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Abstract: In this work, complete Lyapunov functionals (LFs) are constructed and used for the established conditions
on the nonlinear functions appearing in the main equation, to guarantee stochastically asymptotically stable (SAS),
uniformly stochastically bounded (USB) and uniformly exponentially asymptotically stable (UEAS) in probability of
solutions to the nonautonomous third-order stochastic differential equation (SDE) with a constant delay as

...
x (t) + a(t)f(x(t), ẋ(t))ẍ(t) + b(t)φ(x(t))ẋ(t) + c(t)ψ(x(t− r))

+ g(t, x)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)).

In Section 4, we give two numerical examples as an application to illustrate the results.
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1. Introduction
Stochastic differential equation (SDE) is typically a dynamical system endowing random components that
models the evolution over time of particular phenomena that is subject to uncertainty. For instance the evolution
of a financial asset, risk assessment in insurance policy, etc.

To the best of our knowledge, SDE of the third-order with or without time-varying delays naturally
appears in multiple applications, where deterministic models are perturbed by the white noise or its generaliza-
tions [13, 23, 27, 28]. In most cases, SDEs are understood as a continuous time limit of the corresponding SDEs.
This understanding of SDEs is ambiguous and must be complemented by a proper mathematical definition of
the corresponding integral. Such a mathematical definition was first proposed by Kiyosi It ô , leading to what is
known today as the It ô formula (IF). Mathematically, stochastic delay differential equations (SDDEs) were first
introduced by It ô and Nisio [15], in which the existence and uniqueness of the solutions have been investigated.

More than one hundred years ago, Lyapunov introduced the concept of stability of a dynamical system
and created a very powerful tool known as the Lyapunov’s second method (LSM) in the study of stability and
boundedness. A manifest advantage of this method is that it does not require the knowledge of solutions for
equations and thus has exhibited a great power in applications. In general, many results have been obtained
on uniformly stochastically stable (USS) and USB of solutions for delay differential equations (DDEs) by using
LSM. See, for example [1, 2, 9, 10, 14, 20, 29–32, 34–41], and the references cited in therein.
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In the last decades, SDDEs have attracted a great interest in the literature because of their applications
in characterizing many problems in physics, mechanics, electrical engineering, biology, ecology and so on. See
[17, 24–26]. Some related papers will be presented on the kind of SDDEs. See, for example [3–8, 11, 12, 16, 19,
21, 22, 42].

Recently, Mahmoud and Tunç [22] investigated new criteria for USB and UEAS for a certain third-order
SDDE as

...
x (t) + Φ(x, ẋ)ẍ+G(ẋ(t− r)) + F (x(t− r)) + σx(t− h(t))ω̇(t) = P (t, x, ẋ, ẍ).

The purpose of this paper is to establish the sufficient conditions for SAS of the zero solution, USB and
UESA of all solution to third-order SDE with a constant delay as

...
x (t) + a(t)f(x(t), ẋ(t))ẍ(t) + b(t)φ(x(t))ẋ(t) + c(t)ψ(x(t− r))

+ g(t, x)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)),
(1.1)

where a(t) , b(t) and c(t) are positive and continuously differentiable functions on [0,∞) , also f(x, y), φ(x), g(t, x),
andψ(x) are continuous functions with φ(0) = ψ(0) = 0 , ω(t) ∈ Rn is standard Brownian motion, ω̇(t) = dω

dt .

In this study we will consider the derivatives a′(t) = da(t)
dt , b′(t) = db(t)

dt , c
′(t) = dc(t)

dt , ψ′ = dψ
dx and

fx(x, y) =
∂f(x,y)
∂x .

Remark 1.1 We will give the following remarks:

(1) In [37], Sadek investigated the asymptotic stability of DDE. Comparing his equation to (1.1), we find
f(x(t), ẋ(t)) = 1 and φ(x(t)) = 1 with p = 0 , then (1.1) can be reduced to Sadek’s equation without the
stochastic term.

(2) The obtained results in [3, 6, 7, 12, 42] are on second-order SDDE.

(3) In (1.1), if we let a(t) = a, b(t) = b, f(x(t), ẋ(t)) = 1, φ(x(t)) = 1, c(t) = 1 and g(t, x) = σx(t) , we note
that the equation studied by Ademola [8] represents a special case from (1.1) in this study.

(4) In 2015, Abou El-Ela and his students have begun studding the behaviour of SDDE, see [3–6] and then
Mahmoud et al. continued the studding of the SDDE, see [19, 21, 22]. Our paper represents a generalization
of all the above studding. For example, in (1.1), let a(t) = b(t) = c(t) = 1 , φ(x(t))ẋ(t) = G(ẋ(t− r)) and
g(t, x) = σx(t− h(t)) , it tends to the SDDE studied in [22].

2. Stability result

Let B(t) = (B1(t), . . . , Bm(t)) be an m -dimensional Brownian motion defined on the probability space.
Consider a nonautonomous n -dimensional SDDE

dx(t) =M(t, x(t), x(t− r))dt+N(t, x(t), x(t− r))dB(t), ∀ t ≥ 0, (2.1)

with initial data {x(θ) : −r < θ < 0}, x0 ∈ C([−r, 0];Rn) . Suppose that M : R+ × R2n → Rn and
N : R+ × R2n → Rn×m satisfy the local Lipschitz condition and the linear growth condition. Hence, for any
given initial value x(0) = x0 ∈ Rn , it is therefore known that Equation (2.1) has a unique continuous solution on
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t ≥ 0 , which is known as x(t;x0) in this section. Suppose that M(t, 0, 0) = 0 and N(t, 0, 0) = 0 , for all t ≥ 0 .
Hence, the SDDE admits the zero solution x(t; 0) ≡ 0 for any given initial value x0 ∈ C([−r, 0];Rn) .

Let C1,2(R+ ×Rn;R+) denote the family of nonnegative functions W (t, xt) defined on R+ ×Rn , which
are once continuously differentiable in t and twice continuously differentiable in x .

By IF we have
dW (t, xt) = LW (t, xt)dt+Wx(t, xt)N(t, xt)dB(t),

where

LW (t, xt) =Wt(t, xt) +Wx(t, xt)M(t, xt)

+
1

2
trace[NT (t, xt)Wxx(t, xt)N(t, xt)],

(2.2)

where Wx = (Wx1 , . . . ,Wxn) and Wxx = (Wxixj )n×n, i, j = 0, 1, 2, ..., n . Moreover, let K denote the family of
all continuous nondecreasing functions ρ : R+ → R+ such that ρ(0) = 0 and ρ(r) > 0 , if r > 0 . Here, we will
use the diffusion operator LW (t, xt) defined in (2.2) to replace W ′(t, xt) =

d
dtW (t, xt) .

Theorem 2.1 [8, 13] Assume that there exist W ∈ C1,2(R+ × Rn;R+) and ρ1, ρ2 , ρ3 ∈ K such that

ρ1(∥x∥) ≤W (t, xt) ≤ ρ2(∥x∥),

and
LW (t, xt) ≤ −ρ3(∥x∥), ∀ (t, xt) ∈ R+ × Rn.

Then, the zero solution of the SDDE (2.1) is SAS.

Now, we can give the following main theorem.

Theorem 2.2 In addition to the basic fundamental assumptions imposed on the functions f , φ and ψ appearing
in Equation (1.1), suppose that there exist the positive constants a1, a2, b1, b2, f1 L0, L, c1, φ2, α, σ and ψ0,

and the negative constant a0 such that the following conditions are satisfied:

(i) a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2 ≤ 1, and c1 ≤ c(t) ≤ 1, for all t ≥ 0.

(ii) a′(t) ≤ a0, −σ ≤ b′(t) ≤ c′(t) ≤ a′(t) ≤ 0 , t ≥ 0 .

(iii) 1 ≤ f(x, y) ≤ f1, with fx(x, y) < 0 for all x, y, 1 ≤ φ(x) ≤ φ2,

ψ(x)
x ≥ L0, x ̸= 0, and |ψ′(x)| ≤ L, such that ψ(x)signx > 0, sup {|ψ′(x)|} = ψ0

2 with a1b1 − ψ0 > 0 .

(iv ) |b2φ′(x)y| ≤ ∆ , for all (x, y, z) ∈ D where D is a domain in xyz -space containing the origin.

(v) {µb1 − ψ′(x)} ≥ ∆ = µb1 − ψ0

2 , for some ∆ > 0, with µ = a1b1+ψ0

4b1
.

(vi) g(t, x) ≤ αx, such that α2 ≤ 2c1L0 − a1 − b1 − 2.

(vii) ∆ ≥ 3 + b1 + µa0f1 and 2∆ ≥ b1.
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Therefore, the zero solution of (1.1) is SAS, provided that

r < min

{
2c1L0 − a1 − b1 − 2− α2

2L
,
∆− µa0f1 − b1 − 3

4(µ+ 1)L
,
2∆− b1

2b1

}
.

Proof of Theorem 2.2.
By considering p = 0 , (1.1) is equivalent to the following

ẋ = y,

ẏ = z,

ż = −a(t)f(x, y)z − b(t)φ(x)y − c(t)ψ(x) + c(t)

∫ t

t−r
ψ′(x(s))y(s)ds

− g(t, x)ω̇(t).

(2.3)

Define LF W1 =W1(xt, yt, zt) of the system (2.3) as the following

W1(xt, yt, zt) =µc(t)

∫ x

0

ψ(ξ)dξ + c(t)ψ(x)y + µa(t)

∫
0

y

f(x, η)ηdη + µyz

+
z2

2
+ xz + b(t)φ(x)

y2

2
+ x2 + λ

∫ 0

−r

∫ t

t+s

y2(θ)dθds,

(2.4)

where λ is a positive constant to be determined later in the proof.
Differentiating (2.4) and applying IF, then the time derivative of the function W1(t, xt, yt, zt) , along the

system (2.3), becomes

LW1(xt, yt, zt) =µc
′(t)

∫ x

0

ψ(ξ)dξ + c′(t)ψ(x)y + µa′(t)

∫ y

0

f(x, η)ηdη

+ µa(t)y

∫ y

0

fx(x, η)ηdη + c(t)ψ′(x)y2 + µz2 − µb(t)φ(x)y2

− a(t)f(x, y)z2 + yz − a(t)f(x, y)xz − b(t)φ(x)xy − c(t)ψ(x)x

+ 2xy + c(t)
(
µy + z + x

) ∫ t

t−r
ψ′(x(s))y(s)ds+ b′(t)φ(x)

y2

2

+ b(t)φ′(x)
y3

2
+ λry2 − λ

∫ t

t−r
y2(s)ds+

1

2
g2(t, x).

From the assumptions (i)− (iii) and (vi), we have

LW1(xt, yt, zt) ≤µc′(t)
∫ x

0

ψ(ξ)dξ + c′(t)ψ(x)y + b′(t)φ(x)
y2

2
+ µz2 + 2xy + yz

−
(
µb1 − ψ′(x)

)
y2 +

1

2
b2φ

′(x)y3 +
1

2
µa0f1y

2 − a1z
2 − a1xz

− b1xy − c1L0x
2 +

(
µy + z + x

) ∫ t

t−r
ψ′(x(s))y(s)ds

+ λry2 − λ

∫ t

t−r
y2(s)ds+

1

2
α2x2.
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Using the assumptions (iv) and (v) , we have {µb1 − ψ′(x)} ≥ ∆ and |b2φ′(x)y| ≤ ∆ . Therefore, the
above equation becomes

LW1(xt, yt, zt) ≤µc′(t)
∫ x

0

ψ(ξ)dξ + c′(t)ψ(x)y +
1

2
b′(t)φ(x)y2 + µz2 + 2xy + yz

− 1

2
∆y2 +

1

2
µa0f1y

2 − a1z
2 − a1xz − b1xy − c1L0x

2 +
1

2
α2x2

+
(
µy + z + x

) ∫ t

t−r
ψ′(x(s))y(s)ds+ λry2 − λ

∫ t

t−r
y2(s)ds.

Now, let the function R(t, x, y) be known as

R = µc′(t)

∫ x

0

ψ(ξ)dξ + c′(t)ψ(x)y +
1

2
b′(t)φ(x)y2. (2.5)

1. If c′(t) = 0 , then Equation (2.5) becomes

R =
1

2
b′(t)φ(x)y2 ≤ 0,by (ii). (2.6)

2. If c′(t) < 0 , then R(t, x, y) can be written as

R = µc′(t)R1(t, x, y),

where

R1 =

∫ x

0

ψ(ξ)dξ +
1

µ
ψ(x)y +

b′(t)

2µc′(t)
φ(x)y2.

The function R1(t, x, y) can be represented as follows:

R1 =

∫ x

0

ψ(ξ)dξ +
b′(t)φ(x)

2µc′(t)

(
y +

c′(t)

b′(t)φ(x)
ψ(x)

)2

− c′(t)

2µb′(t)φ(x)
ψ2(x).

By using assumption (ii) , we have 0 ≤ c′(t)
b′(t) ≤ 1 , and also from (iii) , we get

R1 ≥
∫ x

0

(1− ψ′(ξ)

µ
)ψ(ξ)dξ.

Since µ = a1b1+ψ0

4b1
, and by assumption (iii), we obtain

1− ψ′(ξ)

µ
≥ 1

µ

(
a1b1 + ψ0

4b1
− ψ0

2

)
=

{
a1b1 + ψ0(1− 2b1)

4µb1

}
.

Since b1 ≤ 1 , it follows that

R1 ≥ a1b1 − ψ0

4b1µ

∫ x

0

ψ(ξ)dξ.
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From the condition (iii) , we have a1b1 − ψ0 > 0 ; therefore, we conclude that R1 ≥ 0,

and since c′(t) < 0 , then the function R(t, x, y) becomes

R = µc′(t)R1 < 0.

Hence, from the two cases (1) and (2) it can be concluded that R ≤ 0 for all x , y and t ≥ 0 .
Thus, we have

LW1(xt, yt, zt) ≤µz2 + 2xy + yz − 1

2
∆y2 +

1

2
µa0f1y

2 − a1z
2 − a1xz

− b1xy − c1L0x
2 +

(
µy + z + x

) ∫ t

t−r
ψ′(x(s))y(s)ds

+ λry2 − λ

∫ t

t−r
y2(s)ds+

1

2
α2x2.

By applying the inequality 2|pq| ≤ p2 + q2 , and using the assumption |ψ′(x)| ≤ L, we obtain

LW1(xt, yt, zt) ≤−
{
2c1L0 − a1 − b1 − 2− α2

2
− L

2
r

}
x2

−
{
∆− 3− µa0f1 − b1

2
− µL

2
r − λr

}
y2

−
{
a1
2

− µ− 1

2
− L

2
r

}
z2

+

{
1

2
L(µ+ 2)− λ

}∫ t

t−r
y2(s)ds.

(2.7)

Take λ = 1
2L(µ+ 2) , and since µ = a1b1+ψ0

4b1
, so a1

2 − µ = a1b1−ψ0

4b1
= ∆

b1
> 0 , by (i), then we get

LW1(xt, yt, zt) ≤−
{
2c1L0 − 2− a1 − b1 − α2

2
− c2L

2
r

}
x2

−
{
∆− 3− µa0f1 − b1

2
− L(µ+ 1)r

}
y2

−
{
2∆− b1

2b1
− L

2
r

}
z2.

Therefore, suppose that

r < min

{
2c1L0 − a1 − b1 − 2− α2

2L
,
∆− µa0f1 − b1 − 3

4(µ+ 1)L
,
2∆− b1

2b1

}
.

Then, for positive constant δ1, we can write

LW1(t, xt, yt, zt) ≤ δ1(x
2 + y2 + z2). (2.8)
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Since
∫ 0

−r
∫ t
t+s

y2(θ)dθds is positive, we have

W1(xt, yt, zt) ≥µc(t)
∫ x

0

ψ(ξ)dξ + c(t)ψ(x)y + µa(t)

∫ y

0

f(x, η)ηdη

+ µyz +
z2

2
+ xz + b(t)φ(x)

y2

2
+ x2.

From the assumptions (i)− (iii) , we get

W1(xt, yt, zt) ≥ µc1

∫ x

0

ψ(ξ)dξ + c1ψ(x)y + µa1
y2

2
+ µyz +

z2

2
+ xz + b1

y2

2
+ x2.

Now, we can write the above equation as

W1(xt, yt, zt) ≥
1

2b1

{
b1y + c1ψ(x)

}2
+

(
µy +

z

2

)2
+
µ

2

(
a1 − 2µ

)
y2 +

(
x+

z

2

)2
+

c1
2b1y2

[
4

∫ x

0

ψ(ξ)

{
(µb1 − c1ψ

′(ξ))ηdη

}
dξ

]
.

Since µb1 − c1ψ
′(ξ) = a1b1+(1−2c1)ψ0

4 > a1b1−ψ0

4 > 0, by (i) ; therefore, we conclude

W1(xt, yt, zt) ≥
1

2b1

{
b1y + c1ψ(x)

}2
+
(
µy +

z

2

)2
+
µ

2

(
a1 − 2µ

)
y2

+
(
x+

z

2

)2
+
c1(a1b1 − ψ0)

4

∫ x

0

ψ(ξ)dξ.

(2.9)

Since a1 − 2µ = a1b1−ψ0

2b1
> 0, by (iii) , we get

W1(xt, yt, zt) ≥ δ2(x
2 + y2 + z2) for some δ2 > 0. (2.10)

By applying the assumptions (i)− (iii) , we have

W1(xt, yt, zt) ≤
1

2
µLx2 + Lxy +

1

2
µa2f1y

2 + µyz +
z2

2
+ xz + x2

+
1

2
b2φ2y

2 + λ

∫ 0

−r

∫ t

t+s

y2(θ)dθds.

Since ∫ 0

−r

∫ t

t+s

y2(θ)dθds ≤ ∥y∥2
∫ t

t−r
(θ − t+ r)dθ =

r2

2
∥y∥2. (2.11)

Therefore, from the inequality pq ≤ 1
2 (p

2 + q2), we obtain

W1(xt, yt, zt) ≤
1

2

{
(µ+ 1)L+ 3

}
∥x∥2 + 1

2

{
L+ µ(a2f1 + 1)

+ b2φ2 + λr2
}
∥y∥2 + 1

2
(µ+ 2)∥z∥2.

(2.12)
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Then, we get

W1(xt, yt, zt) ≤ δ3(x
2 + y2 + z2) for some δ3 > 0. (2.13)

Hence, from the results (2.8), (2.10) and (2.13), we find that all conditions of Theorem 2.1 are satisfied.
The proof of Theorem 2.2 is now complete.

3. Boundedness result
Assuming Equation (2.1) and the function W (t, xt) chosen from C1,2(R+ × Rn;R+) satisfies the following.

Assumption 3.1 [18, 33] We assume that for any solution x(t) of (2.1) and for any fixed 0 ≤ t0 ≤ T < ∞ ,
the following condition hold:

Ex0

{∫ T

t0

W 2
xi
(t, xt))N

2
ik(t, xt)dt

}
<∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m. (3.1)

Theorem 3.1 [18, 33] Suppose that there exists a function W (t, xt) in C1,2(R+×Rn;R+) satisfying Assumption
3.1, such that for all (t, xt) ∈ R+ × Rn :

(i)∥x∥q1 ≤W ≤ ∥x∥q2 ,

(ii)LW ≤ −ν(t)∥x∥n + β(t),

(iii)W −Wn/q2 ≤ γ,

where ν, β ∈ C(R+;R+), q1, q2, n are positive constants, q1 ≥ 1 and γ is a nonnegative constant. Then all
solutions of (2.1) satisfy

Ex0∥x(t; t0, x0)∥ ≤
{
W (t0, x0)e

−
∫ t
t0
ν(s)ds

+

∫ t

t0

(
γν(u) + β(u)

)
e−

∫ t
u
ν(s)dsdu

}1/q1

,

for all t ≥ t0.

Definition 3.1 [18, 33] Let M(t, 0, 0) = 0 and N(t, 0, 0) = 0 . We say that the zero solution of (2.1) is ν -

UEAS in probability, if there exists a positive continuous function ν(t) such that
∫ t
t0
ν(s)ds → ∞ as t → ∞

and constants Γ, C ∈ R+ such that any solution x(t; t0, x0) of (2.1) satisfies the following

Ex0∥x(t, t0, x0)∥ ≤ C(∥x0∥, t0)
(
e
−

∫ t
t0
ν(s)ds)Γ

, for all t ≥ t0,

where the constant C may depend on t0 and x0 . The zero solution of (2.1) is said to be ν -UEAS in probability,
if C is independent of t0 .

Corollary 3.1 [18, 33] Suppose that the hypotheses of Theorem 3.1 hold. In addition∫ t

t0

{
γν(u) + β(u)

}
e−

∫ t
u
ν(s)dsdu ≤ M, for all t ≥ t0 ≥ 0, (3.2)

for some positive constant M , then all solutions of (2.1) are USB.
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Corollary 3.2 [18, 33] Suppose M(t, 0, 0) = 0 and N(t, 0, 0) = 0 . Assume∫ t

t0

{
γν(u) + β(u)

}
e
∫ u
t0
ν(s)ds

du ≤ M, for all t ≥ t0 ≥ 0, (3.3)

for some positive constant M and ∫ t

t0

ν(s)ds→ ∞, as t→ ∞. (3.4)

If the hypotheses of Theorem 3.1 hold, then the zero solution of (2.1) is ν -UEAS in probability with
Γ = 1/q1 .

Theorem 3.2 If the conditions (i) − (vii) of Theorem 2.2 hold. In addition, we assume that the following
conditions are satisfied:

(viii) α2 ≤ 2c1L0(a1b1−ψ0+1)−a1−b1−2
a1+1 .

(ix) |p(t, x(t), ẋ(t), ẍ(t))| ≤ m, m > 0.

Then,

(1) All solutions of Equation (1.1) are USB, provided that

r <min

{
2c1L0(a1b1 − ψ0 + 1)− (a1 + b1 + 2)− (a1 + 1)α2

2(a1b1 − ψ0 + 1)L
,

∆+ a1ψ0 − µa0f1 − (b1 + 3)

2L(2a21 + a1 + µ+ 2 + a1b1 − ψ0)L
,

2∆− b1
2Lb1(a1 + 1)

}
.

(2) The zero solution of (1.1) is ν−UEAS in probability.

Proof of Theorem 3.2.
In this case, we have p ̸= 0 and the equivalent system is

ẋ = y,

ẏ = z,

ż = −a(t)f(x, y)z − b(t)φ(x)y − c(t)ψ(x) + c(t)

∫ t

t−r
ψ′(x(s))y(s)ds

− g(t, x)ω̇(t) + p(t, x, y, z).

Consider the function

W (xt, yt, zt) =W1(xt, yt, zt) +W2(xt, yt, zt),

where W1 is defined as (2.4) and we can define Lyapunov functional W2 as the following

W2(xt, yt, zt) =c(t)a
2
1

∫ x

0

ψ(ξ)dξ + a(t)a21

∫ y

0

f(x, η)ηdη + a1c(t)ψ(x)y

+
b1
2
(a1b1 − ψ0)x

2 + (a1b1 − ψ0)x(z + a1y)

+ a21yz +
ψ0

2
c(t)y2 +

a1
2
z2.

(3.5)
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Differentiating (3.5) by applying IF (2.2) and using the assumptions of Theorem 2.2, we get

LW2(xt, yt, zt) ≤c′(t)a21
∫ x

0

ψ(ξ)dξ + a1c
′(t)ψ(x)y +

ψ0

2
c′(t)y2 − a1ψ0

2
y2

+ a21a
′(t)

∫ y

0

f(x, η)ηdη − (a1b1 − ψ0)c1L0x
2 +

a1
2
g2(t, x)

+

{
(a1b1 − ψ0)x+ a21y + a1z

}∫ t

t−r
ψ′(x(s))y(s)ds

+

{
(a1b1 − ψ0)x+ a21y + a1z

}
p(t, x(t), ẋ(t), ẍ(t)).

Now, let the function R2(t, x, y) take the form

R2 =c′(t)a21

∫ x

0

ψ(ξ)dξ + a1c
′(t)ψ(x)y +

ψ0

2
c′(t)y2

+ a21a
′(t)

∫ y

0

f(x, η)ηdη.

(3.6)

We have here two cases:

Case 1. If c′(t) = 0 and from (ii) , then Equation (3.6) becomes

R1 = a21a
′(t)

∫ y

0

f(x, η)ηdη ≤ a21a0

∫ y

0

f(x, η)ηdη ≤ 0.

Case 2. If c′(t) < 0 , then R2(t, x, y) can be written as

R2 = c′(t)R3(t, x, y), (3.7)

where

R3 = a21

∫ x

0

ψ(ξ)dξ + a1ψ(x)y +
ψ0

2
y2 + a21

a′(t)

c′(t)

∫ y

0

f(x, η)ηdη.

It follows that

R3 =
a21a

′(t)

c′(t)

∫ y

0

f(x, η)ηdη +
1

2ψ0
(ψ0y + a1ψ(x))

2

+
a21

2ψ0y2

[
4

∫ x

0

ψ(ξ)dξ

{∫ y

0

(ψ0 − ψ′(ξ)

}
ηdη

]
.

By using the condition (ii) , we have 0 ≤ a′(t)
c′(t) ≤ 1 , and since ψ0 − ψ′(ξ) ≥ ψ0

2 , by (iii) , we find

R3 ≥ 1

2ψ0

(
ψ0y + a1ψ(x)

)2

+
a21
2

∫ x

0

ψ(ξ)dξ ≥ 0.

Then, we conclude

R2 = c′(t)R3(t, x, y) ≤ 0.
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Therefore, on combining the two cases for c′(t) , we obtain R2(t, x, y) ≤ 0 , for all x , y, and t ≥ 0 .
Thus, we get

LW2(xt, yt, zt) ≤− a1ψ0

2
y2 − (a1b1 − ψ0)c1L0x

2 +
a1
2
g2(t, x)

+

{
(a1b1 − ψ0)x+ a21y + a1z

}∫ t

t−r
ψ′(x(s))y(s)ds

+

{
(a1b1 − ψ0)x+ a21y + a1z

}
p(t, x, y, z).

Now, from the assumptions of Theorem 3.2 and by applying the fact that |pq| ≤ 1
2 (p

2 + q2) , we conclude

LW2(xt, yt, zt) ≤−
{
2(a1b1 − ψ0)c1L0 − a1α

2

2
− (a1b1 − ψ0)L

2

}
x2

−
{
a1ψ0

2
− a21L

2
r

}
y2 +

1

2
a1Lrz

2

+

{
(a1b1 − ψ0)L

2
+

(a21 + a1)L

2

}∫ t

t−r
y2(s)ds

+

{
(a1b1 − ψ0)|x|+ a21|y|+ a1|z|

}
m.

(3.8)

Now, from Equation (1.1), Lyapunov functional W1 in (2.4), and by using Equation (2.7), we conclude

LW1(t, xt, yt, zt) ≤−
{
2c1L0 − a1 − b1 − 2− α2

2
− L

2
r

}
x2

−
{
∆− 3− µa0f1 − b1

2
− µL

2
r − λr

}
y2

−
{
a1
2

− µ− 1

2
− L

2
r

}
z2 +

{
1

2
L(µ+ 2)− λ

}∫ t

t−r
y2(s)ds

+
(
|x|+ µ|y|+ |z|

)
m.

(3.9)

By combining Equations (3.8) and (3.9), we obtain

LW (t, xt, yt, zt) ≤−
{
2c1L0(a1b1 − ψ0 + 1)− (a1 + b1 + 2)− (a1 + 1)α2

2

− (a1b1 − ψ0 + 1)L

2
r

}
x2 −

{
a1ψ0 +∆− µa0f1 − (b1 + 3)

2

− a21
2
Lr − λr

}
y2 −

{
2∆− b1

2b1
− (a1 + 1)L

2
r

}
z2

+

{
(a1b1 − ψ0)L+ (a21 + a1)L+ (µ+ 2)L

2
− λ

}∫ t

t−r
y2(s)ds

+
{
(a1b1 − ψ0 + 1)|x|+ (a21 + µ)|y|+ (a1 + 1)|z|

}
m.
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Choose λ =
{(a1b1−ψ0)+a

2
1+a1+µ+2}L
2 ; therefore, the above equation becomes

LW (t, xt, yt, zt) ≤−
{
2c1L0(a1b1 − ψ0 + 1)− (a1 + b1 + 2)− (a1 + 1)α2

2

− (a1b1 − ψ0 + 1)L

2
r

}
x2 −

{
a1ψ0 +∆− µa0f1 − (b1 + 3)

2

− (2a21 + a1b1 − ψ0 + a1 + µ+ 2)L

2
r

}
y2

−
{
2∆− b1

2b1
− (a1 + 1)L

2
r

}
z2

+
{
(a1b1 − ψ0 + 1)|x|+ (a21 + µ)|y|+ (a1 + 1)|z|

}
m.

If

r <min

{
2c1L0(a1b1 − ψ0 + 1)− (a1 + b1 + 2)− (a1 + 1)α2

2(a1b1 − ψ0 + 1)L
,

∆+ a1ψ0 − µa0f1 − (b1 + 3)

2L(2a21 + a1 + µ+ 2 + a1b1 − ψ0)L
,

2∆− b1
2Lb1(a1 + 1)

}
.

Thus, we have the following

LW ≤ −H(x2 + y2 + z2) + kH(|x|+ |y|+ |z|)

= −H
2
(x2 + y2 + z2)− H

2
{(|x| − k)2 + (|y| − k)2 + (|z| − k)2}+ 3H

2
k2

≤ −H
2
(x2 + y2 + z2) +

3H

2
k2, for some k,H > 0,

where

k = mmax{a1b1 − ψ0 + 1, a21 + µ, a1 + 1}.

By the conditions (i)− (iii) of Theorem 2.2, we have

W2(xt, yt, zt) ≥a21c1
∫ x

0

ψ(ξ)dξ +
c1
2ψ0

(
ψ0y + a1ψ(x)

)2 − a21c1
2ψ0

ψ2(x) +
a1
2
(z + a1y)

2

+
(a1b1 − ψ0)

2b1

{
b1x+ (z + a1y)

}2

− (a1b1 − ψ0)

2b1
(z + a1y)

2.

Therefore, we get

W2(xt, yt, zt) ≥
c1a

2
1

2ψ0y2

[
4

∫ x

0

ψ(ξ)dξ

{∫ y

0

(
ψ0 − ψ′(ξ)

)}
ηdη

]
+

c1
2ψ0

(ψ0y + a1ψ(x))
2

+
(a1b1 − ψ0)

2b1

{
b1x+ (z + a1y)

}2

+
ψ0

2b1
(z + a1y)

2.
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From the condition (iii) , we obtain

W2(xt, yt, zt) ≥
c1a

2
1

2

∫ x

0

ψ(ξ)dξ +
c1
2ψ0

(
ψ0y + a1ψ(x)

)2
+

(a1b1 − ψ0)

2b1

{
b1x+ (z + a1y)

}2
+
ψ0

2b1
(z + a1y)

2.

(3.10)

Therefore, by both Equations (2.9) and (3.10), we conclude

W (xt, yt, zt) ≥
1

2b1

{
b1y + c1ψ(x)

}2

+
(
µy +

z

2

)2
+
µ

2
(a1 − 2µ)y2 + (x+

z

2
)2

+
c1(a1b1 − ψ0 + 2a21)

4

∫ x

0

ψ(ξ)dξ +
c1
2ψ0

(
ψ0y + a1ψ(x)

)2

+
(a1b1 − ψ0)

2b1

{
b1x+ (z + a1y)

}2

+
ψ0

2b1
(z + a1y)

2.

Therefore, for positive constant δ4 , we have

W (xt, yt, zt) ≥ δ4(x
2 + y2 + z2). (3.11)

From (3.5) and using the conditions (i)− (iii) of Theorem 2.2, we find

W2(xt, yt, zt) ≤a21Lx2 + a2a
2
1f1y

2 + a1Lxy +
b1
2
(a1b1 − ψ0)x

2

+ (a1b1 − ψ0)x(z + a1y) + a21yz +
ψ0

2
y2 +

a1
2
z2.

By using the fact that 2pq ≤ (p2 + q2) , then the last inequality becomes

W2(xt, yt, zt) ≤
{
(a21 + a1)L+ (a1b1 − ψ0)(a1 + b1 + 1)

2

}
∥x∥2

+

{
a21a2f1 + a1L+ ψ0 + a21 + a1(a1b1 − ψ0)

2

}
∥y∥2

+

{
(a1b1 − ψ0) + a1 + a21

2

}
∥z∥2.

(3.12)

Hence, by combining the two inequalities (2.12) and (3.12), we obtain

W (xt, yt, zt) ≤
{
(µ+ 1 + a21 + a1)L+ (a1b1 − ψ0)(a1 + b1 + 1) + 3

2

}
∥x∥2

+

{
a21a2f1 + (a1 + 1)L+ ψ0 + µ(a2f1 + 1)

2

+
a21 + b2φ2 + a1(a1b1 − ψ0) + λr2

2

}
∥y∥2

+

{
(a1b1 − ψ0) + (a1 + a21) + (µ+ 2)

2

}
∥z∥2.
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Consequently, for positive constant δ5 , we conclude

W ≤ δ5(∥x∥2 + ∥y∥2 + ∥z∥2). (3.13)

Thus, the assumptions (ii) of Theorem 3.1 is satisfied by taking ν(t) = H/2, β(t) = (3H/2)k2 and
n = 2 . From inequalities (3.11) and (3.13), we see that the LF W (xt, yt, zt) also satisfies the condition (i) of
Theorem 3.1. As well as we can test that the condition (iii) of Theorem 3.1 is satisfied with q1 = q2 = n = 2

with γ = 0 . Then, all conditions of Theorem 3.1 hold.

Therefore, with ν(t) = H/2, β(t) = (3H/2)k2 and n = 2 , with γ = 0 , we find that∫ t

t0

{γν(u) + β(u)}e−
∫ t
u
ν(s)dsdu = (3H/2)k2

∫ t

t0

e−
H
2

∫ t
u
dsdu ≤ 3k2,

for all t ≥ t0 ≥ 0 . Thus, condition (3.2) holds. Now, since

gT = (00 − g(t, x)),

Wx = (W1)x + (W2)x

= µc(t)ψ(x) + 2x+ z + c(t)ψ′(x)y + b(t)φ′(x)
y2

2
+ c(t)a21ψ(x)

+ a1c(t)ψ
′(x)y + b1(a1b1 − ψ0)x+ (a1b1 − ψ0)(z + a1y),

Wy = (W1)y + (W2)y

= c(t)ψ(x) + µa(t)f(x, y)y + µz + b(t)φ(x)y + a21a(t)f(x, y)y

+ a1c(t)ψ(x) + (a1b1 − ψ0)a1x+ a21z + ψ0c(t)y,

Wz = (W1)z + (W2)z = µy + z + x+ (a1b1 − ψ0)x+ a21y + a1z.

Then, we have

|Wxi
(t, x)Nik(t, x)| ≤α

[{
µ+ 3 + 2(a1b1 − ψ0) + a21 + a1

2

}
x2 +

(
µ+ a21

2

)
y2

+

(
a1 + 1

2

)
z2
]
:= ϑ(t).

Therefore, condition (3.1) is satisfied. Hence, by Corollary 3.1 all solutions of (1.1) are USB and satisfy

Ex0∥x(t, t0, x0)∥ ≤ {Cx20 + 3k2}1/2, for all t ≥ t0 ≥ 0,

where C is a constant. Next,∫ t

t0

{γν(u) + β(u)}e
∫ u
t0
ν(s)ds

du = (3H/2)k2
∫ t

t0

e
H
2

∫ u
t0
ds
du

= 3k2(et−t0 − 1) ≤ M,

for all t ≥ t0 ≥ 0 , where M is a positive constant. Hence condition (3.3) is satisfied. We can see that condition
(3.4) is also satisfied. By Corollary 3.2, we find that the zero solution of (1.1) is ν -UEAS in probability with
Γ = 1/2 .
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4. Examples
Example 4.1 With p = 0 , consider the following SDDE of third-order

...
x (t) + (−2 sin t+ 13.5)

(
1 +

3

5 + 2x5 + ẋ4

)
ẍ(t) +

(
1− 1

10− t4
)(
1 +

1

8
e−x

)
ẋ(t)

+
(
1− 1

8− t2
){

20x
1
5 (t− r) +

1

4
sinx(t− r)

}
+

1

4
xe−tẇ(t) = 0.

(4.1)

The equivalent system of (4.1) is

ẋ = y,

ẏ = z,

ż = −(−2 sin t+ 13.5)
(
1 +

3

5 + 2x5 + y4
)
z

−
(
1− 1

10− t4
)(
1 +

1

8
e−x

)
y −

(
1− 1

8− t2
)(
20x

1
5 +

1

4
sinx

)
+
(
1− 1

8− t2
) ∫ t

t−r

(
4x

−4
5 (s) +

1

4
cosx(s)

)
y(s)ds

− 1

4
xe−tẇ(t).

(4.2)

If we compare system 2.3 with system 4.2, we get the following

a(t) = −2 sin t+ 13.5,

we notice that

11.5 ≤ −2 sin t+ 13.5 ≤ 15.5, then a1 = 11.5, a2 = 15.5.

And also

a′(t) = −2 cos t, it follows that − 2 ≤ a′(t) ≤ −1, so a0 = −1.

Figures 1 and 2 show the bounds of a(t) with t ∈ [−8π, 8π] and a′(t) with t ∈ [0, π3 ] .

The function

f(x, y) = 1 +
3

5 + 2x5 + y4
, since 0 ≤ 3

5 + 2x5 + y4
≤ 3

5
,

therefore, we find

1 ≤ f(x, y) ≤ 8

5
, then f1 =

8

5
,

and

fx(x, y) =
−30x4

(5 + 2x5 + y4)2
< 0.
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Figure 1. Trajectory of a(t) . Figure 2. Trajectory of a′(t) .

Figure 3. Trajectory of f(x, y) . Figure 4. Trajectory of f(x, y) .

Figure 5. Trajectory of fx(x, y) .
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Figures 3 and 4 illustrate the path of the function f(x, y) , with x ∈ [−1, 1] and y ∈ [−5.5] and also Figure 5
shows the behaviour of the function fx(x, y) with x ∈ [−1, 1] and y ∈ [−5.5] .

The function

b(t) = 1− 1

10− t4
, then

9

10
≤ b(t) ≤ 1 and b1 = 0.9.

The derivative of b(t) in terms to t is

b′(t) =
−4t3

(10− t4)2
≤ 0.

Now, the function

ψ(x) = 20x
1
5 +

1

4
sinx, so we get ψ(x)

x
= 20x

−4
5 +

1

4x
sinx.

We know that

−1

4
≤ 1

4x
sinx ≤ 1

4
,

thus, we get

ψ(x)

x
≥ 8.31 = L0.

And also

|ψ′(x)| =|4x− 4
5 +

1

4
cosx| ≤ 4.25 = L; therefore, we find

sup {|ψ′(x)|} = 4.25 =
ψ0

2
, then ψ0 = 8.5.

Now, Figures 6 and 7 show the path of the functions ψ′(x) and ψ(x)
x with x ∈ [1, 3] .

We have also the function

c(t) = 1− 1

8− t2
so, 7

8
≤ c(t) ≤ 1, c1 =

7

8
, with c′(t) =

−2t

(8− t2)2
≤ 0.

The paths of b(t) and c(t) for t ∈ [−10, 10] are depicted in Figure 8.
The function

g(t, x) =
1

4
xe−t, then g2(t, x) =

1

16
x2e−2t ≤ 1

16
x2.

Figures 9 and 10 show the trajectory of g2(t, x) for all t and x, t ∈ [−4.4] .
First, we get

2c1L0 − a1 − b1 − 2 = 0.14 >
1

16
= α2.
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Figure 6. The path of ψ′(x) . Figure 7. The path of ψ(x)
x

.

Figure 8. Trajectory of b(t) and c(t) .

Second, with µ = a1b1+ψ0

4b1
= 5.24 , then we obtain

3 + b1 + µa0f1 = −4.48, and ∆ =
a1b1 − ψ0

4
= 0.46 > 0,

it follows that

∆ > 3 + b1 + µa0f1.
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Figure 9. Trajectory of the function g2(t, x) . Figure 10. Trajectory of the function g2(t, x) .

Finally, we conclude

LW1(t, xt, yt, zt) ≤− (0.04− 2.13r)x2 − {2.47− (
µL

2
+ λ)r}y2

− {0.01− 2.63r}z2 +
{
1

2
L(µ+ 2)− λ

}∫ t

t−r
y2(s)ds.

Take λ = L
2 (µ+ 2) = 15.39 > 0 ; therefore, we get

LW1(t, xt, yt, zt) ≤ −
(
0.04− 2.13r

)
x2 − (2.47− 29.15r)y2 + {0.01− 2.63r}z2.

Provided that

r < min{0.01, 0.04, 0.002} ∼= 0.002.

Hence, all conditions of Theorem 2.2 are satisfied, then the zero solution of (4.1) is SAS.

Example 4.2 Consider here p ̸= 0 , then the SDDE (4.1) becomes

...
x (t) + (−2 sin t+ 13.5)

(
1 +

3

5 + 2x5 + ẋ4

)
ẍ(t) +

(
1− 1

10− t4
)(
1 +

1

8
e−x

)
ẋ(t)

+
(
1− 1

8− t2
){

20x
1
5 (t− r) +

1

4
sinx(t− r)

}
+

1

4
xe−tẇ(t) = p(t, x, ẋ(t), ẍ(t)).

(4.3)

We have

2c1L0(a1b1 − ψ0 + 1)− a1 − 2

a1 + 1
= 2.43 >

1

16
= α2.
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Thus, we obtain

LW ≤− (13.58− 6.06r)x2

− {51.35− (24.4 + λ)r}y2 − {0.01− 26.56r}z2

+

{
(a1b1 − ψ0)L+ (a21 + a1)L+ (µ+ 2)L

2
− λ

}∫ t

t−r
y2(s)ds

+ {(a1b1 − ψ0 + 1)|x|+ (a21 + µ)|y|+ (a1 + 1)|z|}m.

Take λ =
{(a1b1−ψ0)+a

2
1+a1+µ+2}L
2 = 324.79 > 0 and let m = 0.01 , then we find

LW ≤−
(
13.58− 6.06r

)
x2

− (51.35− 349.23r)y2 −
(
0.01− 26.56r

)
z2

+ 0.03|x|+ 1.37|y|+ 0.13|z|,

with

r < min {1.12, 0.07, 0.0002}.

If we take H = 0.3 and m = 0.01 , then we obtain

k = 0.01max{2.58, 137.49, 12.5} ∼= 1.37.

Now, we can satisfy the condition (ii) of Theorem 3.1 by taking

ν = 0.15 and β(t) = 0.84, with n = 2.

Then, since q1 = q2 = n = 2 , we get all assumptions of Theorem 3.1 are satisfied.
It follows from the above estimates, the following inequality holds

∫ t

t0

{γν(u) + β(u)}e
∫ u
t0
ν(s)ds

du ≤ 5.63, for all t ≥ t0 ≥ 0.

Furthermore,

|Wxi
(t, x)Nik(t, x)| ≤

1

4

(
77.85x2 + 68.75y2 + 6.25z2

)
:= ϑ(t).

Next,

Ex0∥x(t, t0, x0)∥ ≤ {x20 + 5.63}1/2, for all t ≥ t0 ≥ 0. (4.4)

Hence condition (3.3) is satisfied. By Corollary 3.2, we conclude that the zero solution of (4.3) is ν -UEAS in
probability with Γ = 1/2 .
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Simulation of the solutions: Here, by the numerical methods we will simulate the solutions of (4.1)
and (4.3). Consequently, Figures 11 and 12 show the behaviour of the stochastic stability of the solution for
(4.1) with the noise α = 0.25 and α = 10 , respectively. Furthermore, Figures 13–15 illustrate the behaviour of
the boundedness of the solutions for (4.3), with the noise α = 0.25, α = 10, and α = 100, respectively. Hence,
we get from our figures, the simulated solutions are SAS and USB which justifies our given results.

Figure 11. The behaviour for the stability of the solutions for (4.1), with α = 0.25. .

Figure 12. The behaviour for the stability of the solutions for (4.1), with α = 10. .

Figure 13. The path of the bonundedness for the solutions for (4.3), with α = 0.25. .
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Figure 14. The path for the bonundedness of the solutions for (4.3), with α = 10. .

Figure 15. The path of the bonundedness of the solutions for (4.3), with α = 100. .

5. Conclusion
The main results of the paper have discussed the following objects:
First: with p = 0 , sufficiency criteria were established to study the SAS of the zero solution for (1.1).
Next: with p ̸= 0 , we established the sufficient conditions of the USB and UEAS in probability of solutions for
(1.1).
Finally: two examples were given to illustrate feasibility of the established results and correctness of the main
results. Lyapunove direct method was employed to set up the results.

The results obtained in this investigation extend many existing and exciting results on nonlinear nonau-
tonomous third-order SDDE.
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