,n(x) .
Then,

G{Ln(x)}(z) =

∞∑
n=0

Lp,q,n(x)z
n =

2− p(x)z

1− p(x)z − q(x)z2

and

Ψ{Ln(x)}(z) = G{Ln(x)}(z)− 1 = 1 +

∞∑
n=1

Lp,q,n(x)z
n =

1 + q(x)z2

1− p(x)z − q(x)z2
.

Definition 1.3 [24] For ρ ≥ 0, ξ ∈ R, ρ + iξ ̸= 0 , and F ∈ A , let B(ρ, ξ, δ, τ) denote the class of Bazilevič
type function if and only if

Re

[(
zF ′ (z)

F(z)

)(
F (z)

z

)ρ+iξ
]
> 0.

Many researchers have worked different subclasses of the famous Bazilevič functions of type ρ from
various view points (see [3] and [23]). In the literature, there are not many papers for (p, q) -Lucas polynomials
associated with Bazilevič type functions of order ρ + iξ . One of the main goals of this paper is to contribute
to this kind of studies. For this purpose, motivated by the very recent work of Ala Amourah et al. [6] (also

see [18]), we introduce the new subclass B̃(ρ, ξ, δ, τ) of biunivalent functions associated with bi-Bazilevič type
function and (p, q) -Lucas polynomials.
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Definition 1.4 For F ∈ Σ , ρ ≥ 0, ξ ∈ R, ρ + iξ ̸= 0 , let B̃(ρ, ξ, δ, τ) denote the class of bi-Bazilevič type
function of order type ρ+ iξ if and only if[(

zF ′ (z)

F(z)

)(
F (z)

z

)ρ+iξ
]
≺ Ψ{Ln(x)}(z), z ∈ U (1.7)

and [(
wG′ (w)

G(w)

)(
G (w)

w

)ρ+iξ
]
≺ Ψ{Ln(x)}(w), w ∈ U , (1.8)

where ΨLp,q,n(x)(z) ∈ P and the function G is described as G (w) = F−1(w).

Remark 1.5 Note that, by specializing the parameters ρ, ξ, δ and τ , we obtain the following subclasses studied
by various authors.

1. B̃(ρ, ξ, 1, 0) ≡ B(ρ, ξ) (Ala Amourah et al.[6]).

2. B̃(ρ, 0, 1, 0) ≡ B(ρ) (Altınkaya et al. [2])

The class B̃(0, 0, δ, τ) = S∗
Σ is defined as follows:

Definition 1.6 A function F ∈ Σ is said to be in the class S∗
Σ, if the following subordinations hold

(
zF ′ (z)

F(z)

)
≺ Ψ{Ln(x)}(z), z ∈ U

and (
wG′ (w)

G(w)

)
≺ Ψ{Ln(x)}(w), w ∈ U ,

where G (w) = F−1(w).

2. Coefficient estimates for the function class B̃(ρ, ξ, δ, τ)

In this section, we propose to find the estimates on the Taylor-Maclaurin coefficients |a2| and |a3| for functions

in the class B̃(ρ, ξ, δ, τ) which is introduced in Definition (1.4). We first state the following theorem.

Theorem 2.1 Let the function F(z) given by (1.5) be in the class B̃(ρ, ξ, δ, τ). Then,

|a2| ≤
1

b2 (δ) 2τ
|p(x)|

√
2 |p(x)|√√

(ρ+ 1)2 + ξ2 |(ρ+ iξ) p2(x) + 4q(x) (ρ+ iξ + 1)|

and

|a3| ≤
1

b3 (δ) 3τ

 p2(x)

(ρ+ 1)
2
+ ξ2

+
|p(x)|√

(ρ+ 2)
2
+ ξ2

 .
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Proof Let F(z) ∈ B̃(ρ, ξ, δ, τ) . Then, there exist two analytic functions γ, φ : U → U such that γ(0) = φ(0) =

0 , |γ(z)| < 1 and |φ(w)| < 1 . Thus, we can write from (1.7) and (1.8) that[(
zF ′ (z)

F(z)

)(
F (z)

z

)ρ+iξ
]
= Ψ{Ln(x)} (γ(z)) (z ∈ U) (2.1)

and [(
wG′ (w)

G(w)

)(
G (w)

w

)ρ+iξ
]
= Ψ{Ln(x)} (φ(w)) (w ∈ U) . (2.2)

It is well known that the following inequalities

|γ(z)| =
∣∣γ1z + γ2z

2 + · · ·
∣∣ < 1

and
|φ(w)| =

∣∣φ1w + φ2w
2 + · · ·

∣∣ < 1,

imply that
|γj | ≤ 1 and |φj | ≤ 1 (j ∈ N) .

It can be easily seen that

Ψ{Ln(x)} (γ(z)) = 1 + Lp,q,1(x)γ1z +
[
Lp,q,1(x)γ2 + Lp,q,2(x)γ

2
1

]
z2 + · · · (2.3)

and
Ψ{Ln(x)} (φ(w)) = 1 + Lp,q,1(x)φ1w +

[
Lp,q,1(x)φ2 + Lp,q,2(x)φ

2
1

]
w2 + · · · . (2.4)

By taking into acount the equalities (2.3) and (2.4) in the equalities (2.1) and (2.2), respectively, we deduce[(
zF ′ (z)

F(z)

)(
F (z)

z

)ρ+iξ
]
= 1 + Lp,q,1(x)γ1z +

[
Lp,q,1(x)γ2 + Lp,q,2(x)γ

2
1

]
z2 + · · · (2.5)

and [(
wG′ (w)

G(w)

)(
G (w)

w

)ρ+iξ
]
= 1 + Lp,q,1(x)φ1w +

[
Lp,q,1(x)φ2 + Lp,q,2(x)φ

2
1

]
w2 + · · · (2.6)

It follows from (2.5) and (2.6) that

(ρ+ iξ + 1) b2 (δ) 2
τa2 = Lp,q,1(x)γ1, (2.7)

(ρ+ iξ + 2)
[
(ρ+ iξ − 1) b22 (δ) 2

2τ−1a22 + b3 (δ) 3
τa3

]
= Lp,q,1(x)γ2 + Lp,q,2(x)γ

2
1 (2.8)

and
− (ρ+ iξ + 1) b2 (δ) 2

τa2 = Lp,q,1(x)φ1, (2.9)

(ρ+ iξ + 2)
[
(ρ+ iξ + 3) b22 (δ) 2

2τ−1a22 − b3 (δ) 3
τa3

]
= Lp,q,1(x)φ2 + Lp,q,2(x)φ

2
1, (2.10)
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respectively. From (2.7) and (2.9), we get
γ1 = −φ1 (2.11)

and
2 (ρ+ iξ + 1)

2
b22 (δ) 2

2τa22 = L2
p,q,1(x)

(
γ2
1 + φ2

1

)
. (2.12)

Also, adding (2.8) to (2.10) yields

(ρ+ iξ + 2) (ρ+ iξ + 1) b22 (δ) 2
2τa22 = Lp,q,1(x) (γ2 + φ2) + Lp,q,2(x)

(
γ2
1 + φ2

1

)
. (2.13)

Now, using (2.12) in (2.13) implies that

(ρ+ iξ + 1)

[
(ρ+ iξ + 2)− 2Lp,q,2(x) (ρ+ iξ + 1)

L2
p,q,1(x)

]
b22 (δ) 2

2τa22 = Lp,q,1(x) (γ2 + φ2)

and so, we can write that

a22 =
L3
p,q,1(x) (γ2 + φ2)

b22 (δ) 2
2τ (ρ+ iξ + 1)

[
(ρ+ iξ + 2)L2

p,q,1(x)− 2Lp,q,2(x) (ρ+ iξ + 1)
] . (2.14)

Considering (1.6) in (2.14), we can write that

|a2| ≤
1

b2 (δ) 2τ
|p(x)|

√
2 |p(x)|√√

(ρ+ 1)2 + ξ2 |(ρ+ iξ) p2(x) + 4q(x) (ρ+ iξ + 1)|
.

In order to prove the estimate on |a3| , let us subtract (2.10) from (2.8). As a result of this computation, we
have

(ρ+ iξ + 2)
[
2b3(δ)3

τa3 − b22 (δ) 2
2τ+1a22

]
= Lp,q,1(x) (γ2 − φ2) + Lp,q,2(x)

(
γ2
1 − φ2

1

)
,

and since (2.11), we get

2 (ρ+ iξ + 2) b3(δ)3
τa3 = Lp,q,1(x) (γ2 − φ2) + (ρ+ iξ + 2) b22 (δ) 2

2τ+1a22.

Thus, it is easily obtained that

a3 =
Lp,q,1(x) (γ2 − φ2)

2b3(δ)3τ (ρ+ iξ + 2)
+

b22 (δ) 2
2τa22

b3(δ)3τ
. (2.15)

By virtue of (2.11) and (2.12), we can write from (2.15) that

a3 =
L2
p,q,1(x)

2b3(δ)3τ (ρ+ iξ + 1)
2

(
γ2
1 + φ2

1

)
+

Lp,q,1(x)

2b3(δ)3τ (ρ+ iξ + 2)
(γ2 − φ2)

and

|a3| ≤
p2(x)

b3(δ)3τ |ρ+ iξ + 1|2
+

p(x)

b3(δ)3τ |ρ+ iξ + 2|
=

1

b3 (δ) 3τ

 p2(x)

(ρ+ 1)
2
+ ξ2

+
p(x)√

(ρ+ 2)
2
+ ξ2


The proof is thus completed. 2

Putting ξ = 0 , in Theorem 2.1, we get:
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Corollary 2.2 Let the function F(z) given by (1.5) be in the class B̃(ρ, 0, δ, τ) . Then,

|a2| ≤
1

b2 (δ) 2τ
|p(x)|

√
2 |p(x)|√

(ρ+ 1) |ρp2(x) + 4q(x) (ρ+ 1)|

and

|a3| ≤
1

b3 (δ) 3τ

{
p2(x)

(ρ+ 1)
2 +

|p(x)|
ρ+ 2

}

Remark 2.3 For the certain special values of the parameters in Theorem 2.1 and Corollary 2.2, respectively,
we obtain some earlier results as follows:

i. By giving δ = 1 and τ = 0 in Theorem 2.1, we have the results by [6, Theorem 2.1].

ii. Letting τ = 0 and δ = 1 in Corallary 2.2, we have the results given by [6, Corollary 2.2].

iii. Taking ρ = ξ = τ = 0 and δ = 1 in Corollary 2.2, we get the results given by [3, Corollary 1].

3. Fekete-Szegö inequality for the class B̃(ρ, ξ, δ, τ)

In geometric function theory, the Fekete-Szegö inequality is an inequality for the coefficients of univalent analytic
functions founded by Fekete and Szegö [12], related to the Bieberbach conjecture. Finding similar estimates for
other classes of functions is called the Fekete-Szegö problem. This problem have been handled by many authors
for some function classes (see [7, 8, 21, 30]).

The Fekete-Szegö inequality states that if

f(z) = z + a2z
2 + a3z

3 + · · ·

is a univalent analytic function on the unit disk U and λ ∈ [0, 1) , then

∣∣a3 − λa22
∣∣ ≤ 1 + 2e

−2λ
(1−λ) .

In the limit case when λ → 1− , an elementary inequality is obtained given by
∣∣a3 − a22

∣∣ ≤ 1. It is known that
the coefficient functional

ςλ (f) = a3 − λa22

for the normalized analytic functions f in the unit disk U plays an important role in function theory.

In this section, we aim to provide Fekete-Szegö inequalities for functions in the class B̃(ρ, ξ, δ, τ).

Theorem 3.1 Let F given by (1.5) be in the class B̃(ρ, ξ, δ, τ) and λ ∈ R . Then,

∣∣a3 − λa22
∣∣ ≤


p(x)

b3(δ)3τ
√

(ρ+2)2+ξ2
, |h(λ)| ≤ 1

2
√

(ρ+2)2+ξ2

2p(x)|h(λ)|
b3(δ)3τ

, |h(λ)| ≥ 1

2
√

(ρ+2)2+ξ2

, (3.1)

where

h(λ) =

(
b22(δ)2

2τ − λb3(δ)3
τ
)
L2
p,q,1(x)

b22(δ)2
2τ (ρ+ iξ + 1)

[
(ρ+ iξ + 2)L3

p,q,1(x)− 2Lp,q,2(x) (ρ+ iξ + 1)
] .
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Proof In order to prove the inequality (3.1), consider (2.14) and (2.15). It follows that

a3 − λa22 =

(
b22 (δ) 2

2τ − λb3 (δ) 3
τ
)
L3
p,q,1(x) (γ2 + φ2)

b22 (δ) 2
2τ b3 (δ) 3τ (ρ+ iξ + 1)

[
(ρ+ iξ + 2)L2

p,q,1(x)− 2Lp,q,2(x) (ρ+ iξ + 1)
]

+
Lp,q,1(x) (γ2 − φ2)

2b3 (δ) 3τ (ρ+ iξ + 2)

=
Lp,q,1(x)

b3 (δ) 3τ

[(
h(λ) +

1

2 (ρ+ iξ + 2)

)
γ2 +

(
h(λ)− 1

2 (ρ+ iξ + 2)

)
φ2

]
.

As a result, by virtue of (2.13), we deduce the desired result given in (3.1). 2

By putting some special values to the parameters in Theorem 3.1, we arrive at the following corollaries.
Taking ξ = 0 in Theorem 3.1, we get

Corollary 3.2 Let F given by (1.5) be in the class B̃(ρ, 0, δ, τ) . Then,

∣∣a3 − λa22
∣∣ ≤ {

p(x)
(ρ+2)b3(δ)3τ

, |s(λ)| ≤ 1
2(ρ+2)

2p(x)|s(λ)|
b3(δ)3τ

, |s(λ)| ≥ 1
2(ρ+2)

,

where

s(λ) =

[
b22 (δ) 2

2τ − λb3 (δ) 3
τ
]
L2
p,q,1(x)

b22 (δ) 2
2τ (ρ+ 1)

[
(ρ+ 2)L2

p,q,1(x)− 2Lp,q,2(x)(ρ+ 1)
]

It is important to mention here that the Fekete-Szegö functional will become second Hankel determinant
H2(1) for λ = 1 . Taking λ = 1 in Theorem 3.1, we have

Corollary 3.3 If F ∈ B̃(ρ, ξ, δ, τ) , then

∣∣a3 − a22
∣∣ ≤


p(x)

b3(δ)3τ
√

(ρ+2)2+ξ2
, |h(1)| ≤ 1

2
√

(ρ+2)2+ξ2

2p(x)|h(1)|
b3(δ)3τ

, |h(1)| ≥ 1

2
√

(ρ+2)2+ξ2

,

where

h(1) =

[
b22(δ)2

2τ − b3(δ)3
τ
]
L2
p,q,1(x)

b22(δ)2
2τ (ρ+ iξ + 1)

[
(ρ+ iξ + 2)L2

p,q,1(x)− 2Lp,q,2(x)(ρ+ iξ + 1)
]

By choosing ρ = 0 = ξ and λ = 1 in Theorem 3.1, we obtain the following result

Corollary 3.4 Let F given by (1.5) be in the class B̃(0, 0, δ, τ) . Then,

∣∣a3 − a22
∣∣ ≤ {

p(x)
2b3(δ)3τ

, |s(1)| ≤ 1
4

2p(x)|s(1)|
b3(δ)3τ

, |s(1)| ≥ 1
4

,

where

s(1) =

[
b3 (δ) 3

τ − b22 (δ) 2
2τ
]
p2(x)

4τ+1b22 (δ) q(x)
.
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Remark 3.5 Theorem 3.1 reduces to the following earlier results for special values of parameters:

i. For δ = 1 and τ = 0 , we have the results given by [6, Theorem 3.1].

ii. For δ = λ = 1 and τ = 0 , we have the results given by [6, Corollary 3.2].

iii. For δ = 1 and τ = ξ = 0 , we have the results given by [6, Corollary 3.3].

iv. For δ = λ = 1 and ρ = τ = ξ = 0 , we have the results given by [6, Corollary 3.4].

4. Conclusion
In the present investigation, we have defined a new subclass of analytic biunivalent function class Σ by using
(p, q) -Lucas polynomial and bi-Bazilevic̆ type functions of order ρ + iξ . Then, we have investigated certain
properties such as nonsharp initial coefficient estimates and Fekete-Szegö problem for this subclass. Also, we
have derived corresponding results for the some special values of the parameters. Our results generalize the
recent papers [2, 3] and [6]. In the future, Hankel determinant problem for the subclass introduced here can be
handled by researchers.
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