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Abstract: For simplicial complexes and simplicial maps, the notion of being in the same contiguity class is defined as
the discrete version of homotopy. In this paper, we study the contiguity distance, SD , between two simplicial maps
adapted from the homotopic distance. In particular, we show that simplicial versions of LS -category and topological
complexity are particular cases of this more general notion. Moreover, we present the behaviour of SD under the
barycentric subdivision, and its relation with strong collapsibility of a simplicial complex.
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1. Introduction
The Lusternik-Schnirelmann category, introduced by Lusternik and Schnirelmann [12], is an important numerical
invariant concerning the critical points of smooth functions on manifolds.

Definition 1.1 [3, 12] Lusternik Schnirelmann category of a space X , denoted by cat(X) , is the least nonneg-
ative integer k if there are open subsets U0, U1, . . . , Uk which cover X such that each inclusion map ιi : Ui ↪→ X

is null-homotopic in X for i = 0, 1, . . . , k .

Topological complexity of a topological space introduced by Farber [4] is another numerical invariant
closely related to motion planning problems.

Definition 1.2 [4] Let π : PX → X ×X be the path fibration. Topological complexity of a space X , denoted
by TC(X) , is the least nonnegative integer k if there are open subsets U0, U1, . . . , Uk which cover X ×X such
that on each Ui there exists a continuous section of π for i = 0, 1, . . . , k .

Although these invariants, cat and TC , seem to be independent, they are similar in nature both
being homotopy invariants. Macias-Virgos and Mosquera-Lois [13] introduced homotopic distance, a notion
generalizing both cat and TC . However, unlike cat and TC which are related to spaces, the homotopic
distance is a number related to functions. Hence, we have the opportunity to investigate the behaviour of the
homotopic distance under compositions which is not possible to do with cat and TC . This feature also leads us
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to prove the known TC - and cat -related theorems in simpler ways. For example, one may compare our proof
of Theorem 2.25 with the proof of theorem 4.3 in [7].

Definition 1.3 [13] Let f, g : X → Y be continuous maps. The homotopic distance between f and g , denoted
by D(f, g) , is the least nonnegative integer k if there are open subsets U0, U1, . . . , Uk which cover X such that
f and g restricted to Ui are homotopic, f |Ui ≃ g|Ui , for all i = 0, 1, . . . , k .

In this paper, we consider simplicial complexes and study the distance between two simplicial maps
adapted from homotopic distance. Note that one can consider a geometric realization of a simplicial complex
and study the ordinary homotopic distance between continuous maps induced by the geometric realization of
simplicial maps. However, we opt to stay in the simplicial category in order not to lose the combinatorial
aspects. To do this, we consider a simplicial analogue of homotopic distance between simplicial maps which
relies on the contiguity. Then the simplicial analogues of cat and TC of a simplicial complex can be defined in
terms of this distance. However, we want to remark that the contiguity distance between simplicial maps and
the homotopic distance between their corresponding geometric realizations might differ, see Example 2.6.

Given a set V , an abstract simplicial complex with a vertex set V is a set K of finite subsets of V such
that the elements of V belong to K and for any σ ∈ K any subset of σ belongs to K . The elements of K
are called the faces or the simplices of K . The dimension of an abstract simplex is just its cardinality minus
1 and the dimension of K is the largest dimension of its simplices. For further details on abstract simplicial
complexes, we refer to [11, 16].

The combinatorial description of any geometric simplicial complex K̃ obviously gives rise to an abstract
simplicial complex K . One can always associate a geometric simplicial complex K̃ to an abstract simplicial
complex K in such a way that the combinatorial description of K̃ is the same as K so that the underlying space
of K̃ is homeomorphic to the geometric realization |K| . As a consequence, abstract simplicial complexes can
be seen as topological spaces and geometric complexes can be seen as geometric realizations of their underlying
combinatorial structure, so one can consider simplicial complexes at the same time as combinatorial objects
that are well-suited for effective computations and as topological spaces from which topological properties can
be inferred.

It is a classical result that an arbitrary continuous map between geometric realizations of simplicial
complexes can be deformed (after sufficiently many subdivisions) to a simplicial map, known as the simplicial
approximation theorem. However, in general, simplicial approximations to a given continuous map are not
unique. An analogue of homotopy, called contiguity, is defined for simplicial maps so that different simplicial
approximations to the same continuous map are contiguous.

Definition 1.4 Let ϕ,ψ : K → K ′ be two simplicial maps between simplicial complexes. We say that ϕ and
ψ are contiguous, denoted by ϕ ∼c ψ , provided for a simplex σ = {v0, . . . , vn} in K , the set of vertices
ϕ(σ) ∪ ψ(σ) = {ϕ(v0), . . . , ϕ(vn), ψ(v0), . . . , ψ(vn)} constitutes a simplex in K ′ .

For simplicial complexes and simplicial maps, the notion of being in the same contiguity class can be
considered the discrete version of homotopy. Being contiguous is a combinatorial condition which defines a
reflexive and symmetric relation among simplicial maps. On the other hand, this relation is not transitive.
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There is, however, an equivalence relation in the set of simplicial maps and the corresponding equivalence
classes are called contiguity classes.

Definition 1.5 We say that two simplicial maps ϕ,ψ : K → K ′ are in the same contiguity class, denoted
by ϕ ∼ ψ , provided there exists a finite sequence of simplicial maps ϕi : K → K ′ , i = 1, . . . ,m , such that
ϕ = ϕ1 ∼c ϕ2 ∼c · · · ∼c ϕm = ψ .

Barmak and Minian [1, 2] introduced the notion of strong collapse, a particular type of collapse which is
specially adapted to the simplicial structure. Actually, it can be modelled as a simplicial map, in contrast with
the standard concept of collapse which is not a simplicial map in general: For a simplicial complex K , suppose
that there is a pair of simplices σ < τ in K such that σ is a face of τ , and σ has no other cofaces. Such a
simplex σ is called a free face of τ . Then the simplicial complex K − {σ, τ} is complex called an elementary
collapse of K (see Figure 1). The action of collapsing is denoted by K ↘ K − {σ, τ} . The inverse of an
elementary collapse is called an elementary expansion.

bc bc bc

bc bc bc

bc

σ
τ

bc bc bc

bc bc bc

bc

Figure 1. An elementary collapse.

Two simplicial complexes K , K ′ have the same strong homotopy type, denoted by K ∼ K ′ , if they are
related by a sequence of strong collapses and expansions. Surprisingly, this turns out to be intimately related
to the classical notion of contiguity. More precisely, having the same strong homotopy type is equivalent to the
existence of a strong equivalence.

A simplicial map ϕ : K → K ′ is called a strong equivalence if there exists ψ : K ′ → K such that
ϕ ◦ ψ ∼ idK′ and ψ ◦ ϕ ∼ idK . The theory of strong homotopy types of simplicial complexes was introduced
in [2]. Strong homotopy types can be described by elementary moves called strong collapses. From this theory,
Barmak and Minian obtained new results for studying simplicial collapsibility.

A natural definition of Lusternik-Schnirelman (LS) category for simplicial complexes, that is invariant
under strong equivalences, is given in [9], and a notion of discrete topological complexity in the setting of
simplicial complexes by means of contiguous simplicial maps is given in [7].

Let K be a simplicial complex and L ⊆ K a subcomplex. We say that L is categorical, provided there
exists a vertex v0 ∈ K such that the inclusion map i : L ↪→ K and the constant map cv0 : L → K are in the
same contiguity class. The simplicial LS category, denoted by scat(K) , is defined as the least integer n ≥ 0

such that K is covered by (n + 1) categorical subcomplexes [9]. Immediately from this definition, we can
conclude that a simplicial complex K is strongly collapsible, i.e. has the strong homotopy type of a point if
and only if scat(K) = 0 .

The Cartesian product of two simplicial complexes may not satisfy the universal property of a product,
so that it is not necessarily a simplicial complex. As in [11], we can define a product of two simplicial complexes,
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called categorical product, in such a way that their product is a simplicial complex and satisfy the universal
property of a product. Let K and K ′ be two simplicial complexes. Then the categorical product of K and
K ′ , denoted by K

∏
K ′ , is a simplicial complex such that

1. its vertices are pairs (v, ω) where v is a vertex of K and ω is a vertex of K ′ , and
2. the projections pr1 : K

∏
K ′ → K and pr2 : K

∏
K ′ → K ′ are simplicial maps and are universal with

the property.
Let K be a simplicial complex and K2 = K

∏
K a categorical product. Then a simplicial subcomplex

Ω ⊂ K2 is a Farber subcomplex, provided there exists a simplicial map σ : Ω → K such that ∆ ◦ σ ∼ ιΩ where
ιΩ : Ω ↪−→ K2 is the inclusion map and ∆: K → K2 is the diagonal map ∆(v) = (v, v) .

Definition 1.6 [7] The discrete topological complexity TC(K) of the simplicial complex K is the least integer
n ≥ 0 such that K2 can be covered by (n+ 1) Farber subcomplexes.

In other words, TC(K) ≤ n if and only if K2 = Ω0∪. . .∪Ωn , and there exist simplicial maps σj : Ωj → K

such that ∆ ◦ σj ∼ ιj where ιj : Ωj ↪−→ K2 are inclusions for j = 0, . . . , n .
Before the end of this section, we remark that for a given simplicial complex K , cat(|K|) and TC(|K|)

are lower bounds for scat(K) and TC(K) , respectively.

2. Contiguity distance
Throughout the paper, a simplicial complex is meant to be an abstract simplicial complex, all simplicial
complexes are assumed to be (edge-) path connected, and all maps between simplicial complexes are assumed
to be simplicial maps.

Definition 2.1 [13, Definition 8.1] For simplicial maps ϕ,ψ : K → K ′ , the contiguity distance between
ϕ and ψ , denoted by SD(ϕ,ψ) , is the least integer n ≥ 0 such that there exists a covering of K by
subcomplexes K0,K1, . . . ,Kn with the property that ϕ

∣∣
Kj
, ψ

∣∣
Kj

: Kj → K ′ are in the same contiguity class

for all j = 0, 1, . . . , n .

Remark 2.2 There is another simplicial version of homotopic distance, also called contiguity distance which
is introduced in [14] and given in the sense of Gonzalez [10]. According to [14], the contiguity distance in this
paper is called “strict contiguity distance”.

It is easy to see that the contiguity distance defines a symmetric relation on the set of simplicial maps
and the contiguity distance between two maps is zero if and only if they are in the same contiguity class. The
next proposition tells us that this notion is well-defined on the set of equivalence classes of simplicial maps.

Proposition 2.3 If ϕ ∼ ϕ̄, ψ ∼ ψ̄ : K → K ′ , then SD(ϕ,ψ) = SD(ϕ̄, ψ̄) .

Proof Suppose first that SD(ϕ,ψ) = n . By definition, this means that there exists a covering of K by
subcomplexes K0,K1, . . . ,Kn with the property that ϕ

∣∣
Kj
, ψ

∣∣
Kj

: K → K ′ are in the same contiguity class

for all j . Since ϕ ∼ ϕ̄ and ψ ∼ ψ̄ , their restrictions to Kj are also in the same contiguity classes for all j .
Also recall that contiguity classes are equivalence classes, so we have ϕ̄

∣∣
Kj

∼ ϕ
∣∣
Kj

∼ ψ
∣∣
Kj

∼ ψ̄
∣∣
Kj

for all j .
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Therefore, SD(ϕ̄, ψ̄) ≤ n . Starting with SD(ϕ̄, ψ̄) gives us SD(ϕ,ψ) ≤ SD(ϕ̄, ψ̄) , which completes the proof.
2

We can use a finite covering of a complex K to produce an upper bound for the simplicial distance
between maps.

Proposition 2.4 Given two simplicial maps ϕ,ψ : K → K ′ and a finite covering of K by subcomplexes
K0,K1, . . . ,Kn , we have

SD(ϕ,ψ) ≤
n∑
i=0

SD(ϕ
∣∣
Kj
, ψ

∣∣
Kj

) + n.

Proof Suppose SD(ϕ|Kj
, ψ|Kj

) = mj for each j = 0, 1, . . . , n . Thus, there exists a covering of Kj by
subcomplexes K0

j ,K
1
j , . . . ,K

mj

j such that ϕ|Ki
j
∼ ψ|Ki

j
.

The collection K =
{
K0

0 , . . . ,K
m0
0 ,K0

1 , . . . ,K
m1
1 , . . . ,K0

n, . . . ,K
mn
n

}
is a covering for K satisfying ϕ|L ∼ ψ|L

for all L ∈ K . Thus, since the cardinality of K is (m0 +m1 + . . .+mn) + n+ 1 , the required inequality holds.
2

Next, we mention the relation between the simplicial LS -category and the contiguity distance between
simplicial maps. First, note that for a subcomplex L of a simplicial complex K , if idK

∣∣
L

and cv0
∣∣
L

are in the
same contiguity class, then L is categorical in K . From this observation, it is easy to see that for a simplicial
complex K and any vertex v0 of K , we have

scat(K) = SD(idK , cv0).

Let K be a simplicial complex and |K| denote its geometric realization. We know that both scat(K)

and TC(K) might differ from cat(|K|) and TC(|K|) (see, Theorem 2.15 and [7, Theorem 5.2]). Although
the simplicial category and discrete topological complexity depend on both the simplicial structure and the
geometric realization of the complex [7, 9], the particular considered triangulations play an important role.
More precisely, for simplicial complexes K,K ′ and simplicial maps ϕ,ψ : K → K ′ , we expect SD(ϕ,ψ) is not
necessarily the same as D(|ϕ|, |ψ|) , where |ϕ|, |ψ| : |K| → |K ′| are continuous maps between their corresponding
geometric realizations [13].

Proposition 2.5 For simplicial maps ϕ,ψ : K → L , we have D(|ϕ|, |ψ|) ≤ SD(ϕ,ψ) .

Proof Let SD(ϕ,ψ) = n so that there exist subcomplexes K0,K1, . . . ,Kn in such a way that the inclusion
map ιi : Ki → K and the constant map cv : Ki → L are in the same contiguity class, ιi ∼ cv . Note that the
union of the closed subsets |K0|, |K1|, . . . , |Kn| of |K| covers |K| and the geometric realizations of ιi and cv ,

|ιi|, |cv| : |Ki| → |K|

are homotopic continuous maps. 2

The following is an example for the strict form of the inequality given in Proposition 2.5.

Example 2.6 Consider the simplicial complex K given in Figure 2 [2]. Let idK and c be the identity simplicial
map and a constant simplicial map on K , respectively. We know that scat(K) = 1 ([9, Example 3.2]) so that
SD(idK , c) = 1 . Notice that the homotopic distance D(|idK |, |c|) is zero which follows from the fact that the
geometric realization |K| of K is contractible. Therefore, D(|idK |, |c|) < SD(idK , c) .
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Figure 2. |K| is contractible whereas K is not strongly collapsible.

Before we study the behaviour of contiguity distance under barycentric subdivision, we recall some basic
notions and talk about how scat behaves under barycentric subdivision.

Definition 2.7 The barycentric subdivison of a given simplicial complex K is the simplicial complex sd(K)

whose set of vertices is K and each n-simplex in sd(K) is of the form {σ0, σ1, . . . , σn} where σ0 ⊊ σ1 ⊊ . . . ⊊
σn .

Definition 2.8 For a simplicial map ϕ : K → L , the induced map sd(ϕ) : sd(K) → sd(L) is given by

sd(ϕ)({σ0, . . . , σq}) = {ϕ(σ0), . . . , ϕ(σq)}.

Notice that sd(ϕ) is a simplicial map and sd(id) = id .

Proposition 2.9 [8] If the simplicial maps ϕ,ψ : K → L are in the same contiguity class, so are sd(ϕ) and
sd(ψ) .

The relation between the contiguity distance of two maps and the contiguity distance of their induced
maps on barycentric subdivisions can be given as follows.

Theorem 2.10 For simplicial maps ϕ,ψ : K → K ′ , SD(sd(ϕ), sd(ψ)) ≤ SD(ϕ,ψ) .

Proof Let SD(ϕ,ψ) = n . Then there are subcomplexes K0,K1, . . . ,Kn covering K such that ϕ|Ki
∼ ψ|Ki

for all i = 0, 1, . . . , n .

Take the cover {sd(K0), sd(K1), . . . , sd(Kn)} of sd(K) . By Proposition 2.9, if ϕ|Ki
∼ ψ|Ki

, then sd(ϕ|Ki
) ∼

sd(ψ|Ki) .

On the other hand, sd(ϕ|Ki
) = sd(ϕ|sd(Ki)) . More precisely, if {σ1, . . . , σq} ∈ sd(Ki) ,

sd(ϕ|Ki)({σ1, . . . , σq}) =
{
sd(ϕ|Ki)(σ1), . . . , sd(ϕ|Ki)(σq)} = {sd(ϕ)(σ1), . . . , sd(ϕ)(σq)

}
= sd(ϕ

∣∣
sd(Ki)

).

Hence, since we have sd(ϕ|Ki
) ∼ sd(ψ|Ki

) , it follows that sd(ϕ
∣∣
sd(Ki)

) ∼ sd(ψ
∣∣
sd(Ki)

) for all i . 2

Although the below corollary is given as a consequence of some theorems related to finite spaces in [9,
Corollary 6.7] and a direct proof is given in [8, Theorem 3.1.1], we give the following alternative proof using the
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contiguity distance for the consistency of the paper.

Corollary 2.11 For a simplicial complex K , scat(sd(K)) ≤ scat(K) .

Proof In Theorem 2.10, take ϕ = id and ψ = c as the identity map and a constant map, respectively. Thus,
the induced maps sd(id) and sd(c) are also the identity and a constant map on sd(K) . Thus, the corollary
follows. 2

Observe that for a simplicial complex K being strongly collapsible is equivalent to saying that scat(K) =

SD(idK , cv0) = 0 . Hence, for a strongly collapsible complex K , we have idK ∼ cv0 . The following theorem
tells us that the same is true for arbitrary maps.

Theorem 2.12 For any maps ϕ,ψ : K → K ′ , SD(ϕ,ψ) = 0 , provided K or K ′ is strongly collapsible.

Proof Suppose K is strongly collapsible, then we have idK ∼ cv0 where v0 is a vertex in K . We have the
following diagram

K

idK ))

cv0

55 K
φ // K ′

which implies that
ϕ ◦ idK ∼ ϕ ◦ cv0 (constant).

Similarly, we have

K

idK ))

cv0

55 K
ψ // K ′

so that
ψ ◦ idK ∼ ψ ◦ cv0 (constant).

Since K ′ is edge-path connected, all the constant maps are in the same contiguity class. Hence, we have
ϕ = ϕ ◦ idK ∼ ψ ◦ idK = ψ .

On the other hand, if K ′ is strongly collapsible

scat(K ′) = 0 = SD(idK′ , cω0)

where ω0 is a vertex in K ′ . That is,

idK′ ∼ cω0
.

This time, we have the following diagram:

K
φ // K ′

idK′
**

cω0

44 K ′

so that
idK′ ◦ ϕ ∼ cω0

◦ ϕ (constant).
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Similarly, we have

K
ψ // K ′

idK′
**

cω0

44 K ′

so that
idK′ ◦ ψ ∼ cω0

◦ ψ (constant).

Note that K ′ is edge-path connected since it is strongly collapsible. Hence, we have ϕ = idK′ ◦ ϕ ∼
idK′ ◦ ψ = ψ . 2

For the converse, we have the following result.

Corollary 2.13 Let K be a simplicial complex. If SD(ϕ,ψ) = 0 for any pair of simplicial maps ϕ,ψ : K → K ,
then K is strongly collapsible.

Proof If we take ϕ = idK and ψ = cv0 on a fixed vertex v0 ∈ K , our assumption SD(idK , cv0) = 0 implies
that scat(K) = 0 , which is equivalent to saying that K is strongly collapsible. 2

Theorem 2.14 Let v0 be a vertex of the simplicial complex K . For the simplicial maps

i1, i2 : K → K2

defined as i1(σ) = (σ, v0) and i2(σ) = (v0, σ) , we have scat(K) = SD(i1, i2) .

Proof First, we prove that SD(i1, i2) ≤ scat(K) . Let L ⊆ K be categorical. That is, there exists a vertex v0

of K such that the inclusion map ι : L ↪−→ K and the constant map cv0 : L→ K are in the same contiguity class.
We want to show that i1

∣∣
L

and i2
∣∣
L

are also in the same contiguity class. Consider the following composition
of simplicial maps

L
∆L / / L2

ι
∏
cv0**

cv0
∏
ι

44 K2 ,

where ∆L is the diagonal map of L , defined on the set of vertices by v → (v, v) , and ι
∏
cv0 and cv0

∏
ι is the

categorical product of ι and cv0 . Then

i1
∣∣
L
= (ι

∏
cv0) ◦∆L,

and
i2
∣∣
L
= (cv0

∏
ι) ◦∆L.

Since L is categorical, then ι ∼ cv0 . We have

ι
∏

cv0 ∼ cv0
∏

cv0 ,

cv0
∏

ι ∼ cv0
∏

cv0 .
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This implies

ι
∏

cv0 ∼ cv0
∏

ι

so that (ι
∏
cv0) ◦∆L ∼ (cv0

∏
ι) ◦∆L , which proves our claim.

Next, we show that scat(K) ≤ SD(i1, i2) . Assume that L is a subcomplex of K with i1
∣∣
L

∼ i2
∣∣
L

. Let

pi : K
2 → K be the projection maps for i = 1, 2 . Then p1 ◦ i1

∣∣
L
∼ p1 ◦ i2

∣∣
L

so that ι ∼ cv0 . 2

The Proposition 2.5 leads to the following theorem.

Theorem 2.15 Let K be a simplicial complex and |K| its geometric realization. cat(|K|) ≤ scat(K) .

Proof Consider the simplicial maps i1 : K → K2 and i2 : K → K2 defined in Theorem 2.14 so that
scat(K) = SD(i1, i2) . In that case, their geometric realizations

|i1|, |i2| : |K| → |K2|

are continuous maps. By Lemma 5.1 in [7], we know that |K2| and |K| × |K| are homotopy equivalent spaces.
Let u : |K2| → |K| × |K| be the homotopy equivalence. Therefore, the inclusion maps ι1 : |K| ↪−→ |K| × |K|
and ι2 : |K| ↪−→ |K| × |K| are homotopic to u ◦ |i1| and u ◦ |i2| , respectively. By Proposition 2.5 and [13,
proposition 3.1], we have

cat(|K|) = D(ι1, ι2) = D(u ◦ |i1|, u ◦ |i2|) ≤ D(|i1|, |i2|) ≤ SD(i1, i2) = scat(K).

2

Our next aim is to prove Theorem 2.20. Thus, we need Corollary 2.17 and Corollary 2.19, which follow
from Proposition 2.16 and Proposition 2.18, respectively.

Proposition 2.16 Let ϕ,ψ : K → K ′ and µ : M → K be simplicial maps. Then we have

SD(ϕ ◦ µ, ψ ◦ µ) ≤ SD(ϕ,ψ).

Proof Let SD(ϕ,ψ) = n . Then there exist subcomplexes K0, . . . ,Kn of K such that ϕ
∣∣
Kj

∼ ψ
∣∣
Kj

for all j .

Define M ⊃Mj : = µ−1(Kj) and the restriction map µj : Mj → K . Then

(ϕ ◦ µ)j = ϕ ◦ µj = ϕ ◦ ιj ◦ µ̄j = ϕj ◦ µ̄j ∼ ψj ◦ µ̄j = ψ ◦ ιj ◦ µ̄j = ψ ◦ µj = (ψ ◦ µ)j ,

where ιj : Kj ↪−→ K is the inclusion and µ̄j : Mj → Kj , µ̄j(x) = µj(x) is a map satisfying µj = ιj ◦ µ̄j .
Therefore, SD(ϕ ◦ µ, ψ ◦ µ) ≤ n . 2

Corollary 2.17 Let ϕ,ψ : K → K ′ be simplicial maps and β : M → K be a simplicial map which has a right
strong equivalence (that is, β satisfies β ◦ α ∼ idK where α : K →M ). Then SD(ϕ ◦ β, ψ ◦ β) = SD(ϕ,ψ) .

Proof Since β ◦ α ∼ idK , it follows that ϕ ◦ β ◦ α ∼ ϕ and ψ ◦ β ◦ α ∼ ψ . Thus,

SD(ϕ,ψ) = SD(ϕ ◦ β ◦ α, ψ ◦ β ◦ α) ≤ SD(ϕ ◦ β, ψ ◦ β) ≤ SD(ϕ,ψ),

where the equality follows from Proposition 2.3 and the inequalities follow from Proposition 2.16. Hence, we
have SD(ϕ ◦ β, ψ ◦ β) = SD(ϕ,ψ) . 2
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Proposition 2.18 Let ϕ,ψ : K → K ′ and ϕ,ϕ′ : K ′ →M be simplicial maps. If ϕ ∼ ϕ′ , then SD(ϕ ◦ ϕ,ϕ′ ◦
ψ) ≤ SD(ϕ,ψ) .

Proof Suppose SD(ϕ,ψ) = n . Then there exist subcomplexes K ′
0,K

′
1, . . . ,K

′
n of K ′ such that ϕ

∣∣
K′

i

and

ψ
∣∣
K′

j

are in the same contiguity class for all i, j . So

(ϕ ◦ ϕ)
∣∣
K′

i

= ϕ ◦ ϕ
∣∣
K′

i

∼ ϕ′ ◦ ϕ
∣∣
K′

i

∼ ϕ′ ◦ ϕ
∣∣
K′

j

= (ϕ′ ◦ ϕ)
∣∣
K′

j

.

Hence, SD(ϕ ◦ ϕ,ϕ′ ◦ ψ) ≤ n . 2

Corollary 2.19 Let ϕ,ψ : K → K ′ be simplicial maps and α : K ′ → M be a simplicial map which has a left
strong equivalence (that is, α satisfies β ◦ α ∼ idK′ , where β : M → K ′ ). Then SD(α ◦ ϕ, α ◦ ψ) = SD(ϕ,ψ) .

Proof Since β ◦ α ∼ idK′ , it follows that β ◦ α ◦ ϕ ∼ ϕ and β ◦ α ◦ ψ ∼ ψ . Thus,

SD(ϕ,ψ) = SD(β ◦ α ◦ ϕ, β ◦ α ◦ ψ) ≤ SD(α ◦ ϕ, α ◦ ψ) ≤ SD(ϕ,ψ),

where the equality follows from Proposition 2.3 and the inequalities follow from Proposition 2.18. Hence, we
have SD(α ◦ ϕ, α ◦ ψ) = SD(ϕ,ψ) . 2

Theorem 2.20 If β : K ′ ∼ K and α : L ∼ L′ have the same strong homotopy type and if simplicial
maps ϕ,ψ : K → L and ϕ′, ψ′ : K ′ → L′ make the following diagrams commutative with respect to f

and g , respectively, in the sense of contiguity (that is, α ◦ ϕ ◦ β ∼ ϕ′ and α ◦ ψ ◦ β ∼ ψ′ ), then we have
SD(ϕ,ψ) = SD(ϕ′, ψ′) .

K L

K ′ L′

φ

ψ
αβ

φ′

ψ′

Proof SD(ϕ′, ψ′) = SD(α ◦ ϕ ◦ β, α ◦ ψ ◦ β) = SD(ϕ ◦ β, ψ ◦ β) = SD(ϕ,ψ) ,

where the second equality follows from Corollary 2.19 and the last equality follows from Corollary 2.17.
2

Remark 2.21 Notice that the result of Theorem 2.20 is still valid even if we consider β and α as right and
left strong equivalences, respectively.

The simplicial LS category of a simplicial map is defined as in the following definition.

Definition 2.22 [15] Let ϕ : K → K ′ be a simplicial map and ω0 be a vertex of K ′ . Simplicial LS cate-
gory scat(ϕ) of ϕ is defined to be the least integer n such that there exists a covering of K by subcomplexes
K0,K1, . . . ,Kn such that ϕ

∣∣
Kj

: Kj → K ′ and the constant map cω0 : Kj → K are in the same contiguity class

for all j .
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Corollary 2.23 Let ϕ : K → K ′ be a simplicial map. Then scat(ϕ) ≤ min{scat(K), scat(K ′)} .

Proof Let idK : K → K be the identity map and cv0 : K → K be the constant map at the vertex v0 in K .

scat(ϕ) = SD(ϕ,ϕ ◦ cv0) = SD(ϕ ◦ idK , ϕ ◦ cv0) ≤ SD(idK , cφ(v0)) = scat(K),

where the inequality follows from Proposition 2.18. Hence, scat(ϕ) ≤ scat(K) .

On the other hand, we have

scat(K ′) = SD(idK′ , cω0
) ≥ SD(idK′ ◦ ϕ, cω0

◦ ϕ) = scat(ϕ),

where idK′ : K ′ → K ′ is the identity map and cω0
: K ′ → K ′ is the constant map at the vertex ω0 in K ′ .

Thus, scat(ϕ) ≤ scat(K ′) . 2

Let K be a simplicial complex and p1, p2 : K
2 → K projection maps onto the first and second factors,

respectively. The following theorem is first proved in [7, theorem 3.4] (see also [13, example 8.2]). Here, we
provide an alternative proof using contiguity distance.

Theorem 2.24 For a simplicial complex K , we have SD(p1, p2) = TC(K) .

Proof We first show that TC(K) ≤ SD(p1, p2) . Suppose TC(K) = n . Then there is a covering for K2

which consists of Farber subcomplexes L0, L1, . . . , Ln . Since each Li is a Farber subcomplex, there exists a
simplicial map σi : Li → K such that ∆ ◦ σi ∼ ιLi

.

∆ ◦ σi ∼ ιLi

p1 ◦ (∆ ◦ σi) ∼ p1 ◦ ιLi = p1
∣∣
Li

p2 ◦ (∆ ◦ σi) ∼ p2 ◦ ιLi = p2
∣∣
Li

Since p1 ◦ (∆ ◦ σi) = p2 ◦ (∆ ◦ σi) , we have p1
∣∣
Li

∼ p2
∣∣
Li

.

Next, we will show that TC(K) ≤ SD(p1, p2) . Suppose SD(p1, p2) = n . Then there exist subcomplexes
L0, L1, . . . , Ln which cover K2 and p1

∣∣
Li

∼ p2
∣∣
Li

for i = 1, 2, . . . , n . By Definition 1.5, there exists a finite

sequence of simplicial maps ϕij : L2
i → Li such that p1

∣∣
Li

= ϕi1 ∼c ϕi2 ∼c . . . ∼c ϕim = p2
∣∣
Li

. This means that

for an element ([x], [y]) in Li where [x] = {x1, x2, . . . , xk} and [y] = {y1, y2, . . . , ym} ,

ϕi1
(
([x], [y])

)
∪ ϕim

(
([x], [y])

)
= {x1, . . . , xk, y1, . . . , ym}

is a simplex in K .

We define a simplicial map σi : Li → K so that

Li
σ // K

∆ // K2
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∆ ◦ σi ∼c ιLi .

Define

σi
(
([x], [y])

)
= ϕi1

(
([x], [y])

)
∪ ϕm1

(
([x], [y])

)
= {x1, . . . , xk, y1, . . . , ym} = {x1, . . . , xk, y1, . . . , ym}.

∆ ◦ σi
(
([x], [y])

)
=

(
{x1, . . . , xk, y1, . . . , ym}, {x1, . . . , xk, y1, . . . , ym}

)
.

ιLi

(
([x], [y])

)
=

(
[x], [y]

)
=

(
{x1, . . . , xk}, {y1, . . . , ym}

)
. Thus, Li is also a Farber subcomplex. 2

There is a well-known inequality between topological complexity and LS -category of a topological space
X . The same inequality holds for simplicial complexes (see [7, theorem 4.3]). In the following, we provide a
proof in terms of contiguity distance.

Theorem 2.25 For a simplicial complex K , we have scat(K) ≤ TC(K) .

Proof Consider the following composition of maps

K
i1 // K2 p1 // K,

v
i1 // (v, v0)

p1 // v,

and note that p1 ◦ i1 = idK . Similarly, consider the composition of maps

K
i1 // K2 p2 // K,

v
i1 // (v, v0)

p2 // v0,

and we have p2 ◦ i1 = cv0 . By Proposition 2.18,

SD(p1 ◦ i1, p2 ◦ i2) ≤ SD(p1, p2) = TC(K)

⇒ SD(idK , cv0) ≤ TC(K)

⇒ scat(K) ≤ TC(K).

2

Corollary 2.26 Let ϕ,ψ : K → K ′ be two simplicial maps (and K ′ be edge-path connected). Then SD(ϕ,ψ) ≤
scat(K) .

Proof If we take K ′′ = K , η = idK and η′ = cv0 a constant map in Proposition 2.30, then the constant maps
ϕ◦cv0 and ψ ◦cv0 : K → K ′ are in the same contiguity class since K ′ is edge-path connected. By Proposition 5
and Theorem 1, we have

SD(ϕ,ψ) = SD(ϕ ◦ idK , ψ ◦ idK) ≤ SD(idK , cv0) = scat(K).

2
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Corollary 2.27 TC(K) ≤ scat(K2) .

Proof If we consider the projection maps p1, p2 : K2 → K , respectively, in Corollary 2.26, we have

SD(p1, p2) = TC(K) ≤ scat(K2).

2

Corollary 2.28 Let ϕ,ψ : K → K ′ be two simplicial maps. Then SD(ϕ,ψ) ≤ TC(K ′) .

Proof Consider

K
∏
K

φ
∏
ψ // K ′ ∏K ′

p1
**

p2

44 K ′

where each pi is a projection map for i = 1, 2 . Then, using Proposition 2.5, we have

SD(ϕ,ψ) = SD
(
p1 ◦ (ϕ

∏
ψ), p2 ◦ (ϕ

∏
ψ)

)
≤ SD(p1, p2) = TC(K ′).

2

Remark 2.29 Observe that Theorem 2.12 also follows from Corollaries 2.26 and 2.28.

Proposition 2.30 Let K,K ′ , and K ′′ be simplicial complexes, η, η′ : K ′′ → K and ϕ,ψ : K → K ′ be simplicial
maps. If ϕ ◦ η′ ∼ ψ ◦ η′ , then SD(ϕ ◦ η, ψ ◦ η) ≤ SD(η, η′) .

Proof Let SD(η, η′) = n . Then there exists a covering {L0, L1, . . . , Ln} for K ′′ such that η
∣∣
Li

∼ η′
∣∣
Li

for
i = 1, 2, . . . , n . We have

η
∣∣
Li

∼ η′
∣∣
Li

ϕ ◦ η
∣∣
Li

∼ ϕ ◦ η′
∣∣
Li
,

η
∣∣
Li

∼ η′
∣∣
Li

ψ ◦ η
∣∣
Li

∼ ψ ◦ η′
∣∣
Li
.

Since ϕ ◦ η′ ∼ ψ ◦ η′ , by the transitivity of ∼ , we have ϕ ◦ η
∣∣
Li

∼ ψ ◦ η
∣∣
Li

, and this completes our proof. 2
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