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Abstract: In this article, we study Hilbert series of non-Cohen-Maculay tangent cones for some 4-generated pseu-
dosymmetric monomial curves. We show that the Hilbert function is nondecreasing by explicitly computing it. We also

compute standard bases of these toric ideals.
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1. Introduction

Hilbert function of the tangent cone of a projective variety carries a lot of information about the discrete
invariants of the variety and of its embedding such as dimension, the degree, and the arithmetic genus of the
variety. Though the Hilbert function of a Cohen-Macaulay graded ring is well known with the help of Macaulay’s
theorem, the same thing does not hold for the Hilbert function of its tangent cone [6]. Some partial results are
obtained in special cases about the growth of the Hilbert function of the tangent cone, see [2—4, 14-16].

In this paper, we will work with one dimensional Cohen-Macaulay local rings. It is known that when
the tangent cone is also Cohen-Macaulay, the Hilbert function of the local ring is nondecreasing. Rossi’s
conjecture states that “The Hilbert function of a Gorenstein Local ring of dimension one is nondecreasing”.
This conjecture is still open in embedding dimension 4 even for monomial curves. Nondecreasingness of the
Hilbert function of the tangent cone for some 4 generated symmetric monomial curves is studied by Arslan
and Mete in [2] and Katsabekis in [11]. Arslan and Mete put an extra condition on the genarators, namely
as < a9 + agq and showed that the tangent cone is Cohen Macaulay and, as a result, they showed that
Hilbert function is nondecreasing without the need of explicit Hilbert function computation. Katsabekis also
studied Cohen-Macaulay tangent cone case and computed Hilbert function explicitly. For 4 generated symmetric
monomial curves, the case ag > a21 + agq ( i.e. not Cohen-Macaulay Tangent cone) is still open. We studied
4-generated pseudosymmetric monomial curves with Cohen Macaulay tangent cones (ag < ag; + 1) in [19]
and showed nondecreasingness of the Hilbert function. Without Cohen-Macaulayness of the tangent cone
(a2 > a1 + 1), nondecreasingness of the Hilbert function of the local ring is not guaranteed and hence requires
an explicit Hilbert function computation. With an observation that the number of generators in the standard
basis increase when oy increase, we studied the simplest case ay = 2 in [18]. We showed that the number of

elements in the standard basis depends on a parameter k which is defined as the smallest positive integer such
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that k(ag+1) < (k—1)ag + (k+ 1)ag; + a3 and the Hilbert function is nondecreasing when this parameter k
is 1. In this paper, we focus on the next case, ay = 3. As the standard basis computation requires adding the
normal forms of s-polynomials of all the elements in the ideal, it is important to see the polynomials to start
with. Understanding this case will be a step towards understanding the general case using induction. This case
differs from the case ay = 2 as can be seen in the next two examples. Though the parameter k£ = 2 in both of

these examples, the number of elements and their forms are much different. The following examples are done
using SINGULAR. *

Example 1.1 For as; =4, a3 =22, =13, ag =5, ay = 2, we have k = 2 and the corresponding standard
basis is {X?? — X3Xy4, X33 — X$Xy, X5 — X{7Xo, X7 — Xq X22X5, XPX5 — XoXy, X206 — X23X3, XPX§ —
X3, XPXY - X7

Example 1.2 For as; = 101, a3 = 501,a0 = 340, a3 = 18, ay = 3, we have k = 2 and the corresponding
standard basis is { X, X2 — X102 X7 X, X2 X501 x3_ x, X339 x17 X18_ x399x, X101, X340 x203x17_
X§41X4, X§4OX3X4 _ X16027 X§80X3 _ X1703, X?ijX?}G _ X21021X4, X11609X§5 _ )(21701)(47 X12312X§4 _ X22381X4,
Xf015X313—X-23’061X47 X13718X§2_X23741X4’ )(51421)(4_)(11421)(3%17 X%522X§1_X§17617 X?225X§O_X§>441’ X15928X§—
)(531217 X?GBng _ )(538017 X17334Xg _ )('274817 X18037Xg _ X28161, X18740X§) _ X28841, X?443X§1 _ X3521, X110146Xg _

10201 10849 2 10881 11552 11561 12241 12255
XQ ’Xl XS 7X2 7X1 X37X2 7X2 7X1 }

This shows that the standard basis do not only depend on k like in a4 = 2 case.

2. Basic definitions
k

Using the same notation with [18], let S be the numerical semigroup S = (n1,...,ng) = {Z uini|u; € N}
i=1

where ny < ng < .-+ < nj are positive integers with ged(ny,...,ng) = 1. Let K[S] = K[t",t"2,...,t"*] be
the semigroup ring of S, where K is algebraically closed field, and A = K[X;, Xo,..., X;]. If ¢ : A—K]|S]
with o(X;) =t™ and kerp = Ig , then K[S] ~ A/Is. Cs is the affine curve with parametrization

X1 =", Xo=1", ..., X) =t"

corresponding to S , and Ig is the defining ideal of Cs. ny is the multiplicity of Cg. Rg = K|[[t"™,..., t"*]]
is the local ring with the maximal ideal m = (t",...,t"). Then grm(Rs) = @io,m’/mtt = A/I% is the
associated graded ring where I§ = (f*|f € Ig) with f* denoting the least homogeneous summand of f.

We mean the Hilbert function of the associated graded ring grm(Rs) = @io, m’/m*! by the Hilbert
function Hp,(n) of the local ring Rg. That is,

Hpg(n) = Hyy (rg)(n) = dimp jm(m”™ /m" ™) n > 0.

The Hilbert series of Rg is defined to be the generating function

HSRS (t) = Z HRS (n)t”
neN

*Singular 2.0. A Computer Algebra System for Polynomial Computations. Available at http://www.singular.uni-kl.de.
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By the Hilbert-Serre theorem, it can also be written as: HSg,(t) = (f_(zgk = (?_(gd , where P(t) and Q(t) are

polynomials with coefficients in Z and d is the Krull dimension of Rs. P(t) is called first Hilbert series and
Q(t) is called second Hilbert series [8, 17]. It is also known that there is a polynomial Pr,(n) € Q[n| called
the Hilbert polynomial of Rg such that Hg,(n) = Pry(n) for all n > ng, for some ng € N. The smallest ng
satisfying this condition is the regularity index of the Hilbert function of Rg.

A 4-generated semigroup S = (n1,na,n3,nyg) is pseudosymmetric if and only if there are integers a; > 1,
for 1 <i<4,and as; >0 with 0 < as; < a; — 1, such that

ny = asag(ag —1)+1,

ng = agiazoy+ (o —agp — 1)(az — 1) + as,

ny = oarog+ (g —ag — (e —1) (g —1) —ag+ 1,
ny = aras(az—1)+as(az —1) + as.

Then the toric ideal is Is = (f1, fa, f3, fa, f5) with

fi XP = XX =X - XXy, fy= XS0 - XTI,

fi = XM - X XP2TIXP T = XPo XSl o X x et
See [12] for the details.

We focus on the case ay = 3.

3. Standard bases
Remark 3.1 If n; < ng, then 2as + 1 < 2001 + 1 .

Proof
ny < N2
= 2asaz+1 < 3asiasz + (011 — (vg1 — 1)(043 — 1) + as
— 2ana3+1 < 209103 +aia3 — o + a0 + 1
— 043(2042 — 2091 — 041) < Q91 — O
— 043(2042 — 291 — o + 1) < aztay—a; <0 by(2)
= 2a9 — 2001 — a1 +1 < 0
= 2a5+1 < 2a91+ o
O
If ny < ng < nz < ny, then it is known from [19] that
(1) ay > g
(2) az < 0] — (o1
(3) ag < ag+ag—1
ag—1

and these conditions completely determine the leading monomials of fi, f3 and fs. Indeed, LM(f;) = X3X}
by (1), LM(f3) = X35 by (2), LM(f4) = Xg* by (3). If we also let
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(4) ag > as +1,
then LM(f2) = X' X4 by (4). Then if n; < ny < ng < ny, using the remarks in [18],
(5) o1 +ag >y
(6) a1 +agr +1>ag+ay
Now using remark 3.1,
(7) 2024+ 1< 2a91 + a3

These determine LM(f5) and will determine LM(fs) and LM(f7). We know that the standard basis when
a4 = 2 depends on the parameter k. We will show that the standard basis when a4 = 3 depends on three

parameters k, s, and ¢ defined as follows:

Definition 3.2 Define k,l and s as the smallest integers satisfying

(k* 1)0&1 —+ (k+ 1)0[21 + agz > kOZQ —+ (k‘+ 1)

sag + (284 2)agy + ag > (25 + Dag + (s +2)

log + (21 + 3)0&21 “+ agz > (21 + 2)0{2 + (l + 1)
respectively.
Remark 3.3 s, k, and | always exist.

Proof Assume to the contrary that s does not exist. Then for any integer i, iay + (2i + 2)ag + ag <
(2i 4+ Das+i+2 = (a1 +2a91 —az — 1) < as + 2 — as — 2a9; which gives a contradiction since the right
hand side of this inequality is fixed and a; + 2as1 — ag — 1 is positive by (6).

Using a similar argument, k and [ always exist. O

Remark 3.4 If n1 < ng < ng < ny, then k is at most 2.
Proof Assume to the contrary that k > 2. Then

011+30421+Ot371
a] +3as1 +az3—3 > a1+ as

2(0[2 —+ ].)

>
2000 >

Then
a1 + as — 209 <0 (31)

On the other hand, n; < ng implies

20003 +1 < 29103 + (041 — Q21 — ].)(043 — 1) + a3
ap — Qg < ag(al —+ o1 — 20&2) < 0
a1 —agp < 0

which is a contradiction. Hence, k£ cannot exceed 2. O
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Remark 3.5 s </

Proof We know by (4) that as — a9y — 1 > 0. If [ satisfies lag + (20 + 3)aor + a3 > (21 4+ 2)ae + (1 + 1),
then log + (21 +2)agr +ag > (2l4+ Dag+ (1 +2) + a2 — a1 —1 > (21 + 1)az + (I 4 2). Since s is the smallest
integer satisfying this inequality, we must have s <. O

Remark 3.6 If k=1, then s =0.

Proof If k=1, then as +1 < 2as; + a3 — 1 which is say + (25 4+ 2)an; + ag > (2s+ 1)as + s+ 2 for s =0.
Hence, if k=1, then s =0. O

Theorem 3.7 Let S = (n1,n2,ns,ng) be a 4-generated pseudosymmetric numerical semigroup with ny < ng <

ng <ng and ag > as; + 1 with ag = 3. If k,s, and | are defined as above, then the standard basis for Ig is

G - {f17f27f3; f47f57f67f77907917927 "~7gsahsvhs+1"'a hl};

2i4+1 1 ] 2142 1 —(i+1
whe,’,.e fﬁ — X?l+a21—X2a2X3X4, f7 _ Xi)(1+20521 _X22042X3 g = X2( 1+ )a2+ X4_Xia1+( 1+ )0621+ X3a3 (’L+ )

and hj — X2(2j+2)a2+1 _ X{'Oé1+(2j+3)oc21+1X§43*(jJrl).

)

Before we prove the theorem, let us state and prove the next lemma:
Lemma 3.8 NF(g,|G) =0 for j > s.

Proof T, = {g.} and spoly(g;, g) = X;* 32ty yga(on) gt Gr2eatl ypa (1) _

ri. Tr, = {f7} and spoly(ry, f7) = Xl(erl)Oél+(25+4)a21+1X22(j*871)042X?3*(s+2)_X{a1+(2j+2)a21+1X?c)>¢37(j+1) _

ro. Tp, = {f7} and continuing inductively r;_s = spoly(r;—s—1, f7) = Xl(j_1)a1+2ja21+1X§‘3_(j+1)f7.

NF(g;|G) = 0. 0

Hence,

Now we are ready for the proof of Theorem 3.7.

Proof We will prove the theorem by applying standard basis algorithm with NFMora as the normal form
a’lgorithmﬂ see [8] Here G = {fla f27 f37 f47 f57 f61 f77907917g27 <03 s hs» hs+1"'7 ht} and Th denotes the set {g €
G : LM(g) | LM(h)} and ecart(h) is deg(h) — deg(LM(h)). Note that LM(fs) = X52X3X4 by (6), LM(g;) =

Xl @Rentl yas (D) g all § < 5, LM(gy) = XS5 X, LM(h;) = X]o T @E8eatd yos =0 g6,
all s <j <1l and LM(h;) = X2(2l+2)°‘2+1 by the definitions of s and 1.
For k=1:
In this case, gg = Xfa21+1X§3_1 — X§“2+1X4 and as + 1 < 2a21 + a3 which implies that LM(gg) = X§2+1X4.
We need to show that NF(spoly(f, fn)|G) =0 for all m,n with 1 <m <n <6.
» spoly(fi, f2) = fs; hence, NF(spoly(f1, f2)|G) =0

o spoly(fi, fz) = XX — X721 X, X2 and LM(spoly(fi, f3)) = X2 71X, X7 by (5). Let
r1 = spoly(fi1, f3). If aq < 2ai21+1 then T;,, = {f5} and since spoly(r1,g) = 0, NF(spoly(f1, f3)|G) = 0.
Otherwise Ty, = {f2} and spoly(ry, fo) = XM 72entxoetlx, — xo1x0~1  Set 1y = spoly(ry, f2),
LM(ry) = X 20—t x o2t X and T, = {f+} and spoly(rs, fr) = 0; hence, N F(spoly(fi, f3)|G) =0.

710



SAHIN/Turk J Math

spoly(f1, fa) = Xf‘lX4fX1X§‘2_1X§‘3. Set r1 = spoly(f1, fa). If LM(r1) = X7 X4 then T, = {f2} and
spoly(r1, fa) = X1 X527 fa. If LM(ry) = X, X527 X$% then T, = {f3} and spoly(ry, f3) = X1~ f,.
Hence, in both cases, NF(spoly(fi, f4)|G) =0

spoly(f1, f5) = X{erng3 - X" Xo = X{m"’lfg; hence, N F(spoly(fi, f5)|G) =0
spoly(f1, fe) = X{"" fo; hence, N F(spoly(fi, f6)|G) =0

spoly(fi, fr) = X1H2e21 X2 — X1 X29 — r) then LM(ry) = X221 X? by (4) and T}, = {f2}. Then
spoly(r1, f2) = X7 X5 fo. Hence, NF(spoly(fi, f7)|G) = 0.

NF(spoly(fa, f3)|G) = 0 as LM(f2) and LM(f3) are relatively prime.
spoly(fz, f1) = X527 fs; hence, NF(spoly(f2, f1)|G) =0
spoly(f2, f5) = go; hence, NF(spoly(f2, f5)|G) =0

spoly(f2, fe) = fr; hence, NF(spoly(fz, f6)|G) = 0.

NF(spoly(fs, f7)|G) =0 as LM(f2) and LM(f;) are relatively prime.
NF(spoly(fs, f4)|G) = 0 as LM(f3) and LM(f4) are relatively prime.

NF(spoly(fs, f5)|G) = 0 as LM(f3) and LM(f,) are relatively prime.
spoly (fs, fo) = X{"* 7% ~1go; hence, NF (spoly(fs, f¢)|G) =0

spoly(fs, fr) = X271~ 1hy (since k=1, s =0 and hg € G). Hence, NF(spoly(fs, f)|G) =0

spoly(fu, f5) = X1X5° " fo; hence, NF(spoly(fs, f5)|G) =0

spoly(fa, fo) = Xa X3 1Xgs — XFonXx? = . If LM(r) = XhX5%7'X$%; T,, = {fs} and
spoly(fs,r1) = XMt x? Xf‘l*o‘mXQQo‘2 = ry. LM(ry) = XM X2 and T,, = {fo}. Then
spoly(fz,r9) = 0. If LM(r1) = X" "' X2 ;T,., = {fo} and spoly(fo,71) = X" X5 Xy~ X1 X701 X§® =
ro. LM(re) = X7 X352 X, and T,, = {fs}. Then spoly(fs,r2) = 0. Hence, in both cases N F(spoly(f1, f6)|G)
=0

NF(spoly(fs, f7)|G) =0 as LM(f4) and LM(f;) are relatively prime.

spoly(fs, fo) = X P X271 X9 - X te2 X and let 7 = spoly(fs, fo). If LM(r) = X2 P x g2 x 0
then T,, = {fs} and spoly(ri, fz) = X071 £y hence, NF(spoly(fs, fs)|G) = 0. If LM(r;) =
Xotea x then Ty, = {fo} and spoly(ri, f2) = X527 f3; hence, NF(spoly(fs, fs)|G) =0

spoly(fs, fr) = X202 X2 — Xt x 2o 1Xes =y

If LM(rqy) = X?1+2a21XZ7 then T, = fo and spoly(ry, f2) = X10‘1+‘121X2a2X4 _ X10121+1X2204271X§13 _
ro. Depending on the leading monomial of 7o, T, is either fo or fs. If it is fa, spoly(ra, f2) =
Xoatlysee=lfo If it is f3, spoly(ra, f3) = X X352 fo; hence, NF(spoly(fs, f7)|G) = 0.
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If LM(ry) = X0 H X321 X938 then T,, = f3 and spoly(ry, f3) = X0 X7 — Xpit2enx2 — gy

LM(ry) = X172 X2 and T,, = {f2}. Then spoly(ra, f2) = X{"' X5 f,. Hence, N F(spoly(fs, f7)|G) =
0

o spoly(fs, f7) = Xf‘l"’azlfg and hence, N F(spoly(fs, f7)|G) =0

o spoly(fi,g0) = X{' X — X7 XX, = ry. Using (2) and (4), LM(r;) = X7 T1X58 X,
and T,, = {fa, f3}. If ecart(fs) is minimal, spoly(ry, fo) = X021 X2 £ If ecart(fs) is minimal,
spoly(r1, f3) = X7'* Xaf2. Hence, in both cases NF(spoly(fi,90)|G) =0

s NF(spoly(f2,90)|G) =0 as spoly(f2,go) = ho and hg € G.
o NF(spoly(fs,g0)|G) =0 as LM(f3) and LM(gg) are relatively prime.

o spoly(fs,go) = XPoHixes—1x2 — X, X7 X3 = . LM(rq) = XP2 P X$71X? and T, =
{f1, f2}, but ecart(fz) is minimal. spoly(ri, fo) = X1X§‘2X§‘371f2; hence, NF(spoly(fs,90)|G) =0

o spoly(fs,g0) = X?21+1X?371f2; hence, NF(spoly(fs,90)|G) =0

o spoly(fs, g0) = X7*>* ™ f3; hence, NF(spoly(fs,g0)|G) =0

o spoly(fr,go) = X7otiXgelxgs — Xot2enx, — ¢ If LM(rp) = X720 X271 X9 then T, =

{fs} and spoly(ry, f3) = X10¢1+0421f2
If LM(?"l) = Xf‘1+20c21X47 then Trl = {fg} and SpOly(rl’fz) — X12a21+1X§12—1f3 o in both cases,
N F(spoly(fz, 90)|G) = 0.

o NF(spoly(go,h;)|G) =0 as LM(go) and LM(h;) are relatively prime for all 0 < j < 1.

« spoly(go, hy) = X T EHBent yas =)y x2amtl x (2o yas=l _ b and LM(ry) =
Xpon X0 X0aml T, = {f7) and spoly(r, fr) = X{ et xge (FD [ {ImDet G ben
XPVRXY = r. T = {f7) and spoly(ry, f7) = X7 00mtxgem (D [x{I G en x,
X2(2l_3)°‘2 Xéﬁ] = ry. T, = {f7} and continuing inductively, we obtain r;;1 = spoly(r, f7) =
@Rt x e 1, hence, NF(spoly(go, hu)|G) = 0.

o NF(spoly(hj, h;)|G) =0 as the leading monomials are relatively prime.

o spoly(fi,h;) = ijH)o“+(2j+3)a21+1X§3_(j+2) — X2(2j+2)°‘2+1Xf =71.(6) and j > s implies LM(ry) =
X2(2j+2)a2+1Xf and Ty, = {f5,9s}. Since ecart(f5) is minimal by (7), spoly(r1, f5) = Xf21+1X2(2j+2)a2X§3_1—
Xl(j+1)a2+(2j+3)u21+1X§Ya—(j+2) =ry. T, = {f?} Then SpOly(’l’Q,f7) _ Xlo¢1+3az1+lX§13—(j+2) [X{a1+2ja21

—X37**XJ] = r3. T, = {fr} and continuing inductively, we obtain ;.o = spoly(rj 1, fr) =

X1(j+1)a1+(2j+1)0t21+1ng—(j+2)f7; hence, NF(spoly(fi,h;)|G) =0.

e NPF(spoly(fi,h)|G) =0 as the leading monomials are relatively prime.
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spoly(fa, hj) = X52g,. Hence, by lemma 3.8, NF(spoly(fa, h;)|G) = 0.
NF(spoly(fa,h)|G) = 0 as the leading monomials are relatively prime.

spoly (fs, hy) = XUVt @it2en y  x(2i+2eetl ya+l gof thisas ry. Then LM(ry) = X722 4 xy+1
and T,, = {f7}. spoly(r1, f7) = Xf‘1+2a21X2 [X;j(X?Xg — Xl(j)o‘l+2ja21 =ry. Tr, = {f7} and continu-

ing inductively, we obtain ;41 = spoly(r;, f7) = XJort2en x, £ hence, NF(spoly(fs, hj)IG) =0.
NF(spoly(fs,h;)|G) = 0 as the leading monomials are relatively prime.
NF(spoly(fs,h;)|G) =0 as the leading monomials are relatively prime.
NF (spoly(fa, )|G) = 0 as the leading monomials are relatively prime.

NF(spoly(fs,h;)|G) =0 as the leading monomials are relatively prime.

spoly (fs, by) = Xieat@Hantl yoo=(H) y2 _ yaatl x (21200 yas=1 = Qo this as . If LM(ry) =
xleat @S tl xas=(HD x2 then T, = {f1, fo, fr}, but since ecart(f;) is minimal among these,
spoly(ri, f1) = Xilzl-f—ngéa—(l-&-Z) {X§z+1)a1+(21+2)a21 - X22(z+1)a2X§z+1)] =y and Tp, = {fz}. spoly(ra, fr) =
Xf”“Xg”Xgr(Hl) [X{l)aﬁ(m)am - Xg(l)a2X§l) = rg and T,, = {f7}. Continuing inductively we
obtain, spoly(rii1, fr) = X T X312 X372 £, which implies NF(spoly(fs, h)|G) = 0. If LM(ry) =
xontlx 20 xaal then T, = {f;} and

spoly(r1, f7) = Xf“+3a21+1X§‘3_(l+1) {XSZO‘QX?EZ_D —Xfl_l)aﬁ(m)amXﬂ = ry. Then T,, = {f7} and
spoly(ry, f7) = X2 +5an+1yas=(+1) [XS(Z*UWX?E’*” —Xfl”)al*(”*?)“mx}] — 1y and

T,, = {fr}. Continuing inductively we obtain r; 11 = spoly(r;, f7) = Xiaﬁ(?lﬂ)amHX;V(ZH)[

XzQaZ—XfamXﬂ. T, = {f2} and spoly(ri41, f2) = Xiaﬁ(m“)a?lﬂXgQX:?S_(Hl)h' Hence,

Ti+1

NF(spoly(fs,h;)|G) =0 in this case, too.
spoly(fe, hj) = g;j41 for all s < j <. Hence, by lemma 3.8 NF(spoly(fs, h;)|G) =0.

spoly (fg, by) = Xor+on x(2iheetl  yloat@iS)antl yas—ly . [M(ry) = XirTEFDoant yas—i x,
by the definition of [ and (4). Then T,, = {f2} and spoly(ry, f2) = X1°‘1+a21X2°‘2hj,1. Then N F(spoly(fs, )|G)
=0

spoly(fz, hj) = hjy1; hence, NF(spoly(fz,h;)|G) =0

spoly(f7,h;) = Xf‘1+2a21hl_1 if 20 +1 < a3 + 2an1. Otherwise, leading monomials of f; and h; are
relatively prime. As a result, in both cases, NF(spoly(f7,h)|G) = 0.

For k =2:

713



SAHIN/Turk J Math

In this case, since s might be greater than zero, [ will be greater than zero and hg will not be an element of the

standard basis. This means, from the above computations, only spoly(fs, f7) must be reconsidered. In addition

to the normal forms considered in the case of £ =1, we need the following for k£ = 2 to prove the theorem:

o spoly(fs, fr) = Xlo‘lfo‘“*lho. The problem here is that, since k = 2, s is not necessarily 0 and we
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cannot guarantee if hg € G. Set spoly(fs,fr) as r1. If s > 0, then [ > 0 and by its definition,
3ag1 +a3 < 2ap+1 and LM(ry) = X220 X2~ and T, = {go}. spoly(ri,go) = X o~ txg2tl £y
Hence, N F(spoly(fs, f7)|G) = 0.

spoly(gi, 9;) = ij_i)aﬁz(j_i)amX§2i+1)a2+1X4 — X§2j+1)a2+1X§7iX4 Set this as r;. Then LM(rq) =
Xl(jfi)a1+2(jfi)a21X2(2i+1)a2+1X4 and Spoly('rl’ f7) — X1a1+2a21X£2i+1)a2+1X4 Xl(jfifl)a1+2(j7i71)a21
- Xg(j_i_l)(ng*Fl] = ro which implies that T,, = {f7} and this, continuing inductively, implies that
rjoi = spoly(rj iy, fr) = X HORUTE e g ety s hence, NF(spoly(gi, g;)|G) = 0.
NF(spoly(gi, gs)|G) = 0 as the leading monomials are relatively prime.

spoly(g, hj) = XDt U= an x@itheetd - x@7F2)02 ¥l xd=i ot this as 7. If LM(ry) =
Xl(j*i)a1+(2(j*i)+1)a21X2(2i+1)0¢2+1X4 then TT1 _ {f2} and SpOly(Tl,fg) _

X2(2i+2)a2+1 [ij—i)a1+(2(j—i)+l)a21X4 _X2(2(j—i)+1)a2X§'—1} — ry. LM(ry) = X2(2(j—i)+1)a2X?])’—i and
T = (s} sp0ly(rs, f) = Xg+20m D41 [Gimbont 2o, _ glicictios i

=r3. Tp, = {f7r} and continuing inductively, finally, we obtain r;_; 1 = spoly(r;_;, fr) =
Xl(j_i_l)alﬂ(j_i_l)a?lX22(i+1)a2+1f7; hence, NF(spoly(g;,h;)|G) =0 in this case.

If LM(r) = X2(2j+2)a2+1X§7i, and then T,., = {f7} and spoly(ry, f7) =

X1041+2a21Xé2i+1)a2+1 X2(2(j7i71)+1)a2X§_7;_1 _ Xl(jfif1)&14’(2(]‘71‘71)4’1)0&21X4 = ry. TT2 — {f7} a,nd

spoly(ra, f7) = X12a1+4a21X§2z‘+1)a2+1 [X§2(j—i—2)+1)a2ngi72 B Xij—i—Q)Cn+(2(j—i—2)+1)0z21X4 —
T,, = {f7} and continuing inductively, finally, we obtain r;_;11 = spoly(f7,r;—;) =
ij_i)alﬂ(j_i)aﬁX2(2i+1)a2+1f2; hence, NF(spoly(g;,h;)|G) =0 in this case, too.

NF(spoly(gi, hi)|G) = 0 as the leading monomials are relatively prime.

NF(spoly(gs,h;)|G) =0 as the leading monomials are relatively prime.
spoly(gs, hu)

e g2 o then T, = {f7) and spoly(ry, fr) =

X§s+1)a1+(2s+4)a21+1X§¢37(l+1) [X2(2(l7371)+1)a2X:l))7571 . Xl(lfsf1)a1+(2(l7571)+1)a21X4} .

_ Xlsoq+(25+2)0421+1X2(2(l—5)+1)042X§43—(S+1)_Xial+(21+3)0421+1X§43—(l+1)X4 =7y, IfLM(ry) =

= T9. TT2 =
{f7} and continuing inductively, r_sy; = spoly(r;_s, f7) = Xial+2(l+1)°‘21+1X§‘3_(l+1)fg. If LM(ry) =
X{al+<21+3)&21+1X§3_(l+1)X4, then T, = {f2} and

SpOly(T1,f2) _ XISOtl+(28+2)0¢21+1X512X§43*(l+1) Xl(l*S)OZH*Q(l*S)Oézl _X22(l*5)042X£l):s:| — . TT2 _ {f?}
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and continuing inductively, T),_. = {f7} and r;_s41 = spoly(ri_s, f7) = Xfl_l)aﬁQ(l_l)amHngX;g_(l+1)f7.
Hence, in both cases, N F(spoly(gs,hi)|G) =0.

spoly(f1,9i) = X2(2i+1)a2+1X§f - X£i+1)al+(2i+2)a21+1X?37(i+2) =r1. LM(ry) = X2(2i+1)a2+1X2 by (7)
and (3) and T, = {f4, f5}, but ecart(fs) is minimal. Then spoly(ri, f5) = X{)‘“HXZ(%H)O‘QX??TIXZ; —
x{HDear@rRentl yas (42 _ ) IM(rp) = Xp2 XTI x0TI X and T, = {fo, fo, fr} and
spoly(ra, f2) = X1X§13—(i+2) X§2i+2)a2X§+1 . X{i+1)o¢1+2(i+1)a21] = r5. LM(r3) = X1X2(2i+2)a2X§z3—1

and T., = {f7}, spoly(rs, f7) = X{"1+2a21+1X§37(i+2) [Xézi)ang — Xfal+2m21 =ry. T, = {f7} and
continuing inductively, we obtain r; 1 = spoly(riye, f7) = X{IMHMMHX?*(HQ)]‘?; hence, N F(spoly(f1,:)|G)
=0

spoly(fa, gi) = X2(2i+1)a2+1X2 . X{'al+(2i+1)a21+1X2azX?r(i+1) = 7. LM(r) = XéZiH)%HXf by

(5) and (7). T, = {fs}. spoly(ri,fs) = X{» T X2 X532 Xi — X[t =y T, = {fs}.

spoly (s, fr) = X?1+3a21+1X;2X§¢37(i+1) |:X22(i71)a2X§—1 . X{i71)a1+2(i71)a21] — 5. Ty, = {fs} and
continuing inductively, r; 11 = spoly(r;, f7) = Xl(ifl)alJr(%H)azlﬂXgﬂXgr(iﬂ)f7; hence, N F(spoly(f2, g:)|G)
=0

spoly(fa,g;) = XTI TIXIFY, — x{FUOFEEDe x, — o Using (7) and (4), LM(ry) =
X2(2i+1)°‘2+1X§+1X4 and T, = {fs, fr}, but ecart(f;) is minimal. Then

spoly(r1, fr) = X01t2e21 x, [XéQifl)angle - Xi‘aﬁ(%*l)am} =ry. T, = {fs, fz}. Continuing induc-
tively, we obtain, ;41 = spoly(r;, f7) = X}a1+2ia21X2f6; hence, N F(spoly(fs,g:)|G)=0.

NF(spoly(fs,9:)|G) =0 as the leading monomials are relatively prime.

NF(spoly(fs,9:;)|G) =0 as the leading monomials are relatively prime.

spoly(fo, i) = = ri. LM(r1) = XJ7270X2 by (5)
and (7). Then T}, = {f5} and spoly(ry, f5) = X211 x (#H2e2 xas—1_ x (haat@itsontl yos=(i+2) _
ro. LM(ry) = X2t x (24202 yool i 70 = {f7}.

spoly(rs, f7) = Xf1+3°‘21+1X3a3_(i+2) [X{aﬁ%o‘zl - X22i°‘2X§] = r3. T, = {f7} and continuing induc-

X2(2i+2)a2+1X2 _ X{z#l)al+(2i+3)a21+1X§437(i+2)

tively, we obtain 7;19 = spoly (711, f7) = Xial+(2i+1)a21+1X§13_(i+2)f7; hence, N F(spoly(fs,9:)|G) = 0.
spoly(fz7,9i) = gi+1. Hence, NF(spoly(fz,9:)|G) =0

spoly(fi,gs) = X{“Xézg's'l)o“ﬁ1 - Xfa1+(28+2)a21+1X§3_sX4. Set this as r;. Since s —1 < [, by
the definition of I and (4), LM(ry) = Xjot@stDentlyas—sx,  p  — (£} and spoly(ry, fo) =
Xlsa1+(25+1)a21+1X32X§4375_X?1X§25+1)a2+1 =7ry. Trz _ {gs—l} and spoly(rg,gs_1) _ X1041X228a2+1f2.
Hence, NF(spoly(f1,9s)|G) =0

spoly(fa2, gs) = hs. Since hs € G, NF(spoly(fa,9s)|G) =0
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e NPF(spoly(fs,gs)|G) =0 as the leading monomials are relatively prime.

o spoly(fa,gs) = X1X§25+2)Q2X§‘371 - Xlsal+(2S+2)a21+1X§37(S+1)X42. Set this as r;. If LM(r;) =
X, x {22 xas=1 then T, = {f;} and
Spoly(rl,f7) — Xix1+2a21+1X§53—(8+1) |:X2(23)a2X§—1 _ st—l)a1+(25)a21X42:| = 1. T7~2 _ {fz} and

SpOly(Tg,fz) _ X1X2X3 {X2(23—1)0c2X§;71 . X{S_l)al+(2s_l)021X4j| = 3. T’I"3 _ {f2} and SpOly(Tg,fQ) _

X?1+2a21+1X22a2X;’13*(3+1) [stfl)aﬁ(%*?)am _ X2(25*2)°‘2X?f—1} =ry. T,, = {f7} and continuing in-

ductively, o4z = spoly(ry, fr) = X{oit2eetlx(Dee yoom () g pM(py) = X0t @GetDont yoom (o)
X2, then T,, = {f1, fo}, but ecart(fs) is minimal.
spoly(ry, f2) = X1X§2X§‘3_(S+1) [Xfa1+(25+1)a21X4 7X2(23+1)a2X§]. Set this as 7. Observe that

X52spoly(fs,9s) — X7?'ro =0 and NF(spoly(fs,gs)|G) =0 (see below).
Hence, in both of the cases, NF(spoly(fs,gs)|G) =0

o spoly(fs,gs) = Xf‘ZIJrlXéQSJrl)O‘ZX??’*l - Xlsal+(25+2)a21+1X§‘37(8+1)X4. Set this as r1. If LM(rq) =
xomtl x(2ethes yas—1 then T, = {f;} and
spoly(rl,f7) _ Xil1+3a21+1X§137(s+1) |:X§2571)a2X§—1 _Xl(sfl)a1+(2sfl)a21X4} = 1. T’rg _ {f2} and

SpOly(Tg,fz) _ X?1+3a21+1X§2X§3_(S+1) [Xis—l)a1+(25—2)a21 _X§25—2)a2X§71} =ry. T, = {f7}

and continuing inductively, rs11 = spoly(rs, fz) = Xfa1+(23_1)a21+1X§2X3a3_(3+1)f7. If LM(rq) =

Xy rEERen e CHIX G then Ty, = {fo} spoly(r, fa) = X X5 g () gt

X3 X5 =ry. Ty, = {fr} and

SpOly(?”Q,f7) _ X?1+3a21+1X;2X3a3_(8+1) X{s—l)a1+(25—2)a21 7X2(23_2)OQX§_1 — 7y T’I”3 _ {f7} and

continuing inductively, 75, = spoly(rs, fy) = X T @s—aztl yas yoa=(s+1) £ 4 thig case, too. Hence,
g + y 1 2 3

in both of the cases NF(spoly(fs,gs)|G) =0

o spoly(fs,9s) = Xf‘ﬁo‘zlhs; hence, N F(spoly(fs,gs)|G) =0
o spoly(fr,gs) = X{* T g,_1; hence, NF(spoly(fr,gs)|G) =0

Since all normal forms reduce to zero, G is a standard basis for I¢ O

Corollary 3.9 {f1", f2" ..., f5,90%, -y gs*  hs™, s ™} is a standard basis for 1Y, where fi* = X3X3,
fr= XXy, fif = X0, A5 = X3, f5 = XoX?, fe" = X92XsXy, ff = X3%°Xs and gf =

Xl @HDentl yos=(4) g i = 19 s—1, g* =

2042 1
l* _ XQ( +2)az+

2s+1 1 j 2j+3)az1+1 yraz—(j+1
Xé s+1)aa+ Xy, h* = X{a1+( j+3) a1+ X0 (G+1)

for j =s,s+1,...,1—1, h

criterion given in [1].

. Since X1|f2", the tangent cone is not Cohen-Macaulay by the
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4. Hilbert function
Let P(I%) denote the numerator of the Hilbert series of A/I§

Theorem 4.1 The numerator of the Hilbert series of the local ring Rg s

P(I%) = 1-3t34+3t P —to2n T (1—t) (14t —2¢2413) — s (1—¢ o2 T2 (121 ) ) @22 (1) (1 -2 ) (1—
051 — 20 (1) (1= 19971 ) = (1= 02 (1— £202) R() — (1 )2 (11220 D2 — (1 — )21+ here
R(t) = t2ontas Ej;é tilart2a21-1) 4 gsar+(2s+3)az+as—s Zé;%_l tileat2aa=0 for any s > 0 and R(t) =0 if
s=0and l=0.

Proof To compute the Hilbert series, we use Algorithm 2.6 of [5] that is formed by continuous use of the
proposition:

"If I is a monomial ideal with I =< J,w >, then the numerator of the Hilbert series of A/l is
P(I)=P(J) —t¥svP(J : w) and P(w) =1 —t4°8* where w is a monomial and degw is the total degree of

Taking wy = b, wa = hs™, wy = 1", wa =h; 9", Jwi_sp2 = h" w13 = gs* e, W2 = go*,
wips = fr7, wipa = f6*, wiys = f37, wipe = 25, wigr = fuf, wins = 55, wipe = i I we set Jy = I,
Jiv1 = Ji — {wiy1} for i =0,--- ,t+ 8 in the Algorithm, we get P(J;) = P(J;y1) — t4®wit1 P(J; : w;y1) and
we obtain the desired result.

O

Corollary 4.2 The second Hilbert series of the local ring is Q(t) = (1 4+t + 2+ -+ +to2n =) (¢ +2t2 4 ¢* +
4 ) (Lt + 24t D) (Lt 12+ 1202 — P2 (It o)) - (Tt
tagl—l)t(23+1)a2+2 + tag,—l(l Lt t(2l+2)a2—0¢3+1) _ (1 ot t2a2—1)R(t)

t
Q) 5 » the result is a direct consequence of theorem 4.1. O

(1—-1)

Clearly, since the krull dimension is one, if there are no negative terms in the second Hilbert series, then the

Proof Since P(I%) =

Hilbert function will be nondecreasing. We can state and prove the next theorem.

Theorem 4.3 The local ring Rg has a nondecreasing Hilbert function if [ = 0.

Proof Since as > ag; +1 by (4), 2as > as + as; + 1; hence,

Q) = (L+t+2 4+t )t + 22+t + 174 193 + (Lt + 124 137 2) (1t + 82+ 22T 4
teetan 2y p200) (1 ppq. g ) Rst Dot pas =T gy (G2 —astl) (1 pq. 202 R(¢)
When [ =0, then s =0 and R(t) = 0. There are two cases:

If ag > as + 3:

Q(t) = (1+t4t24- - At =) [t 4+ 202 + ¢ 4 oo 02T 402t poo g0 [ (Tt 297 2) [Tt - 22T
fpoatont2 g g2oa] pgeaTl [ 4p g 202 oetl

If a3 <az+3:

Q(t) = (1t+t2 4 4t 1) [t + 2% + t4 -+ 4 193 | f (Lt A7 2) [L -t 4 - 02T fgoetont2 4y
t202] 4 [t 4o geetl pgoatent2 gy g2
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In both cases, there are no negative terms in the second Hilbert series; hence, the Hilbert function is

nondecreasing.
When [ >0, since | > s, and ag > a1 +1, (2L +2)ag > (2s+ 1)ag + a1 + 1 and ag < (2s+ 1)ag + 3, which
means that all of the negative terms —(1 +t + --- 4+ @21~ 1)¢2stDe2+2 4y Q(¢) will be cancelled out by the
terms in %7 (1 4 ¢ + - - 22z —astly
Then it is enough to show that the negative terms —(1+ ¢+ --- +t2*2~1)R(¢) will also be cancelled out. Note
that

(14t+--+t22 ") R(t) = (1+t+- - 122~ 1) (1221 +3 4 higher degree terms 4t~ D1t @iHDasitas—l+1
222143 4 some higher degree terms + t(=1ar+@iHDazi+ag—i+2az
Since [ is the smallest integer with lag + (20 + 3)aa + a3 > (21 4+ 2)ag + 1+ 1, for [ — 1, we have (I — 1)ayq +
(2l + Doy + a3 < 2lag +1 = (I —Dag + (2l + Dagr + az — 1+ 2as < (20 + 2)as.
Also, since 2as — 1 < ag + 2az1 — 1, all of the terms in (1 + ¢+ --- + 227 1) R(¢) has coefficient 1.

Hence, all of the negative terms disappear in Q(¢) and the Hilbert function is nondecreasing.

5. Examples

Example 5.1 Let as; = 12,1 = 38,2 = 20,3 = 8,4 = 3. Then k =1, s =0 and Il = 0 and
the corresponding standard basis is {f1 = X3® — X3X3, fo = X3" — X12Xy, f3 = X§ — XPXo, fu = X} —
X0 X32XT, fs = XPPX] — XoX3, fo = X70 — X3°X3Xy, fr = XP? — X39X3,90 = X3' Xy — XPPX], ho =
X3 — X37XT}. The fisrt Hilbert series is P(I%) =1 — 3t3 + 3t* — 5 — 8 410 — 13 4 3¢15 — 3¢16 - 417 421 —
3t22 4 323 — 124 1429 430 p o34 3435 4 436 3l 44442 443 1 48 49 and the second Hilbert series is
Q(t) = 1+ 3t +6t2 + 72 + 9t* + 11¢° +13¢0 + 15¢7 + 16t + 16t + 1610 + 16¢11 + 1612 + 15¢13 + 13¢14 +13¢15 +
12610 + 11817 + 10618 + 9¢19 4 8¢20 + 8¢21 + 6¢22 + 523 + 4424 4 3¢25 4 2426 4 27 + 234 + 335 + 4436 + 5137 +
638 4+ 739 4 8140 4 6¢41 4 5142 4 4443 3144 + 2445 - ¢46 . Since there are no negative terms, Hilbert function is

nondecreasing.

Example 5.2 For as; = 11, a1 = 62,0 = 40, ag = 14, a4 = 3, we have k = 2, | = 12 and s = 3.
Corresponding standard basis is:

{fir = XP? = X3X7, fo = X3 — X1'Xy, f3 = X3' = XX, fa = XF — X0 X39X3%, f5 = X{°X3° —
Xo X7, fo = X{® = X3°XaXu, fr = X} = X$0X5,90 = X3' X — XPPX3%, 91 = X371 Xy — X{U7X3%, g0 =
X2201X4 _ X1191X§1,g3 — )(2281)(4 _ X1275X§O,h4 — X§’21 _ X1286X§0,h5 — Xéml _ X%?OX??’}LG — X§81 _
X{P4XS hy = X300 — XP38XT hg = XS4 — X922X0 hg = XJ2' — XT06XD hyp = X800 — X799X3 hyy =
X581 — XPXE hyy = X1 — XP8X2Z hyy = X304 — X[102X5 V. The first Hilbert series is P(I%) =
1—3t3+3t4—t5—t12+2t14—3t15+2t16+t26—t27—t36+2t37—t38—t42+t43+t53—t54+t55—t56—t66+t67—t81+t82+
{94 495 | 4116 _ 94117 | 4118 _ 4119 4 94120 _ 4121 4 4199 _ 94200 4 4201 _ 4202 | 94203 _ 4204 | 94293 _ 94294 | 4295 _ 4206 4
Q1297 __ 4298 4 4376 _ oy377 | 4378 _ 4379 4 04380 _ 4381 4 4459 _ 9460 | 4461 _ 1462 | 94463 _ 4464 | 4542 94543 4 4544 _ 4545 1

4546 _ 4547 | 4625 _ 94626 | 4627 _ 4628 4 94620 _ 4630 4 4708 _ 94700 4 4710 _ 4711 4 94712 _ 4713 4 4701 _ 4792 | 4793 _ 4794 4
QU795 _ 4796 | 4824 oy875 | 4876 4877 | 04878 4879 | 4057 94958 | 4959 4960 4 94961 4962 4 11040 _ 341041 | 341042 _ 41043

and the second Hilbert series is Q(t) = 143t 4+ 6t% + 7t3 + 9t + 1145 + 13¢5 + 157 + 17¢3 4+ 19t + 21410 + 23¢11 +

24412 4 24413 4 25¢14 24415 4 23416 1 22417 4 21418 420419 + 19420 4 18421 + 1722 + 16123 + 15¢24 + 14425 4 14426 +
14627 4 14828 4+ 1429 4 14430 + 14431 + 14432 + 14¢33 + 14634 + 14635 + 1336 + 13837 + 13838 + 1339 + 13¢40 + 13¢4 +
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12642 11443 4+ 10844 4 9145 + 846 4 7147 4 6148 4 5149 450 4 3¢P1 4 252 - 2453 4 2454 4 3155 4 4456 4 5157 + 6158 4
759 4 8¢60 + 961 1 10¢62 + 11¢53 4 12¢54 + 13¢5 + 1356 4 13457 + 13¢68 + 1359 - 13¢70 + 1371 + 13¢72 4+ 13¢73 +
13t74 4+ 13¢75 41370 + 1377 + 13t78 +13¢79 - 1330 4 1281 + 11482 + 10133 4- 9184 + 8¢35 4- 7486 1 6137 4-5¢58 +- 4439 4
3t90—|—2t91 +t92+t116—|—t117—|—t118+t199+t200—|—t201—|—t293+t294—|—t295—|—t376+t377+t378—|—t459+t460+t461 —|—t542—|-
t543—|—t544—|-t625 +t626+t627—|—t708—|—t709 +7f710 +t791+t792 —|—t793—|-t874 +t875+t876—|—t957—|—t958 +t959 +t1040.
Since there are no negative terms, Hilbert function is nondecreasing.

[10]

[11]
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