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Abstract: In this work, including ae(0,1); we examined the Dirac system in the frame which includes « order right
and left Reimann-Liouville fractional integrals and derivatives with exponential kernels, and the Dirac system which
includes « order right and left Caputo fractional integrals and derivatives with exponential kernels. Furthermore, we
have given some definitions and properties for discrete exponential kernels and their associated fractional sums and

fractional differences, and we have studied discrete fractional Dirac systems.
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1. Introduction

Fractional derivative and fractional integral, which is a subbranch of mathematical analysis, is the extended
form of derivative and integral to noninteger orders [10]. In the fractional derivative and integral fields, which
are known to have emerged towards the end of the 17th century, many researchers such as Leibnitz, Riemann,
Liouville, Weyl, Euler, Lagrange, Fourier, Greenwald, Letnikov, Laplace, Abel, Holmgren, Heaviside, Hadamard,
Lacroix, and Caputo have done many studies. Mathematical models created with fractional differential equations
have obtained more successful results than classical integer differential equations. Fractional calculus has
frequently been used in modeling and applications of problems in the fields of engineering, mathematics, and
science in recent years. With the spread of fractional calculations, many scientists have worked in this field
[4, 10, 16, 21, 22, 24-26]. With the more widespread use of fractional calculations, continuous and discrete
fractional differential equations have also started to be studied in many scientific fields. Many mathematicians
have worked on discrete fractional calculation [2, 8, 9, 15]. In recent years, some researchers have defined
nonsingular operators to have fractional operators with better-behaving kernels and have used these operators
in modeling and solving some of their problems [1, 3, 6, 7, 11, 12]. New fractional derivatives with nonsingular
kernels have been used to solve many problems [11, 14, 18, 23]. Nonlocal fractional operators enable the
development of more efficient algorithms to solve fractional dynamical systems.

The Dirac equation was found in the first quarter of the 20th century while searching for a relative
covariant wave equation of the Schrédinger form, and it has an important place today. When the literature
is reviewed, it is seen that there is a need for new studies involving the fractional Dirac system. The authors
in [5] examined regular g-fractional Dirac-type system in their studies and investigated the properties of the

eigenvalues and eigenfunctions of the system. Using the fixed point theorem, they gave the eigenvalue condition
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for the existence and uniqueness of eigenfunctions. The authors in [20] defined fractional operators with
Mittag-Leffler kernels to formulate and investigate fractional Sturm-Liouville problems and investigated the
self-adjoint, eigenvalue, and eigenfunction properties of fractional Sturm-Liouville operators. In their work [1],
Abdeljawad and Belanau defined integration with the part formula using the right fractional derivative and
the right fractional integral corresponding to the exponential kernels and used the g-operator to validate the
results. They also formulated the discrete correspondences of the results. The study in [13] dealt with the
exponential Dirac system in the sense of Riemann-Liouville and Caputo and the fractional Dirac system with
Mittag-Leffler core and obtained the representations of the solutions for Dirac systems by Laplace transforms.
Mert et al. [19] worked on fractional derivatives with nonsingular nuclei in their articles. They formulated some
fractional Sturm-Liouville problems with differential involving left- and right-sided derivatives by examining the

Sturm-Liouville Equations in the framework of fractional operators with Mittag-Leffler kernels.

2. Fractional derivatives with exponential kernels for regular Dirac system

In this section, we have given the definitions and properties of fractional derivatives and fractional integrals
with exponential kernels. Furthermore, including « € (0,1), we examined the Dirac system which includes «

order right and left Reimann-Liouville and Caputo fractional integrals and derivatives.

Definition 1 (/11]) Let f € H'(a,b), a < b, « € [0,1].  Then the left Caputo fractional derivative with

exponential kernel is defined by

erepe (@) = PO o (0= 0) Fohan 0

where B(a) > 0 is a normalization function with B(0) = B(1) = 1.

Definition 2 (/3]) Let f € H'(a,b), a <b, a € [0,1]. Then, the left Reiman-Liouville fractional derivative
with the exponential kernel is defined by

e (o) = P [ e (- 0)) 101 ©)

and the associated fractional integral by

11—«

O (@) = o )+ g [ flon

Definition 3 (/3]) Let f € H(a,b), a <b, a€[0,1]. Then, the right Caputo fractional derivative with the

exponential kernel is defined by

CFC Do f(z) = — Jbexp( —“ (p—x)) f'(p)dp, (3)
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and the right Reiman-Liouville one by

B(a) d (* —
CFR o _ il _
Dy f(z) = l—ozdxf exp(l_a(p w)) f(p)dp. (4)
In addition, the corresponding fractional integral is defined by
Ly f @)= g+ s [ S
P T B@ T Bl ), T

Theorem 2.1 (/3]) (Integration by parts formula for CFR fractional derivatives) Let 0 < a <1, p>1, ¢ > 1,
and %+%<1+a(P?ﬁlandqilincase%+%:1+a)'

1. If o€ Ly(a.b) and ¢ € Ly(a.b) ,

b b
j (@) CF I (x)dr = j () CF T ()

2. If fe“F I2(L,) and g €°F I¥(L,),
b b
f F(@)CFRD g () dx =f 9(x)FCDg f(z)dz.

Theorem 2.2 ([3]) (Integration by parts formula for CFC fractional derivatives) Let f,ge H* and 0 < a < 1.

b b
f f(@)SFCDg(x)dx = j 9(x)“FEDY f(x)dz + fﬁ%g(m)e —_fjlgff(m) )

1
a a

B(e)

T a0@e a4 (@)

b b
| s g paydn = [ @7 D g(a)de -

Let y := ( zl Eg ) , and p(z) and r(z) are real-valued continuous functions defined on [a, b]
2

o (o T ()0 ()

The fractional Dirac system is:
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where A is a complex spectral parameter, y(z) = ( z;gg >’ w(z) = ( w10(l‘) wgo(x) ) are real-valued

continuous functions defined on [a,b] and w; (x) > 0, Vz € [a,b], (i =1,2). We consider the boundary

conditions
c11€ —ay-y1(a) + cr2y2(a) = 0, (6)

c1€ —a - y1() + c2292(b) = 0, (7)

with ¢}, + ¢}, # 0 and 3, + ¢3, # 0. Now, we introduce convenient Hilbert space L2 ((a,b); E) (E :=C?) of

vector-valued functions using the inner product
b
@5 = [ w@E@w @)
a

b
+ f y2(2)Z2(z)we (z)dx

a

o= (n) 0= (G0)

Yi, 7, and w; are real-valued continuous functions defined on [a,b] and w;(z) > 0, Y € [a,b], (i = 1,2).

where

Theorem 2.3 The operator Il = w™F generated by fractional Dirac-type system (FD) defined by (5)-(7) is
formally self-adjoint on L2 ((a,b); E).

Proof Let y(.), 2(.) L2 ((a,b); E). Then, we have
b
Iy, z) — (y,1z) = f ($FCDs + p(x) y1) Zrdz

b
+ J (CFRD?yl +7r(x) yg) Zodx

a

b
- f Y1 (chDazg +p(z) zl) dx

a

b
_J Yo (cFRDg“zl +7(x) 22> dx

b b
= J aCFCDayngd:v + J CFRDl?ylﬁdm
a a
b

v -
- J y1(§FCDY20)dx — f Y2 (CFRDZ?zl) dz.

a a

Since

’ CFC na,, — ’ CFR D« B(a) —|b
oY D%oZrdx = | Yo ( Dy zl) dx + 1 ayQ(x)eli‘L,b—zl o
a

a —
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and
b
—— B(a
J y1(CFC Do 2y)da = J TR DMy da + T E 0)[726%7b,y1(a:)|2
We get
<Hy’ Z> - <y7 Hz> = [y’ Z]b - [yv Z]a
where
B(a) B(a)
[y 7). = T2 (e ey 1 (2) — a2 ey ().

My, z) = (y,11z) for any y(.),
(6)-(7). Consequently, we get

z(.) L2 ((a,b); E). We have [y,

<Hy7 Z> = <y7 HZ>

Theorem 2.4 All eigenvalues of the problem (5)-(7) are real.

Proof By Theorem 2.6, we have

b
qfw=jﬁ@w

[ e

ffl
fﬁ
ffl

(a)

fﬁ

B(e)

+

Let A be an eigenvalues of (5)-(7) and y(x) =

11—«

(y1(z), yz(m))T

SFCDY;y + p(z) y1) da
CFRD“yl +7 () y2) d
x) yr1dx + f fa(z CFCD‘”‘y dx

x) yodx + J fa(x CFRDO‘yld:L‘

x) yr1dx + j yo CTED fo(z)dx
) a(@le e A

b
x) yodx + f Y1 chDan(.’E)dl'

yi(z)e —ay fox )5

T
its complex conjugate y(z) = (y1 (z), yg(a:)) satisfy

Fy(x) = dw(z)y(z)

e oy 91(a) + crzge(@) = 0

czle%b,yl(b) + co2y2(b) = 0
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and
Fy(z) = Xw(z)y(z) (12)
cue%b,yl(a) + c12y2(a) =0 (13)
czle%b,yl (b) + szyl(b) =0 (14)

with ¢2; + ¢35 # 0 and c3; + ¢35 # 0.

Then, we obtain
A =N,y = Qw9 — Qs )
=(Fy,y) —<F9y

_ B(a) al ci2y2 (a)crie o 11 (a) ]

—C12Y2 (a) 6116%1,—2/1 (a)
From the equality (10),(11),(13), and (14), we have
A =Xy, =0

since y(z) is nontrivial and w > 0, we have A\ = \. O

Lemma 2.5 If Ay and X2 are two different eigenvalues of the fractional Dirac system defined by (5)-(7), then

the corresponding eigenfunctions yx, , Y, are orthogonal in the space L2 ((a,b); E).

Proof Assume Aj, A2 are distinct eigenvalues of (5)-(7) and yx, and y, are the eigenfunctions. Then, we

have
Fyx (33) = )\1’(1}(1‘):1/)\1 (LL') (15)
Clleﬁb—y)\n (a) + C12Yx;, (a) =0 (16)
che%b*yAu (b) + C22Yx;, (b) =0 (17)

and
Fyx, (2) = Aow(z)yx, (2) (18)
Clle%b*yAzl (a) + C12Yx,, (a‘) =0 (19)
CQlel%‘Lb*yAm (b) + C22YNos (b) =0 (20)

Therefore, we obtain,

a c 4o (D) c21€ =0 _yx,, (D
(A1 = A2)Yrs Yns) = Bla) 2( l 22Uz, (B) C21€ o - Ua, (B) ]

1-— ay —C22Yx, (b)c2le%b*y>\21 (0)

B(Ol) C12YNqs (a) Cllel’iab* Yxia (0,)
+ ——w1(a) - '
1 — —Cl2y>\12 (a’) clle%b*y>&1 (a’)
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From the boundary conditions (16),(17),(19), and (20), we have that

(/\1 - )‘2)<yk1 s y)\2> =0

; hence, as Ay # A2, (Yx,,¥r,) = 0. -

Theorem 2.6 The Wronskian of any solutions of Eq. (5) is independent of .

Proof Let v(z) and w(z) be two solutions of Eq. (5). By Green’s formula (8),
v, w) = (v, Mw) = [v,w] (b) — [v,w] (a).
Since TIv = v and Tlw = Aw, we get
Qw,w) = (v, \w) = [v,w] (b) = [v,w] (a),
A =N (,w) = [v,w] (b) — [v,w] (a).

Since A € R, we have [v,w] (b) = [v,w] (a) = W (v,w)(a), i.e. the Wronskian is independent of z. O

Theorem 2.7 Any two solutions of the Eq. (5) are linearly dependent if and only if their Wronskian is zero.

Proof Assume y(x) and w(z) are two linearly dependent solutions of equation (5). Then, there exists a

constant 1 > 0 such that y(z) = n.w(z). Hence,

He o ywn(z) ()

7 eﬁvb—yl(m) yg(l') . —
W(y’w) - ‘ - 6%71)—(*}1(55) w2(x) -0

e—o ,wi(z) wo(z)

1—a”

Moreover, if the Wronskian W (y,w)(z) is zero for some z in [a,b] and y(z) = n.w(x) are found. From this, it

can be seen that y(x) and w(z) are linearly dependent on [a,b]. O

3. Dirac systems in the frame of CFR fractional derivatives and their discrete counterparts

In this section, new integration for discrete fractional Dirac systems will be presented, giving some definitions
and properties for discrete exponential kernels and their associated fractional sums and fractional differences.
The functions we consider will be defined on sets of the form

N, ={a,a+1,a+2,...}, JN={. ,b—2b—10b},
where the form a,b € R or set of the form
Nop ={a,a+1,a+2,..,b},

where the form a,be€ R and b — a is a positive integer. From ([15]), the nabla discrete exponential function is
defined by

— I \""
eXp)\(fL',p) = <1)\) ) A #* 17

In particular, when A = %, a € (0, 1),

&Py (2, ) = (1— )", (21)
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Definition 4 (/3]) Assume f : N, > R and 0 < o < 1. Then, the nabla discrete left Caputo fractional
difference with the discrete exponential kernel is defined by
Bla) <« .
cregef(s) = 2O S (1 a0y ()

1—ocp:a+1

x

= B(a) Y, (1=a)"*Vf(p), w€Ny,

p=a+1
and the left Reimannn-Liouville one by
B(a) < _
CFRga _ z—7(p)
v = Va 1—
S ) = TV 3 (T )

€T

=BV, Y (1=a)""f(p), xeNap,

p=a+1

where B(a) > 0 is a normalization function with B(0) = B(1) =1 as the associated fractional sum function

erg-af@) = L %p@)+ 2 3! (o), weNur

Definition 5 (/3]) Assume f : N, > R and 0 < o < 1. Then, the nabla discrete right Caputo fractional

difference with discrete exponential kernel is defined by

b—1
BN (1@ p(p)

p=z

Oy fla) = T

b—1
= —B(a) Z (1 =) "Af(p), z €1 N,
p=z

and the right Reimann-Liouville one by

b—1
CFRga f(y) = ;B_(Z) Ny Y (1 =a) @ f(p)
b—1
= —B(a)A: Y. (1=a)""f(p),  wep 1 N.

In addition, the associated fractional sum is defined by

_1—a

b—1
CFvb—Oéf(l’) = Bla) flx) + % Z f(p), Z €p—1 N.

Theorem 3.1 ([3]) (Integration by parts formula for CFR fractional differences)
Assume f,g:Ngp >R and 0 <o <1.

b—1 b—1
>, 9@V @) = Y, f@)7F v, g(x)
r=a+1 r=a+1

117



YALCINKAYA /Turk J Math

and
b—1 b—1
D 9@ TRV () = Y, f@) P Rvig(a).
r=a+1 rz=a+1

Theorem 3.2 (Integration by parts formula for CFR fractional differences)
Assume f,g:Ngp =R and 0 <a < 1.

b—1

b—1
Y f@veg@) = Y gle - )RV - 1) +

r=a+1 r=a+1

B o010 oy pla)

In the above, it is easy to see that é\;fa,b_f(b -1 =(1-a)f(b-1).

Now, consider the nabla discrete fractinal Dirac systems

ro=(erty 57 () (7000 ()
_ ( TECGyy +p(x) 1 )

Ry + 1 (2) 2

where A is a complex spectral parameter the fractional Dirac type system is:

Fy(z) = w(z)y(z), € Nop_1, (22)
. | yi(x) [ wi(x) 0 .
The functions y(x) = yo(z) ) p(x), r(z), w(z) = 0 ws () are real-valued functions defined
2 2

on Ny p—1 and w; (z) >0, Yo € Nyp—_1, (i =1,2). We consider the boundary conditions

B(a) .
C11 [CFRv? 1 E(lef—%’b] y1(a) + c12y2(a) = 0, (23)
B(a) .
C21 [CFRvoz 1(6161—_(;,5] y1(b—1) + caay2(b—1) =0, (24)

with €2, + ¢35 # 0 and ¢3; + 3, # 0.

Theorem 3.3 The operator Il = w™F generated by fractional Dirac type system (FD) defined by (22)-(24)
is formally self-adjoint on L2 o ((Nap-1); E).
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2()L3e ((Nap—1); B).

b—1 b—1
= > (v prp@u)m+ Y, (Vi ptr@ )R
r=a+1 r=a+1
b—1 b—1
- > wn (aCFCV“ZQ +p () Z1) - > » (CFRVE‘ 21+ 71 (2) 22)
r=a+1 r=a+1
b—1 b—1
= Y CFOvh 4 D) pla)yi(a)z(a)
r=a+1 r=a+1

b—1 b—1
Y, R pm et Y r(a)ye(a)z(@)

+
r=a+1 r=a+1
b—1 b—1
— D n(§FOven) - ) p@)y (@)= ()
r=a+1 r=a+1
b—1 b—1
_ 2 Yo (CFRVE‘ Zl) — Z T(.%‘)Z/Q(.%‘)ZQ(Q’J)
r=a+1 r=a+1
b—1 b—1
_ 2 U‘C'FC'vozy2 o+ Z CFRV? 1%
r=a+1 r=a+1
b—1 b—1
— 3 n(GFvez) - Y (CFRV? 21)
r=a+1 r=a+1

= CFR o — B(a) ~ T
= Z Y2 (z —1) Vp Z1(z—1) + myQ(x)e%,lle(x”a
r=a+1

+ :;; [CFv5y (2)] 22 () - :;;Zﬂx — )Ry (z—1)

- f f“fvax)aﬁbfyamvg-l - be () (7R = ()

=1 (@ FE ()~ b— )Yy (- 1)

+ f Ea(lyz(b —1)8 o, FI(b—1) - fﬁo‘i y2(a)8 —o, 7i(a)

+2 -1y (b—1) — 27 ()T Vg 41 (a)

- B0 e e () - 20— 17 - 1)

-~ [m@|ermey - 2% @ - @ ey - £, | s )]
B(a)
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From the boundary condition (23) and (24), we get the desired result. O

Theorem 3.4 All eigenvalues of the problem (22)-(24) are real.

Proof By Theorem 3.5,

b—1
FFyy= Y A (§79v2 +p(x)n)

r=a+1

b—1
+ > falx) (KRR y (@) 1a)
r=a+1

b—1 b—1
= > h@p@uy+ Y, ATy,

r=a+1 r=a+1

b—1 b—1
+ Y, h@r@yp+ Y, L@V n

r=a+1 r=a+1

Let A and X be eigenvalues of (22)-(24) and y(z) = (y1(x),y2(x))” be the corresponding eigenfunction. Then,

T
y and its complex conjugate y(z) = (yl(x),yg (x)) satisfy.

Fy(e) = dw(z)y(z) (25)
e [CFRv;: -Z (O‘ialt’b] y1(a) + craga(a) = 0, (26)
ca1 [CFRvg - mglivb-] y1(b—1) + caoya(b—1) = 0, (27)
and
Fy(z) = w(x)y(x) (28)
o [CFRVZX _ ffao)flixb—] y1(a) + c1ay2(a) = 0, (29)
co1 [CFvaa - fﬁo‘ial%ﬁ_] y1(b—1) + caoya(b—1) = 0 (30)

with ¢2; + ¢35 # 0 and ¢3; + ¢35 # 0.

Therefore, we obtain
A =N,y = Qyyy — O,y
={Fy,y) —<{F9y

From the equality (26),(27),(29), and (30), we have

A=)y, y)=0

since y(z) is nontrivial and w > 0, we have A\ = \. O
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Lemma 3.5 If A1 and Ao are two different eigenvalues of the Fractional Dirac system defined by (22)-(24),

then the corresponding eigenfunctions yx, and yx, are orthogonal in the space Lﬁ}y((a, b); C2).

Proof Assume \; and Ay are distinct eigenvalues of (22)-(24) and y,, and y,, are the eigenfunctions.

and

Fyx, () = Mw(z)ys, (z) (31)

en [CFRvg - fﬁ“gza&b] y1(a) + cray () = 0, (32)

e [CFRva 1350261__‘275] yi(b—1) + e (b—1) = 0 (33)
Fyx, () = daw(z)ys, (2) (34)

en [CFRvg - fﬁo‘ieﬁb] y2(a) + c1ays(a) = 0, (35)

con [CFRvg" - f(_“c)yélc;’b] y2(b—1) + caoya(b—1) = 0 (36)

From the boundary conditions (32),(33),(35), and (36), we have that

()‘1 - >\2)<y>\17y)\2> =0

; hence, as A1 # A2, (Yx,,¥r,) = 0. -

(1]

2]
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