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Abstract: In this paper, we investigate geodesics of the tangent bundle TM of a Riemannian manifold (M, g) endowed
with an arbitrary pseudo-Riemannian g -natural metric of Kaluza-Klein type. Then considering a class of naturally
defined almost complex structures on TM , constructed by V. Oproiu, we construct a class of magnetic fields and we
characterize the corresponding magnetic curves on TM , when (M, g) is a space form.
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1. Introduction
Magnetic curves represent, in physics, the trajectories of charged particles moving on a Riemannian manifold
under the action of a magnetic field. A magnetic field F on a Riemannian manifold (M, g) is any closed 2− form
F and the Lorentz-force associated to F is an endomorphism field φ such that

F (X,Y ) = g(φ(X), Y ), (1.1)

for all X,Y ∈ X(M) . The magnetic trajectories of F are curves γ in M that satisfy the Lorentz equation
(called also the Newton equation)

∇γ̇ γ̇ = φ(γ̇), (1.2)

which generalizes the equation of geodesics under arc length parametrization, namely ∇γ̇ γ̇ = 0. Here ∇ denotes
the Levi-Civita connection associated to the metric g . Since the Lorentz equation implies that the speed (and
hence the energy) of γ is constant, it is usual to focus on unit speed magnetic curves with a strength q ∈ R ,
that is normal magnetic curves satisfying the Lorentz equation

∇γ̇ γ̇ = qφ(γ̇), (1.3)

where by dot we denote the derivative with respect to the arc-length parameter s .
The topic of magnetic trajectories related to magnetic fields and their relationship with the geometry of

the Riemannian manifold has been extensively studied in the two last decades in many geometric contexts (cf.
[9] and the references therein). In the context of the geometry of tangent bundles, magnetic trajectories has been
studied in the unit tangent bundle of a Riemannian manifold endowed with the Sasaki metric and the magnetic
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structure associated to the standard contact structure (cf. [7] and [8]). A generalization to the case when the
unit tangent bundle is equipped with an arbitrary g -natural metric and the magnetic structure associated to
a family of compatible contact (resp. paracontact) structures has been recently made by the authors and M.I.
Munteanu [1] (resp. by the authors [2]).

Surprisingly, to the best of our knowledge, there is a lack in the literature of results concerning magnetic
trajectories on the tangent bundle, even equipped by the Sasaki metric. In this paper, we will try to fill this gap
by considering on the tangent bundle TM of a Riemannian metric (M, g) an arbitrary pseudo-Riemannian g -
natural metric G of Kaluza-Klein type. At first, we will investigate geodesics, remarking that any curve in TM

is, locally, either contained in a fiber or transverse to the fibers it meets. Any curve of TM transverse to fibers
can be interpreted as vector field V along a curve x in M . It is said to be horizontal if V is parallel along x and
oblique otherwise. According to this natural classification of curves, we will investigate vertical, horizontal, and
oblique geodesics in TM . Using the fact that, for pseudo-Riemannian g -natural metrics of Kaluza-Klein type,
the fibers of TM are totally geodesic submanifolds [3], we deduce that geodesics of vertical type on (TM,G) are
exactly geodesics in the pseudo-Euclidean vector spaces (TxM,G↾TxM ) , x ∈ M (Proposition 3.1). We also prove
that, under some conditions on the metric G , horizontal geodesics are parallel vector fields along geodesics on
TM (Theorem 3.4) and that for some pseudo-Riemannian Kaluza-Klein metrics on TM , there is no horizontal
geodesic on TM (Corollary 3.5). Concerning oblique geodesics, we restrict to the case when the base manifold
is a space of constant sectional curvature and the g -natural metric G on TM is a Kaluza-Klein metric. We
give necessary conditions for oblique curves to be geodesics (Proposition 3.9) and investigate the special cases of
velocity vector fields (Proposition 3.11) and vector fields of constant norm along base curves (Proposition 3.13).
We end our investigation on geodesics on TM by giving a classification of oblique geodesics on the tangent
bundle TM2 of a 2-dimensional manifold of constant Gaussian curvature, endowed with a pseudo-Riemannian
Kaluza-Klein metric (Theorem 3.15).

In the second part of the paper, we construct a family of magnetic structures: considering the family of
almost Kählerian structures on the tangent bundle of a Riemannian manifold of constant sectional curvature
constructed by Oproiu [12], we define a family of magnetic structures that we call g -natural complex magnetic
structures and we investigate the corresponding magnetic trajectories. We give a classification of nongeodesic
horizontal g -natural complex magnetic trajectories (Theorem 4.2). As a particular case, we prove that, in
the Sasaki metric case, horizontal geodesics are the only horizontal g -natural complex magnetic trajectories
(Corollary 4.3). Finally, restricting to Kaluza-Klein metrics on the tangent bundle, we investigate two special
kinds of nongeodesic oblique g -natural complex magnetic trajectories. On the one hand, we classify nongeodesic
g -natural complex magnetic trajectories which are velocity vector fields (Proposition 4.4) and, on the other hand,
we characterize, among vector fields of constant norm base curves making a constant angle with it, those which
are g -natural complex magnetic trajectories (Theorem 4.5).

2. Preliminaries
2.1. Basic formulas on tangent bundles

Let (M, g) be an n -dimensional Riemannian manifold and ∇ the Levi-Civita connection of g. Then the tangent
space of TM at any point (x, u) ∈ TM into the horizontal and vertical subspaces with respect to ∇ :

(TM)(x, u) = H(x, u)⊕ V (x, u). (2.1)
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If (x, u) ∈ TM is given then, for any vector X ∈ Mx, there exists a unique vector Xh ∈ H(x, u) such that
p∗Xh = X, where p : TM −→ M is the natural projection. We call Xh the horizontal lift of X to the
point (x, u) ∈ TM. The vertical lift of a vector X ∈ Mx to (x, u) ∈ TM is a vector Xv ∈ V (x, u) such
that Xv(df) = X(f), for all functions f on M. Here we consider 1-forms df on M as functions on TM

(i.e. (df)(x, u) = u(f)). Note that the map X −→ Xh is an isomorphism between the vector spaces Mx and
H(x, u). Similarly, the map X −→ Xv is an isomorphism between the vector spaces Mx and V (x, u).

Obviously, each tangent vector Z ∈ (TM)(x,u) can be written in the form

Z = Xh + Y v, (2.2)

where X,Y ∈ Mx are uniquely determined vectors. In an obvious way, we can define horizontal and vertical
lifts of vector fields on M.

Note that each system of local coordinates (U ;xi, i = 1, ..., n) in M induces on TM a system of local
coordinates (p−1(U);xi, ui, i = 1, ..., n). If X =

∑
Xi( ∂

∂xi )x is the local expression in (U ;xi, i = 1, ..., n) of a
vector X in Mx, x ∈ M, then the horizontal lift Xh and the vertical lift Xv of X to (x, u) ∈ TM are given,
with respect to the induced coordinates, by:

Xh =
∑

Xi(
∂

∂xi
)(x,u) −

∑
Γi
jku

jXk(
∂

∂ui
)(x,u), (2.3)

Xv =
∑

Xi(
∂

∂ui
)(x,u), (2.4)

where (Γi
jk) denote the Christoffel’s symbols of g. The canonical vertical vector field on TM is a vector field

U defined, in terms of local coordinates, by
U =

∑
ui ∂

∂ui . Here U does not depend on the choice of local coordinates and it is defined globally on TM . For

a vector u =
∑

ui ∂
∂xi , we see that uv =

∑
ui( ∂

∂xi )
v = U and uh =

∑
ui( ∂

∂xi )
h is the geodesic flow on TM.

The Riemannian curvature R of g is defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. (2.5)

2.2. g -natural metrics on tangent bundles

Let (M, g) be a Riemannian manifold. Using the concept of naturality and related notions, O. Kowalski and M.
Sekizawa succeeded to construct a 6-parameter family of metrics whose coefficients are real functions defined
on R+ . We refer to [11] for the construction of such metrics called g -natural metrics. g -natural metrics on
tangent bundles are characterized as follows:
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Proposition 2.1 [3] Let (M,g) be a Riemannian manifold and G be a g -natural metric on TM. Then there
are functions αi, βi : [0,+∞[→ R, i = 1; 2; 3, such that for every x ∈ M and u,X, Y ∈ Mx, we have



G(x,u)(X
h, Y h) = (α1 + α3)(r

2)gx(X,Y )
+(β1 + β3)(r

2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = α2(r

2)gx(X,Y ) + β2(r
2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y h) = α2(r

2)gx(X,Y ) + β2(r
2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = α1(r

2)gx(X,Y ) + β1(r
2)gx(X,u)gx(Y, u),

(2.6)

where r2 = ‖u‖2 = gx(u, u). For dim(M) = 1 , the same holds with βj = 0, j = 1, 2, 3 .

We put:
• φi(t) = αi(t) + tβi(t) ,
• φ(t) = φ1(t)[φ1 + φ3]− φ2

2 ,
• α(t) = α1(t)[α1 + α3]− α2

2 ,
for all t ∈ [0,+∞[ .

Lemma 2.2 [3] The necessary and sufficient conditions for a g -natural metric G on the tangent bundle of a
Riemannian manifold (M, g) to be nondegenerate are α(t) 6= 0and φ(t) 6= 0 for all t ∈ [0,+∞[

If dim(M) = 1 this is equivalent to α(t) 6= 0 for all t ∈ [0,+∞[ .

The wide class of g -natural metrics includes several well known metrics (Riemannian and not) on TM .
In particular:

• The Sasaki metric gS is obtained for α1 = 1 and α2 = α3 = β1 = β2 = β3 = 0 .

• Kaluza–Klein metrics, as commonly defined on principal bundles [17] (see also [6]), are obtained for
α2 = β2 = β1 + β3 = 0 .

• Metrics of Kaluza–Klein type are defined by the geometric condition of orthogonality between horizontal
and vertical distributions. Thus, a g -natural metric G is of Kaluza-Klein type if α2 = β2 = 0 .

Hereafter, we will consider pseudo-Riemannian g -natural metrics of Kaluza-Klein type on TM . In this
case, the Levi-Civita connection is reduced to the following form (cf. [3]):

Proposition 2.3 Let (M, g) be a Riemannian manifold, ∇ its Levi-Civita connection, and R its curvature
tensor. If G is a pseudo-Riemannian g -natural metric of Kaluza-Klein type on TM, then the Levi-Civita
connection ∇̄ of (TM,G) is given by
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(∇̄XhY h)(x,u) = (∇XY )h(x,u) + v{− 1
2R(X,Y )u

+B1(r
2)[g(Y, u)X + g(X,u)Y ]

+[B2(r
2)g(X,Y ) +B3(r

2)g(X,u)g(Y, u)]u},

(∇̄XhY v)(x,u) = (∇XY )v(x,u) + h{C1(r
2)R(Y, u)X + C2(r

2)g(X,u)Y

+C3(r
2)g(Y, u)X + [C4(r

2)g(R(X,u)Y, u)
+C5(r

2)g(X,Y ) + C6(r
2)g(X,u)g(Y, u)]u},

(∇̄XvY h)(x,u) = h{C1(r
2)R(X,u)Y + C2(r

2)g(Y, u)X
+C3(r

2)g(Y, u)X + [C4(r
2)g(R(X,u)Y, u)

+C5(r
2)g(X,Y ) + C6(r

2)g(X,u)g(Y, u)]u},

(∇̄XvY v)(x,u) = v{F1(r
2)[g(Y, u)X + g(X,u)Y ]

+[F2(r
2)g(X,Y ) + F3(r

2)g(X,u)g(Y, u)]u},

for all vector fields X,Y and (x, u) ∈ TM , where r2 = ‖u‖2 and Bi , Ci , and Fi are the functions defined
from [0,+∞[ to R by

B1 =− β1 + β3

2α1
, B2 = − (α1 + α3)

′

φ1
, B3 = − (β1 + β3)

′

φ1
+

β1(β1 + β3)

α1φ1
,

C1 =− α1

2(α1 + α3)
, C2 =

(β1 + β3)

2(α1 + α3)
, C3 =

(α1 + α3)
′

α1 + α3
,

C4 =
α1(β1 + β3)

2(φ1 + φ3)(α1 + α3)
, C5 =

β1 + β3

2(φ1 + φ3)
,

C6 =
1

2(φ1 + φ3)

[
2(β1 + β3)

′ − β1 + β3

α1 + α3
((β1 + β3) + 2(α1 + α3)

′)

]
,

F1 =
α

′

1

α1
, F2 =

β1 − α
′

1

φ1
, F3 =

1

φ1
(β

′

1 − 2
α

′

1

α1
β1).

2.3. Natural complex structures on tangent bundles

Following the same approach used by O. Kowalski and M. Sekizawa to define g -natural metrics on the tangent
bundle of a Riemannian manifold as first order natural operators (cf. [11]), V. Oproiu defined the class of
natural almost complex structures on the tangent bundle TM of a Riemannian manifold (M, g) as the family
of complex structures parametrized by six functions (cf. [12]). In this paper, we shall use the terminology
g -natural to refer to such almost complex structures and we will adopt the same spirit of notations used in the
case of g -natural metrics.

For any six real-valued smooth functions ai, bi, i = 1, 2, 3 defined on [0,+∞[ , we can define a (1, 1) -tensor
field on TM by 

JXh = (a1 + a3)(r
2)Xv + (b1 + b3)(r

2)g(X,u)uv

−a2(r
2)Xh − b2(r

2)g(X,u)uh,

JXv = a2(r
2)Xv + b2(r

2)g(X,u)uv

−a1(r
2)Xh − b1(r

2)g(X,u)uh,

(2.7)

for every x ∈ M and u,X ∈ Mx , where vertical and horizontal lifts are taken at u and r2 = gx(u, u) . It is
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easy to check that J is an almost complex structure on TM if and only if

a1(a1 + a3)− a22 = 1, A1(A+A3)−A2
2 = 1, (2.8)

where Ai is the real function defined on [0,+∞[ by Ai(t) = ai(t) + tbi(t) , i = 1, 2, 3 .

Definition 2.4 An almost complex structure J on TM defined by (2.7), with the conditions (2.8), is called
g -natural.

When a2 = b2 = 0 , then we obtain the class of “natural almost complex structures” defined in [16] and
if, furthermore, a3 = b1 = b3 = 0 and a1 = 1 , we get the canonical complex structure on TM .

The integrability of g -natural almost complex structures is characterized by the following:

Proposition 2.5 A g -natural almost complex structure J is integrable if and only if the following conditions
hold

i) (M, g) has constant sectional curvature k ;

ii) (a1 + a3)
′ = 1

a1+tb1
[(a1 + a3)(b1 + b3) + k(1− 3a22 − 4ta2b2)] ;

iii) a
′

1 = 1
a1+tb1

[2a2b2 − a1(b1 + b3)− ka21] ;

iv) a
′

2 = 1
a1+tb1

[(a1 + a3)b2 − 2ka1(a2 + tb2)] .

Now, we shall characterize almost Hermitian (resp. almost Kählerian) g -natural metrics with respect to
an arbitrary g -natural almost complex structure. Let G be a pseudo-Riemannian g -natural metric on TM

and J be a g -natural almost complex structure on TM . In [12], its shown that if G is Riemannian, then
(TM,G, J) is almost Hermitian if and only if there are C∞ -functions λ and µ on R+ such that ai = λαi

and Ai = µφi , i = 1, 2, 3 . The result can be obviously generalized to pseudo-Riemannian metrics. However,
by virtue of (2.8), we easily deduce that λ2 = α and µ2 = φ . It follows that α > 0 , φ > 0 , λ = ±

√
α and

µ = ±√
φ . Hence, we have:

Proposition 2.6 Let G be a pseudo-Riemannian g -natural metric on TM and J be a g -natural almost
complex structure on TM . Then

1. (TM,G, J) is almost Hermitian if and only if

i) ai = λαi , i = 1, 2, 3 ;

ii) Ai = µφi , i = 1, 2, 3 .

2. (TM,G, J) is almost Kählerian if and only if there are C∞ -functions λ and µ on R+ such that

i) ai = λαi , i = 1, 2, 3 ;

ii) Ai = µφi , i = 1, 2, 3 ;

iii) µ = (tλ)′ , i.e. √
αφ = ±(α+ tα′) .
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Remarks 2.7 1. By (2.8), a1 and a1 + a3 (resp. A1 and A1 +A3 ) do not vanish and have the same sign.
Then, for almost Hermitian g -natural structures, λ and µ do not vanish and α1 and α1 + α3 (resp. φ1

and φ1 + φ3 ) do not vanish and have the same sign.

2. Examples of pseudo-Riemannian metrics on TM which satisfy the condition iii) of the previous proposition
are the Sasaki metric and more generally, the Oproiu metrics (cf. [13]). Indeed, Oproiu metrics are the
g -natural metrics of Kaluza-Klein type characterized by the condition α = φ = 1 (cf. [4]).

3. By virtue of (2.8), the class of g -natural almost complex structures is a 4-parameter family with coefficients
real functions on R+ . Since λ and µ can be expressed by means of the functions αi and φi , then almost
Hermitian (resp. almost Kählerian) structures constitute a 4-parameter (resp. 3-parameter) family with
coefficients real functions on R+ .

3. Geodesics on the tangent bundle endowed with a pseudo-Riemannian Kaluza-Klein type metric

Let (M, g) be a Riemannian manifold. In Theorem 4.3 in [3], the first author and M. Sarih gave the classification
of Riemannian g -natural metrics on TM for which the fibers are totally geodesic. A particular subclass of such
metrics is that of Kaluza-Klein type metrics. This result can be straightforwardly generalized to pseudo-
Riemannian g -natural metrics. In particular, if G is a pseudo-Riemannian metric of Kaluza-Klein type on
TM , then any tangent space TxM , x ∈ M , is totally geodesic in (TM,G) . We deduce then that if a geodesic
γ of TM has a vertical velocity at a point, then it is has vertical velocity everywhere, i.e. γ is a vertical curve
in the sense that it belongs completely to a fiber of the bundle TM . Hence, any geodesic curve in (TM,G) is
either vertical or everywhere transverse to the fibers of TM .

Generally speaking, let γ = (x(t), V (t)) be a curve in TM . It is locally expressed as γ(t) =
∑n

i=1 V
i(t)

(
∂

∂xi

)
x(t)

.

• γ is a vertical curve if x(t) = x0 is a constant and, in this case, γ is a curve in the pseudo-Euclidean
space (Tx0M,G↾Tx0

M ) .

• γ is transverse if ẋ 6= 0 everywhere. In this case, γ can be regarded as a vector field V along the curve
x and its velocity vector field γ̇ is given by

γ̇(s) = ẋ(s)hγ(s) + (∇ẋV )vγ(s). (3.1)

When V is parallel along x , then the curve is called horizontal and it is called oblique otherwise.

In this section, we will study vertical, horizontal and oblique geodesics on (TM,G) .

3.1. Vertical geodesics

As said before, vertical curves of TM are curves belonging to a fiber of TM . Locally, a vertical curve
γ = (x, V (s)) of TM is expressed as γ(t) =

∑n
i=1 V

i(t)
(

∂
∂xi

)
x

. Vertical geodesics on (TM,G) are vertical
curves of TM , which are geodesics with respect to G . They are characterized as follows:

Proposition 3.1 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian metric of Kaluza-Klein
type on TM . Geodesics of vertical type on (TM,G) are exactly geodesics in the pseudo-Euclidean vector spaces
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(TxM,G↾TxM ) , x ∈ M . More precisely, a vertical curve γ = (x, V (s)) is a geodesic if and only if the following
equation holds

V̈ + 2F1(ρ)g(V, V̇ )V̇ + {F2(ρ)‖V̇ ‖2 + F3(ρ)g(V, V̇ )2}V = 0. (3.2)

Proof Let γ be a curve on Tx0M . In this case, we have

γ̇(t) =

n∑
i=1

V̇ i(t)

(
∂

∂ui

)
γ(t)

=

n∑
i=1

V̇ i(t)

(
∂

∂xi

)v

(x0,V (t))

.

γ is a geodesic if and only if ∇̄γ̇ γ̇ = 0 , which is equivalent, by Proposition 2.3, to equation (3.2). 2

Now, we shall characterize geodesics of vertical type with nonzero constant length.

Proposition 3.2 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian metric of Kaluza-Klein
type on TM . Let x0 ∈ M and γ(s) = (x0;V (s)) be a nonconstant curve in Tx0

M such that ρ := ‖V ‖2 is
constant. Then γ is a geodesic in (TM,G) if and only if the two following conditions hold:

1. α1(ρ) + ρα
′

1(ρ) = 0 ,

2. γ is a great circle of radius √
ρ in Tx0

M .

Furthermore, γ is timelike (resp. spacelike) if α1(ρ) < 0 (resp. α1(ρ) > 0).

Proof Suppose then that ρ = ‖V ‖2 is a nonzero constant so that g(V, V̇ ) = 0 . In particular, we have

G(γ̇, γ̇) = α1(ρ)‖V̇ ‖2 + β1(ρ)(g(V̇ , V ))2 = α1(ρ)‖V̇ ‖2. (3.3)

From (3.2), γ is a geodesic if and only if

V̈ + F2(ρ)‖V̇ ‖2V = 0. (3.4)

The scalar product of the last differential equation by V̇ yields g(V̈ , V̇ ) = 0 . However, g(V̈ , V̇ ) = 1
2 (

d
dt‖V̇ ‖2) .

Hence, ‖V̇ ‖ = cte .

On the other hand, the scalar product of equation (3.4) by V gives g(V̈ , V ) + ρF2(ρ)‖V̇ ‖2 = 0 , but
g(V̈ , V ) = d

dt (g(V̇ , V ))− ‖V̇ ‖2 = −‖V̇ ‖2 . Then we obtain

(1− ρF2(ρ))‖V̇ ‖2 = 0. (3.5)

We claim that ‖V̇ ‖ 6= 0 . Indeed, if not, we have V̇ = 0 and then V is constant, which contradicts the fact
that γ is a nonconstant curve. Thus, by virtue of (3.3), γ is either timelike (if α1(ρ) < 0) or spacelike (if
α1(ρ) > 0). It follows also from (3.5) that 1− ρF2(ρ) = 0 , i.e. α1(ρ)+ ρα

′

1(ρ) = 0 . Putting G(γ̇, γ̇) = c , where
c is a constant of the same sign as α1(ρ) , we have ‖V̇ ‖2 = c

α1(ρ)
. Hence, by (3.4), γ is a geodesic curve if and

only if

V̈ +
c

ρα1(ρ)
V = 0, (3.6)
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if and only if

V (t) = cos(

√
c

ρα1(ρ)
t).A+ sin(

√
c

ρα1(ρ)
t).B, (3.7)

where A , B ∈ Tx0
M such that ‖A‖2 = ‖B‖2 = ρ and g(A,B) = 0 . 2

It is known that, for the Sasaki metrics, all straight lines in fibers are geodesics. The following Proposition
gives the classification of all pseudo-Riemannian g -natural metrics of Kaluza-Klein type on TM which possess
this property:

Proposition 3.3 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian metric of Kaluza-Klein
type on TM . Then all the straight lines in the fibers of TM are geodesics if and only if the function φ1 is
constant.

Proof Let γ be given by γ(t) = tV0 , where V0 ∈ Tx0
M , ‖V0‖ = 1 . In this case, ρ = t2 and g(V, V̇ ) = t .

Then γ is a geodesic if and only if

2F1(t
2) + F2(t

2) + t2F3(t
2) = 0, (3.8)

i.e. φ
′

1(t
2) = 0 , for all t . Hence, φ1 is constant. 2

3.2. Horizontal geodesics

Theorem 3.4 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian metric of Kaluza-Klein
type on TM . A curve γ(s) = (x(s);V (s)) in TM is a horizontal geodesic curve on (TM,G) if and only if
x is a geodesic on (M, g) of constant speed

√
σ and V is a parallel vector field of (constant) squared norm ρ

along x and one of the following cases occurs:

1. (α1 + α3)
′(ρ) = 0 and V is orthogonal to x ;

2. (α1 + α3)
′(ρ) = (β1 + β3)

′(ρ) = (β1 + β3)(ρ) = 0 ;

3. (α1 + α3)
′(ρ) = (φ1 + φ3)

′(ρ) = 0 , (β1 + β3)(ρ) 6= 0 , β1(ρ) 6= α1(ρ)(β1+β3)
′(ρ)

(β1+β3)(ρ)
and V = ±

√
ρ
σ ẋ ;

4. (φ1 + φ3)
′(ρ) = 0 , (α1 + α3)

′(ρ) 6= 0 and V =
√

ρ
σ ẋ .

Proof Recall that a horizontal curve in TM is a curve γ(t) = (x(t), V (t)) such that ẋ 6= 0 and ∇ẋV = 0

everywhere. In particular, V is of constant norm along x . Denote ρ := ‖V ‖2 . From Proposition 2.3, γ is a
horizontal geodesic, i.e. ∇̄γ̇ γ̇ = 0 , if and only if the following system holds:0 = ∇ẋẋ;

0 = 2B1(ρ)g(ẋ, V )ẋ+
[
B2(ρ)‖ẋ‖2 +B3(ρ)g(ẋ, V )2

]
V.

(3.9)

From the first equation of (3.9), x is a geodesic of (M, g) and in particular has a constant speed. We denote
σ := ‖ẋ‖2 . Making the scalar product of the second equation of (3.9) by V , we obtain:

[2B1(ρ) + ρ.B3(ρ)]g(ẋ, V )2 + σρ.B2(ρ) = 0. (3.10)
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• If 2B1(ρ) + ρ.B3(ρ) = 0 , then B2(ρ) = 0 , i.e. (α1 + α3)
′(ρ) = 0 . However, 2B1(ρ) + ρ.B3(ρ) =

(α1+α3)
′(ρ)−(φ1+φ3)

′(ρ)
φ1(ρ)

= 0 . Then (φ1 + φ3)
′(ρ) = 0 . In this case, the second equation of (3.9) is

equivalent to

either g(ẋ, V ) = 0 in an open interval, i.e. ẋ and V are orthogonal;

or g(ẋ, V ) 6= 0 except may be at a finite number of isolated points and B1(ρ) = B2(ρ) = 0 , i.e.
(β1 + β3)(ρ) = (β1 + β3)

′(ρ) = 0 ;

or g(ẋ, V ) 6= 0 except may be at a finite number of isolated points and B3(ρ) 6= 0 . It follows from the
second equation of (3.9) that B1(ρ) 6= 0 , i.e. (β1 + β3)(ρ) 6= 0 . On the other hand, making the
scalar product of the second equation of (3.9) by ẋ , we obtain 2B1(ρ)σ + B3(ρ)g(ẋ, V )2 = 0 , i.e.
g(ẋ, V )2 = ρσ , since 2B1(ρ) + ρ.B3(ρ) = 0 . Hence, the second equation of (3.9) is equivalent to
V = ±

√
ρ
σ ẋ .

• If 2B1(ρ) + ρ.B3(ρ) 6= 0 , i.e.
(φ1 + φ3)

′(ρ)− (α1 + α3)
′(ρ) 6= 0. (3.11)

Then, by virtue of (3.10), g(ẋ, V )2 is constant equal to

g(ẋ, V )2 =
−ρ.B2(ρ)σ

2B1(ρ) + ρ.B3(ρ)
. (3.12)

– If B2(ρ) = 0 , i.e. (α1 + α3)
′(ρ) = 0 , then g(ẋ, V ) = 0 and the second equation of (3.9) is satisfied;

– If B2(ρ) 6= 0 , i.e. (α1 + α3)
′(ρ) 6= 0 , then (3.12) implies that

B2(ρ)[2B1(ρ) + ρ.B3(ρ)] < 0. (3.13)

Substituting from (3.12) into the second equation of (3.9), we obtain

V =

√
−ρ[2B1(ρ) + ρ.B3(ρ)]

σB2(ρ)
ẋ.

Taking the equalities of the norms of the two sides of the last identity, we obtain B2(ρ) + 2B1(ρ) +

ρ.B3(ρ) = 0 , i.e. (φ1 + φ3)
′(ρ) = 0 . By (3.11), (α1 + α3)

′(ρ) 6= 0 . In particular, equation (3.13) is

satisfied since B2(ρ)[2B1(ρ) + ρ.B3(ρ)] = −
[
(α1+α)′(ρ)

φ(ρ)

]2
< 0 .

2

As corollary, we have the following result which characterizes the horizontal geodesics with respect to
pseudo-Riemannian Kaluza-Klein metric on TM .

Corollary 3.5 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian Kaluza-Klein metric on
TM . A curve γ(s) = (x(s);V (s)) in TM is a horizontal geodesic curve on (TM,G) if and only if x is a
geodesic on (M, g) of constant speed

√
σ and V is a parallel vector field of (constant) squared norm ρ along

x , where ρ is a critical point of α1 + α3 .
Consequently, we have
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• If G is a pseudo-Riemannian Kaluza-Klein metric on TM such that α1 + α3 is a constant function
(in particular if G is the Sasaki metric or the Cheeger-Gromoll metric), then γ(s) = (x(s);V (s)) is a
horizontal geodesic curve on (TM,G) if and only if x is a geodesic on (M, g) and V is a parallel vector
field along x .

• If G is a pseudo-Riemannian Kaluza-Klein metric on TM such that (α1 + α3)
′ does not vanish, then

there is no horizontal geodesic on (TM,G) .

We have also the following characterization of horizontal geodesic velocity curves which is an immediate
corollary of Theorem 3.4:

Corollary 3.6 Let (M, g) be a Riemannian manifold and G be a pseudo-Riemannian metric of Kaluza-Klein
type on TM . A velocity curve γ(s) = (x(s); ẋ(s)) in TM is a horizontal geodesic curve on (TM,G) if and
only if x is a geodesic on (M, g) and ‖ẋ‖2 is a critical point of φ1 + φ3 .

Remark 3.7 If α1 +α3 is a positive (resp. negative) function, then any horizontal geodesic is spacelike (resp.
timelike). Indeed, G(γ̇, γ̇) = (α1 + α3)(ρ)σ .

Example 3.8 The base manifold is considered M = S2(R) , R > 0 , equipped with the metric induced by the
standard scalar product on R3 . We consider two examples of horizontal geodesics each representing a situation
in Theorem 3.4:

1. Situation 3- in Theorem 3.4: Let TS2(R) be endowed with a metric G such that φ1 +φ3 is constant
and β1 + β3 does not vanish. If we consider the geodesic curve x(s) = (R cos(s), R sin(s), 0) in S2(R)

and V = ρ
R2 ẋ , where ρ ∈ R , then γ(s) = (x;V ) is a horizontal geodesic curve in (TS2(R), G) . Figure 1

below illustrates the case when R = ρ = 2 .

Figure 1. Horizontal geodesic curve in (TS2(R), G) with R = ρ = 2 .
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2. Situation 2- in Theorem 3.4: Let TS2(R) be endowed with a metric G such that α1 +α3 is constant
and β1 + β3 vanishes (the Sasaki metric and the Cheeger-Gromoll metric are examples of such metrics).
With the same expression of x as in the first case, if we put V (s) = (V1(s), V2(s), V3(s)) , then V is parallel
vector field if and only if 

0 = V̇1 + (cos(s)V2 − sin(s)) cos(s)

0 = V̇2 + (cos(s)V2 − sin(s)) sin(s)

0 = V̇3

(3.14)

In particular V (s) = (−
√
2 sin(s),

√
2 cos(s), 2) is a solution of (3.14). In this case, γ(s) = (x;V ) is a

horizontal geodesic curve in (TS2(R), G) . Figure 2 below illustrates the case when R = 2 and ρ = 6 .

Figure 2. Horizontal geodesic curve in (TM,G) with R = 2 and ρ = 6 .

3.3. Oblique geodesics

Recall that oblique geodesics correspond to the case ‖V̇ ‖ 6= 0 everywhere. A close analysis of the differential
equation system giving oblique geodesics shows that it is hard to solve it in the full generality of arbitrary
Riemannian manifold and arbitrary pseudo-Riemannian Kaluza-Klein type metrics on its tangent bundle. Thus,
we shall restrict ourselves to the case where (M, g) is a space of constant sectional curvature c and G is a
pseudo-Riemannian Kaluza-Klein-metric, i,e. α2 , β2 and β1 + β3 are identically zero.
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Let γ = (x(s), V (s)) be an oblique curve of TM , i.e. ρ := ‖V̇ ‖2 6= 0 everywhere. In this case, we have
γ̇(s) = ẋ(s)hγ(s) +(∇ẋV )vγ(s) . It follows from Proposition 2.3 that the γ is a geodesic in (TM,G) if and only if


0 = ẍ+ 2c.C1(ρ)[g(ẋ, V )V̇ − g(ẋ, V̇ )V ] + 2C3(ρ)g(V, V̇ )ẋ;

0 = V̈ + 2F1(ρ)g(V̇ , V )V̇ + [B2(ρ)‖ẋ‖2 + F2(ρ)‖V̇ ‖2
+F3(ρ)g

2(V̇ , V )]V.

(3.15)

The following proposition gives necessary conditions for oblique curves to be geodesics:

Proposition 3.9 Let (M, g) be a space of constant sectional curvature c and G be a pseudo-Riemannian
g -natural Kaluza-Klein metric on TM . Let γ(t) = (x(t), V (t)) be an oblique geodesic curve on (TM,G) (i.e.
ẋ 6= 0 everywhere) and put ρ = ‖V ‖2 . Then

1. There is a real constant K1 6= 0 of the same sign as (α1 + α3) ◦ ρ such that

‖ẋ‖ =
K1

(α1 + α3) ◦ ρ
. (3.16)

In particular ‖ẋ‖ = cte if and only if either ‖V ‖ is a constant or α1 + α3 is a constant on the set∑
ρ = {ρ = ‖V (t)‖2, t ∈ I} .

2. If V vanishes nowhere and W := 1√
ρV then

‖Ẇ‖ =
K2

ρ.α1 ◦ ρ
, (3.17)

where K2 is a real constant of the same sign as the function α1 ◦ ρ .

Proof

1. Making the scalar product of the first equation of (3.15) by ẋ , we obtain

1

2

d

dt
(‖ẋ‖2) + 2C3(ρ)‖ẋ‖2g(V, V̇ ) = 0 (3.18)

i.e.
d
dt (∥ẋ∥

2)

∥ẋ∥2 = −2C3(ρ)
d
dt (‖V ‖2) = −2ρ′C3(ρ) = −2ρ′ (α1+α3)

′

α1+α3
(ρ) .

Integrating, we obtain

‖ẋ‖ =
K1

(α1 + α3) ◦ ρ
, (3.19)

where K1 is a real constant of the same sign as (α1 + α3)(ρ) .

2. Putting r :=
√
ρ , we have from W = 1√

ρV = 1
rV

V̇ = r′W + rẆ and V̈ = r′′W + 2r′Ẇ + rẄ . (3.20)

632



ABBASSI and AMRI/Turk J Math

Substituting into the second equation of (3.15), we obtain

rẄ + 2r′[1 + r2F1(r
2)]Ẇ + {r′′ + r(r′)2[2F1(r

2) + F2(r
2)

+ r2F3(r
2)] + r3F2(r

2)‖Ẇ‖2 + rB2(r
2)‖ẋ‖2}W = 0.

(3.21)

Applying the scalar product of (3.21) with Ẇ and using d
dt (g(Ẇ , Ẇ )) = 2g(Ẅ , Ẇ ) , we obtain

r
d

dt
(g(Ẇ , Ẇ )) + 4r′[1 + r2

α′
1(r

2)

α1(r2)
]g(Ẇ , Ẇ ) = 0,

which is equivalent to the equation

d

dt
(‖Ẇ‖) + 4rr′

(tα1)
′(r2)

r2α1(r2)
‖Ẇ‖ = 0.

Integrating the last equation, we obtain:

‖Ẇ‖ =
K2

r2α1(r2)
=

K2

ρα1(ρ)
,

where K2 is a real constant of the same sign of α1(ρ)

2

Remark 3.10 Suppose that K2 = 0 , i.e. W is a parallel vector field. Then, substituting from (3.20) into
(3.15) and using (3.16), it is easy to see that γ is a geodesic curve on (TM,G) if and only if

ẍ+ [ln(|(α1 + α3)| ◦ r2)]′ẋ = 0;

r′′ + r(r′)2
φ′

1(r
2)

φ1(r2)
− rK2

1 (α1+α3)
′(r2)

φ1(r2)(α1+α3)2
= 0.

(3.22)

Denoting the unit tangent vector and the principal normal vector of x by ξ1 and ξ2 , respectively, and the first
curvature of x by κ1 , we have

ẋ =
√
σξ1 and ẍ = (

√
σ)′ξ1 +

√
σκ1ξ2. (3.23)

Substituting from (3.23) into the first equation of (3.22), we find that κ1 = 0 , i.e. x is a geodesic. In particular,
σ is constant and, by (3.16), α1 + α3 is constant on

∑
ρ = {ρ = ‖V (t)‖2, t ∈ I} .

On the other hand we have, using the fact that ‖γ̇‖2 =: l is constant (γ is a geodesic) and equations
(3.20) and (3.16), we have:

l = (α1 + α3)(r
2)‖ẋ‖2 + (r′)2φ1(r

2) =
K2

(α1 + α3)(r2)
+ (r′)2φ1(r

2).

We deduce that

(r′)2 =
l

φ1(r2)
− K2

1

φ1(r2)(α1 + α3)(r2)
. (3.24)

Deriving the last equation we find that
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either r′ = 0 on some interval J ⊂ I , i.e. ρ is constant on J .

or r′ 6= 0 almost everywhere and

r′′ = r
φ′
1(r

2)

φ2
1(r

2)

[
− l +

K2
1

(α1 + α3)(r2)

]
. (3.25)

Using (3.24) and (3.25), we find that the second equation of (3.22) is satisfied.

3.3.1. Oblique velocity geodesic curves

From Corollary 3.6, a velocity of a curve x(t) of M is a horizontal geodesic only if x(t) is a geodesic. More
generally, a velocity of a curve x(t) of M is an oblique curve of TM if and only if x is not a geodesic on
(M, g) . We shall give a characterization of oblique geodesic velocity curves on (TM,G) .

Proposition 3.11 Let (M, g) be a space of constant sectional curvature c and G be a pseudo-Riemannian
Kaluza-Klein metric on TM , such that the function t 7→ t(α1+α3)

2(t) has isolated critical points. The velocity
of a nongeodesic curve x(s) of (M, g) is a geodesic curve in (TM,G) if and only if

(i) x is a Riemannian circle of constant speed √
ρ ;

(ii) c = (α1+α3)(ρ)
ρα1(ρ)

;

(iii) one of the following assertions holds

– (α1 + α3)
′(ρ) = α1(ρ) + ρα

′

1(ρ) = 0 ;

– (α1 + α3)
′(ρ)[α1(ρ) + ρα

′

1(ρ)] < 0 and the first curvature κ1 of x is equal to ρ
√

−(α1+α3)′(ρ)

α1(ρ)+ρα
′
1(ρ)

.

Proof Let x(t) be a nongeodesic curve in M and γ(t) = (x(t), ẋ(t)) its velocity vector field. Put ρ = ‖ẋ‖2 .
Then, from (3.15), γ is a geodesic curve in (TM,G) if and only if0 = [1 + 2cρC1(ρ)]ẍ+ 2g(ẋ, ẍ)[C3(ρ)− cC1(ρ)]ẋ;

0 =
...
x + 2F1(ρ)g(ẋ, ẍ)ẍ+ [ρB2(ρ) + F2(ρ)‖ẍ‖2 + F3(ρ)g(ẋ, ẍ)

2]ẋ.
(3.26)

Making the scalar product of the first equation of (3.26) by ẋ , we obtain ρ′[1 + 2ρC3(ρ)] = 0 , i.e.

ρ′[2ρ(α1 + α3)
′(ρ) + (α1 + α3)(ρ)] = 0,

which gives, by the fact that the function t 7→ t(α1 + α3)
2(t) has isolated critical points and by continuity of

ρ′ , ρ′ = 0 identically, i.e. ρ is constant. We deduce that g(ẋ, ẍ) = 0 and (3.26) becomes0 = [1 + 2cρC1(ρ)]ẍ;

0 =
...
x + [ρB2(ρ) + F2(ρ)‖ẍ‖2]ẋ.

(3.27)

Since x is a nongeodesic curve, then ẍ 6= 0 everywhere. Hence, 1 + 2cρC1(ρ) = 0 , i.e. c = (α1+α3)(ρ)
ρα1(ρ)

. On the

other hand, since x is not a geodesic, then there exist a unit vector field ν1 along x such that ẍ = κ1ν1 , where
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the first curvature κ1 of x is nonzero everywhere. We deduce that ...
x = κ1∇ẋν1 + κ

′

1ν1 . Making the scalar
product of the second equation of (3.27) with ẋ , we obtain:

κ2
1 = ‖ẍ‖2 =

d

dt
[g(ẍ, ẋ)]− g(

...
x , ẋ) = ρ[κ2

1F2(ρ) + ρB2(ρ)],

i.e. (1− ρF2(ρ))κ
2
1 = ρ2B2(ρ) . We have then two cases

Case 1: 1 − ρF2(ρ) = B2(ρ) = 0 , i.e. (α1 + α3)
′(ρ) = α1(ρ) + ρα

′

1(ρ) = 0 . In this case, the second
equation of (3.27) becomes ...

x + 1
ρ ẋ = 0 , i.e. κ1∇ẋν1 + κ

′

1ν1 +
1
ρ ẋ = 0 . Making the scalar product of the last

equation by ν1 and taking into account that g(∇ẋν1, ν1) = g(ẋ, ν1) = 0 , we obtain κ′ = 0 , i.e. κ is constant.

Case 2: 1−ρF2(ρ) 6= 0 . Then B2(ρ) 6= 0 and B2(ρ)[1−ρF2(ρ)] > 0 , i.e. (α1+α3)
′(ρ)[α1(ρ)+ρα

′

1(ρ)] <

0 . In this case, κ is also constant equal to ρ

√
−(α1+α3)′(ρ)

α1(ρ)+ρα′
ρ

.

The converse part of the Proposition is trivial. 2

Remark 3.12 Contrary to horizontal geodesics which could not be lightlike, there are some situations where
oblique geodesics are lightlike. Indeed, for oblique geodesic velocity curves (x(s), ẋ(s)) on (TM,G) , we have:

G(γ̇, γ̇) = ρ(α1 + α3)(ρ) + κ2α1(ρ).

Thus, γ is lightlike if and only if κ =
√

−ρ(α1+α3)(ρ)
α1(ρ)

. Notice that lightlike geodesics do exist only if the metric

G in not Riemannian, i.e. if α1(α1 +α3) < 0 . As an example, we consider the family of Kaluza-Klein metrics
on TM given by the generating functions which are C∞ on R+ and defined on an interval I of R+

∗ by

(α1 + α3)(t) = aeλt, α1(t) =
b

t
eλt, (3.28)

where a , b , and λ are real constants such that ab < 0 . Then the velocity of any Riemannian circle x on M

of speed √
ρ and first curvature ρ

√
−b
a is a lightlike oblique geodesic on (TM,G) . Note that the case λ = 0

(resp. λ 6= 0) corresponds to the first (resp. second) assertion in (iii) of Proposition 3.11.

3.3.2. Oblique geodesics of constant norm

We end this section by giving a characterization of oblique geodesics (x, V ) on (TM,G) of constant norm, i.e.
with ρ := ‖V ‖2 constant along x .

Proposition 3.13 Let (M, g) be a space of constant sectional curvature c and G be a pseudo-Riemannian
g -natural Kaluza-Klein metric on TM . Let γ(s) = (x(s);V (s)) be an oblique curve in TM such that ρ := ‖V ‖2

is a constant. If γ is a geodesic in (TM,G) , then it possesses the following properties:

1. ‖ẋ‖ and ‖V̇ ‖ are constant and are related by the identity

[α1(ρ) + ρα′
1(ρ)]‖V̇ ‖2 + ρ(α1 + α3)

′(ρ)‖ẋ‖2 = 0. (3.29)
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2. Let λ := 1 − cρα1(ρ)
(α1+α3)(ρ)

and let θ ∈ [0, π] be the angle between ẋ and V , i.e. g(ẋ, V ) = ‖ẋ‖‖V ‖ cos θ .
Then

cos θ = A cos(
λ‖V̇ ‖
√
ρ

t+ σ) +B sin(
λ‖V̇ ‖
√
ρ

t+ σ), (3.30)

where A , B , σ are real constants.

3. If λ = 0 , i.e. c = (α1+α3)(ρ)
ρα1(ρ)

, then x is a Riemannian circle and θ is constant.

Proof Let γ(s) = (x(s);V (s)) be an oblique geodesic in TM such that ρ := ‖V ‖2 is a constant. Then
g(V̇ , V ) = 0 and (3.15) becomes:  ẍ+ 2c.C1(ρ)[g(ẋ, V )V̇ − g(ẋ, V̇ )V ] = 0;

V̈ + [B2(ρ)‖ẋ‖2 + F2(ρ)‖V̇ ‖2]V = 0.

(3.31)

By Proposition 3.9, ‖ẋ‖ is constant. Making the scalar product of the second equation of (3.31) by V̇ and V ,
respectively, we obtain g(V̈ , V̇ ) = 0 , i.e. ‖V̇ ‖ is constant, and (3.29).

On the other hand, using (3.29), it is easy to check that B2(ρ)‖ẋ‖2 + F2(ρ)‖V̇ ‖2 = 1
ρ‖V̇ ‖2 , so that the

second equation of (3.31) becomes:

V̈ +
1

ρ
‖V̇ ‖2V = 0. (3.32)

Making the scalar product of the first equation of (3.31) by V and using (3.32) and the fact that g(ẍ, V ) =

d
dt (g(ẋ, V ))− g(ẋ, V̈ ) , we obtain

d

dt
(g(ẋ, V ))− [1 + 2cρC1(ρ)]g(ẋ, V̇ ) = 0. (3.33)

Making the scalar product of the first equation of (3.31) by V̇ and using (3.33) and g(ẍ, V̇ ) = d
dt (g(ẋ, V̇ )) −

g(ẋ, V̈ ) , we get:
d

dt
(g(ẋ, V̇ )) +

1

ρ
[1 + 2cρC1(ρ)]‖V̇ ‖2g(ẋ, V ) = 0. (3.34)

Putting λ := 1− cρα1(ρ)
(α1+α3)(ρ)

and g(ẋ, V ) = ‖ẋ‖‖V ‖ cos θ , θ ∈ [0, π] , we have two cases:

• If λ = 0 , then equations (3.33) and (3.33) imply that g(ẋ, V ) and g(ẋ, V̇ ) are constant. In particular, θ

is constant. If we denote κ1 the first curvature of x , so that ‖ẍ‖ = κ2
1 , then we have, by the first equation

of (3.31), κ2
1 = 4c2.C1(ρ)

2[g(ẋ, V )2‖V̇ ‖2 + ρg(ẋ, V̇ )2] , which is constant. Hence, x is a Riemannian circle
on (M, g) .

• If λ 6= 0 , then substituting from (3.33) into (3.34), we get

d2

dt2
(g(ẋ, V )) +

λ2‖V̇ ‖2

ρ
g(ẋ, V ) = 0,

whose solution gives (3.30).
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2

Remarks 3.14 1. When α1 + tα′
1 6= 0 and (α1 +α3)

′ = 0 everywhere (The Sasaki metric and the Cheeger-
Gromoll metric are examples of such metrics), then equation (3.29) yields ‖V̇ ‖ = 0 , which contradicts the
fact that γ is an oblique curve. Hence, for such metric types, there is no oblique geodesic curve on TM

belonging to a tangent sphere bundle.

2. An oblique geodesic curve γ = (x, V ) on (TM,G) , such that ρ := ‖V ‖2 is constant, is lightlike if and
only if

ρα1(ρ)(α1 + α3)
′(ρ)− (α1 + α3)(ρ)[α1(ρ) + ρα′

1(ρ)] = 0. (3.35)

Indeed, substituting from G(γ̇, γ̇) = ρ(α1 + α3)(ρ) + κ2α1(ρ) = 0 into (3.29), we obtain (3.35). For
example, the metrics defined by (3.28) satisfy equation (3.29), for any ρ ∈ I . We deduce that for such
metrics, any oblique geodesic curve γ = (x, V ) with ρ := ‖V ‖2 a constant in I is lightlike.

3.3.3. Oblique geodesics on (TM2(c), G)

In this section, we will give a classification of oblique geodesics on the tangent bundle TM2(c) of a Riemannian 2-
dimensional manifold (M2(c), g) of constant gaussian curvature c , equipped with a pseudo-Riemannian Kaluza-
Klein g -natural metric G . Let γ = (x, V ) be a nonvanishing oblique curve on TM2(c) , i.e. ẋ does not vanish
on the domain I of γ . Denote by

• σ := ‖ẋ‖2 ;

• ρ := ‖V̇ ‖2 and r := ‖V ‖ =
√
ρ ;

• κ the curvature of the curve x of M2(c) ;

• ξ1 the unit tangent vector field along x ;

• ξ2 the principal normal vector field along x ;

so that we have
ẋ =

√
σξ1, ξ̇1 = κξ2 and ξ̇2 = −κξ1. (3.36)

We deduce that
ẍ = (

√
σ)′ξ1 +

√
σκξ2. (3.37)

If we put W = 1
rV , then ‖W‖ = 1 and we can write

W = f1ξ1 + f2ξ2, (3.38)

where f1 and f2 are real functions on I such that

f2
1 + f2

2 = 1. (3.39)

It follows then that
f ′
1f2 + f ′

2f1 = 0. (3.40)
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Deriving (3.38) twice and using (3.36), we have

Ẇ = (f ′
1 − κf2)ξ1 + (f ′

2 + κf1)ξ2, (3.41)

Ẅ = (f ′′
1 − κ′f2 + κ2f1)ξ1 + (f ′′

2 + κ′f1 + κ2f2)ξ2. (3.42)

Suppose now that γ is an oblique geodesic. Then, by Proposition 3.9, we have

√
σ =

K1

(α1 + α3) ◦ ρ
and (3.43)

‖Ẇ‖ =
K2

ρ.α1 ◦ ρ
, (3.44)

where K1 and K2 are real constants with the same signs as (α1 + α3) ◦ ρ and α1 ◦ ρ , respectively.
Let us investigate the geodesic equations (3.15) on (TM2(c), G) using the preceding data.

Investigation of the first equation of (3.15):

The first equation of (3.15) is equivalent, by virtue of (3.37), to the equation

κξ2 + 2cρC1(ρ)[g(ξ1,W )Ẇ − g(ξ2, Ẇ )W ] = 0. (3.45)

Substituting from (3.36), (3.38), (3.39), and (3.41) into (3.45), we find that the first equation of (3.15) is
equivalent to

κ(1 + 2cρC1(ρ)) + 2c(f1f
′
2 − f2f

′
1)ρC1(ρ) = 0. (3.46)

Here, we distinguish two cases:
Case 1: c = 0 . In this case, we have κ = 0 , i.e. x is a geodesic.
Case 2: c 6= 0 . By (3.39), either f1 6= 0 or f2 6= 0 , locally. Suppose for instance that f2 6= 0 on some interval
J ⊂ I , the treatment of the other case being the same. Then we have, by virtue of (3.40),

f ′
2 = −f1

f2
f ′
1 on J. (3.47)

Substituting from (3.47) into (3.46) and using (3.39), we find

f ′
1√

1− f2
1

= ε2κ
[
1− (α1 + α3) ◦ ρ

cρ.α1 ◦ ρ

]
, (3.48)

where ε2 is the sign of f2 . Integrating (3.48), we obtain:

f1 = ε sin ◦λ, (3.49)

where ε = ±1 , λ : J → R being the function defined by

λ(t) :=

∫ t

t0

κ(s)
[
1− (α1 + α3)(ρ(s))

cρ(s)α1(ρ(s))

]
ds+ λ0, (3.50)

for all t ∈ J , t0 ∈ J and λ0 ∈ R . Using (3.39) and (3.40) again, we get

f2 = ε cos ◦λ. (3.51)

We deduce that, on J , we have:
V = ε

√
ρ[sin ◦λ.ξ1 + cos ◦λ.ξ2]. (3.52)
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Investigation of the second equation of (3.15):

From the expression V = rW , we have

V̇ = r′W + rẆ and V̈ = r′′W + 2r′V̇ + rẄ . (3.53)

Using (3.53), the second equation of (3.15) is equivalent to the following equation:

rẄ + 2r′[1 + r2F1(r
2)]Ẇ + {r′′ + r(r′)2[2F1(r

2) + F2(r
2)

+ r2F3(r
2)] + r3F2(r

2)‖Ẇ‖2 + rB2(r
2)‖ẋ‖2}W = 0.

(3.54)

Using (3.41) and (3.42), we deduce that equation (3.54) is equivalent to the system

0 = r(f ′′
1 − κ′f2 + κ2f1) + 2r′(1 + r2F1(r

2))(f ′
1 − κf2)

+f1{r′′ + r(r′)2
[
2F1(r

2) + F2(r
2) + r2F3(r

2)
]

+r3F2(r
2)
[
(f ′

1 − κf2)
2 + (f ′

2 + κf1)
2
]
+ rσB2(r

2)},

0 = r(f ′′
2 + κ′f1 + κ2f2) + 2r′(1 + r2F1(r

2))(f ′
2 + κf1)

+f2{r′′ + r(r′)2
[
2F1(r

2) + F2(r
2) + r2F3(r

2)
]

+r3F2(r
2)
[
(f ′

1 − κf2)
2 + (f ′

2 + κf1)
2
]
+ rσB2(r

2)},

(3.55)

which is equivalent to the system
0 = r[f2f

′′
1 − f1f

′′
2 − κ′] + 2r′(1 + r2F1(r

2))[f2f
′
1 − f1f

′
2 − κ],

0 = r′′ + r(r′)2
[
2F1(r

2) + F2(r
2) + r2F3(r

2)
]

+r3F2(r
2)
[
(f ′

1 − κf2)
2 + (f ′

2 + κf1)
2
]
+ rσB2(r

2).

(3.56)

Note that the first equation of (3.56) is obtained by multiplying the first and the second equations of (3.55) by
f2 and −f1 , respectively, and summing up, and that the second equation of (3.56) is obtained by multiplying
the first and the second equations of (3.55) by f1 and f2 , respectively, and summing up.

However, using (3.49) and (3.51), we get:

f ′
1 = λ′f2, f ′

2 = −λ′f1, f ′′
1 = −(λ′)2f1, f ′′

2 = −(λ′)2f2. (3.57)

Substituting from (3.57) into (3.56), we find:
0 = cκ′r4α2

1(r
2) + κ(α1 + α3)(r

2)(r2α1(r
2))′,

0 = r′′ + r(r′)2
φ′

1(r
2)

φ1(r2)
+ r

{
κ2(α1+α3)(r

2)
c2r4φ2

1(r
2)α2

1(r
2)

[
2c2r2φ1(r

2)α1(r
2)

−(α1 + α3)(r
2)(α1(r

2) + r2α′
1(r

2))
]
− σ (α1+α3)

′(r2)
φ1(r2)

}
.

(3.58)

Taking into account the first equation of (3.56), we should consider two cases:

Case 1: κ vanishes identically on some interval J ′ ⊂ J

Then λ is constant and, by (3.49) and (3.51), f1 and f2 are constant on J . We deduce from (3.41) that Ẇ = 0

and hence K2 = 0 . It follows from Remark 3.10 that either ρ is constant or r is solution of the differential
equation (3.24). Making a derivation of (3.24), standard calculation shows that r is also a solution of the second
equation of (3.56).
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Case 2: κ does not vanish on some interval J ′ ⊂ J

In this case, the first equation of (3.58) is equivalent on J ′ to

c
κ′

κ
= − (r2α1(r

2))′

(r2α1(r2))2
(α1 + α3)(r

2). (3.59)

On the other hand, from (3.41) and (3.57), we get:

‖Ẇ‖2 = (f ′
1 − κf2)

2 + (f ′
2 + κf1)

2 = (λ′ − κ)2 =
κ2(α1 + α3)

2(r2)

c2r4α2
1(r

2)
. (3.60)

Comparing the last formula with (3.17), we obtain

κ =
ε̄cK2

(α1 + α3)(r2)
, (3.61)

where ε̄ = ±1 .
Now since γ is a geodesic then ‖γ̇‖2 is a constant l . A standard calculation using (3.53), (3.43), and

(3.44) gives:

(r′)2 =
l

φ1(r2)
− K2

1

φ1(r2)(α1 + α3)(r2)
− K2

2

r2φ1(r2)α1(r2)
. (3.62)

Deriving (3.62), we find:

r′r′′ = rr′
[
− ε̃φ′

1(r
2)

φ2
1(r

2)
+

K2
1 (φ

′
1(r

2)(α1 + α3)(r
2) + φ1(r

2)(α1 + α3)
′(r2))

φ2
1(r

2)(α1 + α3)2(r2)

+
K2

2 (φ1(r
2)α1(r

2) + r2φ′
1(r

2)α1(r
2) + r2φ1(r

2)α′
1(r

2))

r4φ2
1(r

2)α2
1(r

2)

]
.

(3.63)

Then

either r′ = 0 on some interval J ′′ ⊂ J ′ , i.e. ρ is constant on J ′′ and, in this case, κ is constant (by (3.61))
and

lρα(ρ) = K2
1ρα1(ρ) +K2

2 (α1 + α3)(ρ), (3.64)

or r′ 6= 0 on some interval J ′′ ⊂ J ′ . In this case, using (3.64) and (3.64), we get:

r′′ + r(r′)2
φ′
1(r

2)

φ1(r2)
=

K2
1r(α1 + α3)

′(r2)

φ1(r2)(α1 + α3)2(r2)
+

K2
2 (α1(r

2) + r2α′
1(r

2))

r3φ1(r2)α2
1(r

2)
(3.65)

Comparing the last equation with the second equation of (3.58) and taking into account (3.61), we find:
2κ2(α+α3)(r

2)
r2φ1(r2)α1(r2)

= 0 , i.e. κ = 0 , which is a contradiction.

Summarizing the previous discussion, we have

Theorem 3.15 Let (M2(c), g) a Riemannian 2-dimensional manifold of constant gaussian curvature c 6= 0

and let its tangent bundle TM2(c) be equipped with a pseudo-Riemannian Kaluza-Klein g -natural metric G .
Let γ = (x, V ) be a nonvanishing oblique curve on TM2(c) , i.e. ẋ does not vanish on the domain I of γ .
Then γ is a geodesic on (TM,G) if and only if one of the following conditions holds locally
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(i) x is a geodesic on (M2(c), g) , V makes a constant angle with ẋ and the length r of V satisfies the ODE

(r′)2 =
l

φ1(r2)
− K2

1

φ1(r2)(α1 + α3)(r2)
, (3.66)

where l := ‖γ̇‖2 .

(ii) x is a Riemannian circle (with constant curvature κ), ρ := ‖V ‖2 is constant and V makes an affine
angle θ with ẋ defined by

θ(t) = κ

(
1− (α1 + α3)(ρ)

cρα1(ρ)

)
t+ θ0,

where θ0 is a constant.

Remarks 3.16 1. For a flat 2-dimensional manifold (M2(0), g) , any oblique geodesic on (TM2(0), G) is a
vector field along a geodesic.

2. If, in Theorem 3.15, c = (α1+α3)(ρ)
ρα1(ρ)

, then for any oblique geodesic (x, V ) , V makes constant angle with
ẋ .

3. If G is the Sasaki metric or the Cheeger-Gromoll metric on T 2M(c) , then φ1 = α1 + α3 = 1 and
condition (3.66) is equivalent to the fact that r is an affine function. Another nonclassical example can

be given by the family of Kaluza-Klein g -natural metrics defined by φ1 = 1 and (α1 + α3)(t) = aeb
√
t ,

for t ∈ [t0,+∞[ , t0 > 0 , a 6= 0 , b 6= 0 . Then the solution of (3.24) is the function defined by

r(t) = − 1
b

{
ln a

K2
1

(
l − b2K2

1

4a2 (εt+ d
)2} , where ε = ±1 is fixed. The domain of r depends of the sign of a ,

which is the sign is α1 + α3 :

• If a > 0 , then l > 0 (by the expression of r ), i.e. oblique geodesics of type (ii) in the theorem are

all spacelike. In this case, K1 > 0 and the domain of r should be in the set {t ≥ t0,− 2a
√
l

|b|K1
− d <

εt < 2a
√
l

|b|K1
− d} .

• If a < 0 , then we have

either l ≤ 0 and r is defined on [t0,+∞[ .

or l > 0 and r is defined on {t ≥ t0,− 2a
√
l

|b|K1
− d < εt < 2a

√
l

|b|K1
− d} .

3.3.4. Example

Now, we give an example of oblique geodesics of type (ii) (in Theorem 3.15), when the base manifold is the
hyperbolic plane M = H2 = {(u, v) ∈ R2; v > 0} , equipped with the metric g = 1

4v2 (du
2 + dv2) .

We consider the Riemannian circle in H2(−4) given by:

x(s) = (2 sin(µ(s)), 2− 2 cos(µ(s))), (3.67)

with µ′(s) + 2cos(µ(s)) = 2 , whose solution is given by:

µ(s) = −2 arccot(2s). (3.68)
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Then we have ẋ(s) = (2µ′(s) cos(µ(s)), 2µ′(s) sin(µ(s)) and ‖ẋ(s)‖ = 1 . A standard calculation using the
previous identities yields

∇ẋẋ = (−4µ′(s) sin(µ(s), 4µ′(s) cos(µ(s)).

By Theorem 3.15, a nonvanishing oblique geodesic on (TH2(−4), G) based on the Riemannian circle x

is a vector field V along x which makes an affine angle θ with ẋ defined by:

θ(t) = κ

(
1− (α1 + α3)(ρ)

cρα1(ρ)

)
t+ θ0,

where θ0 is a constant and κ2 = g(∇ẋẋ,∇ẋẋ) = 4 .
Putting V (s) = (V1(s), V2(s)) , with ‖V (s)‖2 = ρ = 1 , we have:

1 = gx(s)(V (s), V (s)) =
1

4µ′2(s)
[V 2

1 (s) + V 2
2 (s)] and

gx(s)(V (s), ẋ(s)) = ‖ẋ‖‖V ‖ cos(θ(s)) = 1

4µ′2(s)
[2µ′ cos(µ)V1 + µ′ sin(µ)V2],

so that we obtain: {
V 2
1 (s) + V 2

2 (s) = 4µ′2(s),

V1 cos(µ) + V2 sin(µ) = 2µ′(s) cos(θ(s)).

i.e {
±
√
4µ′2(s)− V 2

1 (s) = V2,

V1 cos(µ) + V2 sin(µ) = 2µ′(s) cos(θ(s)).
(3.69)

with 4µ′2(s) − V 2
1 ≥ 0 . Supposing that V2(s) =

√
4µ′2(s)− V 2

1 (s) and replacing in the second equation of
(3.69) we obtain:

0 = V 2
1 − 4µ′(s) cos(θ(s)) cos(µ(s))V1 + 4µ′2(s) cos(θ(s))− 4µ′2 sin2(µ(s)), (3.70)

whose discriminant is ∆ = 16µ′2 sin2(µ(s)) sin2(θ(s)) , so that

V1(s) = 2µ′[cos(θ(s)) cos(µ(s))± sin(θ(s)) sin(µ(s))] = 2µ′ cos(θ(s)± µ).

Note that condition 4µ′2 − V 2
1 ≥ 0 is always satisfied because 4µ′2 − V 2

1 = 4µ′2[1− cos(θ(s)± µ)] ≥ 0 , that is

V (s) = (V1(s),
√
4ρµ′2(s)− V 2

1 (s)), (3.71)

with V1 = 2µ′ cos(θ(s)± µ)

In the following, we draw some pictures representing some different situations showing the curve x on
H2(−4) , together with the vector field V = 2µ′ cos(θ(s)− µ(s)) along x , where µ is given by (3.68):

• Figure 3 illustrates the case when a = 1 and θ0 = 0 ;
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Figure 3. a = 1 , θ0 = 0 .

• Figure 4 gives the case when a = 1/2 and θ0 = 1 ;

Figure 4. a = 1/2 , θ0 = 1 .
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4. Natural complex magnetic curves on the tangent bundle of a space form

In this section, we suppose that (M, g) is a space of constant sectional curvature c and we endow its tangent
bundle with a pseudo-Riemannian g -natural metric of Kaluza-Klein type G . We consider on TM an almost
Kaëhlerian g -natural almost complex structure J given by (2.7). Under the previous assumptions, we have
α2 = β2 = 0 and, by virtue of (2.8) and Proposition 2.6, we have:

a1 = λα1, a2 = 0, a3 = λα3, (4.1)

A1 = λφ1, A2 = 0, A3 = λφ3, (4.2)

λ2 = α = α1(α1 + α3), µ2 = φ = φ1(φ1 + φ3), (4.3)

µ = (tλ)′, i.e. √
αφ = ±(tα1)

′. (4.4)

The fundamental 2-form Ω of the almost Kaëhlerian structure (TM,G, J) defined by Ω(X,Y ) :=

G(JX, Y ) , for all X,Y ∈ X(TM) , is closed and then defines a magnetic field on TM , which we call g -
natural complex magnetic field, whose Lorentz force is exactly J . The corresponding Lorentz equation is given
by:

∇γ̇ γ̇ = qJ(γ̇),

where q is a constant. We call the associated magnetic trajectories (curves) g -natural complex magnetic
trajectories (curves).

We shall investigate g -natural complex magnetic trajectories on (TM,G) . Using (3.1), we have:

J(γ̇) = [−a1V̇ − b1g(V̇ , V )V ]h + [(a1 + a3)ẋ+ (b1 + b3)g(ẋ, V )V ]v. (4.5)

Substituting from the last identity into the Lorentz equation and using Proposition 2.3, we have the following
characterization of g -natural complex magnetic curves on TM :

Theorem 4.1 γ is a g -natural complex magnetic curve on (TM,G, J) with strength q if and only if

0 = ẍ+ 2C(V, ẋ, V̇ ) + q[a1V̇ + b1g(V̇ , V )V ];

0 = V̈ +B(V, ẋ, ẋ) + F (V, V̇ , V̇ )− q[(a1 + a3)ẋ+ (b1 + b3)g(ẋ, V )V ].

(4.6)

4.1. Horizontal g -natural complex magnetic curves

Recall that a horizontal curve γ = (x, V ) is a curves transverse to fibers (i.e. ẋ 6= 0 everywhere) such that
V̇ = 0 , i.e. V is parallel along x . In particular, ρ = ‖V ‖2 = cte . In this case, by virtue of (4.6), γ is a
g -natural complex magnetic curve if and only if0 = ẍ;

0 = [2B1g(ẋ, V )− q(a1 + a3)] ẋ+
[
B2‖ẋ‖2 +B3g(ẋ, V )2 − q(b1 + b3)

]
V.

(4.7)

Note that all the quantities ai , bi , and Bi are taking at ρ and consequently are constant. We shall study (4.7)
in the case where q 6= 0 , i.e. we shall study horizontal nongeodesic magnetic curves on (TM,G) .
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Theorem 4.2 Let (M, g) be a space of constant sectional curvature and G be a pseudo-Riemannian g -natural
metric of Kaluza-Klein type on TM . Let γ = (x, V ) be a (horizontal) curve such that ‖γ̇‖2 = ε (ε = ±1 or 0)
and V̇ = 0 (In this case ρ = ‖V ‖2 is a constant). Then γ is a nongeodesic g -natural complex magnetic curve
on (TM,G) if and only if ρ 6= 0 and one of the following assertions holds:

1) x is a geodesic , (β1 + β3)(ρ) 6= 0 , g(ẋ, V ) = − qα1(a1+a3)
β1+β3

(ρ) and

4εB2
1(ρ)B2(ρ) =q2(a1 + a3)(ρ)[2B1(ρ)(α1 + α3)(ρ)(b1 + b3)(ρ)

+ (B2(β1 + β3)−B3(α1 + α3))(ρ)(a1 + a3)(ρ)].
(4.8)

2) ε = sing((φ1 + φ3)(ρ)) 6= 0 , ‖ẋ‖2 = ε
(φ1+φ3)(ρ)

, q2 6= 4ρB2
1(ρ)

(a1+a3)2(ρ)(φ1+φ3)(ρ)
, q(b1 + b3)(ρ)(φ+φ3)(ρ) 6=

ε(B2 + ρB3)(ρ) and γ is, up to a real factor, the velocity vector field of a geodesic curve on (M, g) .

Proof Suppose that γ is a nongeodesic g -natural complex magnetic curve on (TM,G) . We claim that ρ 6= 0 .
Indeed, suppose that ρ = 0 . Then the second equation of (4.7) reduces to −q(a1 + a3)ẋ = 0 , which is a
contradiction since ẋ 6= 0 everywhere, q 6= 0 and a1 + a3 6= 0 .

By the first equation of (4.7), x is a geodesic. Since ẋ and V are parallel, then the function g(ẋ, V )

is constant. On the other hand, since magnetic curves are of constant speed, we can suppose without loss of
generality; that ‖γ̇‖2 = ε where ε = −1; 0 or 1 according to the cases when γ is timelike, lightlike, or spacelike,
respectively, i.e. ε = ‖γ̇‖2 = (α1 + α3)‖ẋ‖2 + (β1 + β3)g(ẋ, V )2 then

‖ẋ‖2 =
1

α1 + α3
[ε− (β1 + β3)g(ẋ, V )2]. (4.9)

We deduce that ‖ẋ‖2 is also constant. It follows that the second equation is of the form ξ1ẋ+ ξ2V = 0 , where
ξ1 and ξ2 are the constants

ξ1 := 2B1g(ẋ, V )− q(a1 + a3), ξ2 := B2‖ẋ‖2 +B3g(ẋ, V )2 − q(b1 + b3).

Since ẋ and V do not vanish, then ξ1 and ξ2 are zero or not mutual.

Suppose that ξ1 = ξ2 = 0 . Then B1 6= 0 , i.e. (β1 + β3)(ρ) 6= 0 and g(ẋ, V ) = q(a1+a3)
2B1

(ρ) =

− qα1(a1+a3)
β1+β3

(ρ) . Using (4.9) and the expression of g(ẋ, V ) , equation ξ2 = 0 is equivalent to the condition

(4.8). With these conditions, the second equation of (4.7) is always satisfied.
For ξ1 6= 0 and ξ2 6= 0 , we deduce from the second equation of (4.7) that V and ẋ are collinear. In

particular, we have g(ẋ, V )2 = ‖ẋ‖2‖V ‖2 which gives, by virtue of (4.9), g(ẋ, V )2 = ερ
φ1+φ3

. This implies that

ε = sign(φ1 + φ3) and that ‖ẋ‖2 = ε
φ1+φ3

. Then µ1 6= 0 is equivalent to q2 6= 4ρB2
1

(a1+a3)2(φ1+φ3)
. It follows that

µ2 6= 0 is equivalent to q(b1 + b3)(φ+φ3) 6= ε(B2 + ρB3) . 2

Corollary 4.3 Under the same assumptions of Theorem 4.2, G is a Kaluza-Klein metric, i.e. β1+β3 vanishes
identically, then γ is a nongeodesic g -natural complex magnetic curve on (TM,G) if and only if ρ 6= 0 ,
ε = sing((α1 + α3)(ρ)) 6= 0 , ‖ẋ‖2 = ε

(α1+α3)(ρ)
, (α1 + α3)

′(ρ) 6= 0 and γ is, up to a real factor, the velocity

vector field of a geodesic curve on (M, g) .
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In particular, if G is the Sasaki metric, then every horizontal g -natural complex magnetic curve on
(TM,G) is a geodesic.

4.2. g -natural complex magnetic curves of oblique type
In this section, we restrict ourselves to Kaluza-Klein g -natural metrics on TM , i.e. we assume that α2 = β2 =

β1 + β3 = 0 . In this case, we have
b1 + b3 = λ′(α1 + α3). (4.10)

Recall that curve γ = (x, V ) on TM is slant if V makes a constant angle with ẋ , i.e. g(ẋ, V ) = ‖ẋ‖‖V ‖ cos θ ,
where θ is constant. We are interested in slant g -natural complex magnetic curves of oblique type. We shall
investigate the case when γ is the velocity vector field of a normal curve and the case when V is of constant
norm along x .

Let γ = (x, V ) be an oblique curve ( V̇ 6= 0 everywhere) such that ‖γ̇‖2 = ε , where ε = ±1 or 0 , i.e.

ε = (α1 + α3)(ρ)‖ẋ‖2 + α1(ρ)‖V̇ ‖2 + β1(ρ)g(V̇ , V ). (4.11)

where ρ = g(V, V ) . In this case, γ is a g -natural complex magnetic curve in (TM,G) if and only if


0 = ẍ+ 2cC1[g(ẋ, V )V̇ − g(ẋ, V̇ )V ] + 2g(V, V̇ )C3ẋ

+q[a1V̇ + b1g(V̇ , V )V ];

0 = V̈ + 2F1g(V, V̇ )]V̇ + [B2‖ẋ‖2 + F2‖V̇ ‖2 + F3g(V̇ , V )2

−q(b1 + b3)g(ẋ, V )]V − q(a1 + a3)ẋ.

(4.12)

4.2.1. Velocity vector fields

Proposition 4.4 Let (M, g) be a space of constant sectional curvature c and G be a pseudo-Riemannian
g -natural Kaluza-Klein metric on (TM,G) . Let x(s) be a nongeodesic curve of constant speed (‖ẋ‖2 = ρ) in
(M, g) and γ(s) = (x(s); ẋ(s)) its velocity curve. γ is a g -natural complex magnetic curve on (TM,G) if and
only if

i) x is a Riemannian circle.

ii) c = (α1+α3)(ρ)[1+qa1(ρ)]
ρα1(ρ)

iii) one of the following assertions holds

• ρ(α1 + α3)
′(ρ) = q[A1 +A3](α1 + α3) and α1(ρ) + ρα

′

1 = 0

• [qφ1(A1 +A3) + (α1 + α3)
′][α1 + ρα

′

1](ρ) < 0 and κ1 = ±
√
− [qφ1(A1+A3)+(α1+α3)′]

α1+ρα
′
1

(ρ)

Proof Denoting V (t) = ẋ(t) , we have ρ = ‖V ‖2 is constant and g(ẋ, ẍ) = g(V, V̇ ) = g(ẋ, V̇ ) = g(V, ẍ) = 0 .
If we denote by ξ1 , ξ2 , and ξ3 the unit tangent vector, the principal normal vector and the principal binormal
vector of x , respectively, and by κ1 and κ2 , the first and second curvatures of x , then by Frenet Formulas, we
have:

ẋ =
√
ρξ1 ∇ẋẋ = ρκ1ξ2,

...
x = ρ

3
2 [κ1κ2ξ3 − κ2

1ξ1 + κ̇1ξ2]. (4.13)
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Substituting from the last formulas into (4.12), γ is a g -natural complex magnetic curve if and only if

 [1 + 2ρcC1(ρ) + qa1(ρ)]ρκ1ξ2 = 0;[
ρB2 + ρ(ρF2 − 1)κ2

1 − q(A1 +A3)
]
ξ1 + ρ[κ̇1ξ2 + κ1κ2ξ3] = 0.

(4.14)

Since κ1 6= 0 almost everywhere (x is a nongeodesic curve), then the first equation (4.14) yields 1+2ρcC1(ρ)+

qa1(ρ) = 0 , i.e.

c =
(α1 + α3)(ρ)[1 + qa1(ρ)]

ρα1(ρ)
(4.15)

On the other hand, the second equation of (4.14) is equivalent to

 κ̇1 = 0;
κ1κ2 = 0;
ρB2 + ρ(ρF2 − 1)κ2

1 − q(A1 +A3) = 0.
(4.16)

We deduce that κ1 is constant and κ2 = 0 . By the third equation of (4.16), we deduce that

either 1− ρF2(ρ) = 0 , i.e. α1(ρ) + ρα′
1(ρ) = 0 and, in this case, ρB2(ρ) = q(A1 +A3)(ρ) = 0 ;

or α1(ρ) + ρα′
1(ρ) 6= 0 and, in this case, κ2

1 = −(α1+α3)
′(1)

α1(1)+α
′
1

. In particular, −(α1+α3)
′(1)

α1(1)+α
′
1(1)

> 0

2

4.2.2. Vector fields of constant norm along curves

Let γ = (x, V ) be an oblique curve on TM ( V̇ 6= 0 everywhere) such that ρ := ‖V ‖2 is constant. We suppose
that ‖γ̇‖2 = ε , where ε = ±1 or 0. Then (4.11) reduces to

ε = (α1 + α3)(ρ)‖ẋ‖2 + α1(ρ)‖V̇ ‖2. (4.17)

Using (4.12), γ is a g -natural complex magnetic curve in (TM,G) if and only if

0 = ẍ+ 2cC1[g(ẋ, V )V̇ − g(ẋ, V̇ )V ] + qa1V̇ ;

0 = V̈ + [B2‖ẋ‖2 + F2‖V̇ ‖2 − q(b1 + b3)g(ẋ, V )]V − q(a1 + a3)ẋ.

(4.18)

Making the scalar product of the first equation of (4.18) by ẋ and then by V , we obtain:

g(ẍ, ẋ) + qa1g(ẋ, V̇ ) = 0; (4.19)

g(ẍ, V )− 2cρC1(ρ)g(ẋ, V̇ ) = 0. (4.20)

Using (4.19), we obtain:
d

dt
g(ẋ, V ) = (1 + 2cρC1(ρ))g(ẋ, V̇ ). (4.21)
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Theorem 4.5 Let (M, g) be a space of constant sectional curvature and G be a pseudo-Riemannian Kaluza-
Klein g -natural metric on TM . Let γ = (x, V ) be an oblique nongeodesic g -natural complex magnetic curve
on (TM,G) such that ‖γ̇‖2 = ε (ε = ±1 or 0) and ρ = ‖V ‖2 is a constant. Then V makes a constant angle
θ 6= π/2 with ẋ if and only if ‖ẋ‖ and ‖V̇ ‖ are constant.

Proof Let θ be the angle that V makes with ẋ , so that g(ẋ, V ) =
√
ρ‖ẋ‖ cos θ . Deriving the squares of the

two sides last equality, taking into account that ρ is constant, we obtain:

[(1 + 2cρC1(ρ))‖ẋ‖+ qa1] cos
2 θg(ẋ, V̇ ) = ‖ẋ‖2θ̇ cos θ sin θ. (4.22)

Suppose that θ is constant, then locally either (1 + 2cρC1(ρ))‖ẋ‖+ qa1 = 0 or g(ẋ, V̇ ) = 0 .

• If (1 + 2cρC1(ρ))‖ẋ‖+ qa1 = 0 , then 1 + 2cρC1(ρ) 6= 0 and ‖ẋ‖ = − qa1

1+2cρC1(ρ)
, which is constant.

• If g(ẋ, V̇ ) = 0 , then g(ẍ, ẋ) = 0 by virtue of (4.19) and, consequently, ‖ẋ‖ is constant.

In the two cases, ‖V̇ ‖ is also constant by (4.17).

Conversely, if ‖ẋ‖ and ‖V̇ ‖ are constant, then g(ẋ, V̇ ) = 0 by virtue of (4.19). Using (4.22), either sin θ

or θ̇ vanish locally. In the two cases, θ is constant. 2
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