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Abstract: The problem of list M -ary hypothesis testing with fixed list size L < M is considered. Based on some
random observation, the test outputs a list of L candidates out of M possible hypotheses. The probability of list error
is defined as the probability of the event that the list output by the test does not contain the true hypothesis that has
generated the observation. An identity is derived that relates the minimum average probability of error of the optimal
list hypothesis test to the minimum average probability of error of an optimal maximum a posteriori probability decision
rule. The latter decides among an alternative set of hypotheses corresponding to all possible L -component mixtures of
the distributions that characterize the observation under the original M candidate hypotheses. As an application, the
proposed identity is employed to obtain novel Fano type lower bounds on the minimum error probability of list M -ary
hypothesis testing.
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1. Preliminaries
Let Y be a random observation taking values in a set Y , which can be discrete or a subset of Euclidean
space. Similar to the Bayesian M -ary hypothesis testing framework, we assume that there are M competing
hypotheses, denoted with Hi, i = 1, . . . ,M , which represent the state of nature that generates the observation
Y . Each hypothesis Hi is assumed to have prior probability πi > 0 such that

∑M
i=1 πi = 1 . Under hypothesis

Hi , the random observation Y ∈ Y is drawn with density pi(y) . The posterior probability of the hypothesis
Hi conditioned on the observation Y = y is expressed as

π(i|y) := πipi(y)

p(y)
for i = 1, . . . ,M , (1.1)

where p(y) =
∑M

i=1 πipi(y) denotes the marginal density of the observation. Following the notation of [6], the
probability of a set A ⊂ Y under hypothesis Hi is written as the Lebesgue-Stieltjes integral:

Pr(A|Hi is true) =
∫
A
pi(y)dµ(y), (1.2)

where µ is a finite measure on the collection of all subsets of Y , equal to the Lebesgue measure in the continuous
case (dµ(y) = dy , or equivalently µ(A) =

∫
A dy ) and the counting measure in the discrete case. The counting
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measure on a set of points y1, y2, . . . is defined as µ(A) =
∑

k I{yk ∈ A} , where I{·} denotes the indicator
function.

2. List M -ary hypothesis testing

List M -ary hypothesis testing (also known as list decoding [5]) is a variation of Bayesian M -ary hypothesis
testing, in which the test outputs a list of L candidates out of M possible hypotheses. There are

(
M
L

)
distinct list configurations, where

(
M
L

)
= M !

L!(M−L)! . Let ℓ = {ℓj : j = 1, . . . ,
(
M
L

)
} denote the set of all

distinct list configurations, where a list ℓj ∈ ℓ can be represented as ℓj = {Hj1 ,Hj2 , . . . ,HjL} for some
1 ≤ j1 < j2 < · · · < jL ≤ M . The set of

(
M
L

)
-level randomized decision rules, denoted by D , is considered, i.e.

δ = (δj)
(ML)
j=1 ∈ D such that

∑(ML)
j=1 δj(y) = 1 and δj(y) ∈ [0, 1] for every y ∈ Y . More explicitly, having observed

Y = y , the test outputs list ℓj with probability δj(y) for every j = 1, . . . ,
(
M
L

)
. The probability of selecting

list ℓj under hypothesis Hi is then given by

Pr(Select ℓj |Hi is true) =
∫
Y
δj(y)pi(y)dµ(y) . (2.1)

An error is declared if the list output by the test does not contain the true hypothesis. Under hypothesis, Hi ,
the probability of error of a list hypothesis test specified by δ(y) is obtained as

Pe,i(δ(y)) =

(ML)∑
j=1

Hi /∈ℓj

Pr(Select ℓj |Hi is true) , (2.2)

and the corresponding average probability of error is Pe(δ(y)) =
∑M

i=1 πiPe,i . As intuition suggests, the optimal
test that minimizes the average probability of error outputs a list according to the L largest posterior probability
values in {π(i|y)}Mi=1 [5, Section II.C], [3, Lemma 1]. For completeness, we present proof of this result in the
following based on the notation used in this paper.

Lemma 2.1 Given observation y ∈ Y , the optimum test δ∗(y) ∈ D that minimizes the average probability of
error of the list M−ary hypothesis testing problem selects a list {Hi∗1

,Hi∗2
, . . . ,Hi∗L

} such that

(i∗1, i
∗
2, . . . , i

∗
L) = argmax

1≤i1<i2<···<iL≤M

L∑
l=1

π(il|y) , (2.3)

and the minimum average probability of error is

Pe(δ
∗(y)) = 1−

∫
Y

max
1≤i1<i2<···<iL≤M

{
L∑

l=1

πilpil(y)

}
dµ(y) . (2.4)
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Proof The average probability of error of any given test δ(y) ∈ D can be expressed as

Pe(δ(y)) =

(ML)∑
j=1

M∑
i=1

Hi /∈ℓj

πi Pr(Select ℓj |Hi is true) (2.5)

=

∫
Y
p(y)

(ML)∑
j=1

δj(y)

 M∑
i=1

Hi /∈ℓj

π(i|y)

 dµ(y) , (2.6)

where the order of summation with respect to i and j is interchanged in (2.5) and (1.1) is substituted in (2.6).
Defining the posterior cost of selecting list ℓj as

C(j|y) :=
M∑
i=1

Hi /∈ℓj

π(i|y) = 1−
M∑
i=1

Hi∈ℓj

π(i|y) , (2.7)

(2.6) can be written as

Pe(δ(y)) =

∫
Y
p(y)

(ML)∑
j=1

δj(y)C(j|y)

 dµ(y) . (2.8)

Since δj(y) ∈ [0, 1] and
∑(ML)

j=1 δj(y) = 1 ,
∑(ML)

j=1 δj(y)C(j|y) ≥ min1≤j≤(ML)
{C(j|y)} and we get

Pe(δ(y)) ≥
∫
Y
p(y) min

1≤j≤(ML)
{C(j|y)}dµ(y) . (2.9)

The lower bound in (2.9) is achieved if, for each y ∈ Y , we set

δ∗k(y) = 1 for k = argmin
1≤j≤(ML)

C(j|y) (2.10)

(and hence, δ∗j (y) = 0 for all j ̸= k ), i.e. the optimal test outputs the list that minimizes C(j|y) over all

1 ≤ j ≤
(
M
L

)
, which can be equivalently expressed as in (2.3) yielding the average error probability given in

(2.4). 2

The optimum test can be easily implemented by performing the following operations sequentially:

1. compute the posterior probabilities π(i|y) for all 1 ≤ i ≤ M based on the observation y ,

2. rank them in decreasing order,

3. select the list formed by the leading L hypotheses with the highest posterior probability values.

When multiple distinct lists achieve the same maximum score in (2.3) for a given observation y , the ties can
be broken by arbitrarily selecting one of them as this does not affect the average probability of error.

More insight can be obtained on the minimum average probability of erroneous list decision given in (2.4)
by formulating a new Bayesian

(
M
L

)
-ary hypothesis testing problem in which we associate a new hypothesis H̃j

corresponding to each list ℓj = {Hj1 ,Hj2 , . . . ,HjL} for some distinct choice of 1 ≤ j1 < j2 < · · · < jL ≤ M .
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Proposition 2.2 Consider the following Bayesian
(
M
L

)
-ary hypothesis testing problem:

H̃j : Y ∼ p̃j(y), for j = 1, . . . ,

(
M

L

)
, (2.11)

where the observation Y ∈ Y under hypothesis H̃j is distributed with density

p̃j(y) =

∑L
l=1 πjlpjl(y)∑L

l=1 πjl

, (2.12)

and the prior probability of the hypothesis H̃j is

π̃j =

∑L
l=1 πjl(
M−1
L−1

) , (2.13)

corresponding to distinct choices of 1 ≤ j1 < j2 < · · · < jL ≤ M under each hypothesis H̃j . The minimum
average probability of error of the optimal MAP decision rule δ̃MAP (y) for the above hypothesis testing problem
is related to the minimum average probability of error of the optimal list hypothesis test δ∗(y) by the following
identity:

Pe(δ
∗) = 1−

(
M − 1

L− 1

)
×
(
1− P̃e(δ̃MAP )

)
, (2.14)

or in terms of the average probability of correct decision:

Pc(δ
∗) =

(
M − 1

L− 1

)
× P̃c(δ̃MAP ) . (2.15)

Proof It is straightforward to check that p̃j(y) ’s and π̃j ’s are valid probability densities and prior probabilities,

respectively. More explicitly, p̃j(y) ≥ 0 for all y ∈ Y ,
∫
Y p̃j(y)dµ(y) = 1 , π̃j > 0 , and

∑(ML)
j=1 π̃j = 1 . It is

well-known that the average probability of error for the above standard
(
M
L

)
-ary hypothesis testing problem is

minimized by the MAP decision rule, denoted here with δ̃MAP (y) , which chooses hypothesis H̃j∗ if

j∗ = argmax1≤j≤(ML)
π̃(j|y) , (2.16)

where π̃(j|y) = π̃j p̃j(y)/p̃(y) denotes the posterior probability of hypothesis H̃j given the observation y and

p̃(y) =
∑(ML)

k=1 π̃kp̃k(y) =
∑M

i=1 πipi(y) = p(y) . Substituting (2.12) and (2.13) into (2.16), it is seen that the
posterior probability employed in (2.16) can be expressed as

π̃(j|y) =
∑L

l=1 π(jl|y)(
M−1
L−1

) for all 1 ≤ j ≤
(
M

L

)
. (2.17)

The corresponding minimum average probability of error is

P̃e(δ̃MAP (y)) = 1−
∫
Y

max
1≤j≤(ML)

{π̃j p̃j(y)} dµ(y) . (2.18)

Comparing (2.18) with (2.4), the result follows. 2
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3. Novel lower bounds on the minimum probability of list error
The proposed lower bounds will be established by applying Fano’s inequality to the hypothesis testing problem
among hypotheses H̃j , j = 1, . . . ,

(
M
L

)
described in Proposition 2.2 via (2.11), (2.12), and (2.13). To this

end, we first present Fano’s inequality and its application to hypothesis testing. Let X → Y → X̂ denote a
Markov chain. In the context of hypothesis testing, X is the unknown hypothesis from some finite set X with
cardinality |X | , Y is the observation generated from this hypothesis, and X̂ : Y → X is a possibly randomized
hypothesis test that declares a decision for X based on the observation Y . In the following, all logarithms are
with respect to base 2.

Lemma 3.1 Fano’s inequality [2, Theorem 2.10.1]: Let X take values from a finite set X , X → Y → X̂ be
a Markov chain, and the probability of error be defined as ε = Pr(X̂(Y ) ̸= X) . Let the conditional entropy of
the underlying hypothesis X given the observation Y be denoted as:

H(X|Y ) = −E[log p(X|Y )] = −
∫
Y
p(y)

(∑
x∈X

p(x|y) log p(x|y)

)
dµ(y) , (3.1)

and the binary entropy function be denoted as h(p) = −p log p− (1− p) log(1− p) . Then,

H(X|Y ) ≤ h(ε) + ε log(|X | − 1) , (3.2)

with equality if and only if

p(x|y) =

{
ε

M−1 , x ̸= X̂(y)

1− ε, x = X̂(y) .
(3.3)

Equivalently, we have

ε ≥ H(X|Y )− h(ε)

log(|X | − 1)
. (3.4)

Now, assume a uniform distribution on the set of hypotheses, i.e. p(x) = 1/|X | for all x ∈ X . The
conditional density of Y given X = x is denoted as px(y) and the marginal density of the observation Y is
given by p(y) =

∑
x∈X px(y)/|X | . In the following, the subscript u in Xu indicates that X is uniform. Then,

H(Xu|Y ) = −
∫
Y

∑
x∈X

1

|X |
px(y) log

(
1

|X |px(y)

p(y)

)
dµ(y)

= log |X | − 1

|X |
∑
x∈X

∫
Y
px(y) log

(
px(y)

p(y)

)
dµ(y)

= log |X | − 1

|X |
∑
x∈X

D(px ∥ p) , (3.5)

where D(px ∥ p) =
∫
Y px(y) log (px(y)/p(y)) dµ(y) denotes the relative entropy (or Kullback-Leibler distance)

between the densities px(y) and p(y) . Substituting (3.5) in (3.4), the following lower bound on the average
probability of error is obtained:

εu = Pr(Xu ̸= X̂(Y )) ≥
log |X | − 1

|X |
∑

x∈X D(px ∥ p)− h(εu)

log(|X | − 1)
, (3.6)

682



DÜLEK/Turk J Math

which can be relaxed to [1, Equation 1.2]:

εu ≥ 1−
1

|X |
∑

x∈X D(px ∥ p) + h(εu)

log(|X | − 1)
. (3.7)

Based on (3.7), we arrive at the following bounds for list hypothesis testing.

Proposition 3.2 The minimum average probability of error of the optimal hypothesis test that selects L

candidates out of M equally likely hypotheses is lower bounded as

Pu
e (δ

∗) ≥ 1−
(
M−1
L−1

)
log(

(
M
L

)
− 1)

 1(
M
L

) (ML)∑
j=1

D(p̃j ∥ p) + h

(
1− Pu

e (δ
∗)(

M−1
L−1

) ) , (3.8)

which yields the following relaxed forms:

Pu
e (δ

∗) ≥ 1−
(
M−1
L−1

)
log(

(
M
L

)
− 1)

 1(
M
L

)
M

(ML)∑
j=1

M∑
i=1

D(p̃j ∥ pi) + h

(
1− Pu

e (δ
∗)(

M−1
L−1

) ) , (3.9)

Pu
e (δ

∗) ≥ 1−
(
M−1
L−1

)
log(

(
M
L

)
− 1)

(
1

M

M∑
i=1

D(pi ∥ p) + h

(
1− Pu

e (δ
∗)(

M−1
L−1

) ))
, (3.10)

Pu
e (δ

∗) ≥ 1−
(
M−1
L−1

)
log(

(
M
L

)
− 1)

 1

M2

M∑
i=1

M∑
j=1

D(pi ∥ pj) + h

(
1− Pu

e (δ
∗)(

M−1
L−1

) ) , (3.11)

and lastly

Pu
e (δ

∗) ≥ 1−
(
M−1
L−1

)
log(

(
M
L

)
− 1)

 max
1≤i≤M
1≤j≤M

i̸=j

D(pi ∥ pj) + h

(
1− Pu

e (δ
∗)(

M−1
L−1

) ) . (3.12)

Proof Applying the bound in (3.7) to the hypothesis testing problem among hypotheses H̃j , j = 1, . . . ,
(
M
L

)
described in Proposition 2.2 via (2.11) and (2.12) with equally likely priors (i.e. π̃j = 1/

(
M
L

)
corresponding to

πi = 1/M ), we get

P̃u
e (δ̃MAP ) ≥ 1−

1

(ML)

∑(ML)
j=1 D(p̃j ∥ p) + h(P̃u

e (δ̃MAP ))

log(
(
M
L

)
− 1)

, (3.13)

where superscript u is used to indicate that the error probability is computed under uniform priors. Equivalently
using P̃u

e (δ̃MAP ) = 1− P̃u
c (δ̃MAP ) and h(p) = h(1− p) :

P̃u
c (δ̃MAP ) ≤

1

(ML)

∑(ML)
j=1 D(p̃j ∥ p) + h(P̃u

c (δ̃MAP ))

log(
(
M
L

)
− 1)

. (3.14)
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From the identity that relates the average probability of correct decision of the optimal list hypothesis test to
that of the optimal MAP decision rule given in (2.15), it follows that

Pu
c (δ

∗) ≤
(
M−1
L−1

)
log(

(
M
L

)
− 1)

 1(
M
L

) (ML)∑
j=1

D(p̃j ∥ p) + h

(
Pu
c (δ

∗)(
M−1
L−1

) )
 , (3.15)

and substituting Pu
c (δ

∗) = 1 − Pu
e (δ

∗) , we get the inequality in (3.8). The relaxed versions are obtained by
applying Jensen’s inequality using the fact that the relative entropy is convex in its arguments, and the last
inequality follows by upper bounding the mean pairwise relative entropy with the maximum pairwise relative
entropy. 2

It is also noted that the average relative entropy term in (3.8) can be expressed as

1(
M
L

) (ML)∑
j=1

D(p̃j ∥ p) = H(p)− 1(
M
L

) (ML)∑
j=1

H(p̃j), (3.16)

where H(p) = −
∫
Y p(y) log p(y)dµ(y) denotes the entropy corresponding to the density p(y) and H(p̃j) is

defined similarly. Further relaxation of the inequalities given in (3.8)-(3.12) are possible by applying some well-
known upper bounds on the binary entropy function h(·) such as h(p) ≤ 2

√
p(1− p) or h(p) ≤ (4p(1−p))1/ ln 4

[12].

Corollary 3.3 The lower bounds given in Proposition 3.2 hold for the minimax probability of list error:

P ∗
max = inf

δ∈D
sup

1≤i≤M
Pe,i(δ(y)) , (3.17)

where Pe,i(δ(y)) is as defined in (2.2).

Proof The result follows by observing that

P ∗
max ≥ Pu

e (δ
∗) = inf

δ∈D

M∑
i=1

1

M
Pe,i(δ(y)) . (3.18)

2

4. Concluding remarks

Several bounds exist in the literature for the error probability of list decoding [5, 9, 10]. The proposed bounds
fall within the class of Fano type bounds among which the most well-known is Fano’s inequality for list decoding
[4, Lemma 1], [8, Chapter 3.E], [11, Section IV.C]. Let X take values from a finite set X with |X | = M and
X → Y → L(Y ) be a Markov chain. Consider an arbitrary mapping L(y) : Y → 2X that maps every observation
y ∈ Y to a list with fixed size |L(Y )| = L < M . Let the probability of list error, i.e. the probability of the
event that the list output by the test does not contain the true hypothesis, be defined as Pe = Pr(X /∈ L(Y )) .
Then, Fano’s inequality for list decoding states that

H(X|Y ) ≤ h(Pe) + Pe log

(
M

L
− 1

)
+ logL (4.1)
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with equality if and only if

π(i|y) =

{
Pe

M−L , i /∈ L(y)
1−Pe

L , i ∈ L(y) .
(4.2)

Equivalently, we have

Pe ≥
H(X|Y )− logL− h(Pe)

log
(
M
L − 1

) . (4.3)

In a similar manner to the analysis above, for equally likely hypotheses, (4.3) can be expressed as

Pu
e ≥

log
(
M
L

)
− 1

M

∑M
i=1 D(pi ∥ p)− h(Pu

e )

log(ML − 1)
, (4.4)

which can be related to:

Pu
e ≥ 1−

1
M

∑M
i=1 D(pi ∥ p) + h(Pu

e )

log(ML − 1)
. (4.5)

It is also noted that generalizations of (4.1) and (4.3) to the Arimoto-Rényi conditional entropy are presented
in [11, Theorems 8, 9, 10].

Comparing the proposed bound in (3.8) with Fano’s inequality in (4.5), it is noted that
∑(ML)

j=1 D(p̃j ∥ p)/
(
M
L

)
≤
∑M

i=1 D(pi ∥ p)/M by Jensen’s inequality and this improves the proposed bound compared to Fano’s inequal-

ity. On the other hand, if the coefficient
(
M−1
L−1

)
/log(

(
M
L

)
− 1) in (3.8) is much larger than 1/ log(ML − 1) , the

improvement may fade away, indicating a trade-off between probability mixing and scaling. Nevertheless, it is
well known that Fano type bounds are tight (i.e. lower bound is achieved for certain choices of the densities)
[6, Theorem 7.5].

As a final remark, we note that by the identity given in (2.14), known bounds on the minimum probability
of error of conventional M -ary hypothesis testing can be directly applied to derive similar bounds on the
minimum probability of error of list M -ary hypothesis testing as performed in this paper. Another example
of this is the bound given in [3, Theorem 1] which readily follows by applying the identity in (2.14) to the
meta-converse bound introduced by Polyanskiy, Poor, and Verdu in [7].
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