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Abstract: In this paper, we deal with two-person zero-sum games with fuzzy goals. We investigated the cases where
the membership functions of the players are nonlinear. We examined how the solutions should be if the membership
functions of players were exponential functions. In case players’ membership functions are exponential, we developed a
new method for the maximin solution according to a degree of attainment of the fuzzy goals. An application was made
to show the effectiveness of the method.
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1. Introduction
Game theory has been used as a solution of decision making problems [9, 10, 15]. With the development of the
fuzzy theory [8, 18, 20], uncertain events were indicated by fuzzy sets.

Butnariu was the first to study game theory in a fuzzy environment [3]. Using fuzzy games, Buckley
studied behavior of decision makers [2].

Campos examined maximin problems [4]. Later extended by Nishizaki for the multiobjective situation
[7, 13, 14, 17]. In the literature, there are many models of the two-person zero sum fuzzy games with fuzzy
payoffs [1, 5, 6, 11, 12].

This paper is related to games with fuzzy goals. We investigated the cases where the membership functions
of the players are not linear. We examined how the solutions should be if the membership functions of players
were exponential functions. In case players’ membership functions are exponential, we developed a new method
for computing the maximin solution of games with fuzzy goals.

2. Games with exponential membership function
Let our payment matrix be A:

A =

a11 ... a1n
... ... ...
am1 ... amn

 (1)

where we assume that pure strategies correspond to the rows and the columns of the matrix A for Player
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1 and Player 2, respectively. When Player 1 chooses a pure strategy i ∈ I = {1, ...,m} and Player 2 chooses a
pure strategy j ∈ J = {1, ..., n} , Player 1 receives the payoff aij from Player 2.

X = {x ∈ Rm | x1 + x2 + ...+ xm = 1, xi ≥ 0, i = 1, ...,m } is a mixed strategy of Player 1,
Y = {y ∈ Rn | y1 + y2 + ...+ yn = 1, yj ≥ 0, j = 1, ..., n} is a mixed strategy of Player 2.
Suppose that a player has a fuzzy goal, which expresses the player’s degree of satisfaction for a payoff.

Definition 2.1 : Let a domain of the payoff for Player 1 be D ∈ R . Then the fuzzy goal µ
G̃

according to the
payoff for Player 1 is a fuzzy set on the set D characterized by a linear or an exponential membership function.

For a linear membership function:

µ
G̃
: D → [0, 1]

p → µ
G̃
(p) =


0 if p ≤ a

1− a−p
a−a if a ≤ p ≤ a

1 if a ≤ p


(2)

This membership function is given in Figure 1 and for an exponential membership function[19]:

µ
G̃
: D → [0, 1]

p → µ
G̃
(p) =



1 if p ≤ a

e
−s( p−a

a−a )−e−s

1−e−s if a ≤ p ≤ a

0 if a ≤ p


(3)

This membership function is given in Figure 2. We assume the following: Player 1 specifies the finite value a

of the payoff for which the degree of satisfaction is 0 , the finite value a of the payoff for which the degree of
satisfaction is 1 .

µ
G̃
(p) = 0 for the value p smaller than a , µ

G̃
(p) = 1 for the value p larger than a .

A membership function value for a fuzzy goal can be interpreted as the degree of attainment of the
fuzzy goal for the payoff. When a player has two different payoffs, player chooses the payoff with the larger
membership function.

Definition 2.2 : Player 1’s maximin value is:

max
x∈X

min
y∈Y

µ (x, y) (4)

such a strategy x is called the maximin solution according to a degree of attainment of the fuzzy goal. Similarly,
Player 2’s minimax value is:

min
y∈Y

max
x∈X

µ (x, y) (5)

such a strategy y is called the minimax solution, µ is a membership function of Player 2.
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3. Computational method

This section is devoted to developing the method for computing the maximin solution. Let (x, y) be any strategy
pair and xAy be an expected payoff. Then µ (xAy) is membership function of the fuzzy goal.

If the membership function is a linear function:

µ (xAy) =


0 if xAy ≤ a

1− a−xAy
a−a if a ≤ xAy ≤ a

1 if a ≤ xAy

 (6)

Figure 1. Linear membership function.

If the membership function is an exponential function:

µ (xAy) =



1 if xAy ≤ a

e
−s( xAy−a

a−a )−e−s

1−e−s if a ≤ xAy ≤ a

0 if a ≤ xAy


(7)

Figure 2. Exponential membership function
.
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a is the payoff to Player 1 and a is the payoff giving the best to Player 1. The parameter according to
the worst degree of satisfaction of Player 1 is:

a = min
x∈X

min
y∈Y

xAy = min
i∈I

min
j∈J

aij (8)

the parameter according to the best degree of satisfaction of Player 1 is:

a = max
x∈X

max
y∈Y

xAy = max
i∈I

max
j∈J

aij (9)

Theorem 3.1 Let membership function be an exponential function, Player 1’s maximin solution is equal to an
optimal solution of (10) mathematical programming problem:

max imize λ
subject to

â1jx1 + ...+ âmjxm + c ≥ λ, j = 1, ..., n

x1 + ...+ xm = 1

xi ≥ 0, i = 1, ...,m

(10)

where

âij =
e−(

xAy−a
a−a )

1− e−1
and c = − e−1

1− e−1

Proof Problem (4) can be transformed into:

max
x∈X

min
y∈Y

µ (x, y) = max
x∈X

min
y∈Y

(
e
−( xAy−a

a−a )−e−1

1−e−1

)

= max
x∈X

min
y∈Y

(
m∑
i=1

n∑
j=1

âijxiyj + c

)

= max
x∈X

min
y∈Y

(
m∑
i=1

n∑
j=1

âijxiyj +
n∑

j=1

yjc

)

= max
x∈X

min
y∈Y

n∑
j=1

(
m∑
i=1

âijxi + c

)
yj

= max
x∈X

min
j∈J

(
m∑
i=1

âijxi + c

)

(11)

The strategy x∗ satisfying (11) is optimal solution of the mathematical problem (10). 2

It can be demonstrated similarly for the linear membership function.
Now, we consider Player 2’s minimax solution.
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If µ (xAy) is a linear function:

µ (xAy) =


1 if xAy ≤ a

1− xAy−a
a−a if a ≤ xAy ≤ a

0 if a ≤ xAy

 , (12)

the membership function for µ (xAy) is an exponential function:

µ (xAy) =



0 if xAy ≤ a

e
−s( a−xAy

a−a )−e−s

1−e−s if a ≤ xAy ≤ a

1 if a ≤ xAy


, (13)

where the parameter a is the payoff giving the worst to Player 2 and the parameter a is the payoff giving the
best to Player 2.

The parameter a is:

a = min
x∈X

min
y∈Y

xAy = min
i∈I

min
j∈J

aij (14)

and the parameter a is:

a = max
x∈X

max
y∈Y

xAy = max
i∈I

max
j∈J

aij (15)

Theorem 3.2 If membership function is an exponential function, Player 2’s minimax solution is equal to an
optimal solution of (16) mathematical problem:

min imize λ
subject to

âi1y1 + ...+ âinyn + c ≤ λ, i = 1, ...,m

y1 + ...+ yn = 1

yj ≥ 0, j = 1, ..., n.

(16)
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Proof

max
y∈Y

min
x∈X

µ (x, y) = max
y∈Y

min
x∈X

(
e
−( a−xAy

a−a )−e−1

1−e−1

)

= max
y∈Y

min
x∈X

(
−

m∑
i=1

n∑
j=1

âijxiyj + 1− c

)

= max
y∈Y

min
x∈X

(
−

m∑
i=1

n∑
j=1

âijxiyj + 1−
m∑
i=1

xic

)

= max
y∈Y

min
x∈X

m∑
i=1

(
−

n∑
j=1

âijyj + 1− c

)
xi

= max
y∈Y

min
i∈I

(
−

n∑
j=1

âijyj + 1− c

)

(17)

The strategy y∗ satisfying (17) is optimal solution of the mathematical problem (18):

max imize λ
subject to

−âi1y1 − ...− âinyn + 1− c ≥ λ, i = 1, ...,m

y1 + ...+ yn = 1

yj ≥ 0, j = 1, ..., n

(18)

the problem is equivalent to the mathematical problem (16). 2

Example 3.3 We assume that each player has three pure strategies and s=1. The payoff matrix is:

A =

 −3 7 2
0 −2 0
3 −1 −6


from (7) and (10):

max imize λ
subject to

e
−( 3

13 )
1−e−1 x1 +

e
−( 6

13 )
1−e−1 x2 +

e
−( 9

13 )
1−e−1 x3 − e−(1)

1−e−1 ≥ λ

e−(1)

1−e−1x1 +
e
−( 4

13 )
1−e−1 x2 +

e
−( 5

13 )
1−e−1 x3 − e−(1)

1−e−1 ≥ λ

e
−( 8

13 )
1−e−1 x1 +

e
−( 6

13 )
1−e−1 x2 +

e−(0)

1−e−1x3 − e−(1)

1−e−1 ≥ λ

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.
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An optimal solution of this problem is:

x1 = 0.2128, x2 = 0.6792, x3 = 0.1080 and λ = 0.4481

If we solve the same example with the linear membership function as (6), an optimal solution is:

x1 = 0.1837, x2 = 0.7143, x3 = 0.1020 and λ = 0.4427

By identifying the membership function as (13), for the minimax strategy of Player 2, the mathematical problem
(16) is formulated:

min imize λ
subject to

e
−( 3

13 )
1−e−1 y1 +

e−(1)

1−e−1 y2 +
e
−( 8

13 )
1−e−1 y3 − e−(1)

1−e−1 ≤ λ

e
−( 6

13 )
1−e−1 y1 +

e
−( 4

13 )
1−e−1 y2 +

e
−( 6

13 )
1−e−1 y3 − e−(1)

1−e−1 ≤ λ

e
−( 9

13 )
1−e−1 y1 +

e
−( 5

13 )
1−e−1 y2 + y3 − e−(1)

1−e−1 ≤ λ

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0.

An optimal solution of this problem is for minimax strategy of Player 2:

y1 = 0.5716, y2 = 0.1984, y3 = 0.2300 and λ = 0.4481.

If we solve the same example with the linear membership function as (12), an optimal solution is:

y1 = 0.5714, y2 = 0.1225, y3 = 0.3061 and λ = 0.4427.

4. Conclusion
In this paper, we have considered two-person zero sum games with fuzzy goals. We proved players who are
playing a zero sum game with fuzzy goals. We investigated the cases where the membership functions of the
players are not linear. We examined how the solutions should be if the membership functions of players were
exponential functions. In case players’ membership functions are exponential, we developed a new method for
the maximin solution according to a degree of attainment of the fuzzy goals. An application was made to show
the effectiveness of the method.
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