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Abstract: The main objective of this paper is to study certain geometric properties (like univalence, starlikeness,
convexity, close-to-convexity) for the normalized Miller-Ross function. The various results, which we have established in
the present investigation, are believed to be new, and their importance is illustrated by several interesting consequences
and examples. Furthermore, some of the main results improve the corresponding results available in the literature [15].
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1. Introduction
Geometric Function Theory is an important branch of complex analysis, it deals with the geometric properties of
analytic functions. This branch of complex analysis is widely used in a variety of fields of mathematics, namely
in pure and applied mathematics. In the literature, several researchers have studied certain geometric properties
for some special classes of univalent functions such as problems for studying the geometric properties (including
univalency, starlikeness, or convexity) of some classes of analytic functions (in the unit disk) associated with some
special functions have always been attracted by several researchers. Regarding treatises on this investigation,
we refer, e.g., to [20] for the Fox-Wright function, to [12, 19, 24, 25] for the Mittag-Leffler, to [18, 19, 26] for the
Wright function, to [11, 13] to Dini functions, to [21] for the modified Bessel function, to [15] for the Miller-Ross
functions and to [3, 4, 7–9, 23, 29, 31] for some class of functions related to the Bessel function and its q -analog.
In a series of papers [32], the authors have determined sufficient conditions on the parameters of some other
special functions to belong to a certain class of univalent functions, such as convex, starlike, close-to-convex,
etc. Let us now recall some known definitions and results in Geometric Function Theory.

Let H denote the class of all analytic functions inside the unit disk

D =
{
z : z ∈ C and |z| < 1

}
.

Assume that A denoted the collection of all functions f ∈ H, satisfying the normalization f(0) = f ′(0)−1 = 0

such that

f(z) = z +

∞∑
k=2

akz
k, (∀z ∈ D).
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A function f ∈ A is said to be a starlike function (with respect to the origin 0) in D , if f is univalent
in D and f(D) is a starlike domain with respect to 0 in C . This class of starlike functions is denoted by S∗.

The analytic characterization of S∗ is given [14] below:

<
(
zf ′(z)

f(z)

)
> 0 (∀z ∈ D) ⇐⇒ f ∈ S∗.

If f(z) is a univalent function in D and f(D) is a convex domain in C , then f ∈ A is said to be a
convex function in D . We denote this class of convex functions by K, which can also be described as follows:

<
(
1 +

zf ′′(z)

f ′(z)

)
> 0, (∀z ∈ D) ⇐⇒ f ∈ K.

Then, an analytic function f is convex, if and only if, the function zf ′ is starlike. An analytic function f in
A is called close-to-convex in the open unit disk D if there exists a function g(z), which is starlike in D such
that

<
(
zf ′(z)

g(z)

)
> 0 (∀z ∈ D).

The class of all close-to-convex functions is denoted by C . It can be easily verified that K ⊂ S∗ ⊂ C . It can be
noted that every close-to-convex function in D is also univalent in D .

A function f ∈ A is said to be uniformly convex (starlike) if for every circular arc γ contained in D with
center ζ ∈ D the image arc f(γ) is convex (starlike w.r.t. the image f(ζ)). The class of all uniformly convex
(starlike) functions is denoted by UCV (or UST ) ( see, for details,[28]). In addition, Ronning [28] considered
a newly-defined class of starlike functions Sp as follows:

Sp := {f : f(z) = zg′(z) (g ∈ UCF )} .

Here, and in what follows, we use Eν,c(z) to denote the Miller-Ross function which are defined by [22,
p. 88]:

Eν,c(z) = zν
∞∑
k=0

(cz)k

Γ(ν + k + 1)
, (ν > −1, c, z ∈ C). (1.1)

The main purpose of this paper is to investigate certain geometric properties for the normalized form of
the Miller-Ross function defined by [15, Eq. (2)]

Eν,c(z) = z +

∞∑
k=2

Γ(ν + 1)ck−1zk

Γ(ν + k)
, (ν > −1, c, z ∈ C). (1.2)

Although formula (1.2) holds true for c, z ∈ C and ν > −1, yet in this article, we will restrict our
attention to the case involving positive real-valued parameter c > 0, ν > −1 and the argument z ∈ D.

In order to prove our results the following lemmas will be helpful. The first and second Lemmas is due
to T. H. MacGregor [16, 17].

Lemma 1.1 ([16]) Let f ∈ A and |f(z)/z − 1| < 1 for each z ∈ D , then f is univalent and starlike in

D 1
2
=

{
z : z ∈ C and |z| < 1

2

}
.
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Lemma 1.2 ([17]) Let f ∈ A and |f ′(z)− 1| < 1 for each z ∈ D , then f is convex in D 1
2

.

The well-known analytical characterization of the class UCV and Sp is given by the following Lemma:

Lemma 1.3 [27] Assume that f ∈ A . Then the following results hold true:

1. If
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1

2
, then f ∈ UCV .

2. If
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ < 1

2 , then f ∈ Sp.

2. Main results
The following Theorem asserts our first major finding.

Theorem 2.1 Let c > 1
2 and ν > −1. If ν > max(2c − 1 +

√
2c2 + 1, 1 +

√
2), then the function Eν,c(z) is

close-to-convex with respect to the starlike function Eν,1(z) in D .

Proof By means of [15, Theorem 3], the function Eν,1(z) is starlike in D under the given condition ν > 1+
√
2.

By the definition, to prove that the function Eν,c(z) is close-to-convex with respect to the starlike function
Eν,1(z) in D , it is enough to show that

<
(
zE′

ν,c(z)

Eν,1(z)

)
> 0, z ∈ D,

which can be proved by showing ∣∣∣∣zE′
ν,c(z)

Eν,1(z)
− 1

∣∣∣∣ < 1, z ∈ D.

For all z ∈ D, we have ∣∣∣∣E′
ν,c(z)−

Eν,1(z)

z

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=2

Γ(ν + 1)[kck−1 − 1]zk−1

Γ(ν + k)

∣∣∣∣∣
<

∣∣∣∣∣
∞∑
k=2

Γ(ν + 1)[kck−1 − 1]

Γ(ν + k)

∣∣∣∣∣ .
(2.1)

By taking into account the obvious inequality:

Γ(ν + 1)

Γ(ν + k)
≤ 1

(ν + 1)k−1
, (k ∈ N, ν > −1), (2.2)

we thus get ∣∣∣∣E′
ν,c(z)−

Eν,1(z)

z

∣∣∣∣ < ∞∑
k=2

[kck−1 − 1]

(ν + 1)k−1

=

∞∑
k=2

k

(
c

ν + 1

)k−1

−
∞∑
k=2

1

(ν + 1)k−1

=
(2c− 1)ν2 − (c2 − 4c+ 2)ν − (c− 1)2

ν(ν + 1− c)2
.

(2.3)
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The above expression is positive if ν > 2c2−4c+2
2(2c−1) . However, with the help of inequality [15, Eq. (8)], we have

∣∣∣∣Eν,1(z)

z

∣∣∣∣ > ν − 1

ν
. (2.4)

Having (2.3) and (2.4) in mind, for any z ∈ D , we get

∣∣∣∣zE′
ν,c(z)

Eν,1(z)
− 1

∣∣∣∣ < (ν − 1)[(2c− 1)ν2 − (c2 − 4c+ 2)ν − (c− 1)2]

(ν + 1− c)2
. (2.5)

So, the above expression is less than 1 , if and only if

ν2 + 2(1− 2c)ν + 2c(c− 2) > 0,

which holds true if ν > 2c− 1 +
√
2c2 + 1. Therefore,

ν > max

(
2c− 1 +

√
2c2 + 1,

2c2 − 4c+ 2

2(2c− 1)
, c− 1

)
= 2c− 1 +

√
2c2 + 1.

Hence, the proof of Theorem 2.1 is complete. 2

Theorem 2.2 Let c > 0 and ν > −1. If ν > 2(cec − 1), then the function Eν,c(z) is starlike in D.

Proof To show that the function Eν,c(z) is starlike in D , it is enough to prove that

∣∣∣∣zE′
ν,c(z)

Eν,c(z)
− 1

∣∣∣∣ < 1, z ∈ D.

By (1.2) and used the functional relation Γ(z + 1) = zΓ(z), for anyz ∈ D, we obtain∣∣∣∣E′
ν,c(z)−

Eν,c(z)

z

∣∣∣∣ < ∞∑
k=2

(k − 1)Γ(ν + 1)ck−1

Γ(ν + k)

=

∞∑
k=2

Γ(ν + 1)Γ(k)ck−1

Γ(ν + k)(k − 2)!
.

(2.6)

Due to the log-convexity property of the Gamma function Γ(z) , the ratio z 7→ Γ(z)
Γ(z+a) is decreasing on (0,∞)

for each a > 0. This in turn implies that the following inequality

Γ(ν + 1)Γ(k)

Γ(ν + k)
≤ 1

ν + 1
, (2.7)

holds true for all ν ≥ 0 and k ≥ 2. Bearing in mind the above formula and (2.6) we find that

∣∣∣∣E′
ν,c(z)−

Eν,c(z)

z

∣∣∣∣ < cec

ν + 1
, z ∈ D. (2.8)
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However, by using the triangle inequality |a+ b| > ||a| − |b|| and the inequality (2.7), for all z ∈ D , we get∣∣∣∣Eν,c(z)

z

∣∣∣∣ > 1−
∞∑
k=2

Γ(ν + 1)Γ(k)ck−1

Γ(ν + k)(k − 1)!

> 1−
∞∑
k=2

ck−1

(ν + 1)(k − 1)!

=
ν + 2− cec

ν + 1
.

(2.9)

Furthermore, with the help of the above inequality and (2.8), for any z ∈ D, we obtain

∣∣∣∣zE′
ν,c(z)

Eν,c(z)
− 1

∣∣∣∣ < cec

ν + 2− cec
. (2.10)

The above inequality needs to be less than 1 , which is equivalent to condition ν > 2cec − 2. Thus, the proof is
complete. 2

Specifying c = 1
2 in Theorem 2.2, we conclude that the following result reads as follows.

Corollary 2.3 If ν > e
1
2 − 2 ≈ −0.351278, the function Eν, 12

(z) is starlike in D.

Example 2.4 The function E− 1
3 ,

1
2
(z) is starlike in D.

Remark 2.5 In [15, Theorem 3], it was proved that the function Eν,c(z) is starlike in D , if ν > (2+
√
2)c−1 .

In particular, the function Eν, 12
(z) is starlike in D, if ν >

√
2
2 ≈ 0.707106 · · · . In view of the Corollary 2.3,

Theorem 2.2 improves the corresponding result available in the literature [15, Theorem 3].

Upon setting c = 2
5 in Theorem 2.2, we compute the following result.

Corollary 2.6 If ν > 4e
2
5 −10
5 ≈ −0.806540 · · · , the function Eν, 25

(z) is starlike in D.

Example 2.7 The function E− 8
10 ,

2
5
(z) is starlike in D.

Remark 2.8 The following are the graphs of the functions E− 1
3 ,

1
2
(z) and E− 8

10 ,
2
5
(z) over D. The Figure 1

and Figure 2 depict the validity of our results.

Remark 2.9 In [15, Theorem 2], it is established that the function Eν,c(z) is starlike in D , if ν > 4c−3+
√
4c2+8c+1
2 .

In particular, the function Eν, 25
(z) is starlike in D, if ν > 0.4. In view of the Corollary 2.6, we conclude that

the result asserted by Theorem 2.2 improves the corresponding results available in [15, Theorem 2].

Proceeding in a similar way and using part (b) of Lemma 1.3, we obtain the following result.

Theorem 2.10 Let c > 0 and ν ≥ 0. If ν > 3cec − 1, then the function Eν,c(z) belongs to the class Sp in D.
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Figure 1. Mapping of E− 1
3
, 1
2
(z) over D
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Figure 2. Mapping of F2, 5
2
(z) over D

In the next theorem, sufficient conditions are imposed on the parameters of the Miller-Ross function
which allow us to conclude that it is convex in D.

Theorem 2.11 Let c > 0. If ν > max(2(c+ 1)ec − 3, 1) , then the function Eν,c(z) is convex in D.

Proof To prove that the function Eν,c(z) is convex in D it suffices to prove that the function Fν,c(z) = zE′
ν,c(z)

is starlike in D. Straightforward calculation would yield∣∣∣∣F′
ν,c(z)−

Fν,c(z)

z

∣∣∣∣ < ∞∑
k=2

Γ(k + 1)Γ(ν + 1)ck−1

Γ(ν + k)(k − 2)!
, z ∈ D. (2.11)

Once more, by using the monotonicity criterion of the ratio z 7→ Γ(z+a)
Γ(z+b) , where b ≥ a > 0 we obtain

Γ(k + 1)Γ(ν + 1)

Γ(ν + k)
≤ 2

ν + 1
, ν ≥ 1, k ≥ 2. (2.12)

Now, with the help of (2.11) and (2.12), for all z ∈ D, we find∣∣∣∣F′
ν,c(z)−

Fν,c(z)

z

∣∣∣∣ < 2cec

ν + 1
. (2.13)

Again, by (2.12), for any z ∈ D, we have∣∣∣∣Fν,c(z)

z

∣∣∣∣ > 1−
∞∑
k=2

Γ(k + 1)Γ(ν + 1)ck−1

Γ(ν + k)(k − 1)!

> 1− 2

ν + 1

∞∑
k=2

ck−1

(k − 1)!

=
ν + 3− 2ec

ν + 1
> 0,

(2.14)
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under the given hypothesis. Having in mind (2.13) and (2.14), for all z ∈ D, we obtain

∣∣∣∣zF′
ν,c(z)

Fν,c(z)
− 1

∣∣∣∣ < 2cec

ν + 3− 2ec
,

and the last expression is less than 1 by our assumption. The proof of Theorem 2.11 is thus completed. 2

Setting c = 2
5 in Theorem 2.11, we conclude the following result.

Corollary 2.12 If ν > 1.177110, then the function Eν, 25
(z) is convex on D.

Example 2.13 The function E 6
5 ,

2
5
(z) is convex on D .

Theorem 2.14 Let c > 0. If ν > ec − 2 , then the function Eν,c(z) is starlike in D 1
2
.

Proof By using (1.2), for any z ∈ D , it follows that

∣∣∣∣Eν,c(z)

z
− 1

∣∣∣∣ < ∞∑
k=2

Γ(ν + 1)Γ(k)

Γ(ν + k)

ck−1!

(k − 1)!
. (2.15)

Since the function z 7→ Γ(z)
Γ(z+a) is decreasing on (0,∞) for all a > 0, we have

Γ(k)Γ(ν + 1)

Γ(ν + k)
≤ 1

ν + 1
, (k ≥ 2, ν > 0).

The above inequality combined with the inequality (2.15) gives∣∣∣∣Eν,c(z)

z
− 1

∣∣∣∣ < 1

ν + 1

∞∑
k=2

ck−1

(k − 1)!

=
ec − 1

ν + 1
.

(2.16)

Finally, with the help of Lemma 1.1 and the conditions imposed on the parameters ν and c we obtain the
desired result. Hence, the proof is complete. 2

Upon setting ν = 1 in Theorem 2.14, we get the following result.

Corollary 2.15 If 0 < c < log(3), then the function E1,c(z) is stralike in D 1
2

.

Example 2.16 The function E1, 1211
(z) is starlike in D 1

2
.

Remark 2.17 In [15, Theorem 5], it was derived that the function Eν,c(z) is stralike in D 1
2

if ν > 2c − 1 .

In particular, the function E1,c(z) is stralike in D 1
2

if 0 < c < 1. Consequently, in view of Corollary 2.15,

Theorem 2.14 improves the corresponding results available in [15, Theorem 5].

700



MEHREZ/Turk J Math

Theorem 2.18 Let ν ≥ 1 and c > 0. Assume that one of the following hypotheses holds true:
(a). The parameters ν and c satisfy ν > 2ec − 3 ,
(b). The parameters ν and c satisfy c < 1 and ν > 2c−1

1−c .

Then the function Eν,c(z) is convex in D 1
2
.

Proof (a). Let z ∈ D. A simple computation leads us to

∣∣E′
ν,c(z)− 1

∣∣ < ∞∑
k=2

kΓ(ν + 1)ck−1

Γ(ν + k)

=

∞∑
k=2

Γ(ν + 1)Γ(k + 1)ck−1

Γ(ν + k)(k − 1)!
.

(2.17)

Bearing in mind the above formula and (2.12) we find that

∣∣E′
ν,c(z)− 1

∣∣ < 2(ec − 1)

ν + 1
, z ∈ D. (2.18)

Therefore, under the given conditions imposed on the parameters ν and c and with the aid of Lemma 1.2 we
confirm the desired result.
(b). Thanking to the following inequality [30, Lemma 7, Eq. (10)]

kΓ(a+ 1)

Γ(a+ k)
≤ 1

(a+ 1)k−2
, (a ≥ 1, k ∈ N \ {1}), (2.19)

combined with (2.17), for any z ∈ D, we get

∣∣E′
ν,c(z)− 1

∣∣ < ∞∑
k=2

ck−1

(ν + 1)k−2

=
c(ν + 1)

ν + 1− c
,

(2.20)

since ν ≥ 2c−1
1−c > c− 1. Again, by using Lemma 1.2, the desired result can be established. 2

Taking ν = 1 in part (a) of Theorem 2.18, we compute the following result.

Corollary 2.19 If 0 < c < log(2) ≈ 0.693 · · · , then the function E1,c(z) is convex in D 1
2

Example 2.20 The function E1, 23
(z) is convex in D 1

2
.

Letting c = 2
3 in part (b) of Theorem 2.18, we get the following result.

Corollary 2.21 If ν ≥ 1 then the function Eν, 23
(z) is convex in D 1

2 .

Remark 2.22 Let us mention that Eker et al. [15, Theorem 6], derive that the function Eν,c(z) is convex in D 1
2

if ν > (2+
√
2)c−1. However, the function E1,c(z) (resp. Eν, 23

(z) is convex in D 1
2

if 0 < c < 2
2+

√
2
≈ 0.585 · · ·

(resp. ν > 1.276142 · · · ). Hence, in view of Corollary 2.19 and Corollary 2.21, Theorem 2.18 improves the
corresponding result established in [15, Theorem 6].
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Theorem 2.23 Consider that one of the following assertions is valid:
(a). The parameters c > 0 and ν ≥ 1 such that ν > (2 + 4c)ec − 3 .
(b). The parameters c > 0 and ν > (2 +

√
2)c− 1 satisfy the following conditions

(ν + 1)3 − 9c(ν + 1)2 + 6c2(ν + 1)− 2c3 > 0.

Then, the function Eν,c(z) is uniformly convex in D.

Proof (a). For any z ∈ D, we obtain

∣∣zE′′
ν,c(z)

∣∣ < ∞∑
k=2

k(k − 1)Γ(ν + 1)ck−1

Γ(ν + k)

=

∞∑
k=2

Γ(k + 1)Γ(ν + 1)ck−1

(k − 2)!Γ(ν + k)
.

(2.21)

Therefore, by combining (2.21) and (2.12), for any z ∈ D , it follows that

∣∣zE′′
ν,c(z)

∣∣ < 2cec

ν + 1
, (ν ≥ 1, c > 0). (2.22)

Furthermore, with the help of the inequality (2.12), we get

∣∣E′
ν,c(z)

∣∣ > 1−
∞∑
k=2

kΓ(ν + 1)ck−1

Γ(ν + k)

= 1−
∞∑
k=2

Γ(k + 1)Γ(ν + 1)ck−1

(k − 1)!Γ(ν + k)

>
ν + 3− 2ec

ν + 1
, (z ∈ D).

(2.23)

Hence, in view of the above inequality and (2.22), for any z ∈ D, we have

∣∣∣∣zE′′
ν,c(z)

E′
ν,c(z)

∣∣∣∣ < 2cec

ν + 3− 2ec
<

1

2
,

where we have made use of the given hypothesis. Hence, Lemma 1.3 helps us to establish the desired result.
(b). With the help of the inequality (2.2), for any z ∈ D, we find that

∣∣zE′′
ν,c(z)

∣∣ < ∞∑
k=2

k(k − 1)Γ(ν + 1)ck−1

Γ(ν + k)

<

∞∑
k=2

k(k − 1)ck−1

(ν + 1)k−1

=
2c(ν + 1)2

(ν + 1− c)3
.

(2.24)
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A simple computation leads us to

∣∣E′
ν,c(z)

∣∣ > 1−
∞∑
k=2

k

(
c

ν + 1

)k−1

=
(ν + 1− c)2 − 2c(ν + 1) + c2

(ν + 1− c)2
,

(2.25)

and the last expression is positive by our assumption. Keeping (2.24) and (2.25) in mind, for any z ∈ D, we
obtain ∣∣∣∣zE′′

ν,c(z)

E′
ν,c(z)

∣∣∣∣ < 2c(ν + 1)2

(ν + 1− c)[(ν + 1− c)2 − 2c(ν + 1) + c2]
. (2.26)

Therefore, the last expression is less than 1
2 if and only if

Fc(x) := x3 − 9cx2 + 6c2x− 2c3 > 0, (min(x, c) > 0).

The proof of Theorem 2.23 is thus completed. 2

Putting c = 1 in Part (b) of Theorem 2.23, we obtain the following result as follows:

Corollary 2.24 If ν ≥ 7.306675 , then, the function Eν,1(z) is uniformly convex in D.

Example 2.25 The function E 22
3 ,1(z) is uniformly convex in D.

Setting c = 1
2 in Part (b) of Theorem 2.23, we compute the following result as follows:

Corollary 2.26 If ν ≥ 3.153338 , then, the function Eν, 12
(z) is uniformly convex in D.

Example 2.27 The function E 19
6 , 12

(z) is uniformly convex in D.

Taking ν = − 1
2 in Part (b) of Theorem 2.23, we derive the following result as follows:

Corollary 2.28 If 0 < c < 0.060191 , then, the function E− 1
2 ,c

(z) is uniformly convex in D.

Example 2.29 The function E− 1
2 ,

1
17
(z) is uniformly convex in D.

3. Conclusion
In the present paper, we have derived some sufficient conditions so that the normalized Miller-Ross function
defined in (1.2) satisfies several geometric properties such as starlikeness, convexity, close-to-convexity, and
uniform convexity inside the unit disk D. The various results, which we have established in this paper, are
believed to be new, and their importance is illustrated by several interesting consequences and examples. Some
of the main results in the present investigation, improve some results available in the literature [15].
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