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Abstract: With the aid of regular integral operators, we will be able to generalize statistical limit-cluster points and
statistical limit inferior-superior ideas on time scales in this work. These two topics, which have previously been researched
separately from one another sometimes only in the discrete case and other times in the continuous case, will be studied
at in a single study. We will investigate the relations of these concepts with each other and come to a number of new
conclusions. On some well-known time scales, we shall analyze these ideas using examples.
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1. Introduction
In nature, researchers must deal with variables that contain both discrete and continuous situations. In some
real-world problems, a variable may be continuous for some time before becoming discrete or vice versa. For
instance, while modelling an insect population, we can need a continuous variable while in the season but this
variable may become discrete in winter (see [9, 10]). As a result, the necessity to establish a new variable
that encompasses both discrete and continuous cases as well as those in between them has arisen. In fact, the
idea of combining discrete and continuous cases is quite old and may even be dated back to the origins of the
Riemann-Stieltjes integral, which combines sums and integrals. Finally, Stefan Hilger filled this fundamental
gap in the literature in 1988 in his PhD thesis [26] by introducing measure chains, which would later be called
time scale calculus. Since any discipline that needs simultaneous modeling of discrete and continuous data can
benefit from the use of time scale calculus, it has received intense attention from researchers from many different
fields, from ecology to economics to control theory to population models (see, i.e.[1, 5–8, 27, 31, 37]). By 2012,
the first use of time scales in summability theory was presented in [38]. Thus, the first convergence method,
which is called statistical convergence on time scales was defined. Since then, many researchers have attempted
to answer the question, ”Is it possible to transfer the convergence methods studied in discrete analysis, i.e. in
natural numbers, to any time scale?” Many studies have been inspired by this question (see [39–42]).

One of the important convergence methods in summability theory is the concept of statistical convergence
which was introduced by Fast [19]. A nonnegative regular summability matrix A can be used to generalize the
concept of statistical convergence for number sequences in the classical case. This idea was first mentioned by
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Buck [12] and further studied by different authors [14, 15, 17, 18, 33]. This generalized limit is then referred
to as A -statistical convergence. In our most recent study, inspired by the previously mentioned generalization
of natural numbers, we extended the concept of statistical convergence to functions defined on time scales
with the help of some regular integral transformations instead of a matrix [42]. Our main purpose in [42] is
to extend the concept of A -statistical convergence known for number sequences to functions defined on time
scales. As a result, we are able to combine discrete and continuous cases that are known from the literature in
[12, 14, 15, 20, 30, 33] as well as derive new convergence methods in our examples with the selection of suitable
transformations and time scales.

The ideas of statistical limit points and statistical cluster points of a number sequence were first discussed
by Fridy using the nonthin concept in [21]. If

(
xn(j)

)
is a subsequence of the number sequence x = (xn) and

for the set K = {n (j) : j ∈ N} does not have density zero, then
(
xn(j)

)
is a nonthin subsequence of x . Using

this nonthin concept, Fridy defined statistical limit points and statistical cluster points of the number sequence
x = (xn) as follows:

A real number λ is called a statistical limit point of the number sequence x , if there exists a nonthin
subsequence of x that converges to λ .

A real number γ is called a statistical cluster point of the number sequence x , if for every ε > 0 the set
{n ∈ N : |xn − γ| < ε} does not have natural density zero.

These two point types have been established and investigated in various ways by many researchers by
modifying the density function (For more works one can examine [29, 32]). The concept of a statistical limit
and cluster point of a number sequence was further expanded by Connor and Kline to A -statistical limit and
A−statistical cluster points in [16]. In light of the traces in the classical case, we, therefore, came to the
conclusion that we can derive a generalization for statistical limits and cluster points on time which are already
defined in [34]. In the second part of this article, we will give general definitions for k−statistical limit and
k−statistical cluster points on a time scale using kernel functions and regular integral operators and the results
will be illustrated with examples. Furthermore, the connections between these points will be investigated, and
some significant conclusions will be discovered for each point type.

After defining and analyzing the statistical limit and cluster points in natural numbers, researchers
moved on to the ideas of statistical limit inferior and superior notions in several papers (for instance [23]).
This topic is still of considerable interest to researchers [28]. Our motivation in the third section is to unify
the statistical limit-cluster point and statistical limit inferior-superior studies, which were done independently
for the classical case, in a single study by acquiring their more general form. In the third part of this paper,
we focused on the concepts of statistical limit inferior and statistical limit superior which is introduced by
Fridy and Orhan in [23]. For a real sequence x , they defined following sets Bx = {b ∈ R : δ {n : xn > b}} and
Ax = {a ∈ R : δ {n : xn < a}} . With the help of these sets, they construct the statistical limit inferior and the
statistical limit superior concepts for a number sequence x as follows:

st− lim supx =

{
supBx, if Bx ̸= ∅
−∞, if Bx = ∅

and

st− lim inf x =

{
inf Ax, if Ax ̸= ∅
∞, if Ax = ∅.

In [18], Demirci extended these concepts to A-statistical convergence using a nonnegative regular summability
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matrix A in place of C1.This generalization for A-statistical convergence inspired us in the third part, as it did
in the second. With the use of kernel function and regular integral operators, an analogous generalization for
the statistical limit inferior and superior notions, which have already been developed on time scales in paper
[35], will be established as k−statistical limit inferior and superior. The relationships of these concepts with
each other and with k−statistical convergence will be investigated and the relationships of these concepts with
cluster points will be demonstrated using a theorem.

To be able to discuss the main results in greater depth, we believe it is necessary to first introduce the
following basic definitions and facilities for a reader unfamiliar with time scale calculus.

A time scale denoted by T , which inherits the standard topology on R , is a nonempty closed subset of
real numbers (see [10] for details). Throughout the paper time scale is assumed to be unbounded above and
bounded below, i.e.

inf T =t0 (t0 > 0) and supT = ∞. (1.1)

The definitions of two important operators that are frequently used when classifying time scales are given as
follows: The forward jump operator σ on T is defined by

σ : T → T, σ (t) := inf {s ∈ T : s > t} .

Similarly, the backward jump operator ρ on T is given by

ρ : T → T, ρ (t) := sup {s ∈ T : s < t} .

Another frequently used function on time scales is the graininess function µ given by

µ : T → [0,∞) , µ (t) = σ (t)− t.

A point t ∈ T is called right-dense σ (t) = t which also implies µ (t) = 0 ; otherwise, it is called right-scattered.
Similarly, the backward jump operator is used to define left-dense and left-scattered point.

With the help of forward jump and backward jump operators, we can summarize the type of points of
time scales as follows:

• if t < σ (t) , then t is right-scattered

• if t = σ (t) , then t is right dense

• if ρ (t) < t , then t is t left-scattered

• if ρ (t) = t , then t is left dense

• if ρ (t) < t < σ (t) , then t is isolated

• if ρ (t) = t = σ (t) , then t is dense.

By the notation [a, b]T we denote an interval entirely in T such that [a, b]T := [a, b] ∩ T . Obviously, the
other type intervals such as [a, b)T and (a, b]T can be defined similarly.

In this paper, like in our earlier ones (see [38–41]), we should use the Lebesgue ∆ -measure µ∆ that
Guseinov presented in [24] (see also [4]). Additionally, Guseinov estimated the Lebesgue ∆ -measure for all
forms of the intervals on T in these articles, as shown below:

Let a, b ∈ T and a ≤ b . Then
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• µ∆ ([a, b)T) = b− a,

• µ∆ ((a, b)T) = b− σ (a) ,

• µ∆ ((a, b]T) = σ (b)− σ (a) ,

• µ∆ ([a, b]T) = σ (b)− a .

Now let us review the essential concepts of density and convergence methods on time scales.
Let Ω be a ∆ -measurable subset of T and consider the following set:

Ω(x) = {y ∈ [t0, x]T : y ∈ Ω} .

Then, the density of Ω is given by

δT (Ω) := lim
x→∞

µ∆ (Ω (x))

µ∆ ([t0, x]T)

provided that the above limit exists. Let f : T → R be a ∆ -measurable function. We say that f is statistically
convergent on T to a number L if, for every ε > 0 ,

δT ({x ∈ T : |f (x)− L| ⩾ ε}) = 0 (1.2)

holds (see [38] for details). We denote this statistical limit on a time scale T by

stT − lim f = L.

Then, it is not hard to see that (1.2) is equivalent to the following limit:

lim
x→∞

µ∆ ({y ∈ [t0, x]T : |f(y)− L| ⩾ ε})
µ∆ ([t0, x]T)

= 0.

Let k : T× T → R be a ∆×∆ -measurable function on the product time scale T× T . Throughout this
paper we also assume that, for every y ∈ T , k(x, y) is a Lebesgue ∆ -integrable function on T (see [13, 24] for
details about the Lebesgue ∆ -integration on time scales). By Ψ we denote the family of all nonnegative kernel
functions k satisfying the following three conditions:

• lim
x→∞

∫
[t0,Y ]T

|k(x, y)|∆y = 0 for every finite Y ∈ T.

• lim
x→∞

∫
T
k(x, y)∆y = 1.

• sup
x∈T

∫
T
|k(x, y)|∆y < ∞.

Actually, these given conditions are Silverman-Toeplitz type conditions (see [11, 25, 36]) but give only
sufficient conditions for the regularity of a kernel function on time scales. In this case, if k ∈ Ψ, then k is
regular for bounded functions on T . Then, the k -density of ∆ -measurable subset Ω on T , which is denoted
by δk−T (Ω) , is defined by

δk−T (Ω) := lim
x→∞

∫
y∈Ω

k (x, y)∆y
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provided that the above limit exists. Let f : T → R be a ∆ -measurable function on T . We say that f is
k -statistically convergent to a number L if, for every ε > 0,

δk−T ({y ∈ T : |f (y)− L| ≥ ε}) = 0

holds. Then, this limit is denoted by
stk−T − lim f = L.

Then using k−density definition one can observe that stk−T − lim f = L if and only if

lim
x→∞

∫
y∈T : |f(y)−L|≥ε

k (x, y)∆y = 0

which is time scale analogues of A−statistical convergence. More details see [42].
It is assumed that the function k (x, y) will be one of the set Ψ ’s elements in all definitions that will be

made throughout this article. Also, it has been verified that the k (x, y) functions used in the examples satisfy
the Ψ family’s requirements.

2. Generalization of statistical limit and cluster points by using integral transformations on time
scales

In classical summability theory, sets with zero density are crucial. The first thing that came to mind when
considering how to generalize the ordinary limit concept was to use zero density sets to generalize it. As a result,
a variety of convergence methods, such as statistical convergence in [19] and lacunary statistical convergence
in [22], have been developed with the help of zero density sets. In this present chapter, firstly using a kernel
function and integral transformation zero density sets will be defined. It should be noted here that if a suitable
kernel function is selected, all the definitions in the literature on a fixed time scale will become examples for
our definition.

Let f : T → R be a ∆ -measurable function and Ω is a nonempty subset of T . We say that Ω is
k -nonthin if

δk−T (Ω) = lim
x→∞

∫
y∈Ω

k (x, y)∆y (2.1)

̸= 0.

It should be noted that Ω is k -nonthin subset of T either limit in (2.1) does not exist or the result of this limit
is a positive number.

Using the concept of k -nonthin subsets we will define k−statistical limit points and k−statistical cluster
points as follows:

Definition 2.1 Let f : T → R be a ∆-measurable function. A real number L is called k−statistical limit
point of the function f provided that there is a set Ω ⊂ T which is k− nonthin and

lim
t→∞
t∈Ω

f (t) = L.

By Λk−f we denote the set of all k−statistical limit points of function f .
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To clarify this definition let us examine the following example.

Example 2.2 Let T = [a,∞) , a > 0 which is the continuous case. In this time scale, consider the following
kernel function:

k (x, y) =

{
1

µ∆([a,x]T)
, if y ∈ [a, x]T

0, otherwise.
(2.2)

Actually, this kernel function is familiar to us and it comes from the definition of statistical convergence on time
scales in [42]. Using this kernel function, one can calculate the following function’s k−statistical limit points:

f (t) =

{
1, if t ∈ N
0, otherwise.

Without loosing generality, we can assume a < 1,

δk−T (N) = lim
x→∞

∫
y∈N

k (x, y)∆y

= lim
x→∞

1

µ∆ ([a, x])

∫
y∈[a,x]∩N

dy

= lim
x→∞

1

x− a
(µ∆ ({1, 2, .., ⌊x⌋}))

= 0

where ⌊x⌋ denotes the greatest integer function. From the property of k -density δk−T (T \ N) = 1 which implies
T \ N is k−nonthin and so 0 is only k−statistical limit point of function f which means 0 ∈ Λk−f .

Let Lf denotes the limit points of function f (t) , then it is clear that Lf = {0, 1} .

It is clear that for any given ∆ -measurable f function Λk−f ⊂ Lf .

As another example, let T = N which is a discrete case. Using kernel function defined in (2.2) for natural
numbers, one can find the k−statistical limit points of

f (t) =

{
1, if t = n2 for n = 1, 2, 3, ...
0, otherwise

which is given in [21] as an Example 1. For this given f , it is obvious that ΛN−f = {0} and Lf = {0, 1} as
stated in [21].

Definition 2.3 Let f : T → R be a ∆-measurable function. A real number L is called k−statistical cluster
point of the function f provided that for every ε > 0 , the set

{t ∈ T : |f (t)− L| < ε}

is a k− nonthin set which means

δk−T ({t ∈ T : |f (t)− L| < ε}) ̸= 0.

By Γk−f we denote the set of all k−statistical cluster points of function f .
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Proposition 2.4 If f : T → R be a ∆-measurable function, then Λk−f ⊂ Γk−f .

Proof Suppose that L ∈ Λk−f , then there exists a k -nonthin subset of T , say Ω , such that δk−T (Ω) ̸= 0

and
lim
t→∞
t∈Ω

f (t) = L. (2.3)

From the definition of k−density

lim sup
x→∞

∫
y∈Ω

k (x, y)∆y = d > 0.

For each ε > 0,using the (2.3) we know that A = {t ∈ ⩽̸ : |f (t)− L| ≥ ε} is a finite subset of Ω . So we have

Ω⧹A ⊂ {t ∈ T : |f (t)− L| < ε} .

Using monotonicity of k−density and knowledge of k−density of finite sets, we finally get

lim sup
x→∞

∫
y∈{t∈T:|f(t)−L|<ε}

k (x, y)∆y ≥ d > 0

which means δk−T ({t ∈ T : |f (t)− L| < ε}) ̸= 0.Hence, L ∈ Γk−f . 2

Our experience with ordinary limit points in real numbers gives us the illusion that sets Λk−f and Γk−f

are equal. However, this is not true. The inclusion given in Proposition 2.4 is proper. One can check the counter
example in [21] which is obtained by choosing suitable time scales and kernel function on time scales.

Proposition 2.5 Let f : T → R be a ∆-measurable function. The set of all k−statistical cluster point of the
function f, that is Γk−f is closed.

Proof Let (Ln) be a real number sequence in Γk−f such that

lim
n→∞

Ln = L.

We need to show that L ∈ Γk−f . For a given ε > 0 , there exists a γ ∈ (Ln) in the interval (L− ε, L+ ε) .Choose

ε
′ such that (

γ − ε
′
, γ + ε

′
)
⊂ (L− ε, L+ ε)

and {
t ∈ T : |f (t)− γ| < ε

′
}
⊂ {t ∈ T : |f (t)− L| < ε} .

Since γ ∈ (Ln) implies γ ∈ Γk−f ,

δk−T

({
t ∈ T : |f (t)− γ| < ε

′
})

̸= 0.

So we have
δk−T ({t ∈ T : |f (t)− L| < ε}) ̸= 0

and L ∈ Γk−f . 2

The next example will show us that unlike set Γk−f , set Λk−f is not closed.
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Example 2.6 Let q > 1 and consider T =qN . We should note that this time scale known as the quantum
scale takes great attention from different fields such as fluid mechanics, combinatorics (for instance see [3] and
references therein). In this time scale, we use the following kernel function:

k (qn, qm) =

{
1

µ∆([1,qn]qN)
, if qm ∈ [1, qn]qN

0, otherwise

and choose the following function:

f (qn) =

{
1, if n = 2s+ 1

1
p , if n = 2s

where p−1 is the number of factors of 2 in prime factorization of n . Now let us show that 1 is a k−statistical
limit point of f :

δk−qN
({

qn ∈ qN : f (qn) = 1
})

= δk−qN
({

q, q3, q5, ...
})

= lim
n→∞

∫
qm∈{q,q3,q5,...}

1

µ∆

(
[1, qn]qN

)∆qm.

Without loosing generality we can assume that n is odd and continue to calculate as follows:

δk−qN
({

q, q3, q5, ...
})

= lim
n→∞

1

qn+1 − 1
µ∆

({
q, q3, q5, ..., qn

})
= lim

n→∞

(q − 1)
(
q + q3 + ...+ qn

)
qn+1 − 1

=
1

1 + q
=

1

[2]

where [2] shows the q− integer. This result, obtained here with a specially chosen kernel function, is proven as
Lemma 13 in [2]. Now let us show that for each p number, 1

p is an element of set Λk−f . Firstly we assume
that

n = q2
(p−1)m

412



YALÇIN/Turk J Math

where m is an odd number, then

δk−qN

({
qn ∈ qN : f (qn) =

1

p

})
= δk−qN

({
q2

(p−1)(2s+1) : s = 0, 1, 2, ...
})

(2.4)

= lim
n→∞

∫
qm∈

{
q2

(p−1)
,q3.2

(p−1)
,q5.2

(p−1)
,...

}
1

µ∆

(
[1, qn]qN

)∆qm

= lim
n→∞

1

qn+1 − 1
µ∆

({
q2

(p−1)(2s+1) : s = 0, 1, ...,
n− 2(p−1)

2p

})

= lim
n→∞

(q − 1)
(
q2

(p−1)

+ q
3.2(p−1)

+ ...+ qn
)

qn+1 − 1

= lim
n→∞

(q − 1)

n−2(p−1)

2p∑
k=0

q2
(p−1)(2s+1)

qn+1 − 1

= (q − 1) lim
n→∞

q2
(p−1)

q2
p−1

(
qn+2(p−1) − 1

)
qn+1 − 1

=
(q − 1) q2

(p−1)

q2p − 1
q(2

(p−1)−1) =
q2

p−1

[2p]
.

It is obvious that for each p ≥ 2 natural number, k−density defined in (2.4) is not zero. At this point, it is
worth emphasizing that the results obtained in this part are q− like of Example 3 in [21]. Now we assert see
0 ∈ Γk−f . To see this, we need to show

δk−qN

({
qn ∈ qN : 0 < f (qn) <

1

p

})
̸= 0.

Then by induction for each p ≥ 2 , we have

δk−qN

({
qn ∈ qN : 0 < f (qn) <

1

p

})
≤ q

[2p]

which implies 0 ∈ Γk−f . We have that

Γk−f = {0} ∪
{
1

p
: p = 1, 2, ...

}
.

In our last step, we will see 0 /∈ Λk−f . To see this, we can choose a ∆-measurable subset Ω ⊂ qN such that

lim
m→∞
qm∈Ω

f (qm) = 0
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and we need to show that δk−qN (Ω) = 0 . For each p ,

δk−qN (Ω) = δk−qN
({

qm ∈ [1, qn]qN : qm ∈ Ω
})

= δk−qN

({
qm ∈ [1, qn]qN : f (qm) ≥ 1

p

})
+δk−qN

({
qm ∈ [1, qn]qN : 0 < f (qm) <

1

p

})
≤ O (1) + δk−qN

({
qm ∈ qN : 0 < f (qm) <

1

p

})
≤ q

[2p]
.

Since p is arbitrary this implies δk−qN (Ω) = 0 . Then we can conclude Λk−f is not a closed set.

In the next theorem, we will show that changing the nonthin subset does not affect the k−statistical
limit points and k−statistical cluster points as stated before in [21] by choosing a special kernel function for
discrete case.

Theorem 2.7 If f : T → R and g : T → R are two ∆-measurable functions such that f (t) = g (t) for almost
all t ∈ T , then

Λk−f = Λk−g (2.5)

and
Γk−f = Γk−g. (2.6)

Proof Firstly, using the hypothesis, we immediately get

A = {t ∈ T : f (t) ̸= g (t)} (2.7)

and
δk−T (A) = 0. (2.8)

To obtain (2.5) , let L ∈ Λk−f . In this case, we have a nonthin Ω ⊂ T such that

δk−T (Ω) ̸= 0 and lim
t→∞
t∈Ω

f (t) = L.

Since we have (2.8) , it follows that

δk−T ({t ∈ Ω : f (t) = g (t)}) ̸= 0.

This means the set Ω
′
= {t ∈ Ω : f (t) = g (t)} is a nonthin set we try to obtain for k−statistical limit point

of g . So,
lim
t→∞
t∈Ω′

f (t) = lim
t→∞
t∈Ω′

g (t) = L

which implies L ∈ Λ
k−g

. Then we have Λk−f ⊂ Λ
k−g

. Using the same technique, the opposite side of inclusion
can be simply proved from symmetry and it completes the proof of (2.5) .
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To obtain (2.6) , let γ ∈ Γk−f and we have

δk−T ({t ∈ T : |f (t)− γ| < ε}) ̸= 0.

Using the set A defined in (2.7) ,

δk−T ({t ∈ T : |g (t)− γ| < ε}) = δk−T ({t ∈ T \ A : |g (t)− γ| < ε})

+δk−T ({t ∈ A : |g (t)− γ| < ε})

= δk−T ({t ∈ T \ A : |f (t)− γ| < ε})

̸= 0.

We finally get γ ∈ Γk−f which means Γk−f ⊂ Γk−g . Using the same technique, the opposite side of inclusion
can be simply proved from symmetry and it completes the proof of (2.6) . 2

In order to prove the following theorem, we need to extend the additive property for sets of zero natural
density (APO) that was already introduced by Freedman and Sember [20] for natural numbers. Further, they
extended it for the sets of zero A -density. From this point of view, we believe that by altering the definition of
the density function, this property may be used on various sets. Here we will introduce additive property for
sets of zero k -density.

Definition 2.8 The k−density is said to satisfy condition additive property for sets of zero k -density (APkO)
if any given countable collection of mutually disjoint sets {Ωi}i∈N in T with δk−T (Ωi) = 0 for all i , then there
exists a collection of sets {Φi}i∈N in T such that Ωi∆Φi , where ∆ is a symmetric difference of two sets is
finite for each i and

δk−T

(
∪
i∈N

Φi = Φ

)
= 0.

The following theorem indicates a meaningful connection between limit points and k−statistical cluster
points.

Theorem 2.9 If f : T → R is a ∆-measurable function, then there exists a g : T → R ∆-measurable function
such that

Lg = Γk−f

and f (t) = g (t) for almost all t ∈ T .

Proof We already have
Γk−f ⊂ Lf .

So, for each L ∈ Lf⧹Γk−f choose ε > 0 and define an open interval in R

IL = (L− ε, L+ ε)

such that it is obvious
δk−T ({t ∈ T : f (t) ∈ IL}) = 0.

The collection of all such IL ’s for each L is a open cover for the set Lf⧹Γk−f which means

Lf⧹Γk−f ⊂ ∪
L∈Lf⧹Γk−f

IL
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by the Lindelöf property there exists a countable set such that

Lf⧹Γk−f = ∪
i∈N

ILi
.

For every i ∈ N , let
Ai = {t ∈ T : f (t) ∈ ILi

}

with δk−T (Ai) = 0 . Since k -density has the property APkO, there exists a collection of sets {Φi}i∈N in T such
that

δk−T

(
∪
i∈N

Φi = Φ

)
= 0

and Ai \ Φ is a finite set for each i . Let T \ Φ := {s : s ∈ T} and define the following function:

g (t) :=

{
f|T\Φ (t) , if t ∈ Φ

f (t) , if t ∈ T \ Φ.

Obviously δk−T ({t ∈ T : f (t) ̸= g (t)}) = 0 and from Theorem 2.7 we have

Γk−f = Γk−g.

Now we need to see that Γk−g = Lg . We already have Γk−g ⊂ Lg . To see the other side inclusion, suppose
that there exists a l number such that l ∈ Lg \ Γk−g . Then there exists a subset B ⊂ T such that

lim
t→∞
t∈B

g (t) = l

and for the set B , we have δk−T (B) = 0 . However, g|Φ has no limit point. Therefore, no such l can exist which
completes the proof. 2

3. Generalization of limit inferior and limit superior concepts by using integral transformations
on time scales

In this section, we define the concept of k−statistical limit superior and k−statistical limit inferior of ∆ -
measurable functions defined on time scales and demonstrate through an example how to compute these points.

Definition 3.1 Let f : T → R be a ∆-measurable function and define the following sets

Bf = {b ∈ R : δk−T ({t ∈ T : f (t) > b}) ̸= 0} (3.1)

and likewise
Af = {a ∈ R : δk−T ({t ∈ T : f (t) < a}) ̸= 0} (3.2)

then k−statistical limit superior of function f is given by

stk−T − lim sup
t→∞

f (t) =

{
supBf , if Bf ̸= ∅
−∞, if Bf = ∅ (3.3)

and also k−statistical limit inferior of function f is given by

stk−T − lim inf
t→∞

f (t) =

{
inf Af , if Af ̸= ∅
∞, if Af = ∅.

(3.4)
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We should note the special case of Definition 3.1 was examined in [35] when the kernel function has been
chosen especially as indicated below:

k (x, y) =

{
1

µ∆([t0,x]T)
, if y ∈ [t0, x]T

0, otherwise.
(3.5)

Definition 3.2 The f : T → R be a ∆-measurable function it is said to be k−statistically bounded if there
exists a M real number such that

δk−T ({t ∈ T : f (t) > M}) = 0.

The next example can help the reader to clarify the ideas that were just defined.

Example 3.3 Let us take T =P1,1 = ∪∞
n=0 [2n, 2n+ 1] . This is an interesting example of time scales since

each interval’s right endpoint scatters to the left endpoint of the following interval. In fact, the reason we pick
this time scale, in particular, is that it includes both dense and scattered points. For this time scale, let us use
the kernel function defined in (3.5) and the function as follows:

f (t) =


2n, if t = 2n for n = 1, 2, 3, ... (for left-scattered points)
1, if t = 2n+ 1 for n = 1, 2, 3, ... (for right-scattered points)
1
2 , if t ∈

(
2n, 2n+ 1

2

]
for n = 1, 2, 3, ...(for some of dense points)

0, if t ∈
(
2n+ 1

2 , 2n+ 1
)

for n = 1, 2, 3, ...(for some of dense points).

In this case f (t) is unbounded above, but it is k−statistically bounded since the set of {2n : n = 0, 1, ...} has
zero denstiy on P1,1 . Let us show it:

δk−P1,1
({t ∈ P1,1 : f (t) > 1}) = δk−P1,1

({2, 4, 6, ...})

= lim
x→∞

∫
y∈{2,4,6,...}

k (x, y)∆y

= lim
x→∞

∫
y∈[0,x]P1,1

∩{2,4,6,...}

1

µ∆

(
[0, x]P1,1

)∆y

= lim
x→∞

1

σ (x)
µ∆

(
[0, x]P1,1

∩ {2, 4, 6, ...}
)
. (3.6)

For sufficiently large x , without losing generality we can assume that ⌊x⌋ is an even number where ⌊x⌋ denotes
the greatest integer function. Even if ⌊x⌋ is not an even number, ⌊x⌋ − 1 will be an even number and it does
not affect limit calculation in (3.6) . Then, we have

δk−P1,1 ({t ∈ P1,1 : f (t) > 1}) = lim
x→∞

1

σ (x)
µ∆ ({2, 4, ..., ⌊x⌋})

= 0.
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Furthermore,

δk−P1,1
({t ∈ T : f (t) > 0}) = δk−P1,1

(
P1,1⧹ ∪∞

n=0

(
2n+

1

2
, 2n+ 1

))
= 1− δk−P1,1

(
∪∞
n=0

(
2n+

1

2
, 2n+ 1

))
̸= 0

which implies

Bf =

(
−∞,

1

2

)
and

stk−P1,1
− lim sup

t→∞
f (t) = supBf =

1

2
.

Similarly one can see
Af = (0,∞)

and
stk−P1,1 − lim inf

t→∞
f (t) = inf Af = 0.

Also we can even find k−statistical cluster points of f . For every ε > 0 ,

δk−P1,1 ({t ∈ T : |f (t)| < ε}) = lim
x→∞

1

µ∆

(
[0, x]P1,1

) ∫
y∈{t∈T:|f(t)|<ε}∩[0,x]P1,1

∆y

= lim
x→∞

µ∆ ({0 ≤ t ≤ x : f (t) = 0})

µ∆

(
[0, x]P1,1

)
̸= 0

and

δk−P1,1

({
t ∈ T :

∣∣∣∣f (t)− 1

2

∣∣∣∣ < ε

})
= lim

x→∞

1

µ∆

(
[0, x]P1,1

) ∫
y∈{t∈T:|f(t)− 1

2 |<ε}∩[0,x]P1,1

∆y

= lim
x→∞

µ∆

({
0 ≤ t ≤ x : f (t) = 1

2

})
µ∆

(
[0, x]P1,1

)
̸= 0

which means

Γk−f =

{
0,

1

2

}
.

At this time, we would like to call your attention to the fact that this set also includes k−statistical limit inferior
and k−statistical limit superior points. This fact gives us the main idea of the following theorem. However, let
us first establish the two lemmas that will be needed in the theorem that results from this idea.

418



YALÇIN/Turk J Math

Lemma 3.4 Let f : T → R be a ∆-measurable function. stk−T − lim sup
t→∞

f (t) = β is a finite real number if

and only if for every ε > 0

δk−T ({t ∈ T : f (t) > β − ε}) ̸= 0 (3.7)

and
δk−T ({t ∈ T : f (t) > β + ε}) = 0. (3.8)

Proof Suppose that stk−T − lim sup
t→∞

f (t) = β is a finite real number. By Definition 3.1, Bf ̸= ∅ and

supBf = β . Using properties of supremum in real numbers, for every ε > 0 there exists a N ∈ Bf such that
N > β − ε . With the help of this last inequality obtained, we have

{t ∈ T : f (t) > N} ⊂ {t ∈ T : f (t) > β − ε}

and we immediately get (3.7) . Now assume that (3.8) does not hold which means

δk−T ({t ∈ T : f (t) > β + ε}) ̸= 0.

Then β + ε ∈ Bf and this contradicts with supBf = β . We also have (3.8) .
Conversely suppose that (3.7) and (3.8) hold. From (3.7) , β is an upper bound for the set Bf . If there

is another upper bound for Bf , it must be greater than or equal to β . However using (3.8) we have supBf = β

and
stk−T − lim sup

t→∞
f (t) = β.

2

We may formulate a parallel lemma for k−statistical limit inferior using the same reasoning. Since the
proof for the upcoming lemma may be produced just as simple as for the prior lemma, it will be given without
proof.

Lemma 3.5 Let f : T → R be a ∆-measurable function. stk−T − lim inf
t→∞

f (t) = α is a finite real number if

and only if for every ε > 0

δk−T ({t ∈ T : f (t) < α+ ε}) ̸= 0 (3.9)

and
δk−T ({t ∈ T : f (t) < α− ε}) = 0. (3.10)

The theorem we just mentioned is ready to be presented now. In the following theorem, we will give the
relationship observed in Example 3.3 between set of k−statistical cluster points and the concepts of k−statistical
limit superior and k−statistical limit inferior.

Theorem 3.6 Let f : T → R be a ∆-measurable function, then

(i) stk−T − lim sup
t→∞

f (t) = supΓk−f

(ii) stk−T − lim inf
t→∞

f (t) = inf Γk−f

where Γk−f denotes k−statistical cluster points of function f .
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Proof (i) In the first part of the proof, we will indicate that

supBf = supΓk−f

where Bf defined in (3.1) . Let take supΓk−f = L1 and stk−T − lim sup
t→∞

f (t) = supBf = L2. By Lemma 3.4,

we have
δk−T ({t ∈ T : f (t) > L2 − ε}) ̸= 0 (3.11)

and
δk−T ({t ∈ T : f (t) > L2 + ε}) = 0. (3.12)

We firstly see that L2 ∈ Γk−f . To see this, we will use following idea:

{t ∈ T : |f (t)− L2| < ε}

= {t ∈ T : f (t) > L2 − ε}⧹ {t ∈ T : f (t) > L2 + ε}

and using (3.12)

δk−T ({t ∈ T : |f (t)− L2| < ε}) = δk−T ({t ∈ T : f (t) > L2 − ε})

̸= 0

which implies L2 ∈ Γk−f . Since supΓk−f = L1 , we have

L2 ≤ L1. (3.13)

Now assume that L1 > L2 . Since Γk−f is closed and supΓk−f = L1 , we know that L1 ∈ Γk−f and this
implies for every ε > 0 ,

δk−T ({t ∈ T : |f (t)− L1| < ε}) ̸= 0. (3.14)

Let us choose ε1 as

ε1 =
L1 − L2

2
.

For this choosen ε1 , we know that

{t ∈ T : |f (t)− L1| < ε1} ⊂ {t ∈ T : f (t) > L2 + ε1} .

Using (3.12) , we get
δk−T ({t ∈ T : |f (t)− L1| < ε1}) = 0

which contradicts with (3.14) . This means L2 ≤ L1 and finally we obtain our desired result

L1 = L2.

(ii) This part of the proof can be demonstrated in the same way as the above. 2

Theorem 3.7 Let f : T → R be a ∆-measurable function, then

stk−T − lim inf
t→∞

f (t) ≤ stk−T − lim sup
t→∞

f (t) .

420



YALÇIN/Turk J Math

Proof

• The case of stk−T − lim sup
t→∞

f (t) = ∞ is obvious.

• In the case of stk−T − lim sup
t→∞

f (t) = −∞ , we have Bf = ∅ and it means for each b ∈ R ,

δk−T ({t ∈ T : f (t) > b}) = 0.

In other words,
δk−T ({t ∈ T : f (t) ≤ b}) = 1.

So for every a ∈ R
δk−T ({t ∈ T : f (t) < a}) ̸= 0.

From last part, we get
stk−T − lim inf

t→∞
f (t) = −∞.

• We can assume that β := stk−T − lim sup
t→∞

f (t) is finite. Let α := stk−T − lim inf
t→∞

f (t) . For every ε > 0,

from Lemma 3.4
δk−T

({
t ∈ T : f (t) > β +

ε

2

})
= 0

and we have
δk−T

({
t ∈ T : f (t) ≤ β +

ε

2

})
= 1

which implies
δk−T ({t ∈ T : f (t) < β + ε}) = 1.

So we get β + ε ∈ Af . Since stk−T − lim inf
t→∞

f (t) = inf Af = α , we know for every ε > 0

α ≤ β + ε

which means
α ≤ β.

2

As in [18, 23], combining the notion of k -statistical limit inferior-superior on time scales with the previous
theorem yields the following conclusion:

lim inf
t→∞

f (t) ≤ stk−T − lim inf
t→∞

f (t) ≤ stk−T − lim sup
t→∞

f (t) ≤ lim sup
t→∞

f (t) .

The following theorem demonstrates that a fundamental property known for convergent sequences in
classical analysis is also applicable to k -statistical convergence on any time scale.

Theorem 3.8 Let f : T → R be a k−statistically bounded function. Then

stk−T − lim
t→∞

f (t) = L (3.15)

if and only if
stk−T − lim inf

t→∞
f (t) = stk−T − lim sup

t→∞
f (t) = L. (3.16)

421



YALÇIN/Turk J Math

Proof Firstly assume that stk−T − lim
t→∞

f (t) = L . Then for every ε > 0 ,

δk−T ({t ∈ T : |f (t)− L| ≥ ε}) = 0. (3.17)

Using last equality, one can observe

δk−T ({t ∈ T : f (t) > L+ ε}) = 0 (3.18)

and
δk−T ({t ∈ T : f (t) < L− ε}) = 0. (3.19)

Let β = stk−T − lim sup
t→∞

f (t) and α = stk−T − lim inf
t→∞

f (t) . From (3.18) , we have

β ≤ L. (3.20)

Also from (3.19) , we have
L ≤ α. (3.21)

Now we combine (3.20) and (3.21) with Theorem 3.7, we can obtain (3.16) .
Next assume that (3.16) holds. If we choose ε > 0 and using (3.8) and (3.10) , we have

δk−T ({t ∈ T : f (t) > L+ ε}) = 0

and
δk−T ({t ∈ T : f (t) < L− ε}) = 0

which implies
stk−T − lim

t→∞
f (t) = L.

2

4. Concluding remarks

The study of summability theory concepts on time scales is a recent development. Some of the concepts in
summability theory have already been studied. However, using regular transformations on time scales instead
of matrices in classical case is a new approach. This idea can be generalized for other convergence methods. We
will have the opportunity to receive the most general version of the results that have previously been presented
in other independent research, similar to the results given in this study. Consequently, depending on the time
scale and kernel function used, all prior studies will come to be seen as examples of our study. If possible, we
believe it would be fascinating to transfer other A-statistical convergence on natural number notions to time
scales in upcoming work.
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