Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: 794-815
© TÜBİTAK
doi:10.55730/1300-0098.3394

Clairaut Riemannian maps

Kiran MEENA* ${ }^{(1), ~ A k h i l e s h ~ Y A D A V ~}{ }^{(1)}$
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India

| Received: 31.08 .2022 | Accepted/Published Online: $14.02 .2023 \quad$ Final Version: 09.03 .2023 |
| :--- | :--- | :--- | :--- |

Abstract

In this paper, first we define Clairaut Riemannian map between Riemannian manifolds by using a geodesic curve on the base space and find necessary and sufficient conditions for a Riemannian map to be Clairaut with a nontrivial example. We also obtain necessary and sufficient condition for a Clairaut Riemannian map to be harmonic. Thereafter, we study Clairaut Riemannian map from Riemannian manifold to Ricci soliton with a nontrivial example. We obtain scalar curvatures of range F_{*} and $\left(\text { range } F_{*}\right)^{\perp}$ by using Ricci soliton. Further, we obtain necessary conditions for the leaves of range F_{*} to be almost Ricci soliton and Einstein. We also obtain necessary condition for the vector field $\dot{\beta}$ to be conformal on range F_{*} and necessary and sufficient condition for the vector field $\dot{\beta}$ to be Killing on (range $\left.F_{*}\right)^{\perp}$, where β is a geodesic curve on the base space of Clairaut Riemannian map. Also, we obtain necessary condition for the mean curvature vector field of range F_{*} to be constant. Finally, we introduce Clairaut antiinvariant Riemannian map from Riemannian manifold to Kähler manifold, and obtain necessary and sufficient condition for an antiinvariant Riemannian map to be Clairaut with a nontrivial example. Further, we find necessary condition for rangeF F_{*} to be minimal and totally geodesic. We also obtain necessary and sufficient condition for Clairaut antiinvariant Riemannian maps to be harmonic.

Key words: Riemannian manifold, Kähler manifold, Riemannian map, Clairaut Riemannian map, antiinvariant Riemannian map, Ricci soliton

1. Introduction

The geometry of Riemannian submersions has been discussed widely in [8]. In 1992, Fischer introduced Riemannian map between Riemannian manifolds as a generalization of an isometric immersion and Riemannian submersion that satisfies the well-known generalized eikonal equation $\left\|F_{*}\right\|^{2}=\operatorname{rankF}$, which is a bridge between geometric optics and physical optics [9]. Further, the geometry of Riemannian maps was investigated in [2, 3, 2026].

An important Clairaut's relation states that $\tilde{r} \sin \theta$ is constant, where θ is the angle between the velocity vector of a geodesic and a meridian, and \tilde{r} is the distance to the axis of a surface of revolution. In 1972, Bishop defined Clairaut Riemannian submersion with connected fibers and gave a necessary and sufficient condition for a Riemannian submersion to be Clairaut Riemannian submersion [5]. Further, Clairaut submersions were studied in $[1,12,14]$. In [25], Şahin introduced Clairaut Riemannian map by using a geodesic curve on the total space and obtained necessary and sufficient conditions for Riemannian map to be Clairaut Riemannian map.

[^0]Further, Şahin gave an open problem to find characterizations for Clairaut Riemannian maps (see [26], page 165 , open problem 2). In Section 3, we introduce a new type of Clairaut Riemannian map by using a geodesic curve on the base space and obtain necessary and sufficient conditions for a Riemannian map to be Clairaut Riemannian map.

A Riemannian manifold $\left(N, g_{2}\right)$ is called a Ricci soliton [11] if there exists a smooth vector field Z_{1} (called potential vector field) on N such that $\frac{1}{2}\left(L_{Z_{1}} g_{2}\right)\left(X_{1}, Y_{1}\right)+\operatorname{Ric}\left(X_{1}, Y_{1}\right)+\lambda g_{2}\left(X_{1}, Y_{1}\right)=0$, where $L_{Z_{1}}$ is the Lie derivative of the metric tensor of g_{2} with respect to Z_{1}, Ric is the Ricci tensor of $\left(N, g_{2}\right), \lambda$ is a constant function and X_{1}, Y_{1} are arbitrary vector fields on N. We shall denote a Ricci soliton by $\left(N, g_{2}, Z_{1}, \lambda\right)$. The Ricci soliton $\left(N, g_{2}, Z_{1}, \lambda\right)$ is said to be shrinking, steady or expanding accordingly as $\lambda<0, \lambda=0$ or $\lambda>0$, respectively. It is obvious that a trivial Ricci soliton is an Einstein manifold [4] with Z_{1} zero or Killing (Lie derivative of metric tensor g_{2} with respect to Z_{1} is vanishes). Ricci soliton can be used to solve the Poincaré conjecture [17]. A Ricci soliton $\left(N, g_{2}, Z_{1}, \lambda\right)$ becomes an almost Ricci soliton [18] if the function λ is a variable. The Ricci soliton $\left(N, g_{2}, Z_{1}, \lambda\right)$ is said to be a gradient Ricci soliton if the potential vector field Z_{1} is the gradient of some smooth function f on N, which is denoted by $\left(N, g_{2}, f, \lambda\right)$. Moreover, a non-Killing tangent vector field Z_{1} on a Riemannian manifold $\left(N, g_{2}\right)$ is called conformal [7] if it satisfies $L_{Z_{1}} g_{2}=2 f g_{2}$, where f is called the potential function of Z_{1}. The submersions and Riemannian maps from a Ricci soliton to a Riemannian manifold were studied in [10, 13, 15, 29, 30]. In [32], present authors introduced Riemannian map from a Riemannian manifold to a Ricci soliton. In Section 4, we introduce Clairaut Riemannian map from a Riemannian manifold to a Ricci soliton.

In [28], Watson studied almost Hermitian submersions. In [23], Şahin introduced holomorphic Riemannian map as generalization of holomorphic submersion and holomorphic submanifold. In [2, 3, 20, 22] invariant, antiinvariant and semiinvariant Riemannian maps were studied from a Riemannian manifold to a Kähler manifold. Recently, present authors introduced Clairaut invariant Riemannian map from a Riemannian manifold to a Kähler manifold in [31]. In Section 5, we introduce Clairaut antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold.

2. Preliminaries

In this section, we recall the notion of Riemannian map between Riemannian manifolds and give a brief review of basic facts.

Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a smooth map between Riemannian manifolds such that $0<\operatorname{rank} F \leq$ $\min \{m, n\}$, where $\operatorname{dim}(M)=m$ and $\operatorname{dim}(N)=n$. We denote the kernel space of F_{*} by $\nu_{p}=k e r F_{* p}$ at $p \in M$ and consider the orthogonal complementary space $\mathcal{H}_{p}=\left(\operatorname{ker} F_{* p}\right)^{\perp}$ to $\operatorname{ker} F_{* p}$ in $T_{p} M$. Then the tangent space $T_{p} M$ of M at p has the decomposition $T_{p} M=\left(\operatorname{ker} F_{* p}\right) \oplus\left(\operatorname{ker} F_{* p}\right)^{\perp}=\nu_{p} \oplus \mathcal{H}_{p}$. We denote the range of F_{*} by range F_{*} at $p \in M$ and consider the orthogonal complementary space (range $\left.F_{* p}\right)^{\perp}$ to range $F_{* p}$ in the tangent space $T_{F(p)} N$ of N at $F(p) \in N$. Since $\operatorname{rank} F \leq \min \{m, n\}$, we have $\left(\text { range } F_{*}\right)^{\perp} \neq\{0\}$. Thus the tangent space $T_{F(p)} N$ of N at $F(p) \in N$ has the decomposition $T_{F(p)} N=\left(r a n g e F_{* p}\right) \oplus\left(r a n g e F_{* p}\right)^{\perp}$. Then F is called Riemannian map at $p \in M$ if the horizontal restriction $F_{* p}^{h}:\left(\operatorname{ker} F_{* p}\right)^{\perp} \rightarrow\left(\operatorname{range} F_{* p}\right)$ is a linear isometry between the spaces $\left(\left(\operatorname{ker} F_{* p}\right)^{\perp},\left.g_{1(p)}\right|_{\left(k e r F_{* p}\right)^{\perp}}\right)$ and $\left(r a n g e F_{* p},\left.g_{2\left(p_{1}\right)}\right|_{\left(\text {range } F_{* p}\right)}\right)$, where $F(p)=p_{1}$. In other words, F_{*} satisfies

$$
\begin{equation*}
g_{2}\left(F_{*} X, F_{*} Y\right)=g_{1}(X, Y) \tag{2.1}
\end{equation*}
$$

MEENA and YADAV/Turk J Math

for all X, Y vector field tangent to $\Gamma\left(\operatorname{ker} F_{* p}\right)^{\perp}$. It follows that isometric immersions and Riemannian submersions are particular Riemannian maps with $\operatorname{ker} F_{*}=\{0\}$ and $\left(\text { range } F_{*}\right)^{\perp}=\{0\}$, respectively. The differential map F_{*} of F can be viewed as a section of bundle $\operatorname{Hom}\left(T M, F^{-1} T N\right) \rightarrow M$, where $F^{-1} T N$ is the pullback bundle whose fibers at $p \in M$ is $\left(F^{-1} T N\right)_{p}=T_{F(p)} N, p \in M$. The bundle $\operatorname{Hom}\left(T M, F^{-1} T N\right)$ has a connection ∇ induced from the Levi-Civita connection ∇^{M} and the pullback connection $\stackrel{N}{\nabla}^{F}$. Then the second fundamental form of F is given by [16]

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, Y)=\stackrel{N}{\nabla_{X}^{F}} F_{*} Y-F_{*}\left(\nabla_{X}^{M} Y\right), \tag{2.2}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$, where $\nabla_{X}^{N} F_{*} Y \circ F=\nabla_{F_{*} X}^{N} F_{*} Y$. It is known that the second fundamental form is symmetric. In [20] Sुahin proved that $\left(\nabla F_{*}\right)(X, Y)$ has no component in range F_{*}, for all $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}$. More precisely, we have

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, Y) \in \Gamma\left(\text { range } F_{*}\right)^{\perp} \tag{2.3}
\end{equation*}
$$

The tension field of F is defined to be the trace of the second fundamental form of F, i.e. $\tau(F)=\operatorname{trace}\left(\nabla F_{*}\right)=$ $\sum_{i=1}^{m}\left(\nabla F_{*}\right)\left(e_{i}, e_{i}\right)$, where $m=\operatorname{dim}(M)$ and $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is the orthonormal frame on M. Moreover, a map $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ between Riemannian manifolds is harmonic if and only if the tension field of F vanishes at each point $p \in M$.

Lemma 2.1 [21] Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Riemannian map between Riemannian manifolds. Then the tension field of F is given by $\tau(F)=-r F_{*}(H)+(m-r) H_{2}$, where $r=\operatorname{dim}\left(k e r F_{*}\right),(m-r)=\operatorname{rank} F$, H and H_{2} are the mean curvature vector fields of the distribution $k e r F_{*}$ and range F_{*}, respectively.

Lemma 2.2 [22] Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Riemannian map between Riemannian manifolds. Then F is umbilical Riemannian map if and only if

$$
\left(\nabla F_{*}\right)(X, Y)=g_{1}(X, Y) H_{2}
$$

for $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}$ and H_{2} is the mean curvature vector field of range F_{*}.
For any vector field X on M and any section V of $\left(\text { range } F_{*}\right)^{\perp}$, we have $\nabla_{X}^{F}{ }^{\perp} V$, which is the orthogonal projection of $\nabla_{X}^{N} V$ on $\left(\text { range } F_{*}\right)^{\perp}$, where $\nabla^{F \perp}$ is linear connection on $\left(\text { range } F_{*}\right)^{\perp}$ such that $\nabla^{F \perp} g_{2}=0$. Now, for a Riemannian map F we define \mathcal{S}_{V} as ([24], p. 188)

$$
\begin{equation*}
\nabla_{F_{*} X}^{N} V=-\mathcal{S}_{V} F_{*} X+\nabla_{X}^{F \perp} V \tag{2.4}
\end{equation*}
$$

where ∇^{N} is Levi-Civita connection on $N, \mathcal{S}_{V} F_{*} X$ is the tangential component (a vector field along F) of $\nabla_{F_{*} X}^{N} V$. Thus at $p \in M$, we have $\nabla_{F_{*} X}^{N} V(p) \in T_{F(p)} N, \mathcal{S}_{V} F_{*} X \in F_{* p}\left(T_{p} M\right)$ and $\nabla_{X}^{F}{ }^{\perp} V(p) \in\left(F_{* p}\left(T_{p} M\right)\right)^{\perp}$. It is easy to see that $\mathcal{S}_{V} F_{*} X$ is bilinear in V, and $F_{*} X$ at p depends only on V_{p} and $F_{* p} X_{p}$. Hence from (2.2) and (2.4), we obtain

$$
\begin{equation*}
g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} Y\right)=g_{2}\left(V,\left(\nabla F_{*}\right)(X, Y)\right), \tag{2.5}
\end{equation*}
$$

for $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}$ and $V \in \Gamma\left(r a n g e F_{*}\right)^{\perp}$, where \mathcal{S}_{V} is self-adjoint operator.

MEENA and YADAV/Turk J Math

3. Clairaut Riemannian map between Riemannian manifolds

In this section, we define Clairaut Riemannian map between Riemannian manifolds by using a geodesic curve [6] on the base space and investigate geometry.

The notion of Clairaut Riemannian map was defined by Şahin in [25]. According to the definition, a Riemannian map $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ between Riemannian manifolds is called Clairaut Riemannian map if there is a function $\tilde{r}: M \rightarrow \mathbb{R}^{+}$such that for every geodesic α on M, the function $(\tilde{r} \circ \alpha) \sin \theta$ is constant, where, for all $t, \theta(t)$ is the angle between $\dot{\alpha}(t)$ and the horizontal space at $\alpha(t)$.

Thus, the notion of Clairaut Riemannian map comes from a geodesic curve on a surface of revolution. Therefore, we are going to give a definition of Clairaut Riemannian map by using geodesic curve on the base space.

Definition 3.1 A Riemannian map $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ between Riemannian manifolds is called Clairaut Riemannian map if there is a function $\tilde{s}: N \rightarrow \mathbb{R}^{+}$such that for every geodesic β on N, the function $(\tilde{s} \circ \beta) \sin \omega(t)$ is constant, where, $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ for $X \in \Gamma\left(k e r F_{*}\right)^{\perp}$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$, and $\omega(t)$ is the angle between $\dot{\beta}(t)$ and V for all t.

Note: For all $U, V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ we define

$$
\nabla_{U}^{N} V=\mathcal{R}\left(\nabla_{U}^{N} V\right)+\nabla_{U}^{F \perp} V
$$

where $\mathcal{R}\left(\nabla_{U}^{N} V\right)$ and $\nabla_{U}^{F} \perp V$ denote range F_{*} and $\left(\text { range } F_{*}\right)^{\perp}$ part of $\nabla_{U}^{N} V$, respectively. Therefore $\left(\text { range } F_{*}\right)^{\perp}$ is totally geodesic if and only if

$$
\nabla_{U}^{N} V=\nabla_{U}^{F}{ }^{\perp} V
$$

Note that from now, throughout the paper, we are assuming (range $\left.F_{*}\right)^{\perp}$ is totally geodesic.

Lemma 3.2 Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Riemannian map between Riemannian manifolds and $\alpha: I \rightarrow M$ be a geodesic curve on M. Then the curve $\beta=F \circ \alpha$ is geodesic curve on N if and only if

$$
\begin{align*}
& \left(\nabla F_{*}\right)(X, X)+\nabla_{X}^{F \perp} V+\nabla_{V}^{F \perp} V=0 \tag{3.1}\\
& -\mathcal{S}_{V} F_{*} X+F_{*}\left(\nabla_{X}^{M} X\right)+\nabla_{V}^{N} F_{*} X=0 \tag{3.2}
\end{align*}
$$

where $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right), V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$ and ∇^{N} is Levi-Civita connection on N and $\nabla^{F \perp}$ is a linear connection on $\left(\text { range } F_{*}\right)^{\perp}$.

Proof Let $\alpha: I \rightarrow M$ be a geodesic on M with $U(t)=\nu \dot{\alpha}(t)$ and $X(t)=\mathcal{H} \dot{\alpha}(t)$. Let $\beta=F \circ \alpha$ be a geodesic on N with $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$.
Now,

$$
\nabla_{\dot{\beta}}^{N} \dot{\beta}=\nabla_{F_{*} X+V}^{N}\left(F_{*} X+V\right)
$$

which implies

$$
\nabla_{\dot{\beta}}^{N} \dot{\beta}=\nabla_{F_{*} X}^{N} F_{*} X+\nabla_{F_{*} X}^{N} V+\nabla_{V}^{N} F_{*} X+\nabla_{V}^{N} V
$$

Using (2.4) in above equation, we get

$$
\nabla_{\dot{\beta}}^{N} \dot{\beta}=\nabla_{X}^{N} F_{*} X \circ F+\left(-\mathcal{S}_{V} F_{*} X+\nabla_{X}^{F}{ }^{\perp} V\right)+\nabla_{V}^{N} F_{*} X+\nabla_{V}^{N} V
$$

Using (2.2) in above equation, we get

$$
\begin{equation*}
\nabla_{\dot{\beta}}^{N} \dot{\beta}=\left(\nabla F_{*}\right)(X, X)+F_{*}\left(\nabla_{X}^{M} X\right)-\mathcal{S}_{V} F_{*} X+\nabla_{X}^{F \perp} V+\nabla_{V}^{N} F_{*} X+\nabla_{V}^{N} V . \tag{3.3}
\end{equation*}
$$

Since $\left(\text { range } F_{*}\right)^{\perp}$ is totally geodesic, (3.3) can be written as

$$
\begin{equation*}
\nabla_{\dot{\beta}}^{N} \dot{\beta}=\left(\nabla F_{*}\right)(X, X)+F_{*}\left(\nabla_{X}^{M} X\right)-\mathcal{S}_{V} F_{*} X+\nabla_{X}^{F \perp} V+\nabla_{V}^{N} F_{*} X+\nabla_{V}^{F \perp} V \tag{3.4}
\end{equation*}
$$

Now β is geodesic on N if and only if $\nabla_{\dot{\beta}}^{N} \dot{\beta}=0$. Then (3.4) implies $\left(\nabla F_{*}\right)(X, X)+F_{*}\left(\nabla_{X}^{M} X\right)-\mathcal{S}_{V} F_{*} X+$ $\nabla_{X}^{F \perp} V+\nabla_{V}^{N} F_{*} X+\nabla_{V}^{F \perp} V=0$, which completes the proof.

Theorem 3.3 Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Riemannian map between Riemannian manifolds such that range F_{*} is connected and $\alpha, \beta=F \circ \alpha$ are geodesic curves on M and N, respectively. Then F is Clairaut Riemannian map with $\tilde{s}=e^{g}$ if and only if any one of the following conditions holds:
(i) $\mathcal{S}_{V} F_{*} X=-V(g) F_{*} X$, where $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right), V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$.
(ii) F is umbilical map, and has $H_{2}=-\nabla^{N} g$, where g is a smooth function on N and H_{2} is the mean curvature vector field of range F_{*}.

Proof First we prove F is a Clairaut Riemannian map with $\tilde{s}=e^{g}$ if and only if for any geodesic $\beta: I \rightarrow N$ with tangential components $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}, t \in I$ the equation

$$
\begin{equation*}
g_{2 \beta(t)}\left(F_{*} X(t), F_{*} X(t)\right) g_{2}\left(\dot{\beta}(t),\left(\nabla^{N} g\right)\right)+g_{2}\left(\mathcal{S}_{V} F_{*} X(t), F_{*} X(t)\right)=0 \tag{3.5}
\end{equation*}
$$

is satisfied. To prove this, let β be a geodesic on N with $\dot{\beta}(t)=F_{*} X(t)+V(t)$ and let $\omega(t) \in[0, \pi]$ denote the angle between $\dot{\beta}(t)$ and $V(t)$. If $\dot{\beta}(t) \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, then we have $F_{*} X\left(t_{0}\right)=0$ (i.e. (3.5) is satisfied), which implies $\sin \omega(t)=0$ at point $\beta\left(t_{0}\right)$. Thus for any function $\tilde{s}=e^{g}$ on $M,(\tilde{s}(\beta(t))) \sin \omega(t)$ identically vanishes. Therefore, the statement holds trivially in this case. Now, we consider the case $\sin \omega(t) \neq 0$, i.e. $\dot{\beta}(t)$ does not belongs only in $\Gamma\left(\text { range } F_{*}\right)^{\perp}$. Since β is geodesic, its speed is constant $b=\|\dot{\beta}\|^{2}$ (say). Then

$$
\begin{gather*}
g_{2 \beta(t)}(V, V)=b \cos ^{2} \omega(t) \tag{3.6}\\
g_{2 \beta(t)}\left(F_{*} X, F_{*} X\right)=b \sin ^{2} \omega(t) \tag{3.7}
\end{gather*}
$$

Now differentiating (3.7) along β, we get

$$
\begin{equation*}
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 b \sin \omega \cos \omega \frac{d \omega}{d t} \tag{3.8}
\end{equation*}
$$

On the other hand,

$$
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 g_{2}\left(\nabla_{\dot{\beta}}^{N} F_{*} X, F_{*} X\right)
$$

MEENA and YADAV/Turk J Math

By putting $\dot{\beta}=F_{*} X+V$ in above equation, we get

$$
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 g_{2}\left(\nabla_{F_{*} X}^{N} F_{*} X+\nabla_{V}^{N} F_{*} X, F_{*} X\right)
$$

which implies

$$
\begin{equation*}
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 g_{2}\left(\nabla_{X}^{F} F_{*} X \circ F+\nabla_{V}^{N} F_{*} X, F_{*} X\right) \tag{3.9}
\end{equation*}
$$

Using (2.2) and (3.2) in (3.9), we get

$$
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 g_{2}\left(\left(\nabla F_{*}\right)(X, X)+F_{*}\left(\nabla_{X}^{M} X\right)+\mathcal{S}_{V} F_{*} X-F_{*}\left(\nabla_{X}^{M} X\right), F_{*} X\right)
$$

Using (2.3) in above equation, we get

$$
\begin{equation*}
\frac{d}{d t} g_{2}\left(F_{*} X, F_{*} X\right)=2 g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} X\right) \tag{3.10}
\end{equation*}
$$

Now from (3.8) and (3.10), we get

$$
\begin{equation*}
g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} X\right)=b \sin \omega \cos \omega \frac{d \omega}{d t} \tag{3.11}
\end{equation*}
$$

Moreover, F is a Clairaut Riemannian map with $\tilde{s}=e^{g}$ if and only if $\frac{d}{d t}\left(e^{g \circ \beta} \sin \omega\right)=0$, that is, $e^{g \circ \beta} \sin \omega \frac{d(g \circ \beta)}{d t}+$ $e^{g \circ \beta} \cos \omega \frac{d \omega}{d t}=0$. By multiplying this with nonzero factor $b \sin \omega$ and using (3.7), we get

$$
\begin{equation*}
g_{2}\left(F_{*} X, F_{*} X\right) \frac{d(g \circ \beta)}{d t}=-b \sin \omega \cos \omega \frac{d \omega}{d t} \tag{3.12}
\end{equation*}
$$

Now from (3.11) and (3.12), we get

$$
g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} X\right)=-g_{2}\left(F_{*} X, F_{*} X\right) \frac{d(g \circ \beta)}{d t}
$$

which means

$$
\begin{equation*}
g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} X\right)=-g_{2}\left(F_{*} X, F_{*} X\right) g_{2}\left(\nabla^{N} g, \dot{\beta}\right) \tag{3.13}
\end{equation*}
$$

Indeed assuming (3.5) and considering any geodesic β on N with initial tangent vector which belongs in $\Gamma\left(\right.$ range $\left.F_{*}\right)$, then by using $V\left(t_{0}\right)=0$ in (3.13), we get g is constant on range F_{*} and since range F_{*} is connected, $\nabla^{N} g \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$. Then by (3.13), we get

$$
\begin{equation*}
g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} X\right)=-g_{2}\left(F_{*} X, F_{*} X\right) g_{2}\left(\nabla^{N} g, V\right) \tag{3.14}
\end{equation*}
$$

Thus $\mathcal{S}_{V} F_{*} X=-V(g) F_{*} X$, where $V(g)$ is a smooth function on N, which implies the proof of (i). Now, by using (2.5) in (3.14), we get

$$
\begin{equation*}
g_{2}\left(V,\left(\nabla F_{*}\right)(X, X)\right)=-g_{2}\left(F_{*} X, F_{*} X\right) g_{2}\left(\nabla^{N} g, V\right) \tag{3.15}
\end{equation*}
$$

MEENA and YADAV/Turk J Math

for $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$. Now using (2.2) in (3.15), we get

$$
g_{2}\left(V, \stackrel{N}{\nabla_{X}^{F}} F_{*} X\right)=-g_{2}\left(\nabla^{N} g, V\right) g_{2}\left(F_{*} X, F_{*} X\right)
$$

Thus by comparing, we get

$$
\begin{equation*}
\stackrel{N}{\nabla_{X}^{F}} F_{*} X=-\left(\nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} X\right) \tag{3.16}
\end{equation*}
$$

Taking trace of (3.16), we get

$$
\begin{equation*}
\sum_{j=r+1}^{m} \nabla_{X_{j}}^{N} F_{*} X_{j}=-\left(\nabla^{N} g\right)(m-r) \tag{3.17}
\end{equation*}
$$

where $\left\{X_{r+1}, X_{r+2}, \ldots, X_{m}\right\}$ and $\left\{F_{*} X_{r+1}, F_{*} X_{r+2}, \ldots, F_{*} X_{m}\right\}$ are orthonormal bases of $\left(\operatorname{ker} F_{*}\right)^{\perp}$ and range F_{*}, respectively.
Moreover, the mean curvature vector field of range F_{*} is defined by ([21], [24] page 199)

$$
\begin{equation*}
H_{2}=\frac{1}{m-r} \sum_{j=r+1}^{m} \nabla_{X_{j}}^{N} F_{*} X_{j} \tag{3.18}
\end{equation*}
$$

where $\left\{X_{j}\right\}_{r+1 \leq j \leq m}$ is an orthonormal basis of $\left(\operatorname{ker} F_{*}\right)^{\perp}$. Then from (3.17) and (3.18), we get

$$
\begin{equation*}
H_{2}=-\nabla^{N} g \tag{3.19}
\end{equation*}
$$

Also, by (3.15), we get

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, X)=-g_{2}\left(F_{*} X, F_{*} X\right)\left(\nabla^{N} g\right) \tag{3.20}
\end{equation*}
$$

Since F is Riemannian map, using (2.1) in (3.20), we get

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, X)=-g_{1}(X, X)\left(\nabla^{N} g\right) \tag{3.21}
\end{equation*}
$$

From (3.19) and (3.21), we get

$$
\left(\nabla F_{*}\right)(X, X)=g_{1}(X, X) H_{2}
$$

Thus by Lemma 2.2 F is umbilical map, which completes the proof.

Remark 3.4 In [25], Şahin considered geodesic curve on the total manifold of a Riemannian map F, then by using Clairaut relation fibers of F are totally umbilical. On the other hand, in Definition 3.1, we considered geodesic curve on the base manifold of F, then by using Clairaut's relation F becomes totally umbilical.

Theorem 3.5 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds such that $k e r F_{*}$ is minimal. Then F is harmonic if and only if g is constant function on N.

Proof Since $H=0$, then by Lemma 2.1 F is harmonic if and only if $H_{2}=0$ if and only if $\nabla^{N} g=0$, which completes the proof.

Theorem 3.6 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then $N=N_{\left(\text {range } F_{*}\right) \perp} \times{ }_{f} N_{\text {range } F_{*}}$ is a twisted product manifold.

MEENA and YADAV/Turk J Math

Proof By (3.20), (3.21) and Theorem 3.3, we have $\nabla_{X}^{N} F_{*} Y=g_{1}(X, Y) H_{2}$ for $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}$, which implies range F_{*} is totally umbilical. Then proof follows by [19].

Example 3.7 Let $M=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \neq 0, x_{2} \neq 0\right\}$ be a Riemannian manifold with Riemannian metric $g_{1}=e^{2 x_{2}} d x_{1}^{2}+d x_{2}^{2}$ on M. Let $N=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}\right\}$ be a Riemannian manifold with Riemannian metric $g_{2}=e^{2 x_{2}} d y_{1}^{2}+d y_{2}^{2}$ on N. Consider a map $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ defined by

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)
$$

Then, we get

$$
\operatorname{ker} F_{*}=\operatorname{span}\left\{U=e_{2}\right\} \text { and }\left(k e r F_{*}\right)^{\perp}=\operatorname{span}\left\{X=e_{1}\right\}
$$

where $\left\{e_{1}=e^{-x_{2}} \frac{\partial}{\partial x_{1}}, e_{2}=\frac{\partial}{\partial x_{2}}\right\}$ and $\left\{e_{1}^{\prime}=e^{-x_{2}} \frac{\partial}{\partial y_{1}}, e_{2}^{\prime}=\frac{\partial}{\partial y_{2}}\right\}$ are bases on $T_{p} M$ and $T_{F(p)} N$, respectively, for all $p \in M$. By easy computations, we see that $F_{*}(X)=e_{1}^{\prime}$ and $g_{1}(X, X)=g_{2}\left(F_{*} X, F_{*} X\right)$ for $X \in$ $\Gamma\left(k e r F_{*}\right)^{\perp}$. Thus F is Riemannian map with range $F_{*}=\operatorname{span}\left\{F_{*}(X)=e_{1}^{\prime}\right\}$ and $\left(\text { range } F_{*}\right)^{\perp}=\operatorname{span}\left\{e_{2}^{\prime}\right\}$. Now to show F is Clairaut Riemannian map we will verify Theorem 3.3, for this we will verify (3.14). Since V and $\left(\nabla F_{*}\right)(X, X) \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, e here we can write $V=a e_{2}^{\prime}$ and $\left(\nabla F_{*}\right)(X, X)=b e_{2}^{\prime}$ for some $a, b \in \mathbb{R}$. Then we get

$$
\begin{equation*}
g_{2}\left(V,\left(\nabla F_{*}\right)(X, X)\right)=g_{2}\left(a e_{2}^{\prime}, b e_{2}^{\prime}\right)=a b, \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}\left(F_{*} X, F_{*} X\right)=g_{2}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)=1 \tag{3.23}
\end{equation*}
$$

Since $\nabla^{N} g=\sum_{i, j=1}^{2} g_{2}^{i j} \frac{\partial g}{\partial y_{i}} \frac{\partial}{\partial y_{j}}$. Therefore for the function $g=-b y_{2}$

$$
\begin{equation*}
g_{2}\left(\nabla^{N} g, V\right)=-a b \tag{3.24}
\end{equation*}
$$

Thus by using (2.5), (3.22), (3.23) and (3.24) we see that (3.14) holds. Thus F is a Clairaut Riemannian map.

4. Clairaut Riemannian map from Riemannian manifold to Ricci soliton

In this section, we study Clairaut Riemannian map $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ from a Riemannian manifold to a Ricci soliton and give some characterizations.

Lemma 4.1 [32] Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Riemannian map between Riemannian manifolds. Then the Ricci tensor on $\left(N, g_{2}\right)$ given by

$$
\begin{align*}
\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)= & \operatorname{Ric}^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left\{g_{2}\left(\mathcal{S}_{\nabla_{e_{k}} \perp_{e_{k}}} F_{*} X, F_{*} Y\right)\right. \tag{4.1}\\
& \left.-g_{2}\left(\nabla_{e_{k}}^{N} \mathcal{S}_{e_{k}} F_{*} X, F_{*} Y\right)+g_{2}\left(\mathcal{S}_{e_{k}} F_{*} X, \mathcal{S}_{e_{k}} F_{*} Y\right)+g_{2}\left(\nabla_{e_{k}}^{N} F_{*} X, \mathcal{S}_{e_{k}} F_{*} Y\right)\right\} \\
\operatorname{Ric}(V, W)= & \operatorname{Ric}^{\left(\text {range } F_{*}\right)^{\perp}}(V, W)-\sum_{j=r+1}^{m}\left\{g_{2}\left(\mathcal{S}_{\nabla_{V}^{F}{ }_{V}} F_{*} X_{j}, F_{*} X_{j}\right)\right. \tag{4.2}\\
& \left.+g_{2}\left(\mathcal{S}_{V} F_{*} X_{j}, \mathcal{S}_{W} F_{*} X_{j}\right)-\nabla_{V}^{N}\left(g_{2}\left(\mathcal{S}_{W} F_{*} X_{j}, F_{*} X_{j}\right)\right)+2 g_{2}\left(\mathcal{S}_{W} F_{*} X_{j}, \nabla_{V}^{N} F_{*} X_{j}\right)\right\},
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Ric}\left(F_{*} X, V\right)=\sum_{j=r+1}^{m}\left\{g_{2}\left(\left(\tilde{\nabla}_{X} \mathcal{S}\right)_{V} F_{*} X_{j}, F_{*} X_{j}\right)-g_{2}\left(\left(\tilde{\nabla}_{X_{j}} \mathcal{S}\right)_{V} F_{*} X, F_{*} X_{j}\right)\right\}-\sum_{k=1}^{n_{1}} g_{2}\left(R^{F \perp}\left(F_{*} X, e_{k}\right) V, e_{k}\right) \tag{4.3}
\end{equation*}
$$

for $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}, V, W \in \Gamma\left(r a n g e F_{*}\right)^{\perp}$ and $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$, where $\left\{F_{*} X_{j}\right\}_{r+1 \leq j \leq m}$ and $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ are orthonormal bases of range F_{*} and $\left(\text { range } F_{*}\right)^{\perp}$, respectively.

Theorem 4.2 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then the Ricci tensor on $\left(N, g_{2}\right)$ given by

$$
\left.\begin{array}{c}
\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)= \\
\quad \operatorname{Ric}^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right) \\
\\
\operatorname{Ric}(V, W) g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(\nabla_{e_{k}}^{N} e_{k}(g)\right) g_{2}\left(F_{*} X, F_{*} Y\right), \\
 \tag{4.6}\\
-\left(m i c^{\left(r a n g e F_{*}\right)^{\perp}}(V, r) V(g) W(g)-(m-r) \nabla_{V}^{N} W(g),\right.
\end{array}\right\} \begin{aligned}
\operatorname{Ric}\left(F_{*} X, V\right)=\sum_{j=r+1}^{m} g_{2}\left(\left(\tilde{\nabla}_{X} \mathcal{S}\right)_{V} F_{*} X_{j}, F_{*} X_{j}\right)-\sum_{j=r+1}^{m} g_{2}\left(\left(\tilde{\nabla}_{X_{j}} \mathcal{S}\right)_{V} F_{*} X_{j}, F_{*} X_{j}\right)-\sum_{k=1}^{n_{1}} g_{2}\left(R^{F \perp}\left(F_{*} X, e_{k}\right) V, e_{k}\right),(
\end{aligned}
$$

for $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}, V, W \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ and $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$, where $\left\{F_{*} X_{j}\right\}_{r+1 \leq j \leq m}$ and $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ are orthonormal bases of range F_{*} and (range $\left.F_{*}\right)^{\perp}$, respectively.

Proof Using Theorem 3.3 and (3.14) in (4.1), we get

$$
\begin{aligned}
\operatorname{Ric}\left(F_{*} X, F_{*} Y\right) & =\operatorname{Ric}^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right)+\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right) \\
& -\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{N}\left(e_{k}(g) F_{*} X\right), F_{*} Y\right)+\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{N} F_{*} X, e_{k}(g) F_{*} Y\right)
\end{aligned}
$$

which implies (4.4). Also using Theorem 3.3 and (3.14) in (4.2), we get

$$
\begin{aligned}
\operatorname{Ric}(V, W) & =\operatorname{Ric}^{\left(\text {range } F_{*}\right)^{\perp}}(V, W)+\sum_{j=r+1}^{m} g_{2}\left(\nabla_{V}^{F^{\perp}} W, \nabla^{N} g\right) g_{2}\left(F_{*} X_{j}, F_{*} X_{j}\right)-\sum_{j=r+1}^{m} g_{2}\left(V(g) F_{*} X_{j}, W(g) F_{*} X_{j}\right) \\
& -\sum_{j=r+1}^{m} \nabla_{V}^{N}\left(g_{2}\left(W(g) F_{*} X_{j}, F_{*} X_{j}\right)\right)+2 \sum_{j=r+1}^{m} g_{2}\left(W(g) F_{*} X_{j}, \nabla_{V}^{N} F_{*} X_{j}\right),
\end{aligned}
$$

which implies (4.5). Also the proof of (4.3) and (4.6) is same.

Theorem 4.3 Let $\left(N, g_{2}, H_{2}, \lambda\right)$ be a Ricci soliton with the potential vector field $H_{2} \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ and $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then

$$
s^{\text {range } F_{*}}=-\lambda(m-r)+(m-r) \Delta g-(m-r)(m-r-2)\left\|\nabla^{N} g\right\|^{2},
$$

where $s^{\text {range } F_{*}}$ is the scalar curvature of range F_{*} and $(m-r)=\operatorname{dim}\left(\right.$ range $\left.F_{*}\right)$.

MEENA and YADAV/Turk J Math

Proof Since $\left(N, g_{2}, H_{2}, \lambda\right)$ admit Ricci soliton with the potential vector field $H_{2} \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ then, we have

$$
\frac{1}{2}\left(L_{H_{2}} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

for $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$, which implies

$$
\frac{1}{2}\left\{g_{2}\left(\nabla_{F_{*} X}^{N} H_{2}, F_{*} Y\right)+g_{2}\left(\nabla_{F_{*} Y}^{N} H_{2}, F_{*} X\right)\right\}+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

Using (2.4) in above equation, we get

$$
\frac{1}{2}\left\{g_{2}\left(-\mathcal{S}_{H_{2}} F_{*} X, F_{*} Y\right)+g_{2}\left(-\mathcal{S}_{H_{2}} F_{*} Y, F_{*} X\right)\right\}+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

Since $\mathcal{S}_{H_{2}}$ is self-adjoint, above equation can be written as

$$
\begin{equation*}
-g_{2}\left(\mathcal{S}_{H_{2}} F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0 \tag{4.7}
\end{equation*}
$$

Using (3.14), (3.19) and (4.4) in (4.7), we get

$$
\begin{aligned}
& -g_{2}\left(\nabla^{N} g, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right) \\
& +\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}} \nabla_{e_{k}}^{N} e_{k}(g) g_{2}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
\end{aligned}
$$

where $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ is an orthonormal basis of $\left(\text { range } F_{*}\right)^{\perp}$. This implies

$$
\begin{align*}
& -2\left\|\nabla^{N} g\right\|^{2} g_{2}\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right) \\
& -\sum_{k=1}^{n_{1}} g_{2}\left(e_{k}, \nabla_{e_{k}}^{N} \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0 \tag{4.8}
\end{align*}
$$

Taking trace of (4.8) for range F_{*}, we get

$$
s^{\text {range } F_{*}}-2(m-r)\left\|\nabla^{N} g\right\|^{2}-(m-r) \sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{N} \nabla^{N} g, e_{k}\right)+\lambda(m-r)=0
$$

Using definition of Hessian form of g (i.e. $H^{g}\left(X_{1}, Y_{1}\right)=g_{2}\left(\nabla_{X_{1}}^{N} \nabla^{N} g, Y_{1}\right)$ for all $\left.X_{1}, Y_{1} \in \Gamma(T N)\right)$ from [8] in above equation, we get

$$
\begin{equation*}
s^{\text {range } F_{*}}+(m-r)\left\{-2\left\|\nabla^{N} g\right\|^{2}-\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right)+\lambda\right\}=0 \tag{4.9}
\end{equation*}
$$

Since we know that

$$
\begin{equation*}
\Delta g=\sum_{j=r+1}^{m} H^{g}\left(F_{*} X_{j}, F_{*} X_{j}\right)+\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right) \tag{4.10}
\end{equation*}
$$

where $\left\{F_{*} X_{j}\right\}_{r+1 \leq j \leq m}$ and $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ are orthonormal bases of range F_{*} and (range $\left.F_{*}\right)^{\perp}$, respectively. Then by using definition of Hessian form of g in (4.10), we get

$$
\begin{equation*}
\Delta g=\sum_{j=r+1}^{m} g_{2}\left(\nabla_{F_{*} X_{j}}^{N} \nabla^{N} g, F_{*} X_{j}\right)+\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right) \tag{4.11}
\end{equation*}
$$

Using (2.4) in (4.11), we get

$$
\Delta g=-\sum_{j=r+1}^{m} g_{2}\left(\mathcal{S}_{\nabla^{N} g} F_{*} X_{j}, F_{*} X_{j}\right)+\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right)
$$

Using Theorem 3.3 in above equation, we get

$$
\begin{equation*}
\Delta g-(m-r)\left\|\nabla^{N} g\right\|^{2}=\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right) \tag{4.12}
\end{equation*}
$$

Thus (4.9) and (4.12) implies the proof.

Theorem 4.4 Let $\left(N, g_{2}, H_{2}, \lambda\right)$ be a Ricci soliton with the potential vector field $H_{2} \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ and $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then

$$
s^{\left(r a n g e F_{*}\right)^{\perp}}=-\lambda n_{1}+(m-r+1) \Delta g-(m-r)^{2}\left\|\nabla^{N} g\right\|^{2}
$$

where $s^{\left(\text {range } F_{*}\right)^{\perp}}$ denotes the scalar curvature of $\left(\text { range } F_{*}\right)^{\perp}$ and $(m-r)=\operatorname{dim}\left(\right.$ range $\left.F_{*}\right), n_{1}=\operatorname{dim}\left(\left(r a n g e F_{*}\right)^{\perp}\right)$.
Proof Since $\left(N, g_{2}, H_{2}, \lambda\right)$ admit Ricci soliton with the potential vector field $H_{2} \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ then, we have

$$
\frac{1}{2}\left(L_{H_{2}} g_{2}\right)(V, W)+\operatorname{Ric}(V, W)+\lambda g_{2}(V, W)=0
$$

for $V, W \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, which implies

$$
\frac{1}{2}\left\{g_{2}\left(\nabla_{V}^{N} H_{2}, W\right)+g_{2}\left(\nabla_{W}^{N} H_{2}, V\right)\right\}+\operatorname{Ric}(V, W)+\lambda g_{2}(V, W)=0
$$

Putting $H_{2}=-\nabla^{N} g$ in above equation, we get

$$
\begin{equation*}
-\frac{1}{2}\left\{g_{2}\left(\nabla_{V}^{N} \nabla^{N} g, W\right)+g_{2}\left(\nabla_{W}^{N} \nabla^{N} g, V\right)\right\}+\operatorname{Ric}(V, W)+\lambda g_{2}(V, W)=0 \tag{4.13}
\end{equation*}
$$

Using definition of Hessian form of g and (4.5) in (4.13), we get

$$
\begin{align*}
& -H^{g}(V, W)+\text { Ric }^{\left(r a n g e F_{*}\right)^{\perp}}(V, W)+(m-r) g_{2}\left(\nabla^{N} g, \nabla_{V}^{F \perp} W\right) \tag{4.14}\\
& -(m-r) V(g) W(g)-(m-r) \nabla_{V}^{N} W(g)+\lambda g_{2}(V, W)=0
\end{align*}
$$

Taking trace of (4.14) for $\left(\text { range } F_{*}\right)^{\perp}$, we get

$$
-\sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right)+s^{\left(r a n g e F_{*}\right)^{\perp}}+\sum_{k=1}^{n_{1}}(m-r) g_{2}\left(\nabla^{N} g, \nabla_{e_{k}}^{F \perp} e_{k}\right)-(m-r) \sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2}-(m-r) \sum_{k=1}^{n_{1}} \nabla_{e_{k}}^{N} e_{k}(g)+\lambda n_{1}=0
$$

where $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ is an orthonormal basis of $\left(\text { range } F_{*}\right)^{\perp}$, which implies

$$
s^{\left(r a n g e F_{*}\right)^{\perp}}+\lambda n_{1}-(m-r) \sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2}-(m-r+1) \sum_{k=1}^{n_{1}} H^{g}\left(e_{k}, e_{k}\right)=0
$$

Using (4.12) and $\left(e_{k}(g)\right)^{2}=g_{2}\left(\nabla^{N} g, e_{k}\right)^{2}=g_{2}\left(\nabla^{N} g, \nabla^{N} g\right)$ in above equation, we get the proof.

MEENA and YADAV/Turk J Math

Remark 4.5 Since rangeF F_{*} and $\left(\text { range } F_{*}\right)^{\perp}$ are subbundles of $T N$, they define distributions on N. Then for $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$, we have

$$
\begin{aligned}
{\left[F_{*} X, F_{*} Y\right] } & =\nabla_{F_{*} X}^{N} F_{*} Y-\nabla_{F_{*} Y}^{N} F_{*} X \\
& =\nabla_{X}^{N} F_{*} Y \circ F-\nabla_{Y}^{F} F_{*} X \circ F .
\end{aligned}
$$

Using (2.2) in above equation, we get

$$
\left[F_{*} X, F_{*} Y\right]=F_{*}\left(\nabla_{X} Y\right)-F_{*}\left(\nabla_{Y} X\right)=F_{*}\left(\nabla_{X} Y-\nabla_{Y} X\right) \in \Gamma\left(\text { range } F_{*}\right)
$$

Thus range F_{*} is an integrable distribution. Then for any point $F(p) \in N$ there exists maximal integral manifold or a leaf of range F_{*} containing $F(p)$.

Theorem 4.6 Let $\left(N, g_{2}, F_{*} Z, \lambda\right)$ be a Ricci soliton with the potential vector field $F_{*} Z \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then a leaf of range F_{*} is an almost Ricci soliton.

Proof Since $\left(N, g_{2}, F_{*} Z, \lambda\right)$ admit Ricci soliton with the potential vector field $F_{*} Z \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ then, we have

$$
\begin{equation*}
\frac{1}{2}\left(L_{F_{*} Z} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0 \tag{4.15}
\end{equation*}
$$

for $F_{*} X, F_{*} Y, F_{*} Z \in \Gamma\left(\right.$ range $\left.F_{*}\right)$. Using (4.4) in (4.15), we get

$$
\begin{aligned}
& \frac{1}{2}\left(L_{F_{*} Z} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right) \\
& +\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}} \nabla_{e_{k}}^{N} e_{k}(g) g_{2}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
\end{aligned}
$$

where $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ is an orthonormal basis of $\left(\text { range } F_{*}\right)^{\perp}$, which implies

$$
\frac{1}{2}\left(L_{F_{*} Z} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)+\tilde{\lambda} g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

where $\tilde{\lambda}=-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2}+\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right)-\sum_{k=1}^{n_{1}} e_{k}\left(e_{k}(g)\right)+\lambda$ is a smooth function on N. Thus a leaf of range F_{*} is an almost Ricci soliton, which completes the proof.

Theorem 4.7 Let $\left(N, g_{2}, V, \lambda\right)$ be a Ricci soliton with the potential vector field $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ and $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then a leaf of range F_{*} is an Einstein.

Proof Since $\left(N, g_{2}, F_{*} Z, \lambda\right)$ admit Ricci soliton with the potential vector field $F_{*} Z \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ then, we have

$$
\frac{1}{2}\left(L_{V} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

MEENA and YADAV/Turk J Math

for $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$, which implies

$$
\frac{1}{2}\left\{g_{2}\left(\nabla_{F_{*} X}^{N} V, F_{*} Y\right)+g_{2}\left(\nabla_{F_{*} Y}^{N} V, F_{*} X\right)\right\}+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

Using (2.4) in above equation, we get

$$
\frac{1}{2}\left\{g_{2}\left(-\mathcal{S}_{V} F_{*} X, F_{*} Y\right)+g_{2}\left(-\mathcal{S}_{V} F_{*} Y, F_{*} X\right)\right\}+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

Since \mathcal{S}_{V} is self-adjoint, above equation can be written as

$$
\begin{equation*}
-g_{2}\left(\mathcal{S}_{V} F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0 \tag{4.16}
\end{equation*}
$$

Since F is Clairaut Riemannian map, using $\mathcal{S}_{V} F_{*} X=-V(g) F_{*} X$ and (4.4) in (4.16), we get

$$
\begin{aligned}
& V(g) g_{2}\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right) \\
& +\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}} \nabla_{e_{k}}^{N} e_{k}(g) g_{2}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
\end{aligned}
$$

where $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ is an orthonormal basis of $\left(\text { range } F_{*}\right)^{\perp}$, which implies

$$
\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)=\lambda^{\prime} g_{2}\left(F_{*} X, F_{*} Y\right)
$$

where $\lambda^{\prime}=\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2}-\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right)+\sum_{k=1}^{n_{1}} e_{k}\left(e_{k}(g)\right)-\lambda-V(g)$ is a smooth function on N. Thus a leaf of range F_{*} is an Einstein, which completes the proof.

Theorem 4.8 Let β be a geodesic curve on N and $\left(N, g_{2}, \dot{\beta}, \lambda\right)$ be a Ricci soliton with the potential vector field $\dot{\beta} \in \Gamma(T N)$. Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ from a Riemannian manifold M to an Einstein manifold N. Then the following statements are true:
(i) $\dot{\beta}$ is a conformal vector field on range F_{*}.
(ii) $\dot{\beta}$ is Killing vector field on $\left(\text { rangeF } F_{*}\right)^{\perp}$ if and only if $V(g) W(g)=-H^{g}(V, W)$ for all $V, W \in$ $\Gamma\left(\text { range }_{*}\right)^{\perp}$.

Proof Since $\left(N, g_{2}, \dot{\beta}, \lambda\right)$ is a Ricci soliton then, we have

$$
\begin{equation*}
\frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\operatorname{Ric}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0 \tag{4.17}
\end{equation*}
$$

for $F_{*} X, F_{*} Y \in \Gamma\left(\right.$ range $\left.F_{*}\right)$. Using (4.4) in (4.17), we get

$$
\begin{align*}
& \frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\text { Ric }^{\text {range } F_{*}}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2} g_{2}\left(F_{*} X, F_{*} Y\right) \tag{4.18}\\
& +\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right) g_{2}\left(F_{*} X, F_{*} Y\right)-\sum_{k=1}^{n_{1}} \nabla_{e_{k}}^{N} e_{k}(g) g_{2}\left(F_{*} X, F_{*} Y\right)+\lambda g_{2}\left(F_{*} X, F_{*} Y\right)=0
\end{align*}
$$

MEENA and YADAV/Turk J Math

where $\left\{e_{k}\right\}_{1 \leq k \leq n_{1}}$ is an orthonormal basis of $\left(\text { range } F_{*}\right)^{\perp}$. Since N is Einstein, putting Ricrange $F_{*}\left(F_{*} X, F_{*} Y\right)=$ $-\lambda g_{2}\left(F_{*} X, F_{*} Y\right)$ in (4.18), we get

$$
\frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)\left(F_{*} X, F_{*} Y\right)+\mu g_{2}\left(F_{*} X, F_{*} Y\right)=0
$$

where $\mu=-\sum_{k=1}^{n_{1}}\left(e_{k}(g)\right)^{2}+\sum_{k=1}^{n_{1}} g_{2}\left(\nabla_{e_{k}}^{F \perp} e_{k}, \nabla^{N} g\right)-\sum_{k=1}^{n_{1}} e_{k}\left(e_{k}(g)\right)$ is a smooth function on N. Thus $\dot{\beta}$ is a conformal vector field on range F_{*}. On the other hand, since $\left(N, g_{2}, \dot{\beta}, \lambda\right)$ is a Ricci soliton then, we have

$$
\begin{equation*}
\frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)(V, W)+\operatorname{Ric}(V, W)+\lambda g_{2}(V, W)=0 \tag{4.19}
\end{equation*}
$$

for any $V, W \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$. Using (4.5) in (4.19), we get

$$
\begin{align*}
& \frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)(V, W)+\text { Ric }^{\left(r a n g e F_{*}\right)^{\perp}}(V, W)+(m-r) g_{2}\left(\nabla^{N} g, \nabla_{V}^{F \perp} W\right) \tag{4.20}\\
& -(m-r) V(g) W(g)-(m-r) \nabla_{V}^{N} W(g)+\lambda g_{2}(V, W)=0
\end{align*}
$$

Since N is Einstein, putting $\operatorname{Ric}^{\left(\text {range } F_{*}\right)^{\perp}}(V, W)=-\lambda g_{2}(V, W)$ in (4.20), we get

$$
\frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)(V, W)+\left\{g_{2}\left(\nabla^{N} g, \nabla_{V}^{F} \perp W\right)-V(g) W(g)-\nabla_{V}^{N} W(g)\right\}(m-r)=0
$$

Then by using $\nabla_{V}^{N} W(g)=\nabla_{V}^{N}\left(g_{2}\left(W, \nabla^{N} g\right)\right)=g_{2}\left(\nabla_{V}^{N} W, \nabla^{N} g\right)+H^{g}(V, W)=g_{2}\left(\nabla_{V}^{F}{ }_{V} W, \nabla^{N} g\right)+H^{g}(V, W)$ in above equation, we get $\frac{1}{2}\left(L_{\dot{\beta}} g_{2}\right)(V, W)=0$ if and only if $V(g) W(g)=-H^{g}(V, W)$. This completes the proof.

Lemma 4.9 Let $\left(N, g_{2}, X_{1}, \lambda\right)$ be a Ricci soliton with the potential vector field $X_{1} \in \Gamma(T N)$ and F : $\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then

$$
\begin{equation*}
s=-\lambda n \tag{4.21}
\end{equation*}
$$

where s denotes the scalar curvature of N.
Proof The proof is similar to remark 9 of [30]; therefore, we are omitting it.

Theorem 4.10 Let $\left(N, g_{2},-H_{2}, \lambda\right)$ be a Ricci soliton with the potential vector field $-H_{2} \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ and $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a Clairaut Riemannian map with $\tilde{s}=e^{g}$ between Riemannian manifolds. Then following statements are true:
(i) N admits a gradient Ricci soliton.
(ii) The mean curvature vector field of range F_{*} is constant.

Proof By similar proof as theorem 10 of [30], we get

$$
\Delta g=0
$$

Hence $\nabla^{N}\left(\nabla^{N} g\right)=0$, i.e. $\nabla^{N} H_{2}=0$, which means H_{2} is constant. This completes the proof.

MEENA and YADAV/Turk J Math

Example 4.11 The map $F: M \rightarrow N$ given in Example 3.7 is Clairaut Riemannian map. Now, we will show that N admits a Ricci soliton, i.e.

$$
\begin{equation*}
\frac{1}{2}\left(L_{Z_{1}} g_{2}\right)\left(X_{1}, Y_{1}\right)+\operatorname{Ric}\left(X_{1}, Y_{1}\right)+\lambda g_{2}\left(X_{1}, Y_{1}\right)=0 \tag{4.22}
\end{equation*}
$$

for any $X_{1}, Y_{1}, Z_{1} \in \Gamma(T N)$. By similar computations as example 6.1 of [32], we get

$$
\begin{gather*}
\frac{1}{2}\left(L_{Z_{1}} g_{2}\right)\left(X_{1}, Y_{1}\right)=0, \tag{4.23}\\
g_{2}\left(X_{1}, Y_{1}\right)=\left(a_{1} a_{3}+a_{2} a_{4}\right), \tag{4.24}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{Ric}\left(X_{1}, Y_{1}\right)=a_{1} a_{3} \operatorname{Ric}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)+\left(a_{1} a_{4}+a_{2} a_{3}\right) \operatorname{Ric}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)+a_{2} a_{4} \operatorname{Ric}\left(e_{2}^{\prime}, e_{2}^{\prime}\right) \tag{4.25}
\end{equation*}
$$

By (4.4), we get

$$
\operatorname{Ric}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)=\operatorname{Ric}^{\text {range } F_{*}}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)-\left(g_{2}\left(\nabla^{N} g, e_{2}^{\prime}\right)\right)^{2}+g_{2}\left(\nabla_{e_{2}^{\prime}}^{F \perp} e_{2}^{\prime}, \nabla^{N} g\right)-\nabla_{e_{2}^{\prime}}^{N}\left(g_{2}\left(e_{2}^{\prime}, \nabla^{N} g\right)\right)
$$

Since dimension of range F_{*} is one, Ric $^{\text {range } F_{*}}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)=0$ and we have $\nabla^{N} g=-b e_{2}^{\prime}$ for some $b \in \mathbb{R}$. So

$$
\begin{equation*}
\operatorname{Ric}\left(e_{1}^{\prime}, e_{1}^{\prime}\right)=-b^{2} \tag{4.26}
\end{equation*}
$$

By (4.5), we get

$$
\operatorname{Ric}\left(e_{2}^{\prime}, e_{2}^{\prime}\right)=\operatorname{Ric}^{\left(\text {range } F_{*}\right)^{\perp}}\left(e_{2}^{\prime}, e_{2}^{\prime}\right)+g_{2}\left(\nabla^{N} g, \nabla_{e_{2}^{\prime}}^{F \perp} e_{2}^{\prime}\right)-e_{2}^{\prime}(g) e_{2}^{\prime}(g)-\nabla_{e_{2}^{\prime}}^{N}\left(e_{2}^{\prime}(g)\right) .
$$

Since dimension of $\left(\text { range }_{*}\right)^{\perp}$ is one, Ric (range $\left._{*}\right)^{\perp}\left(e_{2}^{\prime}, e_{2}^{\prime}\right)=0$ and putting $\nabla^{N} g=-b e_{2}^{\prime}$ for some $b \in \mathbb{R}$, we get

$$
\begin{equation*}
\operatorname{Ric}\left(e_{2}^{\prime}, e_{2}^{\prime}\right)=-b^{2} \tag{4.27}
\end{equation*}
$$

And by similar computation as example 6.1 of [32], we get

$$
\begin{equation*}
\operatorname{Ric}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=0 \tag{4.28}
\end{equation*}
$$

Using (4.26), (4.27) and (4.28) in (4.25), we get

$$
\begin{equation*}
\operatorname{Ric}\left(X_{1}, Y_{1}\right)=-\left(a_{1} a_{3}+a_{2} a_{4}\right) b^{2} \tag{4.29}
\end{equation*}
$$

Now, using (4.23), (4.24) and (4.29) in (4.22), we obtain that metric g_{2} admits Ricci soliton for

$$
\lambda=b^{2}
$$

Since $b \in \mathbb{R}$, for some choices of b Ricci soliton $\left(N, g_{2}\right)$ will be expanding or steady according to $\lambda>0$ or $\lambda=0$.

MEENA and YADAV/Turk J Math

5. Clairaut antiinvariant Riemannian map from Riemannian manifold to Kähler manifold

In this section, we introduce Clairaut antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold and investigate the geometry with a nontrivial example.

Let $\left(N, g_{2}\right)$ be an almost Hermitian manifold [33], then N admits a tensor J of type $(1,1)$ on N such that $J^{2}=-I$ and

$$
\begin{equation*}
g_{2}\left(J X_{1}, J Y_{1}\right)=g_{2}\left(X_{1}, Y_{1}\right) \tag{5.1}
\end{equation*}
$$

for all $X_{1}, Y_{1} \in \Gamma(T N)$. An almost Hermitian manifold N is called Kähler manifold if

$$
\left(\nabla_{X_{1}}^{N} J\right) Y_{1}=0
$$

for all $X_{1}, Y_{1} \in \Gamma(T N)$, where ∇^{N} is the Levi-Civita connection on N.

Definition 5.1 [20] Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a proper Riemannian map from a Riemannian manifold M to an almost Hermitian manifold N with almost complex structure J. We say that F is an antiinvariant Riemannian map at $p \in M$ if $J\left(\right.$ range $\left.F_{* p}\right) \subset\left(r a n g e F_{* p}\right)^{\perp}$. If F is an antiinvariant Riemannian map for every $p \in M$ then F is called an antiinvariant Riemannian map.

In this case we denote the orthogonal subbundle to $J\left(\right.$ range $\left.F_{*}\right)$ in $\left(\text { range } F_{*}\right)^{\perp}$ by μ, i.e. $\left(\text { range } F_{*}\right)^{\perp}=$ $J\left(\right.$ range $\left.F_{*}\right) \oplus \mu$. For any $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, we have

$$
\begin{equation*}
J V=B V+C V \tag{5.2}
\end{equation*}
$$

where $B V \in \Gamma\left(\right.$ range $\left._{*}\right)$ and $C V \in \mu$. Note that if $\mu=0$ then F is called Lagrangian Riemannian map [27].
Lemma 5.2 Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}, J\right)$ be an antiinvariant Riemannian map from a Riemannian manifold M to a Kähler manifold N and $\alpha: I \rightarrow M$ be a geodesic curve on M. Then the curve $\beta=F \circ \alpha$ is geodesic on N if and only if

$$
\begin{gather*}
-\mathcal{S}_{J F_{*} X} F_{*} X-\mathcal{S}_{C V} F_{*} X+\nabla_{V}^{N} B V+F_{*}\left(\nabla_{X}^{M} F_{*} B V\right)=0 \tag{5.3}\\
\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+\nabla_{X}^{F \perp} J F_{*} X+\nabla_{V}^{F \perp} J F_{*} X+\nabla_{X}^{F \perp} C V+\nabla_{V}^{F \perp} C V=0 \tag{5.4}
\end{gather*}
$$

where $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right), V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$ and ${ }^{*} F_{*}$ is the adjoint map of F_{*}, and ∇^{N} is the Levi-Civita connection on N, and $\nabla^{F \perp}$ is a linear connection on (range $\left.F_{*}\right)^{\perp}$.

Proof Let $\alpha: I \rightarrow M$ be a geodesic on M and let $\beta=F \circ \alpha$ be a geodesic on N with $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$. Since N is Kähler manifold, $\nabla_{\dot{\beta}}^{N} \dot{\beta}=-J \nabla_{\dot{\beta}}^{N} J \dot{\beta}$. Thus

$$
\nabla_{\dot{\beta}}^{N} \dot{\beta}=-J \nabla_{\dot{\beta}}^{N} J \dot{\beta}=-J \nabla_{F_{*} X+V}^{N} J\left(F_{*} X+V\right)
$$

which implies

$$
\begin{equation*}
\nabla_{\dot{\beta}}^{N} \dot{\beta}=-J\left(\nabla_{F_{*} X}^{N} J F_{*} X+\nabla_{F_{*} X}^{N} J V+\nabla_{V}^{N} J F_{*} X+\nabla_{V}^{N} J V\right) . \tag{5.5}
\end{equation*}
$$

Using (2.4) and (5.2) in (5.5), we get

$$
\begin{align*}
\nabla_{\dot{\beta}}^{N} \dot{\beta} & =-J\left(-\mathcal{S}_{J F_{*} X} F_{*} X-\mathcal{S}_{C V} F_{*} X+\nabla_{V}^{N} B V+\nabla_{F_{*} X}^{N} B V\right. \tag{5.6}\\
& \left.+\nabla_{X}^{F \perp} J F_{*} X+\nabla_{V}^{F \perp} J F_{*} X+\nabla_{X}^{F \perp} C V+\nabla_{V}^{F \perp} C V\right)
\end{align*}
$$

Since ∇^{N} is Levi-Civita connection on N and $g_{2}\left(\nabla_{V}^{N} B V, U\right)=0$ for any $U \in \Gamma\left(\text { range }_{*}\right)^{\perp}, \nabla_{V}^{N} B V \in$ $\Gamma\left(\right.$ range $\left.F_{*}\right)$ and using (2.2), we get $\nabla_{F_{*} X}^{N} B V=\nabla_{X}^{F} B V \circ F=\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+F_{*}\left(\nabla_{X}^{M *} F_{*} B V\right)$. Then by (5.6), we get

$$
\begin{aligned}
\nabla_{\dot{\beta}}^{N} \dot{\beta} & =-J\left(-\mathcal{S}_{J F_{*} X} F_{*} X-\mathcal{S}_{C V} F_{*} X+\nabla_{V}^{N} B V+\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)\right. \\
& \left.+F_{*}\left(\nabla_{X}^{M *} F_{*} B V\right)+\nabla_{X}^{F \perp} J F_{*} X+\nabla_{V}^{F \perp} J F_{*} X+\nabla_{X}^{F \perp} C V+\nabla_{V}^{F \perp} C V\right)
\end{aligned}
$$

Now β is geodesic on $N \Longleftrightarrow \nabla_{\dot{\beta}}^{N} \dot{\beta}=0 \Longleftrightarrow-\mathcal{S}_{J F_{*} X} F_{*} X-\mathcal{S}_{C V} F_{*} X+\nabla_{V}^{N} B V+\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+$ $F_{*}\left(\nabla_{X}^{M *} F_{*} B V\right)+\nabla_{X}^{F} \perp J F_{*} X+\nabla_{V}^{F} \perp F_{*} X+\nabla_{X}^{F \perp} C V+\nabla_{V}^{F} \perp C V=0$, which completes the proof.

Definition 5.3 An antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold is called Clairaut antiinvariant Riemannian map if it satisfies the condition of Clairaut Riemannian map.

Theorem 5.4 Let $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}, J\right)$ be an antiinvariant Riemannian map from a Riemannian manifold M to a Kähler manifold N and $\alpha, \beta=F \circ \alpha$ are geodesic curves on M and N, respectively. Then F is Clairaut antiinvariant Riemannian map with $\tilde{s}=e^{g}$ if and only if $g_{2}\left(\mathcal{S}_{J F_{*} X} F_{*} X+\mathcal{S}_{C V} F_{*} X, B V\right)-$ $g_{2}\left(\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+\nabla_{X}^{F} \perp F_{*} X+\nabla_{V}^{F} \perp F_{*} X, C V\right)-g_{2}\left(F_{*} X, F_{*} X\right) \frac{d(g \circ \beta)}{d t}=0$, where g is a smooth function on N and $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right), V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$.

Proof Let $\alpha: I \rightarrow M$ be a geodesic on M and let $\beta=F \circ \alpha$ be a geodesic on N with $F_{*} X \in \Gamma\left(\right.$ range $\left.F_{*}\right)$ and $V \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ are components of $\dot{\beta}(t)$ and $\omega(t)$ denote the angle in $[0, \pi]$ between $\dot{\beta}$ and V. Assuming $b=\|\dot{\beta}(t)\|^{2}$, then we get

$$
\begin{gather*}
g_{2 \beta(t)}(V, V)=b \cos ^{2} \omega(t), \tag{5.7}\\
g_{2 \beta(t)}\left(F_{*} X, F_{*} X\right)=b \sin ^{2} \omega(t) \tag{5.8}
\end{gather*}
$$

Now differentiating (5.7) along β, we get

$$
\begin{equation*}
\frac{d}{d t} g_{2}(V, V)=-2 b \sin \omega(t) \cos \omega(t) \frac{d \omega}{d t} \tag{5.9}
\end{equation*}
$$

On the other hand by (5.1), we get

$$
\frac{d}{d t} g_{2}(V, V)=\frac{d}{d t} g_{2}(J V, J V)
$$

Using (5.2) in above equation, we get

$$
\frac{d}{d t} g_{2}(V, V)=\frac{d}{d t}\left(g_{2}(B V, B V)+g_{2}(C V, C V)\right)
$$

which implies

$$
\begin{equation*}
\frac{d}{d t} g_{2}(V, V)=2 g_{2}\left(\nabla_{\dot{\beta}}^{N} B V, B V\right)+2 g_{2}\left(\nabla_{\dot{\beta}}^{N} C V, C V\right) \tag{5.10}
\end{equation*}
$$

Putting $\dot{\beta}=F_{*} X+V$ in (5.10), we get

$$
\frac{d}{d t} g_{2}(V, V)=2 g_{2}\left(\nabla_{F_{*} X}^{N} B V, B V\right)+2 g_{2}\left(\nabla_{F_{*} X}^{N} C V, C V\right)+2 g_{2}\left(\nabla_{V}^{N} B V, B V\right)+2 g_{2}\left(\nabla_{V}^{N} C V, C V\right)
$$

Since $\left(\text { range } F_{*}\right)^{\perp}$ is totally geodesic, above equation can be written as

$$
\begin{equation*}
\frac{d}{d t} g_{2}(V, V)=2 g_{2}\left(\nabla_{X}^{N} B V \circ F, B V\right)+2 g_{2}\left(\nabla_{F_{*} X}^{N} C V, C V\right)+2 g_{2}\left(\nabla_{V}^{N} B V, B V\right)+2 g_{2}\left(\nabla_{V}^{F \perp} C V, C V\right) \tag{5.11}
\end{equation*}
$$

Using (2.2), (2.3) and (2.4) in (5.11), we get

$$
\begin{equation*}
\frac{d}{d t} g_{2}(V, V)=2 g_{2}\left(F_{*}\left(\nabla_{X}^{M *} F_{*} B V\right)+\nabla_{V}^{N} B V, B V\right)+2 g_{2}\left(\nabla_{X}^{F \perp} C V+\nabla_{V}^{F \perp} C V, C V\right) \tag{5.12}
\end{equation*}
$$

Using (5.3) and (5.4) in (5.12), we get

$$
\begin{equation*}
\frac{d}{d t} g_{2}(V, V)=2 g_{2}\left(\mathcal{S}_{J F_{*} X} F_{*} X+\mathcal{S}_{C V} F_{*} X, B V\right)-2 g_{2}\left(\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+\nabla_{X}^{F \perp} J F_{*} X+\nabla_{V}^{F \perp} J F_{*} X, C V\right) . \tag{5.13}
\end{equation*}
$$

Now from (5.9) and (5.13), we get

$$
\begin{equation*}
g_{2}\left(\mathcal{S}_{J F_{*} X} F_{*} X+\mathcal{S}_{C V} F_{*} X, B V\right)-g_{2}\left(\left(\nabla F_{*}\right)\left(X,{ }^{*} F_{*} B V\right)+\nabla_{X}^{F \perp} J F_{*} X+\nabla_{V}^{F \perp} J F_{*} X, C V\right)=-b \sin \omega \cos \omega \frac{d \omega}{d t} \tag{5.14}
\end{equation*}
$$

Moreover, F is a Clairaut Riemannian map with $\tilde{s}=e^{g}$ if and only if $\frac{d}{d t}\left(e^{g \circ \beta} \sin \omega\right)=0$, that is, $e^{g \circ \beta} \sin \omega \frac{d(g \circ \beta)}{d t}+$ $e^{g \circ \beta} \cos \omega \frac{d \omega}{d t}=0$. By multiplying this with nonzero factor $b \sin \omega$ and using (5.8), we get

$$
\begin{equation*}
g_{2}\left(F_{*} X, F_{*} X\right) \frac{d(g \circ \beta)}{d t}=-b \sin \omega \cos \omega \frac{d \omega}{d t} \tag{5.15}
\end{equation*}
$$

Thus (5.14) and (5.15) complete the proof.

Theorem 5.5 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}, J\right)$ be a Clairaut antiinvariant Riemannian map with $\tilde{s}=e^{g}$ from a Riemannian manifold M to a Kähler manifold N. Then at least one of the following statement is true:
(i) $\operatorname{dim}\left(r a n g e F_{*}\right)=1$,
(ii) g is constant on $J\left(\right.$ range $\left.F_{*}\right)$, where g is a smooth function on N.

Proof Since F is Clairaut Riemannian map with $\tilde{s}=e^{g}$ then using (2.2) in (3.21), we get

$$
\begin{equation*}
\stackrel{N}{\nabla_{X}^{F}} F_{*} Y-F_{*}\left(\nabla_{X}^{M} Y\right)=-g_{1}(X, Y) \nabla^{N} g \tag{5.16}
\end{equation*}
$$

for $F_{*} Y \in \Gamma\left(r a n g e F_{*}\right)$ and $X, Y \in \Gamma\left(k e r F_{*}\right)^{\perp}$. Taking inner product of (5.16) with $J F_{*} Z \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, we get

$$
\begin{equation*}
g_{2}\left(\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X}^{M} Y\right), J F_{*} Z\right)=-g_{1}(X, Y) g_{2}\left(\nabla^{N} g, J F_{*} Z\right) \tag{5.17}
\end{equation*}
$$

Since ∇^{N} is pullback connection of the Levi-Civita connection ∇^{N}. Therefore ∇^{N} is also Levi-Civita connection. Then using metric compatibility condition in (5.17), we get

$$
\stackrel{N}{-g_{2}\left(\nabla_{X}^{F} J F_{*} Z, F_{*} Y\right)}=-g_{1}(X, Y) g_{2}\left(\nabla^{N} g, J F_{*} Z\right)
$$

which implies

$$
\begin{equation*}
\stackrel{N}{g_{2}\left(J \nabla_{X}^{F} F_{*} Z, F_{*} Y\right)}=g_{1}(X, Y) g_{2}\left(\nabla^{N} g, J F_{*} Z\right) \tag{5.18}
\end{equation*}
$$

Using (5.1) in (5.18), we get

$$
\stackrel{N}{N}-g_{2}\left(\nabla_{X}^{F} F_{*} Z, J F_{*} Y\right)=g_{1}(X, Y) g_{2}\left(\nabla^{N} g, J F_{*} Z\right)
$$

Using (5.16) in above equation, we get

$$
\begin{equation*}
g_{1}(X, Z) g_{2}\left(\nabla^{N} g, J F_{*} Y\right)=g_{1}(X, Y) g_{2}\left(\nabla^{N} g, J F_{*} Z\right) \tag{5.19}
\end{equation*}
$$

Now putting $X=Y$ in (5.19), we get

$$
\begin{equation*}
g_{1}(X, Z) g_{2}\left(\nabla^{N} g, J F_{*} X\right)=g_{1}(X, X) g_{2}\left(\nabla^{N} g, J F_{*} Z\right) \tag{5.20}
\end{equation*}
$$

Now interchanging X and Z in (5.20), we get

$$
\begin{equation*}
g_{1}(X, Z) g_{2}\left(\nabla^{N} g, J F_{*} Z\right)=g_{1}(Z, Z) g_{2}\left(\nabla^{N} g, J F_{*} X\right) \tag{5.21}
\end{equation*}
$$

From (5.20) and (5.21), we get

$$
g_{2}\left(\nabla^{N} g, J F_{*} X\right)\left(1-\frac{g_{1}(X, X) g_{1}(Z, Z)}{g_{1}(X, Z) g_{1}(X, Z)}\right)=0
$$

which implies either $\operatorname{dim}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=1$ or $g_{2}\left(\nabla^{N} g, J F_{*} X\right)=0$, which means $\left(J F_{*} X\right)(g)=0$, which completes the proof.

Theorem 5.6 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}, J\right)$ be a Clairaut Lagrangian Riemannian map with $\tilde{s}=e^{g}$ from a Riemannian manifold M to a Kähler manifold N such that $\operatorname{dim}\left(\operatorname{range} F_{*}\right)>1$. Then following statements are true:
(i) range F_{*} is minimal.
(ii) range F_{*} is totally geodesic.

Proof Since F is Clairaut Riemannian map then from (3.21) and Theorem 3.3, we have

$$
\left(\nabla F_{*}\right)(X, X)=g_{1}(X, X) H_{2}
$$

for $X \in \Gamma\left(k e r F_{*}\right)^{\perp}$ and H_{2} is the mean curvature vector field of range F_{*}. Now multiply above equation by $U \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$, we get

$$
\begin{equation*}
g_{2}\left(\left(\nabla F_{*}\right)(X, X), U\right)=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.22}
\end{equation*}
$$

Using (2.2) in (5.22), we get

$$
\begin{equation*}
g_{2}\left(\nabla_{X}^{F} F_{*} X, U\right)=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.23}
\end{equation*}
$$

Since N is Kähler manifold, using (5.1) in (5.23), we get

$$
\begin{equation*}
\stackrel{N}{g_{2}\left(\nabla_{X}^{F} J F_{*} X, J U\right)}=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.24}
\end{equation*}
$$

MEENA and YADAV/Turk J Math

Since ∇^{N} is Levi-Civita connection on N, using metric compatibility condition in (5.24), we get

$$
\begin{equation*}
-g_{2}\left(J F_{*} X, \stackrel{N}{\nabla_{X}^{F}} J U\right)=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.25}
\end{equation*}
$$

Using (5.23) in (5.25), we get

$$
\begin{equation*}
-g_{2}\left(J F_{*} X, g_{1}\left(X,{ }^{*} F_{*} J U\right) H_{2}\right)=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.26}
\end{equation*}
$$

where ${ }^{*} F_{*}$ is the adjoint map of F_{*}. Now using $H_{2}=-\nabla^{N} g$ in (5.26), we get

$$
g_{1}\left(X,{ }^{*} F_{*} J U\right) g_{2}\left(J F_{*} X, \nabla^{N} g\right)=g_{1}(X, X) g_{2}\left(H_{2}, U\right)
$$

which implies

$$
\begin{equation*}
g_{1}\left(X,{ }^{*} F_{*} J U\right) J F_{*} X(g)=g_{1}(X, X) g_{2}\left(H_{2}, U\right) \tag{5.27}
\end{equation*}
$$

Since $\operatorname{dim}\left(\right.$ range $\left.F_{*}\right)>1$ then by Theorem 5.5, g is constant on $J\left(\right.$ range $\left.F_{*}\right)$, which means $J F_{*} X(g)=0$. Then (5.27) implies $g_{2}\left(H_{2}, U\right)=0$. Thus

$$
\begin{equation*}
H_{2}=0 \tag{5.28}
\end{equation*}
$$

which implies (i).
Since $H_{2}=\operatorname{trace}\left(\stackrel{N}{\nabla}{ }_{X}^{F} F_{*} Y\right)$. Then by (5.28), we get $\stackrel{N}{\nabla}_{X}^{F} F_{*} Y=0$, which implies (ii).

Theorem 5.7 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}, J\right)$ be a Clairaut Lagrangian Riemannian map with $\tilde{s}=e^{g}$ from a Riemannian manifold M to a Kähler manifold N such that $\operatorname{dim}\left(\right.$ range $\left.F_{*}\right)>1$. Then F is harmonic if and only if mean curvature vector field of $\operatorname{ker} F_{*}$ is constant.

Proof Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}\right)$ be a smooth map between Riemannian manifolds. Then F is harmonic if and only if the tension field $\tau(F)$ of map F vanishes. Then proof follows by Lemma 2.1 and Theorem 5.6.

Theorem 5.8 Let $F:\left(M^{m}, g_{1}\right) \rightarrow\left(N^{n}, g_{2}, J\right)$ be a Clairaut Lagrangian Riemannian map with $\tilde{s}=e^{g}$ from a Riemannian manifold M to a Kähler manifold N such that $\operatorname{dim}\left(\right.$ range $\left.F_{*}\right)>1$. Then $N=N_{\text {range } F_{*}} \times$ $\left.N_{(\text {rangeF }}^{*}\right)^{\perp}$ is a usual product manifold.

Proof The proof follows by [19] and Theorem 5.6.

Example 5.9 Let $M=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \neq 0, x_{2} \neq 0\right\}$ be a Riemannian manifold with Riemannian metric $g_{1}=e^{2 x_{2}} d x_{1}^{2}+e^{2 x_{2}} d x_{2}^{2}$ on M. Let $N=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}\right\}$ be a Riemannian manifold with Riemannian metric $g_{2}=e^{2 x_{2}} d y_{1}^{2}+d y_{2}^{2}$ on N and the complex structure J on N defined as $J\left(y_{1}, y_{2}\right)=\left(-y_{2}, y_{1}\right)$. Consider a map $F:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}, J\right)$ defined by

$$
F\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}-x_{2}}{\sqrt{2}}, 0\right) .
$$

Then

$$
\operatorname{ker} F_{*}=\operatorname{span}\left\{U=\frac{e_{1}+e_{2}}{\sqrt{2}}\right\} \text { and }\left(\operatorname{ker} F_{*}\right)^{\perp}=\operatorname{span}\left\{X=\frac{e_{1}-e_{2}}{\sqrt{2}}\right\}
$$

where $\left\{e_{1}=e^{-x_{2}} \frac{\partial}{\partial x_{1}}, e_{2}=e^{-x_{2}} \frac{\partial}{\partial x_{2}}\right\}$ and $\left\{e_{1}^{\prime}=e^{-x_{2}} \frac{\partial}{\partial y_{1}}, e_{2}^{\prime}=\frac{\partial}{\partial y_{2}}\right\}$ are bases on $T_{p} M$ and $T_{F(p)} N$ respectively, for $p \in M$. By easy computations, we see that $F_{*}(X)=e_{1}^{\prime}$ and $g_{1}(X, X)=g_{2}\left(F_{*} X, F_{*} X\right)$ for $X \in \Gamma\left(\text { ker } F_{*}\right)^{\perp}$. Thus F is Riemannian map with range $F_{*}=\operatorname{span}\left\{F_{*}(X)=e_{1}^{\prime}\right\}$ and $\left(\text { range } F_{*}\right)^{\perp}=\operatorname{span}\left\{e_{2}^{\prime}\right\}$. Moreover it is easy to see that $J F_{*} X=J e_{1}^{\prime}=-e_{2}^{\prime}$. Thus F is an antiinvariant Riemannian map.

Now to show F is Clairaut Riemannian map we will find a smooth function g on N satisfying $\left(\nabla F_{*}\right)(X, X)=-g_{1}(X, X) \nabla^{N} g$ for $X \in \Gamma\left(k e r F_{*}\right)^{\perp}$. Since $\left(\nabla F_{*}\right)(X, X) \in \Gamma\left(\text { range } F_{*}\right)^{\perp}$ for any $X \in$ $\Gamma\left(k e r F_{*}\right)^{\perp}$. So here we can write $\left(\nabla F_{*}\right)(X, X)=a e_{2}^{\prime}$, for some $a \in \mathbb{R}$. Since $\nabla^{N} g=e^{-2 x_{2}} \frac{\partial g}{\partial y_{1}} \frac{\partial}{\partial y_{1}}+\frac{\partial g}{\partial y_{2}} \frac{\partial}{\partial y_{2}}$. Hence $\nabla^{N} g=-a \frac{\partial}{\partial y_{2}}=-a e_{2}^{\prime}$ for the function $g=-a y_{2}$. Then it is easy to verify that $\left(\nabla F_{*}\right)(X, X)=$ $-g_{1}(X, X) \nabla^{N} g$, where $g_{1}(X, X)=1$, for vector field $X \in \Gamma\left(k e r F_{*}\right)^{\perp}$ and we can easily see that $\nabla_{e_{2}^{\prime}}^{N} e_{2}^{\prime}=0$. Thus by Theorem 3.3, F is Clairaut antiinvariant Riemannian map.

Acknowledgment

We would like to thank all the anonymous referees for his/her valuable comments and suggestions towards the improvement of quality of the paper. The first author, Kiran Meena gratefully acknowledges the financial support provided by the Human Resource Development Group - Council of Scientific and Industrial Research (HRDG-CSIR), New Delhi, India [File No.: 09/013(0887)/2019-EMR-I].

References

[1] Allison D. Lorentzian Clairaut submersions. Geometriae Dedicata 1996; 63: 309-319. https://doi.org/10.1007/BF00181419
[2] Akyol MA, Şahin B. Conformal anti-invariant Riemannian maps to Kähler manifolds. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 2018; 80 (4): 187-198.
[3] Akyol MA, Şahin B. Conformal semi-invariant Riemannian maps to Kähler manifolds. Revista de la Union Matematica Argentina 2019; 60 (2): 459-468. https://doi.org/10.33044/revuma.v60n2a12
[4] Besse AL. Einstein Manifolds. Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[5] Bishop RL. Clairaut submersions. Differential geometry (in Honor of K-Yano), Kinokuniya, Tokyo, 1972; 21-31.
[6] Carmo MP. Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.
[7] Deshmukh S, Al-Solamy FR. Conformal vector fields on a Riemannian manifold. Balkan Journal of Geometry and its Applications 2014; 19 (2): 86-93.
[8] Falcitelli M, Ianus S, Pastore AM. Riemannian Submersions and Related Topics. River Edge, NJ: World Scientific, 2004.
[9] Fischer AE. Riemannian maps between Riemannian manifolds. Contemporary Mathematics 1992; 132: 331-366. https://doi.org/10.1090/conm/132/1188447
[10] Gupta G, Sachdeva R, Kumar R, Rani R. On conformal Riemannian maps whose total manifolds admit a Ricci soliton. Journal of Geometry and Physics 2022; 178: 1-19. https://doi.org/10.1016/j.geomphys.2022.104539
[11] Hamilton RS. The Ricci flow on surfaces, mathematics and general relativity. Contemporary Mathematics 1966; 71: 237-262. https://doi.org/10.1090/conm/071/954419
[12] Lee J, Park J, Şahin B, Song D. Einstein conditions for the base space of anti-invariant Riemannian submersions and Clairaut submersions. Taiwanese Journal of Mathematics 2015; 19 (4): 1145-1160. https://doi.org/10.11650/tjm.19.2015.5283

MEENA and YADAV/Turk J Math

[13] Meena K, Yadav A. Conformal submersions whose total manifolds admit a Ricci soliton. Mediterranean Journal of Mathematics, To appear.
[14] Meena K, Zawadzki T. Clairaut conformal submersions. preprint, 2022, arXiv:2202.00393 [math.DG].
[15] Meriç SE, Kiliç E. Riemannian submersions whose total manifolds admit a Ricci soliton. International Journal of Geometric Methods in Modern Physics 2019; 16: 1950196-1-1950196-12. https://doi.org/10.1142/S0219887819501962
[16] Nore T. Second fundamental form of a map. Annali di Matematica pura ed applicata 1986; 146: 281-310. https://doi.org/10.1007/BF/01762368
[17] Perelman G. The Entropy formula for the Ricci flow and its geometric applications. preprint, 2002, arxiv: math/0211159 [math.DG].
[18] Pigola S, Rigoli M, Rimoldi M, Setti AG. Ricci almost solitons. Annali della Scuola Normale Superiore di Pisa Classe di Scienze 2011; 10 (4): 757-799.
[19] Ponge R, Reckziegel H. Twisted products in pseudo-Riemannian geometry. Geometriae Dedicata 1993; 48 (1): 15-25. https://doi.org/10.1007/BF01265674
[20] Şahin B. Invariant and anti-invariant Riemannian maps to Kähler manifolds. International Journal of Geometric Methods in Modern Physics 2010; 7 (3): 337-355. https://doi.org/10.1142/S0219887810004324
[21] Şahin B. Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Applicandae Mathematicae 2010; 109: 829-847. https://doi.org/10.1007/s10440-008-9348-6
[22] Şahin B. Semi-invariant Riemannian maps to Kähler manifolds. International Journal of Geometric Methods in Modern Physics 2011; 8 (7): 1439-1454. https://doi.org/10.1142/S0219887811005725
[23] Şahin B. Holomorphic Riemannian maps. Journal of Mathematical Physics, Analysis, Geometry 2014; 10 (4): 422430.
[24] Şahin B. Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Academic Press: Elsevier, 2017.
[25] Şahin B. Circles along a Riemannian map and Clairaut Riemannian maps. Bulletin of the Korean Mathematical Society 2017; 54 (1): 253-264. https://doi.org/10.4134/BKMS.b160082
[26] Sुahin B. A survey on differential geometry of Riemannian maps between Riemannian manifolds. Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica 2017; 63: 151-167.
[27] Taştan HM. On Lagrangian submersions. Hacettepe Journal of Mathematics and Statistics 2014; 43 (6): 993-1000. https://doi.org/10.15672/HJMS. 2014437529
[28] Watson B. Almost Hermitian submersions. Journal of Differential Geometry 1976; 11: 147-165.
[29] Yadav A, Meena K. Riemannian maps whose total manifolds admit a Ricci soliton. Journal of Geometry and Physics 2021; 16: 1-13. https://doi.org/10.1016/j.geomphys.2021.104317
[30] Yadav A, Meena K. Clairaut Riemannian maps whose total manifolds admit a Ricci soliton. International Journal of Geometric Methods in Modern Physics 2022; 19 (2): 2250024-1-2250024-17. doi: 10.1142/S0219887822500244
[31] Yadav A, Meena K. Clairaut invariant Riemannian maps with Kähler structure. Turkish Journal of Mathematics 2022; 46 (3): 1020-1035. doi: 10.55730/1300-0098.3139
[32] Yadav A, Meena K. Riemannian maps whose base manifolds admit a Ricci soliton. Publicationes Mathematicae Debrecen, To appear. https://doi.org/10.5486/PMD.2023.9413
[33] Yano K, Kon M. Structure on Manifolds. Singapore: World Scientific, 1984.

[^0]: *Correspondence: kirankapishmeena@gmail.com
 2010 AMS Mathematics Subject Classification: 53B20, 53B35, 53C25.

