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Abstract: This work deals with the Orlicz space and the Hardy-Orlicz classes generated by this space, which consist of
analytic functions inside and outside the unit disk. The homogeneous Riemann boundary value problems with piecewise
continuous coefficients are considered in these classes. New characteristic of Orlicz space is defined which depends on
whether the power function belongs to this space or not. Relationship between this characteristic and Boyd indices of
Orlicz space is established. The concept of canonical solution of homogeneous problem is defined, which depends on the
argument of the coefficient. In terms of the above characteristic, a condition on the jumps of the argument is found
which is sufficient for solvability of these problems, and, in case of solvability, a general solution is constructed. It is
established the basicity of the parts of exponential system in Hardy-Orlicz classes.
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1. Introduction
Theory of Riemann problems has a long history. These problems probably date back to the study of Riemann
[43]. Later Hilbert [21, 22] also considered them and stated a problem which is now referred to as Riemann-
Hilbert problem. In the context of applications to some problems of mechanics and mathematical physics,
this field has been significantly developed over the years by well-known mathematicians and the theory of these
problems has been well covered in the literature [18, 19, 35, 39]. The methods of this theory are also used in other
fields of mathematics such as approximation theory, spectral theory of differential operators, etc. The method
of boundary value problems is used in establishing basis properties of special function systems in Lebesgue
spaces, is due to B.T.Bilalov [3–8, 13, 14]. This method allowed Bilalov to find Riesz basicity criterion for the
well-known Kostyuchenko system (see [6–8]) in the space L2 (0, π) .

Note that the Riemann-Hilbert problems are still of great interest. As the harmonic analysis develops
further and new function spaces arise, new statements of Riemann problem appear. For example, since
recently there arose great interest in the nonstandard spaces of functions such as Lebesgue space with variable
summability index, Morrey space, grand Lebesgue space, etc. (see, e.g., [1, 10, 17, 20, 29, 48]). Various issues of
mathematical analysis (such as boundedness of singular integral operators, Riesz potentials, direct and inverse
problems of approximation theory with respect to Faber polynomials [25], etc.) are being studied in such
spaces. Riemann-Hilbert problems also began to be studied in these spaces in different statements (see, e.g.,
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[9, 12, 27, 36, 38, 40, 44–46]), though many issues in this field still remain unsolved.
In this work, we consider the Orlicz space and the Hardy-Orlicz classes generated by this space, which

consist of analytic functions inside and outside the unit disk. The homogeneous Riemann boundary value
problems with piecewise continuous coefficients are considered in these classes. We define new characteristic
of Orlicz space which depends on whether the power function belongs to this space or not. Relationship
between this characteristic and Boyd indices of Orlicz space is established. The concept of canonical solution
of homogeneous problem is defined, which depends on the argument of the coefficient. In terms of the above
characteristic, a condition on the jumps of the argument is found which is sufficient for solvability of these
problems, and, in case of solvability, a general solution is constructed.

As far as the authors know, this is the first time the Riemann problem is considered in Hardy-Orlicz
classes. See [26, 47] for more information about these problems.

2. Needful information
We will use the following notations. N will denote the set of positive integers, Z+ = {0}

⋃
N ;Z = {−N}

⋃
Z+ ,

χM (·) will be the characteristic function of the set M ; R will stand for the set of real numbers, by C we will
denote the set of complex numbers, ω = {z ∈ C : |z| < 1} will denote a unit disk in C , ∂ω will be a unit
circle, M̄ will stand for the closure of the set M in the corresponding norm, and ( · ) will denote the complex
conjugation. By [X] we will denote the algebra of linear bounded operators acting in the Banach space X .

Definition 2.1 Continuous convex function M (u) in R is called an N -function if it is even and satisfies the
conditions

lim
u→0

M (u)

u
= 0; lim

u→∞

M (u)

u
= ∞.

Definition 2.2 Let M be an N -function. The function

M∗ (v) = max
u≥0

[u |v| −M (u)] ,

is called an N -function complementary to M (·) .

M(·) and M∗(·) can be represented as follows:

M (u) =

∫ |u|

0

p (t) dt;M∗ (v) =

∫ |v|

0

q (s) ds,

where p(·) and q(·) are positive integrable functions on (0,+∞) .

Definition 2.3 N -function M (·) satisfies ∆2 -condition for large values of u , if ∃k > 0 ∧ ∃u0 ≥ 0 :

M (2u) ≤ kM (u) ,∀u ≥ u0.

Now let us define the Orlicz space. Let M (·) be some N -function, G ⊂ R be a (Lebesgue) measurable set.
Denote by L0 (G) the set of all functions measurable in G . Let

ρM (u) =

∫
G

M [u (x)] dx ,
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and
LM (G) = {u ∈ L0 (M) : ρM (u) < +∞} .

LM (G) is called an Orlicz class.
More details about concerning facts can be found in [30, 42].
In the sequel, as G we will consider the interval G ≡ [−π, π] , and, for simplicity, we will always omit

the letter G in the notations (for example, L∗
M (G) = L∗

M , etc). Later we will need some facts about Fourier
analysis in Orlicz spaces. Let us first define the following characteristic of the space LM . For the N -function
M (·) , we denote

γM = inf {α : |t|α ∈ LM} . (2.1)

Let us show that γ (M) ≥ −1 . In fact, let α < −1 be an arbitrary number. Consider∫ π

0

M (tα) dt =
1

|α|

∫ ∞

πα

M (x)

x
x

1
α dx.

From lim
x→∞

M(x)
x = ∞ it follows that ∃x0 > πα : M(x)

x ≥ 1,∀x ≥ x0. Consequently

∫ π

0

M (tα) dt =
1

|α|

∫ x0

πα

M (x)x
1
α−1dx+

1

|α|

∫ ∞

x0

M (x)x
1
α−1dx ≥

≥ 1

|α|

∫ x0

πα

M (x)x
1
α−1dx+

1

|α|

∫ ∞

x0

x
1
α dx = ∞.

It immediately follows γM ≥ −1 . Let us show that ∀α > γM the relation |t|α ∈ LM holds. Obviously,
∀α ≥ 0 : |t|α ∈ LM . Therefore, it suffices to prove that if |t|α1 ∈ LM , γM ≤ α1 < 0 , then ∀α2 ∈ (α1, 0) the
relation |t|α2 ∈ LM holds. We have

|α2|
∫ π

0

M (tα2) dt =

∫ ∞

πα2

M (x)x
1

α2
−1dx =

=

∫ 1

πα2

M (x)x
1

α2
−1dx+

∫ ∞

1

M (x)x
1

α1
−1x−α2−α1

α2α1 dx ≤

≤
∫ 1

πα2

M (x)x
1

α2
−1dx+

∫ ∞

1

M (x)x
1

α1
−1dx < +∞.

Thus, the following lemma is true.

Lemma 2.4 Let M (·) be some N -function. Then for γM defined by (2.1) the relation γM ∈ [−1, 0] holds.
Moreover, |t|α ∈ LM ,∀α > γM .

Using this lemma, it is easy to prove the following one.

Lemma 2.5 Let M (·) be some N -function.Then the finite product

f (t) =

m∏
k=0

|t− tk|αk

belongs to LM if αk > γM ,∀k = 0,m, where −π ≤ t0 < . . . < tm < π are arbitrary points.
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The following corollary is also true.

Corollary 2.6 For arbitrary points −π = s0 < s1 < . . . < sr < π the finite product

µ (t) =

r∏
k=0

∣∣∣∣sin t− sk
2

∣∣∣∣αk

, t ∈ (−π, π)

belongs to LM if αk > γM ,∀k = 0, r.

Let M (·) be some N -function satisfying ∆2 -condition. Take f ∈ LM and consider

Sn [f ] (x) =
∑
|k|≤n

cke
ikx,

where

ck = ck (f) =
1

2π

∫ π

−π

f (x) e−ikxdx, k ∈ Z ,

are Fourier coefficients of f (·) . We have

Sn [f ] (x) =
1

π

∫ π

−π

f (t)Dn (x− t) dt,

where

Dn (x) =
1

2

∑
|k|≤n

eikx =
sin

(
n+ 1

2

)
x

2 sin x
2

, n ∈ Z+,

is an n -th order Dirichlet kernel.
We will also need the following concept.

Definition 2.7 We will say that the function M (·) satisfies ∇2 -condition if lim
u→∞

inf M(2u)
M(u) > 2, i.e. ∃k >

2 ∧ ∃u0 > 0 :
M (2u) ≥ kM (u) ,∀u ≥ u0.

The set of N -functions satisfying ∆2 -condition (∇2 -condition) will be denoted by ∆2 (∞) (∇2 (∞)).

Definition 2.8 The operator T : L0 → L0 is called quasilinear if |T (λf)| = |λ| |T (f)| , and ∃c ≥ 1 :

|T (f1 + f2)| ≤ c (|T (f1)|+ |T (f2)|) ,∀f ; f1; f2 ∈ L0,∀λ ∈ C .

In case c = 1 it is called sublinear.
Ryan theorem below (see, e.g., [42, page 193]) plays a fundamental role in the theory of Fourier analysis

in Orlicz spaces.
Theorem R1. Let M ∈ ∆2 (∞)

⋂
∇2 (∞) . If the quasilinear operator T is bounded as an operator

T : Lp (−π, π) → Lp (−π, π) , for ∀p : 1 < p < +∞ , then it is bounded as an operator T : LM → LM .

The following Ryan theorem directly implies the basicity criterion for the exponential system
{
eint

}
n∈Z

in LM .
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Theorem R2. Let M (·) be an N -function. Then the following properties are equivalent:
i) LM is reflexive ⇔ M ∈ ∆2 (∞)

⋂
∇2 (∞) ;

ii)∃C > 0 :
∥∥∥f̃∥∥∥

M
≤ C ∥f∥M ,∀f ∈ LM ,

where f̃ is a conjugate function of f :

f̃ (x) = − 1

π

∫ π

0

f (x+ t)− f (x− t)

2 tan t
2

dt;

iii)∃C > 0 :

∥Sn [f ]∥M ≤ C ∥f∥M ,∀f ∈ LM .

This theorem has the following direct corollary.

Corollary 2.9 Let M (·) be some N -function. Exponential system
{
eint

}
n∈Z

forms a basis for LM if and
only if M ∈ ∆2 (∞)

⋂
∇2 (∞) .

In fact, if the system
{
eint

}
n∈Z

forms a basis for LM , then the basicity criterion implies the satisfaction
of condition (iii) in Theorem R2, and Theorem R2 implies the satisfaction of condition (i). The converse is also
true by Corollary 9 of [42, page 107]).

Therefore, let M (·) be some N -function and M−1 (·) be its inverse on [0,+∞) . Let

h (t) = lim
x→∞

sup
M−1 (x)

M−1 (tx)
, t > 0,

and define the numbers

αM = − lim
t→∞

log h (t)

log t
; βM = − lim

x→0+

log h (t)

log t
.

The numbers αM and βM are called upper and lower Boyd indices for the Orlicz space LM . The following
relations hold

0 ≤ αM ≤ βM ≤ 1;

αM + βM∗ ≡ 1; αM∗ + βM = 1.

The space LM is reflexive if and only if 0 < αM ≤ βM < 1 . If 1 ≤ q < 1
βM

≤ 1
αM

< p ≤ ∞ , then the

continuous embeddings Lp (−π, π) ⊂ LM ⊂ Lq (−π, π) hold. More details regarding these concepts can be
found in [15, 37]. We will also need the class of Muckenhoupt weights Ap , so let us define it. Let p ∈ (1,+∞)

and 1
p + 1

q = 1 .

The following interesting fact is true (see, e.g., [2, 16]).

Theorem 2.10 [16] Let 1 < q < p < +∞ . If the linear operator T ∈ [Lp] ∧ T ∈ [Lq] , then T ∈ [LM ] for
arbitrary Orlicz space LM with Boyd indices αM , βM : 1

p < αM ≤ βM < 1
q .

Let us state some facts about γM . It is not difficult to show that if M ∈ ∆2 (∞) , then γM < 0 , i.e. the
following lemma is true.
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Lemma 2.11 Let the N -function M (·) belong to the class ∆2 (∞) . Then γM < 0 .

Proof In fact, if M ∈ ∆2 (∞) , then, by the results of [42, Theorem 4.1, page 37], ∃β; t0 > 0 :

tp (t)

M (t)
< β, ∀t ≥ t0, (2.2)

where p (·) is a right-hand derivative of the function M (·) . It is clear that β > 1 . Let γ < 0 be some number.
We have ∫ π

0

M (tγ) dt =

∣∣∣∣tγ = x; dt =
1

γ
x

1
γ −1

∣∣∣∣ = 1

|γ|

∫ ∞

π
1
γ

x
1
γ −1M (x) dx.

From (2.2) it directly follows that ∃c > 0 :

M (t) ≤ ctβ , ∀t ≥ t0. (2.3)

Consequently (assuming t0 > π
1
γ ), the integral

∫ π

0
M (tγ) dt exists if and only if the integral

∫∞
t0

x
1
γ −1M (x) dx

exists. Considering (2.3), we obtain ∫ ∞

t0

x
1
γ −1M (x) dx ≤ c

∫ ∞

t0

x
1
γ −1xβdx.

It follows that ∀γ > − 1
β the integral

∫ π

0
M (tγ) dt exists, and, therefore, γM ≤ − 1

β . The lemma is proved. 2

Let M (·) ∈ ∆2 (∞) , M∗ (·) be a complementary function to M , p (·) and q (·) be the corresponding
right-hand derivatives. Let p (·) and q (·) be continuous. By Lemma 4.1 of [30, page 39], the inequality (2.2)
holds if and only if for large values of t , i.e. ∃t0 > 0 the relation

tq (t)

M∗ (t)
>

β

β − 1
, ∀t ≥ t0,

holds. On integrating this relation, we have∫ x

t0

q (t) dt

M∗ (t)
≥ β

β − 1

∫ x

t0

dt

t
⇒ M∗ (t) ≥ ct

β
β−1 , ∀t ≥ t0, (2.4)

where c > 0 is some constant. Using (2.4), we show that for ∀γ ≤ −1 + 1
β the integral

∫ π

0
M∗ (tγ) dt is

divergent, and, consequently, γM∗ ≥ −1 + 1
β .

The following lemma is also true.

Lemma 2.12 Let M (·) ∈ ∆2 (∞) , M∗ (·) be a complementary function to M, p (·) and q (·) be the corre-
sponding right-hand derivatives which are continuous. Then the following relations are true

−1 ≤ γM ≤ − 1

BM
, 0 ≥ γM∗ ≥ −1 +

1

BM
,

where

BM = lim
t→∞

sup
tp (t)

M (t)
.
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Proof It is clear that ∀ε > 0, ∃t0 > 0 :

tp (t)

M (t)
< BM + ε , ∀t ≥ t0.

Then from Lemma 2.11 we obtain γM ≤ − 1
BM+ε . By the arbitrariness of ε , it follows γM ≤ − 1

BM
. Similarly

we have γM∗ ≥ −1 + 1
BM+ε , and, as a result, γM∗ ≥ −1 + 1

BM
. The lemma is proved. 2

In the sequel, we will need the following result of [34] (see also [26]). Let αM and βM be upper and
lower Boyd indices of Orlicz space.

Theorem 2.13 [34] For every p and q such that

1 ≤ q <
1

βM
≤ 1

αM
< p ≤ ∞,

we have
Lp ⊂ LM ⊂ Lq,

with the inclusion maps being continuous.

Let p > 1
αM

be an arbitrary number. Then it is clear that ∀α > − 1
p : tα ∈ Lp (0, π) , and it follows

from Theorem 2.13 that tα ∈ LM (0, π) . Then the relation −αM < − 1
p < α and the arbitrariness of p and α

imply γM ≤ −αM . If 1 ≤ q < 1
βM

is an arbitrary number, then the function tα does not belong to the space

Lq (0, π) for α = − 1
q , and, by Theorem 2.13, tα /∈ LM . It immediately follows γM ≥ − 1

q . Then the relation

− 1
q < −βM and the arbitrariness of q imply γM ≥ −βM . Thus, the following statement is true.

Proposition 2.14 Let M ∈ ∆2 (∞) be some N -function with Boyd indices αM and βM . Then γM ∈
[−βM ,−αM ] .

Corollary 2.15 Let M ∈ ∆2 (∞) be some N - function for which the Boyd indices coincide, i.e. αM = βM .
Then γM = −αM and γM∗ = −βM∗ , and it is clear that γM + γM∗ = −1 .

In fact, it is known that the following relations hold

αM + βM∗ = 1, βM + αM∗ = 1.

It follows that αM∗ = βM∗ , and therefore γM∗ = −βM∗ . Moreover, γM + γM∗ = −αM − βM∗ = −1 .

3. Hardy-Orlicz classes and bases for them

Let M (·) be some N− function. In the sequel, by M (f) we will mean M (|f |) , i.e. M (f) =: M (|f |) (for
complex-valued function f (·) , too). As usual, by H+

M we denote the Hardy-Orlicz class of analytic functions
F (·) inside ω equipped with the norm

∥F∥H+
M

= sup
0<r<1

sup
ρM∗ (ν)≤1

|(Fr (·) ; ν (·))| = sup
0<r<1

∥Fr (·)∥M ,
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where Fr (t) = F
(
reit

)
and (f ; g) =

∫ π

−π
f(t)g(t)dt .

These classes were first studied in [28, 31, 32]. Some problems of approximation in these classes have
been considered in [23, 24, 28]. We will deal with the basicity problems of the parts of exponential system in
these classes. In what follows, we will need some facts and concepts related to this area.

By A we will denote the set of analytic functions F (·) in ω which satisfy

sup
0<r<1

∫ π

−π

log+
∣∣F (

reit
)
dt
∣∣ < +∞,

where log+ u = log max {1;u} , u ≥ 0. About these classes one can see, e.g., [32, 41].
As is known, the nonzero function F (·) belongs to the class A if and only if it is representable in the

form

F (z) = B (z) exp

(
1

2π

∫ 2π

0

eit + z

eit − z
dh (t)

)
, (3.1)

where B (·) is a Blaschke function, and h (·) is a function of bounded variation on [0, 2π] .
By A′ we will denote the class of functions F ∈ A such that the function h (·) in (3.1) is absolutely

continuous on [0, 2π] .
For F ∈ A we denote

ρM (A;F ) = sup
0<r<1

ρM (Fr) = sup
0<r<1

∫ 2π

0

M
(
F
(
reit

))
dt.

The following theorem is true.

Theorem 3.1 [32] If the function F is analytic in ω and F : ρM (A;F ) < +∞, then F ∈ A′ , and conversely,
if F ∈ A′ ∧ F+ ∈ LM , then ρM (A;F ) < +∞ , where F+ (·) are the nontangential boundary values of F (·) on
∂ω .

Consider the singular operator

S (f) (τ) =
1

2πi

∫
γ

f (ξ)

ξ − τ
dξ, τ ∈ ∂ω,

where f (·) ∈ L1 (∂ω) is some function. The following theorem is true.

Theorem 3.2 [26] Let LM be a reflexive Orlicz space. Then the singular operator S is bounded in LM , i.e.
∃M > 0 :

∥Sf∥M ≤ M ∥f∥M , ∀f ∈ LM .

Reflexivity of LM is equivalent to the condition M ∈ ∆2 (∞)
⋂

∇2 (∞) . It is absolutely clear that the
inclusion LM ⊂ L1 holds and the relation

∥f∥L1
≤ C ∥f∥M ,∀f ∈ LM , (3.2)

is true, where C > 0 is an absolute constant.
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Throughout this work we will assume that M ∈ ∆2 (∞)
⋂

∇2 (∞) . Let f ∈ H+
M . From (3.2) it follows

that H+
M ⊂ H+

1 . Denote by f+ (·) the nontangential boundary values of f on ∂ω : f+ = f/∂ω . Let us expand
the function f (·) in a Taylor series in the neighborhood of the point z = 0 :

f (z) =

∞∑
n=0

f+
n zn, |z| < 1.

It is known that f+ (·) ∈ LM . By Riesz theorem we have

∫ π

−π

∣∣f (
reit

)
− f+

(
eit

)∣∣ dt → 0, r → 1− 0.

It directly follows
1

2π

∫ π

−π

f+
(
eit

)
e−intdt =

{
f+
n , n ≥ 0,
0, n < 0.

Therefore, from the basicity of the system
{
eint

}
n∈Z

we have the expansion in LM :

f+
(
eit

)
=

∞∑
n=0

f+
n eint. (3.3)

Denote the restriction of the class H+
M to ∂ω by L+

M : L+
M = H+

M/∂ω . L+
M is a subspace of LM . The

minimality of
{
eint

}
n∈Z

in LM implies the minimality of the system
{
eint

}
n∈Z+

in L+
M , and, consequently,

the expansion (3.3) is unique.
Therefore, the following statement is true.

Proposition 3.3 Let M ∈ ∆2 (∞)
⋂
∇2 (∞) . Then the system {zn}n∈Z+

({
eint

}
n∈z+

)
forms a basis for

H+
M (for L+

M ).

By the uniqueness theorem for analytic functions from the Hardy classes H+
δ , δ > 0 , we can equate the

spaces H+
M and L+

M to each other.

Similar to classical case, we define the Hardy-Orlicz class mH−
M of analytic functions outside the unit disk

which have a finite order at infinity. Let the function f (·) , analytic outside ω , have a Laurent decomposition
of the form

f (z) =

m∑
n=−∞

anz
n, z → ∞,

in the vicinity of the infinitely remote point. Therefore, for m > 0 the point z = ∞ is a pole of order m,

and for m ≤ 0 the point z = ∞ is a zero of order (−m) . Let f (z) = f0 (z) + f1 (z) , where f0 (·) is the
principal part, and f1 (·) is the regular part of Laurent decomposition in the vicinity of z = ∞ . If the function

g (z) = f0
(
1
z̄

)
, |z| < 1 belongs to the class H+

M , then we will say that the function f (·) belongs to the class

mH−
M . Absolutely similar to the case H+

M , we can prove the following statement.
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Proposition 3.4 Let M ∈ ∆2 (∞)
⋂
∇2 (∞) . Then the system {zn}m−∞

({
eint

}m

−∞

)
forms a basis for

mH−
M (for mL−

M ) , where mL−
M =m H−

M/∂ω .

More detailed about these and other facts one can see the work [11].
When considering Riemann baoundary value problems, we will significantly use the following statement

by Zygmund (see, e.g., [18, 41]).

Proposition 3.5 If f (·) is a real function with ∥f∥∞ < +∞, then the analytic function in ω

Φ(z) = exp

(
± i

2π

∫ π

−π

f (s)
eis + z

eis − z
ds

)
,

belongs to the class Hardy H+
δ for δ > 0 sufficiently small.

4. Homogeneous Riemann problem in Hardy-Orlicz classes
Consider the homogeneous Riemann problem

F+ (τ)−G (τ)F− (τ) = 0, τ ∈ ∂ω,
F+ (·) ∈ H+

M ;F− (·) ∈ mH−
M ,

(4.1)

with a complex-valued coefficient G
(
eit

)
≡

∣∣G (
eit

)∣∣ eiθ(t), t ∈ [−π, π] . By the solution of the problem (4.1)
we mean a pair of analytic functions (F+;F−) ∈ H+

M × mH−
M , whose nontangential boundary values satisfy

Equation (4.1) a.e. on ∂ω . We will solve this problem following the method of [9]. Consider the following
piecewise continuous functions on the complex plane with a cut ∂ω :

Z1 (z) ≡ exp
{

1
4π

∫ π

−π
log

∣∣G (
eit

)∣∣ eit+z
eit−zdt

}
,

Z2 (z) ≡ exp
{

i
4π

∫ π

−π
θ (t) eit+z

eit−zdt
}
, z /∈ ∂ω.

Let
Zθ (z) = Z1 (z)Z2 (z) , z /∈ ∂ω.

Integral of the form

Φ(z) =
1

2π

∫ π

−π

f (s)H (s; z) ds, (4.2)

is called Schwarz integral, where f (·) ∈ L1 (−π, π) is a density, and H (s; z) = eis+z
eis−z− is a Schwarz kernel. The

following Sokhotski-Plemelj formulae are true for Schwarz integral (4.2):

Φ± (
eiσ

)
= ±f (σ) +

1

2π

∫ π

−π

f (s)H
(
s; eiσ

)
ds .

From these formulae it immediately follows that

∣∣G (
eit

)∣∣ = Z+
1

(
eit

)
Z−
1 (eit)

, eiθ(t) =
Z+
2

(
eit

)
Z−
2 (eit)

, a.e. t ∈ [−π, π] .
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Consequently
Z+ (τ)−G (τ)Z− (τ) = 0, a.e. τ ∈ ∂ω. (4.3)

As argG (·) is a multivalued function, it is clear that the integral Z2 (·) depends on the chosen branch,
and, therefore, the piecewise analytic function Z (·) depends on the chosen branch, i.e. on θ (·) , and we denote
it by Zθ (·) : Zθ (z) = Z1 (z)Z2 (z) , z /∈ ∂ω.

We will call Zθ (·) a canonical solution of homogeneous problem (4.1), corresponding to the argument
θ (·) .

Considering (4.3) in (4.1), we obtain F+(τ)

Z+
θ (τ)

= F−(τ)

Z−
θ (τ)

, a.e. τ ∈ ∂ω . Introduce the piecewise analytic

function

Φ(z) =
F (z)

Zθ (z)
, z /∈ ∂ω.

We have

Φ+ (τ) = Φ− (τ) , a.e. τ ∈ ∂ω.

Let us show that the function Φ(·) satisfies all conditions of the uniqueness theorem. It is absolutely
clear that the function Zθ (·) has no zeros or poles when z /∈ ∂ω . Therefore, the functions Φ(·) and F (·)
have the same order at infinity. Let us find the conditions which guarantee that the piecewise analytic function
Φ(·) = (Φ+ (·) ; Φ− (·)) belongs to the class H+

1 ×mH−
1 . We will assume that the coefficient G (·) satisfies the

following conditions:
i) G±1 (·) ∈ L∞ (−π, π) ;

ii) θ (t) = argG
(
eit

)
is a piecewise Hölder function on [−π, π] with the jumps hk = θ (sk + 0) −

θ (sk − 0) , k = 1, r, at the points of discontinuity {sk}r1 : −π < s1 < . . . < sr < π.

Let us represent the function θ (·) as

θ (t) = θ0 (t) + θ1 (t) ,

where θ0 (·) is its continuous (Hölder) part, and θ1 (·) is a jump function defined by

θ1 (−π) = 0 , θ1 (s) =
∑

k:−π<sk<s

hk , ∀s ∈ (−π, π] .

If the conditions (i, ii) hold, then, by the results of [18], there exists a sufficiently small number δ > 0

such that the function Φ+ (z) belongs to the space H+
δ (also, Φ− (z) belongs to m̃H−

δ for some m̃ ∈ Z+ ).
Indeed, from the classical facts it follows that the function X±1

2 (z) belongs to H+
σ for sufficiently small δ > 0 .

As for the function X±1
1 (z) , using Jensen’s integral inequality of the form

exp

{
1∫ b

a
|p (s)| ds

∫ b

a

|p (s) f (s)| ds

}
≤ 1∫ b

a
|p (s)| ds

∫ b

a

|p (s)| exp |f (s)| ds,

we obtain
1

2π

∫ π

−π

∣∣X±1
1

(
ρeiσ

)∣∣p dσ =
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=
1

2π

∫ π

−π

{
exp

±p

4π

∫ π

−π

ln
∣∣G (

eis
)∣∣Pρ (σ − s) ds

}
dσ ≤

≤ 1

2π

∫ π

−π

{
1

2π

∫ π

−π

∣∣G (
eis

)∣∣± p
2 Pρ (σ − s) ds

}
dσ ≤ ∥G∥±

p
2

∞ ,

where Pr (·) is a Poisson kernel. It follows that if the condition (i) holds, then the function X±
1 (z) belongs to

all classes H+
p , ∀p > 0 . Applying Hölder’s inequality, we see that the function X±1 (z) belongs to the Hardy

class H+
δ for sufficiently small δ > 0. From the representation Φ(z) = F (z) [X (z)]

−1 it follows that the same
conclusion is true about the function Φ(z) .

Let us find out under which conditions the function Φ(·) belongs to the class H+
1 . To do so, it suffices

to find out under which conditions the boundary values Φ+ (τ) belong to L1 (−π, π) (the rest will follow from
the Smirnov theorem). Let

h0 = θ (−π)− θ (π) , h
(0)
0 = θ0 (π)− θ0 (−π) ,

and

u0 (t) =

∣∣∣∣sin t+ π

2

∣∣∣∣−
h
(0)
0
2π

exp

(
− 1

4π

∫ π

−π

θ0 (τ) cot
t− τ

2
dt

)
.

Denote

u (t) =

r∏
k=0

∣∣∣∣sin t− sk
2

∣∣∣∣
hk
2π

,

where s0 = −π . Applying Sokhotski-Plemelj formulae to Z1 (z) , we have

Z±
1

(
eiσ

)
= exp

{
±1

2
ln
∣∣G (

eiσ
)∣∣+ 1

4π

∫ π

−π

ln
∣∣G (

eis
)∣∣ eis + eiσ

eis − eiσ
ds

}
.

It directly follows that

sup vrai
(−π,π)

{ ∣∣Z−
1

(
eit

)∣∣±1
}
< +∞.

By the results of [18], the boundary values
∣∣Z−

2 (τ)
∣∣ are expressed by the formula

∣∣Z−
2

(
eit

)∣∣ = u0 (t)u
−1 (t) = u0 (t)

r∏
k=0

∣∣∣∣sin t− sk
2

∣∣∣∣−
hk
2π

.

Consequently, for the boundary values of the canonical solution Zθ (·) we obtain

Zθ
− (

eit
)
=

∣∣Z−
1

(
eit

)∣∣ |u0 (t)|
r∏

k=0

∣∣∣∣sin t− sk
2

∣∣∣∣−
hk
2π

.

Taking into account the expression

eis + eiσ

eis − eiσ
=

ei
s−σ
2 + ei

σ−s
2

ei
s−σ
2 − ei

σ−s
2

=
cos s−σ

2

i sin s−σ
2

= i cot
σ − s

2
,
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for Z±
1 (·) we have

Z±
1

(
eiσ

)
= exp

{
±1

2
ln
∣∣G (

eiσ
)∣∣+ i

4π

∫ π

−π

ln
∣∣G (

eis
)∣∣ cot σ − s

2
ds

}
.

Consequently ∣∣Z±
1

(
eiσ

)∣∣ = ∣∣G (
eiσ

)∣∣± 1
2 ,

and hence ∣∣Zθ
− (

eit
)∣∣ = ∣∣G (

eit
)∣∣− 1

2 |u0 (t)|
r∏

k=0

∣∣∣∣sin t− sk
2

∣∣∣∣−
hk
2π

. (4.4)

It is absolutely clear that θ0 (·) is a Hölder function on [−π, π] . Then, again by the results of [18], we obtain

sup vrai
[−π,π]

|u0 (t)|±1
< +∞.

We have
Φ− (

eit
)
= F− (

eit
) [

Z−
θ

(
eit

)]−1
. (4.5)

Thus, by the definition of solution, we have the inclusion F− (·) ∈ LM . Therefore, by (4.5), to show the function

Φ− (·) belongs to L1 (−π, π) , it suffices to show |Zθ
− (·)|−1 ∈ LM∗ , where M (·) and M∗ (·) are N -functions

complementary to each other. And for this, in turn, it suffices to show the validity of inclusion u (·) ∈ LM∗ .
Considering Corollary 2.6, we see that if the inequalities

hk

2π
> γM∗ , k = 0, r,

hold, then |Z− (·)|−1 ∈ LM∗ , and therefore Φ− (·) ∈ L1 (−π, π) . Then from Smirnov theorem it follows that
Φ ∈ H+

1 . Similarly we obtain Φ ∈ mH−
1 . As Φ+ (τ) = Φ− (τ) a.e. τ ∈ ∂ω , from the uniqueness theorem it

follows that Φ(·) is a polynomial Pk (·) of degree k ≤ m (for m < 0 we assume Pk (z) ≡ 0). So we get the
following representation for the function F (·) :

F (z) ≡ Zθ (z)Pk (z) , k ≤ m, (4.6)

where Zθ (·) is a canonical solution of homogeneous problem corresponding to the argument θ (·) . Let us find
the conditions under which the function (4.6) belongs to the Hardy-Orlicz classes H+

M ×m H−
M . It is absolutely

clear that F (·) ∈ H+
δ for sufficiently small δ > 0 (similar assertions hold true for the exterior of ω ), and hence

F (·) ∈ A′ . Therefore it suffices to prove that F+ (·) ∈ LM , and for this, in turn, it suffices to show that
F− (·) ∈ LM . It is absolutely clear that if Z−

θ (·) ∈ LM , then F− (·) ∈ LM . Corollary 2.6 implies that if the
inequalities

−hk

2π
> γM , k = 0, r,

hold, then Z−
θ ∈ LM ⇒ F− ∈ LM , and hence it is clear that (F+;F−) ∈ H+

M ×m H−
M . Therefore, we have

proved the following theorem.
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Theorem 4.1 Let M ∈ ∆2 (∞) be some N -function, and M∗ (·) be an N -function complementary to M .
Suppose the coefficient G (·) of the problem (4.1) satisfies the conditions i) , ii)and Zθ (·) is a canonical solution
corresponding to the argument θ (·) . Let the jumps {hk}r0 of the function θ (·) , where h0 = θ (−π) − θ (π) ,
satisfy the inequalities

γM∗ <
hk

2π
< −γM , k = 0, r. (4.7)

Then,
α) for m ≥ 0 the homogeneous Riemann problem (4.1) has a general solution of the form

F (z) = Zθ (z)Pk (z) , (4.8)

in the Hardy-Orlicz classes H+
M ×m H−

M , where Pk (·) is an arbitrary polynomial of degree k ≤ m; β) for
m < 0 this problem has only a trivial, i.e. zero solution.

This theorem has the following direct corollary.

Corollary 4.2 Let all the conditions of Theorem 4.1 hold. Then the homogeneous problem (4.1) under condition
F (∞) = 0 has only a trivial solution in the Hardy-Orlicz classes H+

M ×m H−
M .

To further generalize this result, let us show that the relation −1 ≤ γM + γM∗ ≤ 0 holds for the N -
functions M (·) and M∗ (·) complementary to each other. Right-hand side of this inequality is obvious. Let us
prove the left-hand side. Let M ∈ ∆2 (∞) and tα ∈ LM for some α ≥ γM . By the definition, the space LM

consists of functions f (·) such that∣∣∣∣∫ π

−π

f (x) v (x) dx

∣∣∣∣ < +∞, ∀v : ρM∗ (v) < +∞.

In particular, if we assume f (x) = tα and v (x) = tβ , then we obtain

Iα;β =

∫ π

0

tα+βdt < +∞, ∀β : ρM∗
(
tβ
)
< +∞.

Consequently, this inequality holds ∀β > γM∗ . On the other hand, the integral Iα;β is finite if and only if
α + β > −1 . It follows α + inf β

β>γM∗
= α + γM∗ ≥ −1 , ∀α : ρM (tα) < +∞ . Then we obtain α + γM∗ ≥ −1 ,

∀α > γM , and hence γM + γM∗ ≥ −1 . Therefore, the following lemma is true.

Lemma 4.3 Let M ∈ ∆2 (∞) and M∗ (·) be an N -function complementary to M . Then −1 ≤ γM +γM∗ ≤ 0.

Back to the homogeneous problem. Define the argument θ (·) of the coefficient G (·) as follows:

θ̃ (t) =


θ (t) , −π < t < s1 ,
θ (t) + 2πn , s1 < t < s2,
...
θ (t) + 2πnr , sr < t < π ,
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where {nk}r1 ⊂ Z are some integers. Assume

G̃ (t) = |G (t)| eiθ̃(t) , t ∈ (−π, π) .

It is absolutely clear that G (t) ≡ G̃ (t) . Therefore, in (4.1) we can consider G̃ (·) instead of G (·) . Denote the
jumps of the function θ̃ (·) at the points sk, k = 1, r by h̃k, k = 1, r. We have

h̃1 = h1 + 2πn; h̃k = hk + 2π (nk − nk−1) , k = 2, r ; h̃0 = h0 − 2πnr .

Applying Theorem 4.1 to the problem (4.1) with the coefficient G̃ (·) , we obtain the following result.

Theorem 4.4 Let M ∈ ∆2 (∞) be some N -function, and M∗ (·) be an N -function complementary to M. Let
the coefficient G (·) of the problem (4.1) satisfy the conditions (i, ii) and these exist the integers {nk}r1 ⊂ Z

such that the jumps {hk}r1 of the argument θ (·) satisfy the inequalities

γM∗ < h1

2π + n1 < −γM ;

γM∗ < hk

2π + nk − nk−1 < −γM , k = 2, r ;

γM∗ < h0

2π − 2πnr < −γM .

 (4.9)

Then,
α) for m ≥ 0 the problem (4.1) has a general solution of the form

F (Z) = Zθ̃ (z)Pk (z)

in the Hardy-Orlicz classes H+
M ×m H−

M , where Pk (·) is an arbitrary polynomial of degree k ≤ m, and Zθ̃ (·)

is a canonical solution of the homogeneous problem corresponding to the argument θ̃ (·) ;
β) for m < 0 this problem has only a trivial solution.

Remark 4.5 It follows from Lemma 4.3 that the integers {nk}r1 in (4.9) are defined uniquely.
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