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Abstract: We are concerned with the first-order differential system of the form{
u′(t) + a(t)u(t) = λb(t)f(v(t− τ(t))), t ∈ R,
v′(t) + a(t)v(t) = λb(t)g(u(t− τ(t))), t ∈ R,

where λ ∈ R is a parameter. a, b ∈ C(R, [0,+∞)) are two ω -periodic functions such that
∫ ω

0
a(t)dt > 0 ,

∫ ω

0
b(t)dt >

0 , τ ∈ C(R,R) is an ω -periodic function. The nonlinearities f, g ∈ C(R, (0,+∞)) are two nondecreasing continuous
functions and satisfy superlinear conditions at infinity. By using the bifurcation theory, we will show the existence of an
unbounded component of positive solutions, which is bounded in positive λ -direction.

Key words: First-order system, positive solutions, superlinear conditions, bifurcation from infinity

1. Introduction
We are concerned with the first-order system of the form{

u′(t) + a(t)u(t) = λb(t)f(v(t− τ(t))), t ∈ R,
v′(t) + a(t)v(t) = λb(t)g(u(t− τ(t))), t ∈ R, (1.1)

where λ ∈ R is a parameter, a, b, τ and f, g satisfy the assumptions:
(H1) τ ∈ C(R,R) is an ω -periodic function, a, b ∈ C(R, [0,+∞)) are two ω -periodic functions such that∫ ω

0
a(t)dt > 0 ,

∫ ω

0
b(t)dt > 0 ;

(H2) f, g ∈ C(R, (0,+∞)) are nondecreasing functions;

(H3) lim
s→+∞

f(s)
s = +∞ = lim

s→+∞
g(s)
s .

The corresponding scalar equation of the form (1.1) attracts much attention from mathematicians. Many
authors devote themselves to exploring the existence of periodic solutions of this kind of equation and some
excellent results have been achieved, see [4, 5, 7–12, 15, 17]. For instance, Cheng and Zhang [4] considered the
existence of positive ω−periodic solution for equation

u′(t) + a(t)u(t) = λb(t)f(u(t− τ(t))), t ∈ R, (1.2)
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where λ is a parameter. By using the fixed point theorem in cones, they obtained the following result.

Theorem 1.1 ([4, Thm 2.3]) Assume a, b, τ satisfy (H1), f satisfies (H2) and (H3), then for any λ ∈ (0, λ) ,
equation (1.2) has at least two positive ω−periodic solutions, where

λ =
1

B
sup
m>0

m

max
0⩽x⩽m

f(x)
,

B = max
0⩽t⩽ω

∫ ω

0
G(t, s)b(s)ds, and G(t, s) is expressed as (1.6) below.

Problem (1.1) represents a class of differential systems with delay. The delay differential equation is
mainly used to describe the current and past history of state power systems, so it is in the physical, information,
chemistry, engineering, economics, and mathematical biology and other fields that have important applications.
Up to now, many scholars have made good research results in this aspect, see [16, 20], other similar research
can be found in [1, 2, 14].

However, there are only a few papers concerning the existence of positive periodic solutions for first-order
systems, we can refer to [3, 13, 18] which, via the fixed point theorem in the cones and the Schauder’s fixed point.
It is worth mentioning that due to the limitations of the tools they used, all the results mentioned above did not
provide information on the global behavior of positive periodic solution sets. However, this global behavior is
very useful for computing the numerical solutions of differential equations as it can be used to guide numerical
work. For example, it can be used to estimate the u -interval in advance in applying the finite difference method
and when applying the shooting method, it can be used to restrict the range of initial values that need to be
considered.

In [6], Chhetri and Girg studied a system of the semilinear equation of the form

 −∆u = λf(v), in Ω,
−∆v = λg(u), in Ω,
u = 0 = v, on ∂Ω,

(1.3)

where λ ∈ R is a parameter and Ω ⊂ RN , N ⩾ 2 , is a bounded domain with C2,η -boundary for some η ∈ (0, 1) ,
the nonlinearities f and g satisfy (H2) and (H3). Under these assumptions, they obtained the global behavior
of positive solution sets of (1.3) by using the global bifurcation theorem. To be more precise, they obtained a
component of positive solutions for (1.3), emanating from the origin, which is bounded in positive λ -direction.
If in addition, Ω is convex, and f, g ∈ C1 satisfy the certain subcritical condition, they showed that the
component must bifurcate from infinity at λ = 0 .

Motivated by [4] and [6], we attempt to study the global bifurcation behavior of positive ω−perodic
solutions for problem (1.1) and give a similar result to [6]. Compared to [6], the innovation of our result is that
we use a new technique, which can directly prove that the component must bifurcate from infinity at λ = 0

without additional conditions of f, g in [6]. This technique plays an important role in applying bifurcation
theory to study the global structure of solution sets of differential equations under superlinear or sublinear
conditions because it can directly obtain the limits of a sequence of connected sets, which are the connected
branches of the solution set of the problem under study.
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Let X0 = {u ∈ C(R,R) | u(t) = u(t + ω)} , E0 = C1(R,R) , denote X = X0 × X0 and E = E0 × E0 ,
it is easy to know X and E are Banach space endowed with the norm ‖(u1, u2)‖X = ‖u1‖C + ‖u2‖C and
‖(u1, u2)‖ = ‖u1‖C1 + ‖u2‖C1 respectively, where ‖u‖C = max

0⩽t⩽ω
u(t), ‖u‖C1 = ‖u‖C + ‖u′‖C .

We denote Π of the form

Π = {(λ, (u, v)) ∈ R× E | (λ, (u, v)) solution of (1.1)}.

If (λ, (u, v)) ∈ Π and u > 0, v > 0 , then we say that (λ, (u, v)) is a positive solution of (1.1). By a continuum
of solutions of (1.1) we mean a subset K ⊂ Π which is closed and connected. By a component of solutions
set Π we mean a continuum which is maximal with respect to inclusion ordering. We say that λ∞ is a
bifurcation point from infinity if the solution set Π contains a sequence (λn, (un, vn)) such that λn → λ∞ and
‖(un, vn)‖ → +∞ as n → +∞ . We say that a continuum C bifurcates from infinity at λ ∈ R if there exists a
sequence of solutions (λn, (un, vn)) ∈ C such that λn → λ∞ and ‖(un, vn)‖ → +∞ as n → +∞ .

It is easy to see that (1.1) can be written as

u(t) = λ

∫ t+ω

t

G(t, s)b(t)f(v(s− τ(s)))ds, (1.4)

v(t) = λ

∫ t+ω

t

G(t, s)b(t)g(u(s− τ(s)))ds, (1.5)

where

G(t, s) =
e
∫ s
t
a(θ)dθ

e
∫ ω
0

a(θ)dθ − 1
, s ∈ [t, t+ ω]. (1.6)

Notice that
∫ ω

0
a(θ)dθ > 0 , we have

1

σ − 1
⩽ G(t, s) ⩽ σ

σ − 1
,

where σ = e
∫ ω
0

a(θ)dθ and 0 < 1/σ < 1.

Define that K is a cone in X0 by

K := {u ∈ X0 | u(t) ⩾ 0, u(t) ⩾ 1

σ
‖u‖, t ∈ R}.

Obviously, K is a total cone.
For u ∈ K , consider the corresponding linear eigenvalue problem of (1.1) as follows:

u′(t) + a(t)u(t) = λb(t)u(t), t ∈ R. (1.7)

Denote the operator L : E0 ∩K → C(R,R) by

Lw := w′ + a(t)w, w ∈ E0 ∩K.
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A direct result of Krein-Rutman theorem, (1.7) has a unique eigenvalue µ1 , which is positive and simple, and
the corresponding eigenfunction φ1 is positive. Moreover, µ1 is also an eigenvalue of L∗ , that is, there exists
a positive φ∗

1 such that
L∗φ∗

1 = µ1φ
∗
1, (1.8)

where L∗ is the conjugate operator of L .

We first state a nonexistence result, which holds under weaker assumptions than (H1)-(H3).

Theorem 1.2 Suppose there exist two constants α, β > 0 such that f(s), g(s) > αs + β for all s ∈ R . Then

there are no solutions of (1.1) for λ ⩾ λ∗ def
= µ1/α.

The following theorem is the existence result.

Theorem 1.3 Let (H1)-(H3) hold. Then there exists an unbounded component C ⊂ Π satisfying the following:
(a) (λ, (u, v)) ∈ C is positive whenever λ ∈ (0, λ∗) ;
(b) (0,(0,0)) is the only element belonging to C with λ = 0 ;

(c) Projλ∈[0,+∞)C
def
= {λ ∈ [0,+∞) | ∃(u, v) ∈ E with (λ, (u, v)) ∈ C } ⊂ [0, λ∗) ;

(d) any sequence (λn, (un, vn)) ∈ C such that ‖(un, vn)‖ → +∞ as n → +∞ and λn > 0 must
satisfy λn → 0+ as n → +∞ .

Remark 1.4 We may conclude the number of positive solutions of (1.1) from Theorem 1.3:
(i) (1.1) has no positive solution for λ ⩾ λ∗;

(ii) there exists λ∗ < λ∗ such that (1.1) has at least two positive solutions for each λ ∈ (0, λ∗).

Example 1.5 Consider the first-order differential system of the form:

{
u′(t) + (sin t+ 1)u(t) = λ(cos t+ 1)ev(γ(t)), t ∈ R,
v′(t) + (sin t+ 1)v(t) = λ(cos t+ 1)e(u(γ(t)))2 t ∈ R,

Obviously, a(t) = sin t + 1 , b(t) = cos t + 1 , τ(t) = sin t , f(s) = es , g(s) = es2 , γ(t) = t − sin t , and satisfy
the hypotheses of (H1)-(H3).

2. Preliminary results

To prove Theorem 1.3, first, we approximate the superlinear nonlinearities f and g by a sequence of asymp-
totically positively homogeneous nonlinearities fn and gn , respectively. Then we will discuss this asymptotic
problem in an abstract setting and apply the result to the proof of Theorem 1.3. In order to discuss this
auxiliary, we consider the first eigenpair of the following eigenvalue problem{

w′
1(t) + a(t)w1(t) = λθ1b(t)w2(t), t ∈ R,

w′
2(t) + a(t)w2(t) = λθ2b(t)w1(t), t ∈ R, (2.1)

where w1, w2 ∈ X0 ∩ E0, θ1, θ2 are positive constants.
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For convenience, the eigenvalue problem (2.1) can be read as follows:

L

[
w1

w2

]
= λb(t)

[
0 θ1
θ2 0

] [
w1

w2

]
.

Note that −
√
θ1θ2 and

√
θ1θ2 , [

−
√
θ1√
θ2

]
and

[ √
θ1√
θ2

]
are respective eigenvalues and eigenvectors of the coefficient matrix. Taking into account the linearity of operator
L , we infer that [

z1
z2

]
=

[
−
√
θ1

√
θ1√

θ2
√
θ2

]−1 [
w1

w2

]
satisfies

L

[
z1
z2

]
= λb(t)

[
−
√
θ1θ2 0
0

√
θ1θ2

] [
z1
z2

]
.

The equations of this system are not coupled and it is obvious that z1 6= 0 if −λ
√
θ1θ2 = µ1 and z1 = φ1 . On

the other hand, z2 6= 0 if λ
√
θ1θ2 = µ1 and z1 = φ1 . Therefore, z1 6= 0 implies z2 = 0 and z2 6= 0 implies

z1 = 0 . Hence, the eigenfunctions of corresponding to λ = − µ1√
θ1θ2

are

[
−
√
θ1

√
θ1√

θ2
√
θ2

] [
φ1

0

]
=

[
−
√
θ1√
θ2

]
φ1,

which is (−
√
θ1φ1,

√
θ2φ1) . Analogously, we get the eigenfunctions corresponding to λ = µ1√

θ1θ2
as

(
√
θ1φ1,

√
θ2φ1) . Note that φ1 is an eigenfunction of (1.7) which is positive. Thus ν1

def
= µ1√

θ1θ2
is a unique

simple eigenvalue of (2.1) such that both components of its eigenfunctions, (
√
θ1φ1,

√
θ2φ2) ∈ E , are positive

in R .

Now, consider an asymptotically positively homogeneous system of the form

{
u′(t) + a(t)u(t) = λθ1b(t)v

+(t) + λb(t)f̃(v(t)), t ∈ R,
v′(t) + a(t)v(t) = λθ2b(t)u

+(t) + λb(t)g̃(u(t)), t ∈ R, (2.2)

where u, v ∈ X0∩E0, x
+ def

= max{0, x} is the positive part of x , θ1, θ2 are in (2.1). The nonlinear perturbations

f̃ , g̃ : R → R satisfy the following assumptions:

(A1) f̃ and g̃ are continuous and bounded functions;

(A2) θ1x
+ + f̃(x), θ2x

+ + g̃(x) > 0 for all x ∈ R .
Let

T = {(λ, (u, v)) ∈ R× E | (λ, (u, v)) solution of (2.2)},

then we prove the following bifurcation result.
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Lemma 2.1 Let (A1)–(A2) hold. Then ν1 is the unique bifurcation point from infinity for (2.2). Moreover,
there exists a continuum D ⊂ T bifurcating from infinity at ν1 and satisfies the following:

(i) if (λ, (u, v)) ∈ D and λ > 0 then u > 0 and v > 0 ;
(ii) for λ = 0, (u, v) = (0, 0) is the only solution of (2.2) and (0,(0,0))∈ D ;

(iii) ProjλC
def
= {λ ∈ R | ∃ (u, v) ∈ E with (λ, (u, v)) ∈ D} is bounded from above and unbounded

from below.

Proposition 2.2 ([21, Thm. 14.D]) Let Y be a Banach space with Y 6= {0} and let F : Y → Y be compact.
Then the solution component C ⊂ R× Y of the equation

x = λF (x)

which contains (0, 0) ∈ R× Y is unbounded as are both subsets

C±
def
= C ∩ (R± × Y ),

where R+
def
= [0,∞) and R−

def
= (−∞, 0] .

Definition 2.3 ([19]) Let Z be a Banach space and {Cn | n = 1, 2, · · · } be a certain infinite collection of
subset of Z . Then the superior limit of D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ Z | ∃{ni} ⊂ N and xni
∈ Cni

, such that xni
→ x}.

Lemma 2.4 ([19]) Let Z be a Banach space with the norm ‖ · ‖Z , let {Cn} be a family of closed subsets of
Z . Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, · · · , and z∗ ∈ Z , such that zn → z∗ ;
(ii) dn = sup{‖x‖Z | x ∈ Cn} = ∞ ;

(iii) for every R > 0 , (
∞
∪

n=1
Cn) ∩BR is a relatively compact set of Z , where

BR = {x ∈ Z | ‖x‖Z ⩽ R},

then there exists an unbounded component C in D and z∗ ∈ C.

3. Proof of main results
We define an inner product on E0 ∩X0 by

〈x, y〉 :=
∫ 1

0

x(t)y(t)dt, x, y ∈ E0 ∩X0. (3.1)

Proof of Theorem 1.2 According to (1.4)-(1.5) and the positivity of f and g , all solutions (λ, (u, v)) of (1.5)
with λ > 0 must satisfy u, v > 0 . Let (λ, (u, v)) be a solution of (1.1) with λ > 0 , then due to the assumptions
of f and g , we get

(u+ v)′ + a(t)(u+ v) > λb(t)(α(u+ v) + 2β), t ∈ R.
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Denoting z
def
= u+ v , we see that z > 0 and z′ + a(t)z > λb(t)(αz+2β) , then by combining (3.1) and (1.8), we

get ∫ 1

0

(z′ + a(t)z)φ∗
1dt = 〈Lz, φ∗

1〉 = 〈z, L∗φ∗
1〉 = µ1〈z, b(t)φ∗

1〉,

and ∫ 1

0

(z′ + a(t)z)φ∗
1dt > λ

∫ 1

0

b(t)(αz + 2β)φ∗
1dt > λα

∫ 1

0

b(t)zφ∗
1dt = λα〈z, b(t)φ∗

1〉,

then
µ1〈z, b(t)φ∗

1〉 > λα〈z, b(t)φ∗
1〉.

This combines with (H1) and the positivity of z, φ∗
1 , we must have λ < µ1/α. Therefore, (1.1) has no solution

for λ ⩾ λ∗ def
= µ1/α. 2

Proof of Lemma 2.1 The operator equation corresponding to the system (2.2) is

(u, v) = λL+(u, v) + λH(u, v), (3.2)

where L+ : E → E denotes the mapping

(u, v) 7→ L−1(θ1b(t)v
+, θ2b(t)u

+)

and H : E → E denotes the mapping

(u, v) 7→ L−1(b(t)f̃(v), b(t)g̃(u)).

Then L+ is not linear but both L+ and H are continuous and compact. Moreover, since f̃ , g̃ and b are
bounded, H satisfies

lim
∥(u,v)∥→+∞

‖H(u, v)‖
‖(u, v)‖

= 0, (3.3)

which is crucial in establishing a version of a global bifurcation result for (3.2).
The following proposition shows that the unique possible bifurcation point from infinity for (3.2) is ν1 .

Proposition 3.1 If ν∞ is a bifurcation point from infinity for (3.2), then ν∞ = ν1 . Moreover, for any
sequence (λj , (uj , vj)) ∈ R × E with λj → ν1 and ‖(uj , vj)‖ → +∞ as j → +∞ , there exists a subsequence
(λjk , (ujk , vjk)) such that

lim
jk→+∞

(ujk , vjk)

‖(ujk , vjk)‖
=

(
√
θ1φ1,

√
θ2φ1)

‖(
√
θ1φ1,

√
θ2φ1)‖

,

where the convergence is in E .

Proof Let (λj , (uj , vj)) ∈ R × E be a solution of (2.2) such that ‖(uj , vj)‖ → +∞ and λj → ν∞ . Then

(ûj , v̂j) =
(uj ,vj)

∥(uj ,vj)∥ satisfies

ûj = λjL
−1

(
θ1b(t)v̂

+
j + b(t)

f̃(vj)

‖(uj , vj)‖

)
,
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v̂j = λjL
−1

(
θ2b(t)û

+
j + b(t)

g̃(uj)

‖(uj , vj)‖

)
,

or equivalently satisfies

(ûj , v̂j) = λjL
+(ûj , v̂j) +

λjH(uj , vj)

‖(uj , vj)‖
.

It then follows from (3.3) that the right hand side is bounded in X (independent of j ). Hence ‖ûj‖C1 and
‖v̂j‖C1 are bounded (independent of j ), and there exists subsequence of ûj and v̂j converging to û and v̂ in
E0 . Therefore (ν∞, (û, v̂)) ∈ R× (E ∩X) satisfies{

û′ + a(t)û = ν∞θ1b(t)v̂
+, t ∈ R,

v̂′ + a(t)v̂ = ν∞θ2b(t)û
+, t ∈ R.

Suppose ν∞ ⩽ 0 . Since v̂+ ⩾ 0 , it follows (1.4) that û ≡ 0 and repeating the same argument we get v̂ ≡ 0 as
well. This leads to a contradiction since ‖(û, v̂)‖ = 1.

For ν∞ > 0, we distinguish two cases: v̂+ ≡ 0 and v̂+ 6≡ 0 . In the first case, we get û ≡ 0 , a contradiction
as before. In the other case, we get û > 0 from (1.4) and v̂ > 0 by repeating the same argument. Thus ν∞

and û, v̂ > 0 satisfy the linear eigenvalue problem (2.1).
However, we already discussed that (2.1) has precisely one eigenvalue ν1 = µ1√

θ1θ2
with componentwise

positive eigenfunction (
√
θ1φ1,

√
θ2φ1) . Therefore, it must be that ν∞ = ν1 and

(û, v̂) =
(
√
θ1φ1,

√
θ2φ1)

‖(
√
θ1φ1,

√
θ2φ1)‖

.

This concludes the proof of Proposition 3.1.

Now we complete the proof of Lemma 2.1. The operator equation (3.2) satisfies the hypotheses of
Proposition 2.2 with F := L+ +H . Then there exist unbounded continua

D± ⊂ Ŝ
def
= {(λ, (u, v)) ∈ R× E | (λ, (u, v)) solution of (3.2)}

containing (0, (0, 0)) . By the nonexistence result of Theorem 1.2

D+ ⊂ ([0, λ∗)× E),

and thus D+ must be unbounded in the Banach space E -direction. Then D
def
= D+ + D− is a continuum

containing (0,(0,0)). By Proposition 3.1, ν1 is the only bifurcation point from infinity for (3.2) and D+ is
unbounded in the E -direction, hence D+ must bifurcate from infinity at ν1 . To conclude the proof of Lemma
2.1, it remains to verify that D satisfies the properties (i)–(iii).

It follows from assumption (A2) and (1.4)-(1.5) that u, v > 0 whenever (λ, (u, v)) ∈ D and λ > 0 , this
implies part (i). For λ = 0, (u, v) = (0, 0) is the only solution of (2.2) and (0, (0, 0)) ∈ D , hence part (ii) holds.
Applying Proposition 2.2, we see that D− must be unbounded in R×E . However, by part (ii) and the fact that
ν1 is the unique bifurcation point from infinity for (3.2), we see that D− must be unbounded in the negative
λ -direction, hence (−∞, ν1) ⊂ ProjλD . This completes the proof of Lemma 2.1. 2
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Proof of Theorem 1.3 As discussed in Introduction, we prove the existence of a continuum C by taking
the limit of sequence of continua corresponding to an asymptotically positively homogeneous system. In step
1, we discuss the approximation scheme, in step 2, we pass to the limit and in step 3, we give a prior bound.

Step 1. Approximation problems

Fix n ∈ N and define fn(s), gn(s) : R → (0,∞) by

fn(s)
def
=

{
f(s); s ⩽ n
f(n)
n s; n < s

, gn(s)
def
=

{
g(s); s ⩽ n
g(n)
n s; n < s

.

Then fn and gn are continuous functions on R .
For each n ∈ N, (u, v) ∈ E ∩X , we consider the following problem{

u′ + a(t)u = λb(t)fn(v), t ∈ R,
v′ + a(t)v = λb(t)gn(u), t ∈ R, (3.4)

which approaches (1.1) as n → +∞ . We will use Lemma 2.1 to treat (3.4) and thus we rewrite (3.4) in the
form of system (2.2) as {

u′ + a(t)u = λb(t) f(n)n v+ + λb(t)f̃n(v), t ∈ R,
v′ + a(t)v = λb(t) g(n)n u+ + λb(t)g̃n(u), t ∈ R,

(3.5)

where f̃n(x)
def
= fn(x)− f(n)

n x+ and g̃n(x)
def
= gn(x)− g(n)

n x+ . We note that f̃n(x) and g̃n(x) are bounded in
R . Indeed, since fn(x) is nondecreasing and fn(x) = f(x) > 0 for x ⩽ n , we get

|f̃n(x)| ⩽ sup
x∈R

∣∣∣∣fn(x)− f(n)

n
x+

∣∣∣∣ ⩽ max
x∈[0,n]

∣∣∣∣fn(x)− f(n)

n
x+

∣∣∣∣+ f(0) = const. < +∞,

where the constant is independent of x and depends on n . We can repeat the same argument for g̃n .

Since fn, gn > 0 , it is easy to see that (3.5) satisfies the hypotheses of Lemma 2.1 with θ1 = f(n)
n and

θ2 = g(n)
n , f̃ = f̃n, g̃ = g̃n, and ν1 = ν1,n

def
= µ1n√

f(n)g(n)
. Then by Lemma 2.1, ν1,n is the unique bifurcation

point from infinity for (3.5) and there exists a continuum Cn of positive solutions of (3.5) bifurcating from
infinity at ν1,n satisfying the properties (i)–(iii) of Lemma 2.1. In particular, (0, (0, 0)) ∈ Cn , Cn is bounded
above by the hyperplane λ = λ∗ .

Step 2. Passing to the limit

Now we verify {Cn} satisfying the conditions of Lemma 2.4. By the definition of the continuum, Cn is
closed.

Since all of Cn contain (0, (0, 0)) , we can choose zn ∈ Cn such that zn = (0, (0, 0)) for each n = 1, 2, · · · .
Naturally, zn → z∗ = (0, (0, 0)) , the condition (i) of Lemma 2.4 is satisfied.

Obviously, because of the unboundedness of {Cn} , then

dn = sup{|µ|+ ‖(u, v)‖ | (µ, (u, v)) ∈ Cn} = +∞,

(ii) of Lemma 2.4 holds.
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(iii) in Lemma 2.4 can be deduced directly from the Arzelà-Ascoli theorem and the definition of fn, gn .
Therefore, the superior limit of {Cn} contains a component C ⊂ Π joining (0, (0, 0)) with infinity, and

it follows from u, v > 0 for λ > 0 whenever (λ, (u, v)) ∈ C , which establishes (a). Part (b) follows from
(0, (0, 0)) ∈ C and f(0), g(0) > 0 . (c) in Theorem 1.3 can be deduced directly from the Theorem 1.2.

Step 3. A prior bounds

Next we show for any closed and bounded interval I ⊂ (0, λ∗) , there exists M > 0 , such that

sup{‖(x, y)‖ | (µ, (x, y)) ∈ C , µ ∈ I} ⩽ M.

Suppose on the contrary that there exist {(µn, (xn, yn))} ⊂ C ∩ (I ×K) with

‖(xn, yn)‖ → +∞.

This implies that for arbitrary t ∈ R ,

(xn, yn) = µnQ(xn, yn) = (µn

∫ 1

0

G(t, s)f(yn(s− τ(s)))ds, µn

∫ 1

0

G(t, s)f(xn(s− τ(s))ds),

where Q : E → E denotes the mapping

(x, y) 7→ L−1(f(y), g(x)).

Let (x̂n, ŷn) =
(xn,yn)

∥(xn,yn)∥ , then ‖(x̂n, ŷn)‖ = 1, it follows

(x̂n, ŷn) = µn
Q(xn, yn)

‖(xn, yn)‖
.

Choosing a subsequence of {(µn, (x̂n, ŷn))} and relabelling if necessary, it follows that there exists (µ0, (x0, y0)) ∈
I × E with ‖(x0, y0)‖ = 1 such that

lim
n→+∞

(µn, (x̂n, ŷn)) = (µ0, (x0, y0)),

combines this with (H3) and the positivity of G(t, s) , it follows that

(x0, y0) = µ0(+∞,+∞),

this contradicts ‖(x̂n, ŷn)‖ = 1 , therefore,

sup{‖(x, y)‖ | (µ, (x, y)) ∈ C , µ ∈ I} ⩽ M.

Finally, we prove C must bifurcate from infinity at λ → 0+ . Now let (λn, (un, vn)) ∈ C with
‖(µn, (un, vn))‖ → +∞ as n → +∞ and λn > 0 for all n ∈ N . Suppose to the contrary that λn → λ′ > 0 as
n → +∞ , then there exists a closed and bounded interval I such that λ′ ∈ I . By the above proof,

‖(un, vn)‖ ⩽ M < +∞

for all λ′ , a contradiction to ‖(un, vn)‖ → +∞ as n → +∞ , which establishes part (d) and completes the proof
of Theorem 1.3.
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4. Conclusion
In this paper, the global structure of positive periodic solutions for a class of superlinear first-order periodic
differential systems is studied by using the global bifurcation theory. The innovation of this paper is that we use
a new technique to provide the global behavior of the set of positive periodic solutions without the additional
conditions mentioned in previous papers.
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