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Abstract: In this paper, we analyze Levitan and Bebutov metrical approximations of functions F : Λ × X → Y by
trigonometric polynomials and ρ -periodic type functions, where ∅ ̸= Λ ⊆ Rn , X and Y are complex Banach spaces, and
ρ is a general binary relation on Y . We also analyze various classes of multidimensional Levitan almost periodic functions
in general metric and multidimensional Bebutov uniformly recurrent functions in general metric. We provide several
applications of our theoretical results to the abstract Volterra integro-differential equations and the partial differential
equations.
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1. Introduction and preliminaries
The notion of almost periodicity was introduced by the Danish mathematician H. Bohr around 1924-1926 and
later generalized by many other authors (see the research monographs [10, 24, 26, 31, 33, 40, 41, 46, 47, 60]
for more details about almost periodic functions and their applications). Suppose that (X, ‖ · ‖) is a complex
Banach space, and F : Rn → X is a continuous function, where n ∈ N . Then it is said that F (·) is almost
periodic if for each ϵ > 0 there exists a finite real number l > 0 such that for each t0 ∈ Rn there exists
τ ∈ B(t0, l) ≡ {t ∈ Rn : |t− t0| ≤ l} such that∥∥F (t+ τ)− F (t)

∥∥ ≤ ϵ, t ∈ Rn;

here, | ·−· | denotes the Euclidean distance in Rn. Equivalently, F (·) is almost periodic if for any sequence (bk)

in Rn there exists a subsequence (ak) of (bk) such that the sequence of translations (F (·+ ak)) converges in
Cb(Rn : X), the Banach space of all bounded continuous functions on Rn, equipped with the sup-norm. Any
trigonometric polynomial in Rn is almost periodic, and a continuous function F (·) is almost periodic if there
exists a sequence of trigonometric polynomials in Rn which converges uniformly to F (·) .

A continuous function F : Rn → X is said to be uniformly recurrent (uniformly Poisson stable) if there
exists a sequence (τk) in Rn such that limk→+∞ |τk| = +∞ and limk→+∞ F (t + τk) = F (t), uniformly in
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t ∈ Rn (uniformly in t ∈ K , for any compact subset K ⊆ Rn ). Any almost periodic function is uniformly
recurrent and any uniformly recurrent function is uniformly Poisson stable, while the converse statements are
not true in general; cf. also [15, 25, 34] for some recent results about almost periodic functions and uniformly
recurrent functions.

Further on, let F : Rn → X be a continuous function. Then it is said that the function F (·) is almost
automorphic if for every sequence (bk) in Rn there exist a subsequence (ak) of (bk) and a mapping G : Rn → X

such that

lim
k→∞

F
(
t+ ak

)
= G(t) and lim

k→∞
G
(
t− ak

)
= F (t), (1.1)

pointwisely for t ∈ Rn. The range of an almost automorphic function F (·) is relatively compact in X, and
the limit function G(·) is bounded on Rn but not necessarily continuous on Rn. If the convergence of limits
appearing in (1.1) is uniform on compact subsets of Rn, then we say that the function F (·) is compactly almost
automorphic. It is well known that an almost automorphic function F (·) is compactly almost automorphic if
F (·) is uniformly continuous (cf. [16] for further information about the multidimensional almost automorphic
functions and their applications).

On the other hand, the class of almost periodic functions can be generalized following the approach of B.
M. Levitan (see, e.g., [41] for the one-dimensional setting): Suppose that F : Rn → X is a continuous function,
N > 0 and ϵ > 0. Then a point τ ∈ Rn is said to be an ϵ,N -almost period of function F (·) if∥∥F (t+ τ)− F (t)

∥∥ ≤ ϵ for all t ∈ Rn with |t| ≤ N ;

denote by E(ϵ,N) the set consisting of all ϵ,N -almost periods of function F (·) . Let us say, maybe for the first
time in the existing literature, that a continuous function F (·) is Levitan pre-almost periodic if for each N > 0

and ϵ > 0, there exists a finite real number l > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, l)∩E(ϵ,N),

i.e. the set E(ϵ,N) is relatively dense in Rn for each N > 0 and ϵ > 0. It is worth noting that B. Ya. Levin
has shown, in [39], that the sum of two Levitan pre-almost periodic functions f : R → R and g : R → R need
not be Levitan pre-almost periodic, in general. In the definition of a Levitan (N -)almost periodic function
F : Rn → X, we additionally require that, for every real numbers N > 0 and ϵ > 0, there exist a finite real
number η > 0 and a relatively dense set Eη;N of (η,N) -almost periods of F (·) such that Eη;N±Eη;N ⊆ E(ϵ,N);

cf. [41, condition (2), p. 54, l. 3] and the corresponding footnote for more details concerning this issue in the
one-dimensional setting. Due to R. Yuan’s result [59, theorem 3.1], we know that a bounded continuous function
f : R → X is compactly almost automorphic if f(·) is Levitan N -almost periodic (cf. also A. Reich [49] and
references cited therein for more details about the relationship between the almost automorphic functions and
the Levitan N -almost periodic functions on topological groups).

The notion of a recurrent function in the continuous Bebutov system is based on the use of topology of
uniform convergence on compact sets (cf. also Subsection 2.3.9 in the monograph [9] by G. Bertotti and I. D.
Mayergoyz, the paper [22] by L. I. Danilov and references cited therein for further information in this direction).
A uniformly recurrent function is also called pseudoperiodic by H. Bohr, which has been accepted by many other
authors later on; a recurrent function in the continuous Bebutov system is also called (uniformly) Poisson-stable
motion by M. V. Bebutov. The Levitan almost periodic solutions and the uniformly Poisson stable solutions
for various classes of (abstract) differential equations have been sought in many research articles so far; see,
e.g., [17, 18, 42, 43, 45, 54–56] and the references cited therein; it is also worth noting that M. Akhmet, M.
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Tleubergenova, and A. Zhamanshin have recently analyzed the existence and uniqueness of modulo periodic
Poisson stable solutions of quasilinear differential equations in [3].

Concerning the Poisson stability of motions of dynamical systems and solutions of differential equations,
we would like to specifically mention the research monographs [51, 52] by B. A. Shcherbakov. It is also worth
noticing that T. Caraballo and D. Cheban have analyzed the existence and uniqueness of Levitan/Bohr almost
periodic (almost automorphic) solutions of the second-order monotone differential equations in [12]. The Poisson
stability of motions for monotone nonautonomous dynamical systems and of solutions for certain classes of
monotone nonautonomous differential equations has been analyzed by D. Cheban and Z. Liu in [20]; cf. also
[19, 51–53, 56–58] and the references cited therein for related results obtained within the theory of dynamical
systems. Finally, let us note that the interpolation by Levitan almost periodic functions was considered by S.
Hartman in [28] (1974), while the difference property for perturbations of vector-valued Levitan almost periodic
functions was considered by B. Basit and H. Günzler in [8]; see also M. G. Lyubarskii [43].

On the other hand, the first systematic study of metrical almost periodicity was conducted by the second
named author in 2021 ([34]). The Stepanov, Weyl, and Besicovitch classes of metrical ρ -almost periodic type
functions have been considered in [35], [36], and [37], respectively. In our joint research article [14] with B.
Chaouchi and D. Velinov, we have recently studied the metrical approximations of functions F : Λ×X → Y by
trigonometric polynomials and ρ -periodic type functions, where ∅ 6= Λ ⊆ Rn , X and Y are complex Banach
spaces, and ρ is a general binary relation on Y ; we have also introduced and analyzed various classes of almost
periodic functions and uniformly recurrent functions in general metric therein.

The main aim of this research article is to continue the analysis raised in [14] by investigating the
Levitan and Bebutov metrical approximations of functions F : Λ×X → Y by trigonometric polynomials and
ρ -periodic type functions. As mentioned in the abstract, we analyze here various classes of multidimensional
Levitan almost periodic functions in general metric and multidimensional Bebutov uniformly recurrent functions
in general metric.

The organization and main ideas of this paper can be briefly described as follows. After explaining the
notation and terminology used throughout the paper as well as the main concepts necessary for understanding
anything that follows, we introduce the basic function spaces of metrically almost periodic functions in the sense
of Levitan/Bebutov approach in the second section of paper; cf. Definition 2.1 and Definitions 2.4–2.5. The
main structural results established in this section are Propositions 2.6, 2.9, and 2.11; cf. also Examples 2.7, 2.8,
and 2.10. Levitan (N, c) -almost periodic functions and uniformly Poisson c -stable functions [multidimensional
Levitan N -almost periodic functions] are specifically analyzed in Subsection 2.1 [Subsection 2.2]. In Subsection
2.2, we introduce the spaces of strongly Levitan N -almost periodic functions of type 1, the Levitan N -almost
periodic functions of type 1 , and the strongly Levitan N -almost periodic functions. We show that these spaces
have the linear vector structure and propose an open problem whether the Levitan N -almost periodic functions
form a vector space with the usual operations if n ≥ 2. By a simple counterexample, we show that the Bogolybov
theorem (see, e.g., [41, pp. 55-57]) cannot be straightforwardly extended to the higher-dimensional case n ≥ 2 ;
cf. also Proposition 2.15 and Example 2.16.

In Section 3, we present several applications of our theoretical results to the abstract Volterra integro-
differential equations. Subsection 3.1 is devoted to the study of invariance of Levitan N -almost like periodicity
under the actions of the infinite convolution products and certain applications to the abstract Cauchy problems
without initial conditions; Subsection 3.2 investigates the convolution invariance of certain kinds of multidi-
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mensional Levitan N -almost periodic type functions (the second application of this subsection, concerning the
fractional diffusion-wave equations with Caputo-Dzhrbashyan fractional derivatives, and the third application
of this subsection, concerning the biharmonic partial differential operator, are essentially new and not consid-
ered anywhere else in the existing literature). In this subsection, we also reconsider several results established
recently by A. Nawrocki in [45]. Subsection 3.3 continues our analysis of the wave equation in Rn ; the final
section of the paper is reserved for some comments and final remarks about the introduced spaces of Levitan
N -almost periodic type functions. We propose several open problems to our readers, providing also a great
number of important references concerning the subjects under our consideration (we feel it is our duty to say
that the article is maybe a little bit oversaturated with definitions as well as that we have not been able to
properly shorten some notions; for example, we work with the class of Levitan (φ,FK,B,Λ′, ρ,PK) -almost pe-
riodic functions henceforth but it is not clear whether we can so simply drop any of the parameters used above
from the definition of the class).
Notation and terminology. Suppose that X, Y, Z and T are given nonempty sets. Let us recall that a
binary relation between X and Y is any subset ρ ⊆ X×Y. If ρ ⊆ X×Y and σ ⊆ Z×T with Y ∩Z 6= ∅, then
we define σ ·ρ = σ ◦ρ ⊆ X×T by σ ◦ρ := {(x, t) ∈ X×T : ∃y ∈ Y ∩Z such that (x, y) ∈ ρ and (y, t) ∈ σ}. As
is well known, the domain and range of ρ are defined by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ X × Y }
and R(ρ) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ X × Y }, respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ}
(x ∈ X ), x ρ y ⇔ (x, y) ∈ ρ. If ρ is a binary relation on X and n ∈ N, then we define ρn inductively. Set
ρ(X ′) := {y : y ∈ ρ(x) for some x ∈ X ′} (X ′ ⊆ X ).

We will always assume henceforth that (X, ‖ · ‖) and (Y, ‖ · ‖Y ) are complex Banach spaces, n ∈ N,
∅ 6= Λ ⊆ Rn, and B is a nonempty collection of nonempty subsets of X satisfying that for each x ∈ X there
exists B ∈ B such that x ∈ B. For the sequel, we set

Λ′′ :=
{
τ ∈ Rn : τ + Λ ⊆ Λ

}
.

By L(X,Y ) , we denote the Banach space of all bounded linear operators from X into Y, L(X,X) ≡ L(X);

I denotes the identity operator on Y. Define Nn := {1, ..., n}. If A and B are nonempty sets, then we define
BA := {f |f : A → B}. By ‖ · ‖∞ we denote the sup-norm; the symbol f|K(·) denotes the restriction of a
function f(·) to a nonempty subset K of its domain.

Suppose now that ν : Λ → (0,∞) and the function 1/ν(·) is locally bounded. Then the vector space
Cb,ν(Λ : Y ) consists of all continuous functions u : Λ → Y such that supt∈Λ ‖u(t)‖Y ν(t) < +∞ . Equipped
with the norm ‖ · ‖ := supt∈Λ ‖ν(t) · (t)‖Y , Cb,ν(Λ : Y ) is a Banach space.

We need to recall the following notion ([33]):

Definition 1.1 (i) Let ω ∈ Rn \ {0}, ρ be a binary relation on Y and ω ∈ Λ′′ . A continuous function
F : Λ×X → Y is said to be (ω, ρ)-periodic [ρ-periodic] if F (t+ ω;x) ∈ ρ(F (t;x)), t ∈ Λ, x ∈ X [there
exists ω ∈ (Rn \ {0}) ∩ Λ′′ such that F (·; ·) is (ω, ρ)-periodic].

(ii) Let ωj ∈ R \ {0}, ρj ∈ C \ {0} be a binary relation on Y and ωjej + Λ ⊆ Λ (1 ≤ j ≤ n). A continuous
function F : Λ × X → Y is said to be (ωj , ρj)j∈Nn -periodic [(ρj)j∈Nn -periodic] if F (t + ωjej ;x) ∈
ρj(F (t;x)), t ∈ Λ, x ∈ X, j ∈ Nn [there exist nonzero real numbers ωj such that ωjej ∈ Λ′′ for all
j ∈ Nn and F (·; ·) is (ωj , ρj)j∈Nn

-periodic].
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(iii) Let ωj ∈ R \ {0}, and ωjej + Λ ⊆ Λ (1 ≤ j ≤ n). A continuous function F : Λ ×X → Y is said to be
periodic if F (·; ·) is (ρj)j∈Nn

-periodic with ρj = I for all j ∈ Nn.

Finally, let us recall that a trigonometric polynomial P : Λ × X → Y is any linear combination of
functions like

ei[λ1t1+λ2t2+···+λntn]c(x),

where λi are real numbers (1 ≤ i ≤ n) and c : X → Y is a continuous mapping.

2. Metrical approximations: Levitan and Bebutov concepts

In this section, we assume that ∅ 6= Λ ⊆ Rn and φ : [0,∞) → [0,∞). If ∅ 6= K ⊆ Rn is a compact set and
K∩Λ 6= ∅ , then we assume that the function FK : K∩Λ → [0,∞) and the pseudometric space PK = (PK , dK) ,
where PK ⊆ [0,∞)K∩Λ , are given. Define ‖g‖PK

:= dK(g, 0) for any g ∈ PK .

The following notion plays an important role in our analysis (cf. also [14, definition 2.1]):

Definition 2.1 Suppose that ∅ 6= Λ ⊆ Rn and F : Λ ×X → Y. Then we say that F (·; ·) is: Levitan strongly
(φ,FK,B,PK)-almost periodic (Levitan semi-(φ, ρ,FK,B,PK)-periodic, Levitan semi-(φ, ρj ,FK,B,PK)j∈Nn -
periodic) if for each B ∈ B and for each nonempty compact set K ⊆ Rn such that K ∩ Λ 6= ∅ there exists
a sequence (PB,K

k : Λ × X → Y ) of trigonometric polynomials (ρ-periodic functions (PB,K
k : Λ × X → Y ),

(ρj)j∈Nn
-periodic functions (PB,K

k : Λ ×X → Y )) such that FK(·)[φ(‖PB,K
k (·;x) − F (·;x)‖Y )]|K∩Λ ∈ PK for

all x ∈ X, and

lim
k→+∞

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥PB,K

k (·;x)− F (·;x)
∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

= 0.

As in our former research studies, we omit the term “φ” if φ(x) ≡ x, “ρ” if ρ = I, the term “B” if
X = {0} and B = {X}. We will also omit the term “FK ” if FK ≡ 1 for each nonempty compact set K ⊆ Rn

such that K ∩ Λ 6= ∅ (in the case that φ(x) ≡ x, ρ = I, PK = Cb(K ∩ Λ) and FK ≡ 1 for each nonempty
compact set K ⊆ Rn such that K ∩ Λ 6= ∅, the notion of Levitan strong (φ,FK,B,PK) -almost periodicity is
completely regardless; for example, any continuous function F : Rn → Y is Levitan strongly (x,FK,PK) -almost
periodic due to the Weierstrass approximation theorem).

The following result can be proven in a similar fashion to [14, proposition 2.3]:

Proposition 2.2 Suppose that ∅ 6= Λ ⊆ Rn , F : Λ × X → Y , h : Y → Z is Lipschitz continuous, φ(·) is
monotonically increasing and there exists a function φ : [0,∞) → [0,∞) such that φ(xy) ≤ φ(x)φ(y) for all
x, y ≥ 0. Let the assumptions (C0)-(C1) hold for every nonempty compact set K ⊆ Rn with K ∩Λ 6= ∅, where:

(C0-K) The assumptions 0 ≤ f ≤ g and g ∈ PK imply f ∈ PK and ‖f‖PK
≤ ‖g‖PK

.

(C1-K) If f ∈ PK , then d′f ∈ PK for all reals d′ ≥ 0, and there exists a finite real constant dK > 0 such that
‖d′f‖PK

≤ dK(1 + d′)‖f‖PK
for all reals d′ ≥ 0 and all functions f ∈ PK .

Then we have the following:
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(i) Suppose that F (·; ·) is Levitan semi-(φ, ρ,FK,B,PK)-periodic (Levitan semi-(φ, ρj ,FK,B,PK)j∈Nn -periodic),
and h ◦ ρ ⊆ ρ ◦ h (h ◦ ρj ⊆ ρj ◦ h for 1 ≤ j ≤ n). Then the function h ◦ F : Λ × X → Y is likewise
Levitan semi-(φ, ρ,FK,B,PK)-periodic (Levitan semi-(φ, ρj ,FK,B,PK)j∈Nn

-periodic).

(ii) Suppose that X = {0} , there exists a finite real constant c > 0 such that φ(x + y) ≤ c[φ(x) + φ(y)] for
all x, y ≥ 0, φ(·) is continuous at the point zero and, for every nonempty compact set K ⊆ Rn with
K ∩ Λ 6= ∅, we have

FK ∈ PK and lim
ϵ→0+

‖ϵFK(·)‖PK
= 0.

Suppose, further, that the function F (·) is Levitan strongly (φ,FK,B,PK)-almost periodic and the
assumption (C2-K) holds, where:

(C2-K) There exists a finite real constant eK > 0 such that the assumptions f, g ∈ PK and 0 ≤ w ≤ d′[f+g]

for some finite real constant d′ > 0 imply w ∈ PK and ‖w‖PK
≤ eK(1 + d′)[‖f‖PK

+ ‖g‖PK
].

Then the function (h ◦ F )(·) is likewise Levitan strongly (φ,FK,B,PK)-almost periodic.

We continue by providing the following illustrative example:

Example 2.3 Let us recall that A. Haraux and P. Souplet have proven, in [27, theorem 1.1], that the function

f(t) :=

∞∑
m=1

1

m
sin2

( t

2m

)
, t ∈ R, (2.1)

is not Besicovitch-p-almost periodic for any finite exponent p ≥ 1 , as well as that f(·) is uniformly recurrent
and uniformly continuous (cf. also [31]). We also know that the function f(·) is slowly p-semiperiodic in
variation (1 ≤ p < +∞); see [14] for the notion and more details. Let ϵ0 > 0 be a fixed real number; using the
elementary inequality | sin t| ≤ |t|, t ∈ R, it readily follows that the function f(·) is Levitan semi-(x, I,FK,PK)-
semiperiodic with F[−N,N ] ≡ N−2−ϵ0 and P[−N,N ] := C[−N,N ] for N > 0.

Similarly, any continuous function F : Rn → C given by F (t) =
∑∞

m=1 Pm(t), t ∈ Rn , where Pm(·)
is a trigonometric polynomial (m ∈ N), is Levitan semi-(x, I,FK,PK)-semiperiodic with the constant function
F[−N,N ]n ≡ cN > 0 appropriately chosen and P[−N,N ]n := C([−N,N ]n) for N > 0, provided that there exists
a summable sequence of nonnegative real numbers (am) and a continuous function G : Rn → C such that
|F (t)| ≤ |G(t)| ·

∑∞
m=1 am, t ∈ Rn.

We continue by introducing the following notion (cf. also [14, definitions 2.5 and 2.8]):

Definition 2.4 Suppose that R is any collection of sequences in Λ′′, F : Λ×X → Y and φ : [0,∞) → [0,∞).

Then we say that the function F (·; ·) is Levitan (φ,R,B,FK,PK)-normal if for every set B ∈ B, for every
nonempty compact set K ⊆ Rn with K∩Λ 6= ∅ and for every sequence (bk)k∈N in R, there exists a subsequence
(bkm

)m∈N of (bk)k∈N such that, for every ϵ > 0, there exists an integer m0 ∈ N such that, for every integers
m, m′ ≥ m0, we have FK(·)[φ(‖F (·+ bkm

;x)− F (·+ bkm′ ;x)‖Y )]|K∩Λ ∈ PK for all x ∈ X, and

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥F (·+ bkm

;x)− F (·+ bkm′ ;x)
∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

< ϵ.
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Definition 2.5 Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, F : Λ ×X → Y is a given function, ρ is a binary
relation on Y, and Λ′ ⊆ Λ′′. Then we say that:

(i) F (·; ·) is Levitan (φ,FK,B,Λ′, ρ,PK)-almost periodic if for every B ∈ B , ϵ > 0 and for every nonempty
compact set K ⊆ Rn with K ∩ Λ 6= ∅ , there exists l > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, l) ∩ Λ′ such that, for every t ∈ Λ and x ∈ B, there exists an element yt;x ∈ ρ(F (t;x)) such
that FK(·)[φ(‖F (·+ τ ;x)− y·;x‖Y )]|K∩Λ ∈ PK for all x ∈ X, and

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥F (·+ τ ;x)− y·;x

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

≤ ϵ.

(ii) F (·; ·) is Bebutov (φ,FK,B,Λ′, ρ,PK)-uniformly recurrent if for every B ∈ B and for every nonempty
compact set K ⊆ Rn with K ∩ Λ 6= ∅ , there exists a sequence (τk) in Λ′ such that limk→+∞ |τk| =
+∞ and that, for every t ∈ Λ and x ∈ B, there exists an element yt;x ∈ ρ(F (t;x)) such that
FK(·)[φ(‖F (·+ τk;x)− y·;x‖Y )]|K∩Λ ∈ PK for all x ∈ X , and

lim
k→+∞

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥F (·+ τk;x)− y·;x

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

= 0.

If the sequence (τk) in Λ′ is independent of the choice of a nonempty compact set K ⊆ Rn with K∩Λ 6= ∅ ,
for a set B ∈ B given in advance, then we say that the function F (·; ·) is Bebutov (φ,FK,B,Λ′, ρ,PK)-
uniformly recurrent of type 1.

In any normal situation, a Bebutov (φ,FK,B,Λ′, ρ,PK) -uniformly recurrent function is already Bebutov
(φ,FK,B,Λ′, ρ,PK) -uniformly recurrent function of type 1 :

Proposition 2.6 Suppose that ∅ 6= Λ′ ⊆ Rn and ∅ 6= Λ ⊆ Rn are unbounded sets, F : Λ × X → Y is a
given function, ρ is a binary relation on Y, and Λ′ ⊆ Λ′′. If F (·; ·) is Bebutov (φ,FK,B,Λ′, ρ,PK)-uniformly
recurrent, then F (·; ·) is Bebutov (φ,FK,B,Λ′, ρ,PK)-uniformly recurrent of type 1 , provided that for each
compact set K ⊆ Rn such that K ∩ Λ 6= ∅, there exists a finite real constant cK > 0 such that, for every
x ∈ X, τ ∈ Λ′, and for every compact set K ′ ⊆ Rn which contains K, we have∥∥∥∥∥FK(·)

[
φ
(∥∥F (·+ τ ;x)− y·;x

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

≤ cK

∥∥∥∥∥FK′(·)
[
φ
(∥∥F (·+ τ;x)− y·;x

∥∥
Y

)]
|K′∩Λ

∥∥∥∥∥
PK′

, y·;x ∈ ρ(F (·;x)). (2.2)

Proof Let the set B ∈ B be given. We know that there exists a natural number N0 ∈ N such that
[−N,N ]n ∩ Λ 6= ∅ for every natural number N ≥ N0. Choose a point τN in Λ′ such that |τN | ≥ N and

sup
x∈B

∥∥∥∥∥F[−N,N ]n(·)
[
φ
(∥∥F (·+ τN ;x)− y·;x

∥∥
Y

)]
|[−N,N ]n∩Λ

∥∥∥∥∥
P[−N,N]n

≤ 1/N.

Then the sequence (τN ) in Λ′ satisfies the desired requirements since we have assumed (2.2). 2
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The notion introduced in [14, definitions 2.1, 2.5, and 2.8] is a special case of the notion introduced in the
previous three definitions, provided that for each nonempty compact set K ⊆ Rn with K ∩Λ 6= ∅ we have the
existence of a finite real constant cK > 0 such that d(f|K∩Λ, g|K∩Λ) ≤ cKd(f, g) for all f, g ∈ P, FK = F|K∩Λ,

and PK = {f|K∩Λ; f ∈ P}; here and hereafter, P = (P, d) is a pseudometric space and P ⊆ [0,∞)Y contains
the zero function.

Usually, we plug FK(·) ≡ 1, φ(x) ≡ x, ρ = I and PK = C(Λ ∩ K : Y ) in Definitions 2.4 and 2.5.
For some examples of the one-dimensional uniformly Poisson stable functions, we refer the reader to [53] and
the research monograph [23, pp. 219-223] by J. de Vries (the function constructed by B. A. Shcherbakov in
[53] is uniformly recurrent, in fact, which simply follows from an application of [53, lemma, p. 324]). Any
compactly almost automorphic function f : R → X is bounded, uniformly continuous and Levitan N -almost
periodic, which simply implies that F (·) is uniformly Poisson stable; on the other hand, we know that there
exists a compactly almost automorphic function f : R → R which is not (asymptotically) uniformly recurrent
(see, e.g., [33, example 2.4.35]). Therefore, the class of compactly almost automorphic functions seems to be
ideal for finding certain functions which are uniformly Poisson stable but not uniformly recurrent (the function
analyzed in Example 2.3 is uniformly recurrent but not Stepanov almost automorphic; cf. [33] for the notion).
Another class of functions which are always uniformly Poisson stable but not necessarily uniformly recurrent
can be simply constructed by taking the compositions of the uniformly recurrent functions which do not have
relatively compact range with the functions which are only continuous but not uniformly continuous.

Example 2.7 Let c0 be the Banach space of all numerical sequences vanishing at infinity, equipped with the
sup-norm. Define f : [0,∞) → c0 by

f(t) :=

(
4n2t2

(t2 + n2)2

)
n∈N

, t ≥ 0.

Besides many other features, we know that the function f(·) is bounded, uniformly continuous, quasiasymptoti-
cally almost periodic, and not almost automorphic; see, e.g., [32, example 3.11.14]. Here we will prove that the
function f(·) is not uniformly Poisson stable. Let us assume the contrary, and let

0 < ϵ < inf
n∈N

4n4

(2n2 + 2n+ 1)2
; (2.3)

then there exists a strictly increasing sequence (τk) of positive real numbers such that |f(τk)−f(0)| ≤ ϵ, k ≥ k0

for some positive integer k0 ∈ N. This implies

sup
n∈N

4n2τ2k
(τ2k + n2)2

≤ ϵ, k ≥ k0.

Let τk ∈ [nk, nk + 1) for some nk ∈ N (k ≥ k0 ). Then the previous estimate implies

ϵ ≥ sup
n∈N

4n2τ2k
(τ2k + n2)2

≥ 4n2
kn

2
k

((nk + 1)2 + n2
k)

2
> ϵ,

which is a contradiction; see (2.3).
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In the following example, the considered metric space PK is different from C(Λ ∩K : Y ) :

Example 2.8 Suppose that (T (t)) ⊆ L(X,Y ) is a strongly continuous operator family and B denotes the
collection of all bounded subsets of X. Define

F (t, s;x) := e
∫ t
s
φ(τ) dτT (t− s)x, (t, s) ∈ R2, x ∈ X.

Then our analysis from [33, example 8.1.5] shows the following: If the function φ(·) is bounded and Levitan
(x,R, 1,PK)-normal, where R denotes the collection of all sequences in R and PK = L1(R) for each compact
set K ⊆ R, then the function F (·, ·; ·) is Levitan (x,R1,B, 1,P1,K)-normal, where R1 denotes the collection of
all sequences in {(x, x) : x ∈ R} and P1,K = C(R) for each compact set K ⊆ R2.

The usually considered spaces of Levitan N -almost periodic functions and uniformly Poisson stable
functions are translation invariant; the basic properties of multidimensional ρ -almost periodic functions clarified
in [25, proposition 2.11] can be formulated in our new setting, as well. Further on, the qualitative behavior
of the limit function of a uniformly convergent sequence of almost periodic type functions has been analyzed
many times before. For example, using the same argumentation as in the proof of [14, proposition 2.6], we can
deduce the following result:

Proposition 2.9 Suppose that R is any collection of sequences in Λ′′, Fj : Λ × X → Y, and the function
Fj(·; ·) is Levitan (φ,R,B,FK,PK)-normal for all j ∈ N. If F : Λ × X → Y and, for every set B ∈ B , for
every sequence (bk)k∈N in R and for every nonempty compact set K ⊆ Rn with K ∩ Λ 6= ∅ , we have

lim
(j,k)→+∞

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥Fj(·+ bj ;x)− F (·+ bk;x)

∥∥
Y

)]
K∩Λ

∥∥∥∥∥
PK

= 0,

then the function F (·; ·) is likewise Levitan (φ,R,B,FK,PK)-normal, provided that:

(i) The function φ(·) is monotonically increasing and there exists a finite real constant c > 0 such that
φ(x+ y) ≤ c[φ(x) + φ(y)] for all x, y ≥ 0.

(ii) Condition (C3-K) holds, where:

(C3-K) For every nonempty compact set K ⊆ Rn with K ∩Λ 6= ∅ , there exists a finite real constant fK > 0

such that the assumptions f, g, h ∈ PK and 0 ≤ w ≤ d′[f + g + h] for some finite real constant
d′ > 0 imply w ∈ PK and ‖w‖PK

≤ fK(1 + d′)[‖f‖PK
+ ‖g‖PK

+ ‖h‖PK
].

Without going into full details, we will only note here that the supremum formula can be formulated in
our new framework; for example, if a function F : Rn → X is uniformly Poisson stable, then for each positive
real number a > 0 we have supt∈Rn ‖F (t)‖ = supt∈Rn;|t|≥a ‖F (t)‖ ∈ [0,∞]; cf. also [33, propositions 2.4.13,
6.1.6, and 8.1.15] for the case that ρ = I, and [25, proposition 2.13] for the case in which ρ = T ∈ L(Y ) is
a linear isomorphism (the statement of [25, proposition 2.20] concerning multidimensional ρ -almost periodic
functions in the finite-dimensional spaces can be formulated in our new setting, as well).

We continue with some examples:

777



CHAOUCHI et al./Turk J Math

Example 2.10 (i) The spaces of Levitan N -almost periodic functions (Bebutov uniformly recurrent func-
tions) F : Rn → Y can be constricted if we use the pseudometric spaces PK such that PK is continuously
embedded into the space C(K : Y ) for every nonempty compact set K ⊆ Rn . For instance, the function
f(t) := 1/(2 + cos t+ cos(

√
2t)), t ∈ R is unbounded, continuous and Levitan (x, 1,PK)-almost periodic,

where PK = C(K) ; see [41, pp. 58-59] for more details. Therefore, the function f(·) is uniformly Pois-
son stable, as well; before going any further, we would like to ask whether the function f(·) is uniformly
recurrent or Besicovitch p-bounded for some finite exponent p ≥ 1 (cf. [33] for the notion)?

Here, we can also use the metric spaces PK equipped with the distance of the form

d
(
f|K , g|K

)
:= sup

t∈K
‖f(t)− g(t)‖+ d1

(
f|K , g|K

)
, f, g ∈ P,

where P is a subspace of the space Cb(Rn : [0,∞)), d1(·; ·) is a pseudometric on PK , FK = F|K∩Λ and
PK = {f|K∩Λ; f ∈ P}.

(ii) As already emphasized in [14, example 2.4(iii)], the spaces of Levitan N -almost periodic functions (Bebutov
uniformly recurrent functions) F : Rn → Y can be extended if we use the pseudometric spaces PK such
that the space C(K : Y ) is continuously embedded into PK for every nonempty compact set K ⊆ Rn .
The use of the incomplete metric space P consisting of all continuous functions from Rn into [0,∞),

equipped with the distance

d(f, g) := sup
x∈Rn

∣∣arctan(f(x))− arctan(g(x))
∣∣, f, g ∈ P,

has been proposed in [14]. This concept allows one to consider the generalized almost periodicity of
functions f(·) which are not locally integrable. We can similarly analyze the generalized Levitan N -
almost periodicity and the generalized Bebutov uniform recurrence of the functions f(·) which are not
locally integrable by replacing the term ‖ · ‖PK

by ‖ · ‖PK
, where PK = (PK , dK) is the completion of the

metric space PK .

(iii) Define the function f : R → R by f(x) := n3n+1 sin(2πx) if x ∈ [3n, 3n + 1] + 2 · 3n+1Z for some
n ∈ N , and f(x) := 0, otherwise. Then f(·) is clearly unbounded; moreover, we know that f(·) is Levitan
N -almost periodic (see A. Nawrocki [45, lemma 2.18, example 2.19]).

(iv) Suppose that (αk) is a fixed sequence of positive real numbers such that limk→+∞ αk = +∞. If fi : R → C
is a bounded, uniformly Poisson stable function such that limk→+∞ fi(· + αk) = fi(·), uniformly on
compacts of R (1 ≤ i ≤ n), then the function F (·), given by

F
(
t1, ..., tn

)
:= f1

(
t1
)
· ... · fn

(
tn
)
, t =

(
t1, ..., tn

)
∈ Rn,

is bounded, uniformly Poisson stable and satisfies limk→+∞ F (· + βk) = F (·), uniformly on compacts of
Rn, where βk = (αk, ..., αk) for all k ∈ N.

(v) The introduced notion has the meaning even if ρ = 0 ∈ L(Y ). In this case, we can simply construct a
Bebutov (x, 1, 0,PK)-uniformly recurrent function f : R → R which does not vanish as |t| → +∞ ; here,
PK = C(K) for each nonempty compact subset of R.
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(vi) In order to avoid any form of plagiarism, we will only note here that examples 6.1.13, 6.1.15, and 6.1.16
of [33] can be formulated in our new framework; these examples justify the introduction of our concepts
with the set Λ′ being not equal to the set Λ or some of its proper subsets.

In the usually considered situation, the notion introduced in Definition 2.1 is more specific than the
notion introduced in Definitions 2.4 and 2.5. Concerning this issue, we will clarify the following result (cf. also
[14, proposition 2.9]):

Proposition 2.11 (i) Suppose that R is any collection of sequences in Λ′′, F : Λ×X → Y, and φ : [0,∞) →
[0,∞). Let the following conditions hold:

(a) The function φ(·) is monotonically increasing, continuous at the point zero, and there exists a finite
real constant c > 0 such that φ(x+ y) ≤ c[φ(x) + φ(y)] for all x, y ≥ 0.

(b) Condition (C3-K) holds.

(c) For every nonempty compact set K ⊆ Rn with K ∩ Λ 6= ∅ , we have that FK(·)φ(‖P (·;x)‖Y ) ∈ PK

for any trigonometric polynomial (periodic function) P (·; ·) and x ∈ X.

(d) For every nonempty compact set K ⊆ Rn with K ∩Λ 6= ∅ , there exists a finite real constant gK > 0

such that ∥∥∥FK(·)
[
φ
(
‖P (·;x)‖Y

)]
|K∩Λ

∥∥∥
PK

≤ gK sup
t∈K∩Λ

φ
(
‖P (t;x)‖Y

)
,

for any any trigonometric polynomial (periodic function) P (·; ·) and x ∈ X.

(e) For every nonempty compact set K ⊆ Rn with K ∩ Λ 6= ∅ , there exists a finite real constant
hK > 0 such that, for every x ∈ X and τ ∈ Λ′′, the assumptions H : Λ × X → Y and
FK(·)[φ(‖H(·;x)‖Y )]|K∩Λ ∈ PK imply FK(·)[φ(‖H(·+ τ ;x)‖Y )]|K∩Λ ∈ PK and

∥∥∥FK(·)
[
φ
(
‖H(·+ τ ;x)‖Y

)]
|K∩Λ

∥∥∥
PK

≤ hK

∥∥∥FK(·)
[
φ
(
‖H(·;x)‖Y

)]
|K∩Λ

∥∥∥
PK

.

(f) Any set B of collection B is bounded.

If the function F (·; ·) is Levitan strongly (φ,FK,B,PK)-almost periodic (Levitan semi-(φ, I,FK,B,PK)j∈Nn -
periodic), then the function F (·; ·) is Levitan (φ,R,B, φ,FK,PK)-normal.

(ii) Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, F : Λ×X → Y is a given function and Λ′ ⊆ Λ′′. If the function
F (·; ·) is Levitan strongly (φ,FK,B,PK)-almost periodic (Levitan semi-(φ, I,FK,B,PK)j∈Nn -periodic),
then the function F (·; ·) is Levitan (φ,FK,B,Λ′, I,PK)-almost periodic, provided that the assumptions
(a)-(f) given in the formulation of (i) hold.

Proof We will include all details of the proof of (i) for the sake of completeness, considering the class of Levitan
strongly (φ,FK,B,PK) -almost periodic functions, only. Let F (·; ·) be such a function, let ϵ > 0, B ∈ B, and
let (bk)k∈N belong to R. Suppose, further, that K is a nonempty compact set of Rn such that K ∩ Λ 6= ∅.

Then there exists a trigonometric polynomial PB,K
k (·; ·) such that FK(·)[φ(‖PB,K

k (·;x)−F (·;x)‖Y )]|K∩Λ ∈ PK
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for all x ∈ X, and

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥PB,K

k (·;x)− F (·;x)
∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

< ϵ/3.

Using (e), we get:

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥PB,K

k (·+ τ ;x)− F (·+ τ ;x)
∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

< hKϵ/3 (2.4)

for all τ ∈ Λ′′. The set B is bounded due to (f), so that the Bochner criterion for almost periodic functions in
Rn ensures that there exist a subsequence (bkm

)m∈N of (bk)k∈N and a natural number m0 ∈ N such that, for
every positive integers m′, m′′ ≥ m0, we have

sup
x∈B

∥∥∥PB,K
k

(
t+ bkm′ ;x

)
− PB,K

k

(
t+ bkm′′ ;x

)∥∥∥
Y
< ϵ/3, t ∈ Rn.

Using (c)-(d), we obtain:

sup
x∈B

∥∥∥∥∥FK(·)
[
φ
(∥∥∥PB,K

k (·+ bkm′ ;x)− PB,K
k (·+ bkm′′ ;x)

∥∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

≤ gKφ(ϵ/3),

for all positive integers m′, m′′ ≥ m0. Then the final conclusion follows from conditions (a)-(b), the estimate
(2.4) and the following decomposition:∥∥∥∥∥FK(·)

[
φ
(∥∥F (·+ bkm′ ;x)− F (·+ bkm′′ ;x)

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

≤ c′K

[∥∥∥∥∥FK(·)
[
φ
(∥∥F (·+ bkm′ ;x)− P (·+ bkm′ ;x)

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

+

∥∥∥∥∥FK(·)
[
φ
(∥∥P (·+ bkm′ ;x)− P (·+ bkm′′ ;x)

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

+

∥∥∥∥∥FK(·)
[
φ
(∥∥P (·+ bkm′′ ;x)− F (·+ bkm′′ ;x)

∥∥
Y

)]
|K∩Λ

∥∥∥∥∥
PK

]
,

holding with a certain positive real constant c′K > 0. 2

The method proposed in the proof of [33, theorem 6.1.37] does not work for Levitan N -almost periodic
functions and uniformly Poisson stable functions and, because of that, we will omit here all details regarding
the extensions of Levitan N -almost periodic functions and the extensions of uniformly Poisson stable functions.
Further on, the statement of [14, proposition 2.10] can be formulated in our new framework under certain very
restrictive assumptions. Before proceeding further, we will also note that the class of metrical semi-(cj ,B)j∈Nn

-
periodic functions has been analyzed in [14, subsection 2.2] following the initial analysis of J. Andres and
D. Pennequin in [7]. The Levitan and Bebutov classes of metrical semi-(cj ,B)j∈Nn

-periodic functions can be
considered similarly; we leave all details concerning these topics to the interested readers.

780



CHAOUCHI et al./Turk J Math

2.1. Levitan (N, c)-almost periodic functions and uniformly Poisson c-stable functions

In this subsection, we will provide some examples and open questions concerning the Levitan (N, c) -almost
periodic functions and the uniformly Poisson c -stable functions, where c ∈ C \ {0}; for simplicity, we will
always consider here the case in which Λ = Rn, φ(x) ≡ x, FK ≡ 1 , and PK = C(K) for each nonempty
compact set K ⊆ Rn. Let ρ = cI; then any Levitan (φ,FK,B,Λ′, ρ,PK) -almost periodic function is simply
called Levitan (N,Λ′, c) -almost periodic and any Bebutov (φ,FK,B,Λ′, ρ,PK) -uniformly recurrent function is
simply called uniformly Poisson (Λ′, c) -stable [we omit the term “Λ′ ” from the notation if Λ′ = Rn ].

The proofs of [33, propositions 4.2.14 and 7.1.13] do not work for the Levitan/Bebutov concepts; because
of that, we would like to ask the following:

Problem. Suppose that c ∈ C \ {0, 1}. Can we find a bounded continuous function F : Rn → C which is
Levitan (N, c) -almost periodic (uniformly c-Poisson stable) but not Levitan (N, c2) -almost periodic (uniformly
c2 -Poisson stable)?

The following important counterexample shows that there exists a nontrivial uniformly Poisson c-stable
function F : R → R for any complex number c 6= 0; this counterexample is based on the conclusions established
in [21, lemma 3.5] and particularly shows that the requirements of [33, proposition 7.1.9 ] do not imply c = ±1

for uniformly Poisson c -stable functions:

Example 2.12 Consider the function φ : R → [0,∞) given by

φ(t) :=

∞∑
k=1

sin2
(πt
2k

)
, t ∈ R.

In the above-mentioned lemma, E. Ait Dads, B. Es-sebbar, and L. Lhachimi have proved that the function φ(·)
is continuous and

lim
l→+∞

φ
(
t+ 2l

)
= lim

l→+∞
φ
(
t− 2l

)
= φ(t) + φ(1), (2.5)

pointwisely on R. We will first prove that the function φ(·) is Lipschitz continuous as well as that the convergence
in (2.5) is uniform on compact subsets of R. The uniform continuity of function φ(·) simply follows from the
fact that the function sin2 · is Lipschitz with the corresponding Lipschitz constant L = 1 and the Lagrange mean
value theorem, which shows that |φ(x)−φ(y)| ≤ π|x− y|, x, y ∈ R. Let K = [a, b] ⊆ R be a compact set. Then
we have:

φ
(
t+ 2l

)
=

l∑
k=1

sin2
(πt
2k

)
+

∞∑
k=1

sin2
( πt

2k+l
+

π

2k

)
, t ∈ R.

Using this equality, the above-mentioned fact that the function sin2 · is Lipschitz continuous with the corre-
sponding Lipschitz constant L = 1 and the Langrange mean value theorem, we simply get that the convergence
in (2.5) is uniform in t ∈ K since:

∞∑
k=l+1

sin2
(πt
2k

)
≤

∞∑
k=l+1

π2(|a|+ |b|)2

4k
, k, l ∈ N
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and ∣∣∣∣∣
∞∑
k=1

sin2
( πt

2k+l
+

π

2k

)
−

∞∑
k=1

sin2
( π

2k

)∣∣∣∣∣ ≤ π(|a|+ |b|)
∑

k=l+1

2−k, k, l ∈ N;

here we have also used the elementary inequality | sin t| ≤ |t|, t ∈ R. Therefore, we have that the function φ(·)
is Bebutov (x, 1, {2l : l ∈ N}, ρ,PK)-uniformly recurrent, where PK = C(K) for each nonempty compact subset
K of R, D(ρ) := [0,∞) and ρ(φ(t)) := φ(t)+φ(1) for all t ∈ R (note that the function φ(·) is surjective since
it is continuous, φ(0) = 0 and the function φ(·) is Besicovitch unbounded, which follows from the inequality
φ(t) ≥ f(πt), t ∈ R with the function f(·) being defined through (2.1)).

Suppose now that c ∈ C \ {0} is fixed and consider any nontrivial continuous (φ(1), c)-periodic function
p : R → C , i.e. any nontrivial continuous function p : R → C such that p(t+φ(1)) = cp(t) for all t ∈ R. Then
an elementary argumentation involving the equation (2.5) and the uniform continuity of function p(·) on the
interval [−a, a], where a = maxt∈K(φ(t) + φ(1) + 1), shows that the function (p ◦ φ)(·) is uniformly Poisson
c-stable, nontrivial and liml→+∞(p ◦ φ)(·+ 2l) = (p ◦ φ)(·), uniformly on compacts of R.

Let us finally consider the case c = 1 and the function p(t) := sin(2πφ(t)/φ(1)), t ∈ R. Then p(·) is of
period φ(1), and we know that the function (p ◦ φ)(·) is uniformly Poisson stable. At the end of this example,
we would like to ask whether the function (p ◦ φ)(·) is uniformly recurrent (cf. also [21, proposition 3.6])?

Before proceeding to the next subsection, we would also like to ask whether we can construct a continuous
Levitan (N, c) -almost periodic function f : R → R for any complex number c 6= 0?

2.2. Multidimensional Levitan N -almost periodic functions
Let us recall that a continuous function F : Rn → X is almost periodic if for each finite real number ϵ > 0

there exist relatively dense sets Ej in R (1 ≤ j ≤ n) such that the set E ≡
∏n

j=1 E
j is contained in the set

of all ϵ -almost periods of F (·); see, e.g., [33, introduction, pp. 31–32]. Motivated by this fact, we will first
introduce the following notion (let us only note here that we can similarly reconsider the notion of pre-Levitan
almost periodicity):

Definition 2.13 Suppose that F : Rn → X is a continuous function. Then we say that the function F (·) is
strongly Levitan N -almost periodic if F (·) is pre-Levitan almost periodic and, for every real numbers N > 0

and ϵ > 0, there exist a finite real number η > 0 and the relatively dense sets Ej
η;N in R (1 ≤ j ≤ n) such

that the set Eη;N ≡
∏n

j=1 E
j
η;N consists solely of (η,N)-almost periods of F (·) and Eη;N ± Eη;N ⊆ E(ϵ,N).

It is clear that any strongly Levitan N -almost periodic function F : Rn → X is Levitan N -almost
periodic as well as that both notions coincide in the one-dimensional setting.

We continue this section by introducing the following notion, which has been proposed for the first time
by V. A. Marchenko in [44] (1950, the one-dimensional setting):

Definition 2.14 Suppose that F : Rn → X is a continuous function. Then we say that F (·) is Levitan
N -almost periodic of type 1 if for each j ∈ Nn there exists a real sequence (λj

k) such that, for every N > 0

and ϵ > 0, there exist numbers k ∈ N and δ > 0 such that any point τ = (τ1, τ2, ..., τn) ∈ Rn satisfying
|λj

l τj | ≤ δ (mod 2π) for all l ∈ Nk and j ∈ Nn is an ϵ,N -almost period of the function F (·).
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Now we will clarify the following result:

Proposition 2.15 Consider the following statements:

(i) F (·) is Levitan N -almost periodic of type 1.

(ii) F (·) is strongly Levitan N -almost periodic.

(iii) F (·) is Levitan N -almost periodic.

Then (i) ⇔ (ii) and (ii) ⇒ (iii).

Proof Using Kronecker’s theorem, the Bogolyubov theorem and the argumentation given in [40, pp. 54-55,
57] we can simply prove, as in the one-dimensional setting, that the statements (i) and (ii) are equivalent. The
statement (ii) ⇒ (iii) is trivial. 2

Further on, we can simply show that the Levitan N -almost periodic functions of type 1 form a vector
space with the usual operations. Due to Proposition 2.15, it follows that the strongly Levitan N -almost periodic
form a vector space with the usual operations. Concerning this result, it is logical to ask whether the Levitan
N -almost periodic functions form a vector space with the usual operations as well as whether the all statements
from the formulation of Theorem 2.15 are mutually equivalent, i.e. whether the implication (iii) ⇒ (i) is true?
Concerning the last question, we would like to notice that the arguments contained on p. 57 of [40] can be
repeated once more in order to see that this is true, provided that the following generalization of the Bogolyubov
theorem holds true in the higher-dimensional setting:

(S) Suppose that A is a relatively dense set in Rn and δ > 0. Then there exist a real number η > 0 and a
finite set {ω1, ..., ωk} in Rn such that{

τ ∈ Rn :
∣∣eiωlτ − 1

∣∣ < η for all l = 1, ...., k
}
⊆ A−A+A−A+Bδ.

Unfortunately, the statement (S) does not hold in the case that n ≥ 2, as the following trivial counterex-
ample shows:

Example 2.16 Suppose that A = Zn, n ≥ 2 , and δ ∈ (0, 1/4); then A is relatively dense in Rn. If (S) is
true, then there exist a sufficiently small number η0 > 0 and two real numbers ω1 and ω2 (take k = 1 in (S))
such that W = {τ ∈ Rn : |ω1τ1 + ...+ ωnτn| ≤ η0 (mod 2π)} ⊆ A−A+A−A+Bδ = A+Bδ. If ω1 = ω2 = 0,

then W = Rn and the contradiction is obvious; otherwise, W is a hyperplane in Rn and this clearly implies
that W cannot be contained in A+Bδ = (A−A) + ...+ (A−A) +Bδ , where we have exactly l addends in the
above sum with the number l ∈ N \ {1} being arbitrarily chosen.

Therefore, it is also important to ask whether the Bogolyubov theorem can be satisfactorily formulated
in the higher-dimensional setting?

We close this subsection with the observation that we will not reconsider the approximation theorem
for multidimensional Levitan N -almost periodic functions and the uniqueness theorem for multidimensional
Levitan N -almost periodic functions here; see [41, pp. 60–62] for the corresponding results established in the
one-dimensional setting.
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3. Applications to the abstract Volterra integro-differential equations
In this section, we will present several new theoretical results and their applications to the abstract Volterra
integro-differential equations and the classical partial differential equations. We start with the following theme:

3.1. The actions of infinite convolution products
In the one-dimensional setting, the analysis of existence and uniqueness of almost periodic type solutions for
various classes of the abstract Volterra integro-differential equations without initial conditions leans heavily on
the analysis of the qualitative features of the infinite convolution product

t 7→ F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R. (3.1)

In [1]-[4], M. Akhmet et al. have proposed a new method in the analysis of the existence and uniqueness
of unpredictable solutions of linear differential and discrete equations which is called the method of included
intervals (see [5]-[6]). The proof of the following result is almost entirely based on the method of included
intervals (cf. also [51]-[52], where B. A. Shcherbakov have developed the so-called comparability method by
character of recurrence, which is not so easy for comprehension and applications):

Proposition 3.1 Let ∅ 6= Λ′ ⊆ R, let A be a closed linear operator on X, and let (R(t))t>0 ⊆ L(X) be
a strongly continuous operator family such that R(t)A ⊆ AR(t) for all t > 0 and

∫∞
0

‖R(t)‖ dt < ∞. Let
PK = C(K) for each nonempty compact set K of R. If f : R → X is a bounded, continuous and Levitan
(x,Λ′, A,PK)-almost periodic, resp. bounded, continuous and Bebutov (x,Λ′, A,PK)-uniformly recurrent, and
the function Af : R → X is well defined and bounded, then the function F : R → X, given by (3.1), is bounded,
continuous and Levitan (x,Λ′, A,PK)-almost periodic, resp. bounded, continuous and Bebutov (x,Λ′, A,PK)-
uniformly recurrent.

Proof We will consider only Bebutov (x,Λ′, A,PK) -uniformly recurrent functions. It is clear that the function
F (·) is well-defined and bounded since

F (t) :=

∫ ∞

0

R(s)f(t− s) ds, t ∈ R,

as well as
∫∞
0

‖R(t)‖ dt < ∞ and the function f(·) is bounded. The continuity of F (·) simply follows from the
dominated convergence theorem. Since R(t)A ⊆ AR(t) for all t > 0 and the function Af(·) is bounded, we
have that AF (t) =

∫∞
0

R(s)Af(t − s) ds for all t ∈ R. Let ϵ > 0, let −∞ < a < b < +∞, and let K = [a, b].

Further on, let −∞ < c < a be such that

(
‖f‖∞ + ‖Af‖∞

)
·
∫ ∞

a−c

‖R(s)‖ ds < ϵ/2. (3.2)

Then there exists a sequence (τk) in Λ′ such that limk→+∞ |τk| = +∞ and(∫ ∞

0

‖R(t)‖ dt

)
· sup
t∈[c,b]

∥∥f(t+ τk)−Af(t)
∥∥ < ϵ/2. (3.3)
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The final conclusion simply follows from the estimates (3.2)-(3.3) and the next computation, which holds for
every k ∈ N and t ∈ K :

∥∥F (t+ τk)−AF (t)
∥∥ =

∥∥∥∥∥
∫ t

−∞
R(t− s)

[
f(s+ τk)−Af(s)

]
ds

∥∥∥∥∥
≤
∫ c

−∞
‖R(t− s)‖ ·

∥∥f(s+ τk)−Af(s)
∥∥ ds+ ∫ t

c

‖R(t− s)‖ ·
∥∥f(s+ τk)−Af(s)

∥∥ ds
≤
(
‖f‖∞ + ‖Af‖∞

)
·
∫ ∞

a−c

‖R(s)‖ ds

+

(∫ c

t

‖R(t− s)‖ ds

)
· sup
s∈[c,b]

∥∥f(s+ τk)−Af(s)
∥∥ ≤ (ϵ/2) + (ϵ/2) = ϵ.

2

Remark 3.2 (i) Suppose that νK : K → (0,∞) satisfies that the function 1/νK(·) is bounded. Then the use
of weighted function space Cb,νK

(K) seems to be discutable here since the argumentation contained in the
proof given above indicates that the function νK(·) has to be bounded, as well, unless we assume certain
very restrictive conditions.

(ii) The statement of Proposition 3.1 can be transferred to the multidimensional setting without any serious
difficulty; cf. [33] for more details.

(iii) For simplicity, let us consider here the class of Levitan (x,R, I,PK)-almost periodic functions. If we
additionally suppose that for each N > 0 and ϵ > 0 , there exists a relatively dense set Eη;N of (η,N)-
almost periods of f(·) such that Eη;N ± Eη;N ⊆ E(ϵ,N), then the same property holds for the function
F (·).

As mentioned many times before, our results about the convolution invariance of generalized metrical
Levitan almost periodicity and generalized metrical Bebutov uniform recurrence under the actions of the infinite
convolution product (3.1) can be successfully applied in the qualitative analysis of solutions for a large class
of the abstract (degenerate) Volterra integro-differential equations without initial conditions. For example,
Proposition 3.1 is clearly applicable in the analysis of the existence and uniqueness of Bebutov uniformly
recurrent solutions of the initial value problems with constant coefficients

Dγ
t,+u(t, x) =

∑
|α|≤k aαf

(α)(t, x) + f(t, x), t ∈ R, x ∈ Rn

in the space Lp(Rn), where γ ∈ (0, 1), Dγ
t,+u(t) denotes the Weyl-Liouville fractional derivative of order γ and

1 ≤ p < ∞; cf. also [13, 31] for many similar applications of this type.

3.2. The convolution invariance and some applications
In this subsection, we continue our investigation from the previous subsection by examining the convolution
invariance of Levitan almost like periodicity. In actual fact, we would like to observe that the method of included
intervals [1]-[4] enables one to simply deduce the following result:
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Proposition 3.3 Let ∅ 6= Λ′ ⊆ Rn, let A be a closed linear operator on X, h ∈ L1(Rn), and let PK = C(K)

for each nonempty compact set K of R. If f : Rn → X is bounded, continuous and Levitan (x,Λ′, A,PK)-
almost periodic, resp. bounded, continuous and Bebutov (x,Λ′, A,PK)-uniformly recurrent, and the function
Af : Rn → X is well defined and bounded, then the function H : Rn → X, given by

H(t) := (h ∗ f)(t) :=
∫
Rn

h(t− s)f(s) ds, t ∈ Rn,

is bounded, continuous and Levitan (x,Λ′, A,PK)-almost periodic, resp. bounded, continuous and Bebutov
(x,Λ′, A,PK)-uniformly recurrent.

Remark 3.4 (i) Unfortunately, we cannot formulate a satisfactory analogue of Proposition 3.3 in the case
that there exist two finite real numbers b > 0 and c > 0 such that ‖f(t)‖ ≤ c(1 + |t|)b, t ∈ Rn and
h(·)[1 + | · |]b ∈ L1(Rn), when the function H(·) is clearly well-defined.

(ii) Let us consider the class of Levitan (x,R, I,PK)-almost periodic functions. If we suppose, additionally,
that for each N > 0 and ϵ > 0 there exists a relatively dense set Eη;N of (η,N)-almost periods of f(·)
such that Eη;N ±Eη;N ⊆ E(ϵ,N), then the same property holds for the function H(·). Taken together with
the statement of Proposition 3.3, this provides a proper extension of the well known result [11, theorem
13], proved for the first time by D. Bugajewski, X. Gan, and P. Kasprzak.

Now we will briefly explain how we can incorporate Proposition 3.3 in the analysis of the existence and
uniqueness of the Levitan almost periodic type solutions for some classes of (fractional) partial differential
equations:

1. We will consider first the inhomogeneous heat equation in Rn . Recall, a unique solution of the heat
equation ut(t, x) = uxx(t, x), t ≥ 0, x ∈ Rn; u(0, x) = F (x), x ∈ Rn is given by the action of Gaussian
semigroup

F 7→ (G(t)F )(x) ≡
(
4πt
)−n/2

∫
Rn

e−|y|2/4tF (x− y) dy, t > 0, x ∈ Rn.

Suppose now that c ∈ C\{0}, a number t > 0 is fixed and the function F (·) is bounded, continuous and Levitan
(x,Λ′, c,PK) -almost periodic, resp. bounded, continuous and Bebutov (x,Λ′, c,PK) -uniformly recurrent. Then
an application of Proposition 3.3 shows that the function x 7→ (G(t)F )(x), x ∈ Rn is likewise bounded,
continuous and Levitan (x,Λ′, c,PK) -almost periodic, resp. bounded, continuous and Bebutov (x,Λ′, c,PK) -
uniformly recurrent (cf. also S. Zaidman [60, examples 4, 5, 7, 8; pp. 32-34], which can be also used for our
purposes).

2. Suppose that 1 < β < 2. The fractional diffusion-wave equation

D(β)
t u(t, x) = ∆u(t, x), t > 0, x ∈ Rn,

subjected with the initial conditions

u(0, x) = u0(x), ut(0, x) = 0,
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where D(β)
t u(t, x) is the Caputo-Dzhrbashyan fractional derivative, given by

D(β)
t u(t, x) :=

1

Γ(2− β)

∂2

∂2t

∫ t

0

(t− τ)1−βu(τ, x) dτ − t1−β ut(0, x)

Γ(2− β)
− t1−β u(0, x)

Γ(1− β)
, t > 0,

was studied by many authors (see, e.g., the research article [30] by A. N. Kochubei and references cited therein).
A unique solution u(t, x) of this problem is obtained as the convolution with a Green kernel

u(t, x) =

∫
Rn

G(t, x− ξ)u0(ξ) dξ =

∫
Rn

G(t, ξ)u0(x− ξ) dξ.

Since the Green kernel G(t, x) satisfies the estimate (cf. the research article [48] by A. V. Pskhu for more
details; c > 0 and a > 0 denote the positive real constants here):

|G(t, x)| ≤ ct−nβ/2γn
(
|x|t−β/2

)
E
(
|x|t−β/2

)
,

where γn(z) := 1, if n = 1 [γn(z) := | ln z|, if n = 2; γn(z) := z2−n , if n ≥ 3 ] and E(z) := exp(−az2/(2−β)),

the following can be easily shown: If the function x 7→ u0(x), x ∈ Rn is bounded, continuous and (I ′, c) -almost
periodic ((I ′, c) -uniformly recurrent; Levitan (x,Λ′, c,PK) -almost periodic, Bebutov (x,Λ′, c,PK) -uniformly
recurrent) for some c ∈ C, then the solution u(t, x) is bounded, continuous and (I ′, c) -almost periodic ((I ′, c) -
uniformly recurrent; Levitan (x,Λ′, c,PK) -almost periodic, Bebutov (x,Λ′, c,PK) -uniformly recurrent) in the
variable x for every fixed value of variable t > 0; cf. [25] for the notion used.

3. Using the Laplace transform of vector-valued distributions, M. Kunzinger, E. A. Nigsch, and N.
Ortner [38] have presented the explicit solutions for the Cauchy-Dirichlet problem of the iterated wave operator
(∆n + ∂2

y − ∂2
t )

m, the iterated Klein-Gordon operator (∆2n+1 + ∂2
y − ∂2

t − ξ2)m, the iterated metaharmonic
operator (∆n+∂2

y−p2)m, and the iterated heat operator (∆n+∂2
y−∂t)

m, in the half-space y > 0. In particular,
the authors have shown that, under certain logical assumptions, the Cauchy problem(

∂2
x1

+ ...+ ∂2
xn

+ ∂2
y

)2
u = 0 in (x, y) ∈ Rn × (0,∞);

u|y=0 = g0(x),
(
∂uy

)
|y=0

= g1(x)

has a unique solution

u(x, y) = 2
Γ((n+ 3)/2)

π(n+1)/2
y3
∫
Rn

g0(x− ξ)
dξ(

|ξ|2 + y2
)(n+3)/2

+
Γ((n+ 1)/2)

π(n+1)/2
y2
∫
Rn

g1(x− ξ)
dξ(

|ξ|2 + y2
)(n+1)/2

.

Suppose now that the function x 7→ (g0(x), g1(x)), x ∈ Rn is bounded, continuous and (I ′, c) -almost periodic
((I ′, c) -uniformly recurrent; Levitan (x,Λ′, c,PK) -almost periodic, Bebutov (x,Λ′, c,PK) -uniformly recurrent)
for some c ∈ C. Then it can be easily shown that the solution u(x, y) is bounded, continuous and (I ′, c) -almost
periodic ((I ′, c) -uniformly recurrent; Levitan (x,Λ′, c,PK) -almost periodic, Bebutov (x,Λ′, c,PK) -uniformly
recurrent) in the variable x for every fixed value of variable y > 0. This example and the first example given
in this subsection can be also used to justify the introduction of multidimensional Levitan ρ -almost periodic
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type functions with ρ being not a function but a general binary relation; cf. [25] for more details concerning
this issue.

4. We can similarly consider the existence and uniqueness of Levitan almost periodic type solutions of
the inhomogeneous abstract Cauchy problems considered in [15, Example 1.1], the backward wave equation
considered in [60, Example 8, p. 33], and provide certain applications to the abstract ill-posed Cauchy problems
considered on [33, pp. 543-545].

5. Concerning semilinear Cauchy problems, we will only note that the composition principle clarified in
[33, theorem 7.1.18] can be simply formulated for the uniformly Poisson c -stable functions. Keeping in mind
Proposition 3.3, we can simply consider the existence and uniqueness of the uniformly Poisson c -stable solutions
for the class of semilinear Hammerstein integral equation of convolution type on Rn ; see [33, p. 470] and the
corresponding application made in [29, section 3]. Without going into full details, we will only note that the
statement of [11, theorem 12] and some composition principles clarified in [33, subsection 6.1.5] can probably
be formulated in our new framework.

6. Before proceeding to the next subsection, we would like to notice that the convolution invariance
of Levitan N -almost periodicity has recently been considered by A. Nawrocki in [45, theorems 4.2, 4.4, and
4.8]. Concerning these statements, clarified in the one-dimensional setting, we would like to make the following
comments:

(i) Theorem 4.2 can be formulated for the uniformly Poisson stable (Levitan N -almost periodic) functions
f : R → Y. Then the convolution f ∗ g exists and it is a uniformly Poisson stable (Levitan N -almost
periodic) function.

(ii) Theorem 4.4 can be formulated for the Stepanov bounded, uniformly Poisson stable (Levitan N -almost
periodic) functions f : R → Y. The resulting convolution f ∗ gλ exists and it is a bounded, uniformly
Poisson stable (Levitan N -almost periodic) function.

(iii) Concerning Theorem 4.8, we will only note that the Stepanov unboundedness condition [45, (4.2)] is not
suitable for the work with the uniformly Poisson stable functions. Let us assume, in place of this condition,
that for each real number ω > 0 and for each strictly increasing sequence (αk) of positive integers, we
have

lim sup
k→+∞

∫ (ak+1)ω

akω

f(t) dt = +∞.

Then the resulting convolution f ∗ gλ exists and it is a bounded, uniformly Poisson stable function. The
statement can be also formulated for the vector-valued functions.

In [45, Section 5], the author has applied the above results (cf. also [45, Corollaries 4.11–4.14]) in the
analysis of the existence and uniqueness of Levitan N -almost periodic solutions of the linear ordinary differential
equation of first order

y′(x) = λy(x) + f(x), x ∈ R.

The statements of [45, lemma 5.5, theorem 5.10(i)] can be formulated for the uniformly Poisson stable solutions
of this equation.
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3.3. On the wave equation in Rn

In this subsection, we will revisit our recent investigations of the wave equation in Rn , where n ≤ 3. Let us
consider first the following wave equation in R3 :

utt(t, x) = d2∆xu(t, x), x ∈ R3, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (3.4)

where d > 0, g ∈ C3(R3 : R) and h ∈ C2(R3 : R). By the Kirchhoff formula (see e.g., [50, theorem 5.4, pp.
277-278]), the function

u(t, x) :=
∂

∂t

[
1

4πd2t

∫
∂Bdt(x)

g(σ) dσ

]
+

1

4πd2t

∫
∂Bdt(x)

g(σ) dσ

=
1

4π

∫
∂B1(0)

g(x+ dtω) dω +
dt

4π

∫
∂B1(0)

∇g(x+ dtω) · ω dω

+
t

4π

∫
∂B1(0)

h(x+ dtω) dω, t ≥ 0, x ∈ R3,

is a unique solution of problem (3.4) which belongs to the class C2([0,∞) × R3) . Fix now a number t0 > 0.

Then the function x 7→ u(t0, x), x ∈ R3 will be Levitan N -almost periodic (uniformly Poisson stable) provided
that the function (g(·), ∇g(·), h(·)) is Levitan N -almost periodic (uniformly Poisson stable), for example.

Let us consider now the following wave equation in R2 :

utt(t, x) = d2∆xu(t, x), x ∈ R2, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (3.5)

where d > 0, g ∈ C3(R2 : R) , and h ∈ C2(R2 : R). By the Poisson formula (see e.g., [50, theorem 5.5, pp.
280-281]), we know that the function

u(t, x) :=
∂

∂t

[
1

2πd

∫
∂Bdt(x)

g(σ)√
d2t2 − |x− y|2

dσ

]
+

1

2πd

∫
∂Bdt(x)

h(σ)√
d2t2 − |x− y|2

dσ

= d

∫
B1(0)

g(x+ dtσ)√
1− |σ|2

dσ + d2t

∫
B1(0)

∇g(x+ dtσ) · σ√
1− |σ|2

dσ

+ dt

∫
B1(0)

h(x+ dtσ)√
1− |σ|2

dσ, t ≥ 0, x ∈ R2,

is a unique solution of problem (3.5) which belongs to the class C2([0,∞) × R3) . Fix now a number t0 > 0.

Similarly as above, we have that the function x 7→ u(t0, x), x ∈ R2 will be Levitan N -almost periodic (uniformly
Poisson stable) provided that the function (g(·), ∇g(·), h(·)) is Levitan N -almost periodic (uniformly Poisson
stable).

Let us finally consider the wave equation utt = a2uxx in domain {(x, t) : x ∈ R, t > 0}, equipped with
the initial conditions u(x, 0) = f(x) ∈ C2(R) and ut(x, 0) = g(x) ∈ C1(R) . As is well known, its unique regular
solution is given by the famous d’Alembert formula

u(x, t) =
1

2

[
f(x− at) + f(x+ at)

]
+

1

2a

∫ x+at

x−at

g(s) ds, x ∈ R, t > 0.
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Our consideration from [15, example 1.2] shows that the solution u(x, t) can be extended to the whole real line
in time variable and that u(x, t) will be uniformly c -Poisson stable in (x, t) ∈ R2, provided that the function
t 7→ (f(·),

∫ ·
0
g(s) ds), t ∈ R is uniformly c -Poisson stable, with the meaning clear (c ∈ C \ {0}). We would like

to emphasize that it is not clear how one can prove that the solution u(x, t) will be Levitan N -almost periodic
in (x, t) ∈ R2, provided that the functions f(·) and

∫ ·
0
g(s) ds are Levitan N -almost periodic.

4. Conclusions and final remarks
In this paper, we have investigated the Levitan and Bebutov approaches to the metrical approximations by
trigonometric polynomials and ρ -periodic type functions, providing also certain applications to the abstract
Volterra integro-differential equations and the partial differential equations. We have proved many structural
results for the introduced classes of functions and propose several open problems, remarks, and illustrative
examples.

Finally, we would like to mention some topics not considered in our former work:

1. The Levitan and Bebutov approaches to the metrical approximations by trigonometric polynomials and
ρ -periodic type functions can be further generalized using the approaches of Stepanov, Weyl, and Besicovitch.
Many structural results established in [14] can be reformulated in this context.

2. It is well known that every Levitan N -almost periodic function f : R → C can be represented by the
uniform limit of ratios of scalar-valued almost periodic functions. We will not discuss here the question whether
this result continues to hold for multidimensional Levitan N -almost periodic functions.

3. In this paper, we have not analyzed D -asymptotically Levitan (Bebutov) almost periodic type functions
in general metric. Concerning this issue, we will only note that we have recently provided some new results
about the existence and uniqueness of D -asymptotically almost automorphic solutions of the inhomogeneous
wave equation

utt(t, x)− d2∆xu(t, x) = f(t, x), x ∈ R2, t > 0;

u(0, x) = g(x), ut(0, x) = h(x),

where d > 0, f(t, x) is continuously differentiable in the variable t ∈ R and continuous in the variable x ∈ R,
g ∈ C2(R2 : R) and h ∈ C1(R2 : R). It is well known that the unique solution of this problem is given by

u(x, t) =
1

2

[
g(x− at) + g(x+ at)

]
+

1

2a

∫ x+at

x−at

h(s) ds

+
1

2d

∫ t

0

[∫ x+d(t−s)

x−d(t−s)

f(r, s) dr

]
ds, x ∈ R, t > 0,

so that the conclusions established in [33, pp. 541-542] can be also formulated for D -asymptotically uniformly
Poisson stable solutions (defined in the obvious way), for example. Details can be left to the interested readers.
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