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Abstract: This article is inspired by the reciprocal Catalan sums associated with problem 11765, proposed by David
Beckwith and Sag Harbor. For this reason, partial derivative equations, the first-order linear differentiation equation
and integral representations for series and generating functions for reciprocal Catalan-type sums containing the Catalan-
type numbers are constructed. Some special values of these series and generating functions, which are given solutions
of problem 11765, are found. Partial derivative equations of the generating function for the Catalan-type numbers
are given. By using these equations, recurrence relations and derivative formulas involving these numbers are found.
Finally, applying the p -adic Volkenborn integral to the Catalan-type polynomials, some combinatorial sums and identities
involving the Bernoulli numbers, the Stirling numbers and the Catalan-type numbers are derived.
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1. Introduction
It has been seen in recent years that not only generating functions, but also the numbers and polynomials
produced by them are used in many different disciplines, especially mathematics [1–31]. In this paper, we
investigate some families of generating functions including the Bernoulli numbers and polynomials of higher
order, the Stirling numbers, and the Catalan numbers. Using generating functions with their functional
equations, gamma and beta functions, we give some identities and relations including the Bernoulli numbers
of higher order, the Stirling numbers, and the Catalan numbers. We give integral representations for these
numbers. We also give some inequalities including binomial coefficients, the Bernoulli numbers of negative
higher order, the Stirling numbers, and the Catalan numbers.

In this paper, the following definitions, relations, and notations can be used.
The Stirling numbers of the first kind are given by

u(a) =

a∑
s=0

S1(a, s)u
s,

where

u(a) =

{
u (u− 1) . . . (u− a+ 1) ,

1,
a ∈ N
a = 0
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[29, p. 76, Eq. (1)].
The Catalan numbers Cn are defined by means of the following ordinary generating function:

C(t) =
1−

√
1− 4t

2t
=

∞∑
n=0

Cnt
n, (1.1)

where 0 < |t| ≤ 1
4 [1, 22, 26, 29, 30].

By using (1.1), for n ∈ N0 = N ∪ {0} , we have

Cn =
1

n+ 1

(
2n

n

)
(1.2)

and
(n+ 2)Cn+1 = 2 (2n+ 1)Cn, (1.3)

where C0 = 1 (see, for details, [22, 26, 29, 30]).
Using the above formula for the Catalan numbers, the first eight values of these numbers are given by

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429,

and so on.

Remark 1.1 The Catalan numbers appear in various mathematical areas and and combinatorial problems. The
numbers Cn are also related to the following problems: the binary bracketings of n letters, the solution to the
Ballot problem, the number of trivalent planted planar trees, the number of states possible in an n-flexagon,
the number of different diagonals possible in a frieze pattern with n+ 1 rows, the number of Dyck paths with n

strokes, the number of ways of forming an n-fold exponential, the number of rooted plane bushes with n graph
edges, and the number of extended binary trees with n internal nodes [3, 4, 8, 9, 15–17, 21–23, 30]. Recently,
Kim et al. gave relations between the Catalan numbers and the degenerate Whitney numbers associated with the
Dowling lattice, which is the geometric lattice of flats associated with a Dowling geometry [8, 9, 15–17, 23].

In [21, eqs. (2.1) and (2.4)], Kucukoglu et al. constructed the following generating functions for new
classes of Catalan-type numbers and polynomials, respectively:

Fv (t, λ) =
1− λ+

√
(λ− 1)

2
+ 8λ2t

2λ2t
=

∞∑
n=0

Vn (λ) t
n, (1.4)

where

0 <

∣∣∣∣∣ λ2t

(λ− 1)
2

∣∣∣∣∣ ≤ 1

8

and

Fv (t, x;λ) = Fv (t, λ) (1 + t)
x
2 =

∞∑
n=0

Vn (x;λ) t
n. (1.5)
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By using (1.4), we have

Vn (λ) = (−1)
n
Cn

2n+1λ2n

(λ− 1)
2n+1 (1.6)

(see [21, eq. (2.2)] and also [20]).
Putting n = 0 in (1.6), we have

V0 (λ) =
2

λ− 1
.

A relation between the numbers Cn and Vn (λ) is given as follows:

Cn =
(−1)

n
(λ− 1)

2n+1
Vn (λ)

2n+1λ2n

[21, eq. (2.2)].
In order to give generating function for the reciprocal of the new classes of Catalan-type number, we also

need the following novel formula
Vn+1 (λ)

Vn (λ)
= −8n+ 4

n+ 2

(
λ

λ− 1

)2

(1.7)

[21, Eqs. (2.1) and (2.4)].

2. Generating function for reciprocal of the Catalan-type numbers

In this section, using not only the partial derivative operator ∂
∂z , and the first-order linear differentiation

equation, but also the Euler gamma function and the beta function, we construct generating functions for the
reciprocal of the Catalan-type numbers Vn (λ) .

We think that there are other methods, which are used to prove other formulas for the generating functions
of the reciprocal of the Catalan-type numbers. Using similar methods associated with Abel [5, problem 11765]
and Amdeberhan et al. [1], some novel formulas and relations are given.

We give special values of the first-order linear differentiation equation arising from the generating function
for reciprocal of the Catalan-type numbers Vn (λ) .

We define a generating function for the reciprocal of the Catalan-type numbers as follows:

G (z, λ) =

∞∑
n=0

zn

Vn (λ)
. (2.1)

In order to give a set of converges for the above series, we use the ratio test. Thus, we have

lim
n→∞

∣∣∣∣ zn+1

Vn+1 (λ)

∣∣∣∣ ∣∣∣∣Vn (λ)

zn

∣∣∣∣ .
Combining the above equation with (1.7), after some elementary calculations, for λ ̸= 1 , we get

|z| < 8

∣∣∣∣ λ

λ− 1

∣∣∣∣2 .
832
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By the following theorem, we give an explicit formula for the function G (z, λ) . Firstly, we introduce the
following well-known the Gauss’s hypergeometric series:

2F1 (x, y; t; z) =

∞∑
n=0

x(n)y(n)

t(n)
zn

n!
,

where t /∈ {0,−1,−2,−3, . . .} and x(n) = x(x+ 1) . . . (x+ n− 1) . When |z| = 1 , the hypergeometric series in
the above equation satisfies the following conditions:

1) Absolutely convergent, if Re(t− x− y) > 0 ,
2) Conditionally convergent, if −1 < Re(t− x− y) ≤ 0 and z ̸= 1 ,
3) Divergent, if Re(t− x− y) ≤ −1 .
It is clear that for |z| < 1 ,

2F1 (x, 1;x; z) = 2F1 (1, y; y; z) =
1

1− z

[29, p. 64].
For t /∈ {0,−1,−2,−3, . . .} , arbitrary constants β and η , the function

u = β2F1 (x, y; t; z) + z1−tη2F1 (x− t+ 1, y − t+ 1; 2− t; z) .

is a solution of the following second-order linear ordinary differential equation, which is also called the Gauss
hypergeometric equation:

{ϑ(ϑ+ t− 1)− z(ϑ+ x)(ϑ+ y)}u = 0,

where x , y , and t are real or complex parameters and ϑ denotes following the well-known Euler operator:

ϑ := z
d

dz

[29, p. 63].

Theorem 2.1 Let λ ̸= 1, 0 . Then we have

G(z, λ) = −
32
√
2 (λ− 1)

3
(

zλ2

8(λ−1)2

) 3
2λ

√
zλ2 (λ− 3)

2F1

(
3− λ

2λ
,
3− 3λ

2λ
;
3 + λ

2λ
;−z

8

(
λ

λ− 1

)2
)
. (2.2)

Proof By using (1.7), we get
1

Vn (λ)
= − 4λ2 (2n+ 1)

(λ− 1)
2
(n+ 2)

1

Vn+1 (λ)
.

Combining the above equation with (2.1), we obtain

G (z, λ) =

∞∑
n=0

zn

Vn (λ)
= − 4λ2

(λ− 1)
2

∞∑
n=0

(
2− 3

(n+ 2)

)
zn

Vn+1 (λ)
.
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After some elementary calculations, we have

G (z, λ) = − 4λ2

(λ− 1)
2

(
2

z
G (z, λ)− 2

zV0 (λ)
− 3

z

∞∑
n=1

zn

(n+ 1)Vn (λ)

)
.

Substituting

V0 (λ) =
2

λ− 1

into the above equation, we get(
z2

3

(
λ− 1

2λ

)2

+
2

3
z

)
G (z, λ)− (λ− 1) z

3
=

∞∑
n=1

zn+1

(n+ 1)Vn (λ)
. (2.3)

Applying partial derivative operator ∂
∂z to the above equation, we obtain(

2z

3

(
λ− 1

2λ

)2

+
2

3

)
G (z, λ) +

(
z2

3

(
λ− 1

2λ

)2

+
2

3
z

)
∂

∂z
{G (z, λ)}+ (λ− 1)

6
= G (z, λ) .

Therefore,

2

(
z

(
λ− 1

λ

)2

− 2

)
G (z, λ) +

(
z2
(
λ− 1

λ

)2

+ 8z

)
∂

∂z
{G (z, λ)} = 2 (1− λ) . (2.4)

After some elementary calculations in Equation (2.4), we obtain the following standard form of the first-order
linear differentiation equation:

∂

∂z
{G (z, λ)}+

2
(
z
(
λ−1
λ

)2 − 2
)

z2
(
λ−1
λ

)2
+ 8z

G (z, λ) =
2 (1− λ)

z2
(
λ−1
λ

)2
+ 8z

. (2.5)

In order to solve Equation (2.5), we need the following integrating factor:

u (z, λ) = e

∫ 2

(
z(λ−1

λ )
2
−2

)
z2(λ−1

λ )
2
+8z

dz

=

(
z2
(
λ− 1

λ

)2

+ 8z

) (λ−1
λ z + 8λ

λ−1

) 3
2 (

λ−1
λ )

(
λ−1
λ z

) 3
2 (

λ−1
λ )

.

Hence, multiplying both sides of the standard form of Equation (2.5) by u (z, λ) yields the following separable
differential equation:

∂

∂z


(
z2
(
λ− 1

λ

)2

+ 8z

)(
λ−1
λ z + 8λ

λ−1
λ−1
λ z

) 3
2 (

λ−1
λ )

G(z, λ)

 =
2 (1− λ)(

λ−1
λ z

) 3
2 (

λ−1
λ )

(
λ− 1

λ
z +

8λ

λ− 1

) 3
2 (

λ−1
λ )

.

The general solution to the above equation is given by

G(z, λ)

(
z2
(
λ− 1

λ

)2

+ 8z

)(
λ−1
λ z + 8λ

λ−1
λ−1
λ z

) 3
2 (

λ−1
λ )

= 2 (1− λ)

∫ (
1 +

8

z

(
λ

λ− 1

)2
) 3

2 (
λ−1
λ )

dz. (2.6)
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Integrate the right-hand side of the above equation (by parts) with respect to z , we arrive at the desired result.
2

Remark 2.2 Here we note that integrating both sides of (2.1), we get

∫
f (z, λ) dz =

∞∑
n=0

zn+1

(n+ 1)Vn (λ)
.

By applying the “Second Fundamental Theorem of Calculus (Part 2)” to the above equation and using

V0 (λ) =
2

λ− 1
,

we also arrive at Equation (2.3).

Remark 2.3 Note that for different values of λ , the above first-order linear differentiation may be used in many
important real-world problems and mathematical models involving fluid flow and other problems. This type of
equation can also be used in real-world problems associated with decay and growth involving radioactive decay,
compound interest, population growth, etc. Putting λ = 1 in (2.5), we get the following separable differential
equation:

d

dz
{G (z, 1)} − 1

2z
G (z, 1) = 0.

Solution of this equation is given by
G (z, 1) = c

√
z,

where c is a constant. Thus, Equation (2.5) will be potentially used not only to get combinatorial identities but
also to contribute to new mathematical models.

We simplify Equation (2.2) as follows:

Corollary 2.4 Let λ ̸= 1, 0 . Then we have

G(z, λ) = −z2λ3

(
8 + λ (−16 + (8 + z)λ)

zλ2

) 5
2−

3
2λ

.
2F1

(
1, 2, 3+λ

2λ ,− z
8

(
λ

λ−1

)2)
4 (λ− 3) (λ− 1)

2 .

By using (2.4), we get

2

(
z

(
λ− 1

λ

)2

− 2

) ∞∑
n=0

zn

Vn (λ)
+

(
z

(
λ− 1

λ

)2

+ 8

) ∞∑
n=1

nzn

Vn (λ)
= 2 (1− λ) .

After some elementary calculations in the above equation, we have

2 (1− λ) = 2

(
λ− 1

λ

)2 ∞∑
n=0

zn+1

Vn (λ)
− 4

∞∑
n=0

zn

Vn (λ)
+

(
λ− 1

λ

)2 ∞∑
n=1

nzn+1

Vn (λ)
+ 8

∞∑
n=1

nzn

Vn (λ)
.
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Therefore,

0 =

∞∑
n=1

((
λ− 1

λ

)2
n+ 1

Vn−1 (λ)
+

4(2n− 1)

Vn (λ)

)
zn.

The above equation gives another proof of Equation (1.7).

Theorem 2.5 Let λ ̸= 1, 0 . Then we have

∞∑
n=0

zn

Vn (λ)
=

λ− 1

2
−

z(λ− 1)3
(
z(λ− 1)2 + 20λ2

)
2(z(λ− 1)2 + 8λ2)2

(2.7)

+

48λ4z(λ− 1)2 arctan

( √
z(λ−1)√

−z(λ−1)2−8λ2

)
√
z (−z(λ− 1)2 − 8λ2)

5/2
.

Proof Substituting (1.6) into
∑∞

n=0
zn

Vn(λ)
, using direct calculation, we have

∞∑
n=0

zn

Vn (λ)
=

∞∑
n=0

(n+ 1) (λ− 1)
2n+1

(−z)
n(

2n
n

)
2n+1λ2n

=
λ− 1

2
+

λ− 1

2

∞∑
n=1

(n+ 1) (n!)
2

(2n)!

(
−z

2

(
λ− 1

λ

)2
)n

.

Combining the above equation with the following well-known formula Beta and Euler gamma functions:

1∫
0

un−1(1− u)ndu = B(n, n+ 1) =
Γ(n)Γ(n+ 1)

Γ(2n+ 1)

=
(n− 1)! (n)!

(2n)!
,

we obtain
∞∑

n=0

zn

Vn (λ)
=

λ− 1

2
+

λ− 1

2

∞∑
n=1

(n2 + n)

(
−z

2

(
λ− 1

λ

)2
)n 1∫

0

un−1(1− u)ndu.

It is easy to see that a series on the right-hand side is uniformly convergent. So, it is possible to interchange of
summation and integration. Thus, we have

∞∑
n=0

zn

Vn (λ)
=

λ− 1

2
+

λ− 1

2

1∫
0

1

u

∞∑
n=1

(n2 + n)

(
−zu(1− u)

2

(
λ− 1

λ

)2
)n

du.

Using the following series
∞∑

n=1

nwn =
w

(1− w)2
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and
∞∑

n=1

n2wn =
w(1 + w)

(1− w)3
,

where |w| < 1 , we get

∞∑
n=0

zn

Vn (λ)
=

λ− 1

2

1−
1∫

0

z
(
λ−1
λ

)2
(1− u)(

1 + z
2

(
λ−1
λ

)2
u(1− u)

)3 du
 .

Making some elementary calculations of the above integral, we get

1∫
0

z
(
λ−1
λ

)2
(1− u)(

1 + z
2

(
λ−1
λ

)2
u(1− u)

)3 du

=
z(λ− 1)2

λ2

λ2
(
z(λ− 1)2 + 20λ2

)
(z(λ− 1)2 + 8λ2)2

−
96λ6 arctan

( √
z(λ−1)√

−z(λ−1)2−8λ2

)
√
z(λ− 1) (−z(λ− 1)2 − 8λ2)

5/2

 .

Therefore,

∞∑
n=0

zn

Vn (λ)
− λ− 1

2
= −

z(λ− 1)3
(
z(λ− 1)2 + 20λ2

)
2(z(λ− 1)2 + 8λ2)2

+

48λ4z(λ− 1)2 arctan

( √
z(λ−1)√

−z(λ−1)2−8λ2

)
√
z (−z(λ− 1)2 − 8λ2)

5/2
.

After some elementary calculations, we arrive at the desired result. 2

We now give some numerical examples.

Example 2.6 Setting z = −1 and λ = 2 in (2.7), we have

∞∑
n=0

(−1)
n

Vn (2)
=

∞∑
n=0

n+ 1

23n+1
(
2n
n

) =
520

961
+

768 arctan
(

1√
31

)
961

√
31

.

Example 2.7 Substituting z = −2
(

λ
λ−1

)2
into (2.7), we get

∞∑
n=0

(−2)
n

Vn (λ)

(
λ

λ− 1

)2n

= (λ− 1)

(
1 +

8

3
√
12

arctan

(
1√
3

))
.

Therefore,
∞∑

n=0

(−2)
n

Vn (λ)

(
λ

λ− 1

)2n

= (λ− 1)

(
1 +

2π

9
√
3

)
.
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Combining the above equation with (1.6), after some elementary calculations, we arrive at the reciprocal Catalan
sum involving

∞∑
n=0

1

Cn
= 2 +

4

9
√
3
π,

and also using the Wolfram Mathematica 12.0, we have the following hypergeometric series representation for∑∞
n=0

1
Cn

:
∞∑

n=0

1

Cn
=

∞∑
n=0

1(n)2(n)(
1
2

)(n)
(
1
4

)(n)
n!

≃ 2, 806.

Example 2.8 Substituting z = −
(

2λ
λ−1

)2
into (2.7), we obtain

∞∑
n=0

(−1)
n

Vn (λ)
4n
(

λ

λ− 1

)2n

=
λ− 1

2
(5 + 6 arctan (1)) .

Combining the above equation with (1.6), after some elementary calculations, we arrive at the reciprocal Catalan
sum involving

∞∑
n=0

2n

Cn
= 5 +

3π

2
. (2.8)

By using the Wolfram Mathematica 12.0, we also have the following series representations for
∑∞

n=0
2n

Cn
:

∞∑
n=0

2n

Cn
= 5 + 6

∞∑
n=0

(−1)n

1 + 2n

= 5 +
3

2

∞∑
n=0

(
−1

4

)n(
1

1 + 2n
+

2

1 + 4n
+

1

3 + 4n

)
≃ 9, 7124.

Remark 2.9 Equation (2.8) gives solution of problem 11765 (a), which was proposed by David Beckwith, Sag
Harbor [5]. The first solution of this problem was given by Abel; for details, see [5]. Problem 11765 was also
solved by Amdeberhan et al. [1].

Example 2.10 Substituting z = −6
(

λ
λ−1

)2
into (2.7), we get

∞∑
n=0

(−6)
n

Vn (λ)

(
λ

λ− 1

)2n

=
λ− 1

2

(
22 + 24

√
3 arctan

(√
3
))

.

Combining the above equation with (1.6), after some elementary calculations, we arrive at the reciprocal Catalan
sum involving

∞∑
n=0

3n

Cn
= 22 + 8

√
3π. (2.9)
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By using the Wolfram Mathematica 12.0, we have the following hypergeometric series representation for∑∞
n=0

3n

Cn
:

∞∑
n=0

3n

Cn
=

∞∑
n=0

1(n)2(n)(
1
2

)(n)
(
3
4

)(n)
n!

≃ 65, 53.

Remark 2.11 Equation (2.9) gives solution of problem 11765 (b), which was proposed by David Beckwith, Sag
Harbor; for details, see [5]. The first solution of this problem was given by Abel [5], see also [1].

3. Identity arising from partial derivative equation of the function Fv (t, λ)

In this section, we give a recurrence relation for the Catalan-type numbers Vk (λ) and derivative formula for
d
dλ {Vn (λ)} , using partial derivative equation of the function Fv (t, λ) . Our recurrence relation is different from
that of the work of Kucukoglu et al. [19, theorem 3.1].

Theorem 3.1 (Recurrence relations for the numbers Vn (λ)). Let n ∈ N0 . Then we have

(n+ 1)Vn+1 (λ) =

n∑
j=0

j∑
k=0

Vk (λ)Vj−k (λ)

(
− 1

2

n− j

)
8n−jλ2n−2j+2

(1− λ)
2n−2j+1

. (3.1)

Proof Assuming that 1− λ < 0 . We modify Equation (1.4) as follows:

Fv (t, λ) =
−4

(1− λ)
(
1 +

√
1 + 8λ2

(λ−1)2
t
) =

∞∑
n=0

Vn (λ) t
n. (3.2)

Taking partial derivative of the function Fv (t, λ) with respect to t , we get the following equation:

∂

∂t
{Fv (t, λ)} = Fv

(
8λ2

(λ− 1)
2 t,−1;λ

)
Fv (t, λ)

λ2

(1− λ)
.

By using the above equation, we obtain

∞∑
n=1

nVn (λ) t
n−1 =

λ2

1− λ

∞∑
n=0

n∑
j=0

j∑
k=0

Vk (λ)Vj−k (λ)

(
− 1

2

n− j

)
8n−jλ2n−2j

(λ− 1)
2n−2j

tn.

Comparing the coefficients of tn on both sides of the above equation, we get the desired result. 2

Substituting the following well-known identity(
− 1

2

n

)
=

(−1)n (2n)!

(n!)
2
4n

(3.3)

into (3.1), we arrive at the following corollary:

Corollary 3.2 Let n ∈ N0 . Then we have

Vn+1 (λ) =

n∑
j=0

j∑
k=0

(−2)n−jCn−jVk (λ)Vj−k (λ)
(n− j + 1)λ2n−2j+2

(n+ 1)(λ− 1)
2n−2j+1

.
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Theorem 3.3 Let n ∈ N0 . Then we have

d

dλ
{Vn (λ)}+

n∑
k=0

(−1)k
2kλ2k (2k)!Vn−k (λ)

(λ− 1)
2k+1

(k!)
2

+
2

λ
Vn (λ) = (−1)n

2n+2 (2n)!λ2n−1

(λ− 1)
2n+1

(n!)
2 .

Proof Assuming that λ− 1 > 0 . Taking partial derivative of the function Fv (t, λ) with respect to λ , we get
the following equation:

∂

∂λ
{Fv (t, λ)}+

Fv (t, λ)

(λ− 1)

√
1 + 8t

(
λ

λ−1

)2 +
2

λ
Fv (t, λ) =

4

λ (λ− 1)

√
1 + 8t

(
λ

λ−1

)2 .
By applying binomial series representation in the above equation yields

∞∑
n=0

d

dλ
{Vn (λ)} tn +

∞∑
n=0

n∑
k=0

(−1
2

k

)
8kλ2kVn−k (λ)

(λ− 1)
2k+1

tn +
2

λ

∞∑
n=0

Vn (λ) t
n = 4

∞∑
n=0

(−1
2

n

)
8nλ2n−1

(λ− 1)
2n+1 t

n.

Comparing the coefficients of tn on both sides of the above equation, we get

d

dλ
{Vn (λ)}+

n∑
k=0

(−1
2

k

)
8kλ2kVn−k (λ)

(λ− 1)
2k+1

+
2

λ
Vn (λ) =

8n4

λ (λ− 1)

(−1
2

n

)(
λ

λ− 1

)2n

.

Substituting (3.3) into the above equation, we get the desired result. 2

4. Identities and combinatorial sums derive from p-adic Volkenborn integral

The p -adic Volkenborn integral (or the p -adic bosonic integral) has many applications in mathematics and
mathematical physics. It is known that this integral has been used p -adic mathematical analysis and quantum
physicists. Therefore, by applying this integral to uniformly differential function on Zp , generating functions for
the Bernoulli-type numbers and polynomials and other special numbers and polynomials can be constructed [13],
see also [7, 11, 12, 27, 28, 31]. In 2007, Kim [13] defined the fermionic integral on Zp. By using these integrals, he
gave many new formulas and relations involving the Changhee numbers and polynomials, the Daehee numbers
and polynomials, the Catalan-Daehee polynomials, and other special numbers and polynomials. These integrals
are also used to give generating functions for certain families of the special numbers and polynomials.

4.1. p-adic Volkenborn integral represantations for special polynomials and numbers

Let Zp be the set of p -adic integers. Let u ∈ Zp and ℓ(u) be a uniformly differential function on Zp . The
Volkenborn integral (or bosonic integral) of the function ℓ(u) is given by

∫
Zp

ℓ(u)dµ1 (u) = lim
M→∞

1

pM

pM−1∑
d=0

ℓ(d), (4.1)

where p is a prime number and

µ1 (u) =
1

pM
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[11, 27, 28, 31].
By applying (4.1) to the function ℓ (u) = (u+ a)

v with v ∈ N0 = N ∪ {0} and u, a ∈ Zp , we have
the following p -adic bosonic integral representations for the Bernoulli polynomials, Bv(a) , and the Bernoulli
numbers, Bv , respectively

Bv(a) =

∫
Zp

(a+ u)
v
dµ1 (u) (4.2)

and

Bv := Bv(0) =

∫
Zp

uvdµ1 (u) (4.3)

(see [27], and also [11, 12, 28]).
By applying (4.1) to the function ℓ (u) = u(v) with v ∈ N0 = N ∪ {0} and u ∈ Zp , Kim et al. [7] gave

the following p -adic bosonic integral representation for the Daehee numbers Dv ,

Dv =

∫
Zp

u(v)dµ1 (u) , (4.4)

where

Dv =
(−1)vv!

v + 1
.

We also have ∫
Zp

u(v)dµ1 (u) =

v∑
d=0

S1(v, d)Bd (4.5)

and ∫
Zp

u(v)dµ1 (u) =
(−1)vv!

v + 1
(4.6)

[4, 7, 27, 28].

4.2. Formulas and combinatorial sums derive from p-adic integrals of Catalan-type polynomials

Here, using p -adic integrals representations of Catalan-type polynomials and the polynomials ℓ(u) = u(v) , we
give some novel formulas and combinatorial sums involving the Bernoulli, and Euler numbers and polynomials,
the Stirling numbers, and the Catalan-type numbers.

Substituting x with u+ v (1.5), we obtain

Vn (u+ v;λ) =

n∑
k=0

(u
2

k

)
Vn−k (v;λ) (4.7)

and

Vn (u+ v;λ) =

n∑
k=0

(u+v
2

k

)
Vn−k (λ) . (4.8)
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Combining the well-known Chu-Vandermonde identity with the above equation, we get

Vn (u+ v;λ) =

n∑
k=0

k∑
j=0

(u
2

j

)( v
2

k − j

)
Vn−k (λ) . (4.9)

By applying (4.1) with respect to u and v to Equations (4.7), (4.8), and (4.9), we obtain

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

∫
Zp

Va−k (v;λ) dµ1 (v)

∫
Zp

(u
2

k

)
dµ1 (u) ,

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

Va−k (λ)

∫
Zp

∫
Zp

(u+v
2

k

)
dµ1 (u) dµ1 (v) (4.10)

and

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

k∑
j=0

Va−k (λ)

∫
Zp

(u
2

j

)
dµ1 (u)

∫
Zp

( v
2

k − j

)
dµ1 (v) ,

where a ∈ N0 . Combining the above p -adic integrals of the polynomials Va (x;λ) with

da =
(−1)a4a

a!

∫
Zp

(u
2

)
(a)

dµ1 (u) ,

∫
Zp

(u
2

)
(a)

dµ1 (u) =

a∑
k=0

S1(a, k)Bk

2k

([4], see also [19, theorem 5.4]) and the following formula, which was proven by Kucukoglu et al. [19, theorem
5.4]: ∫

Zp

Va (u;λ) dµ1 (u) =

a∑
j=0

j∑
c=0

Va−j (λ)S1(j, c)Bc

j!2c
,

where a ∈ N0 , we obtain the following interesting formulas:

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

a−k∑
j=0

j∑
c=0

k∑
s=0

BcBsVa−k−j (λ)S1(j, c)S1(k, s)

j!k!2c+s
,

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

a−k∑
j=0

j∑
c=0

(−1)k
dkBcVa−k−j (λ)S1(j, c)

j!2c+2k
,

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

k∑
j=0

(−1)k
djdk−jVa−k (λ)

4k
,
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and ∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

k∑
j=0

j∑
s=0

k−j∑
m=0

(
k

j

)
Va−k (λ)S1(j, s)S1(k − j,m)BsBm

k!2s+m
.

Combining (4.10) with the following formula

(u+v
2

k

)
=

1

k!

k∑
s=0

S1(k, s)

2s

s∑
m=0

(
s

m

)
umvs−m

and using (4.3), we obtain

∫
Zp

∫
Zp

Va (u+ v;λ) dµ1 (u) dµ1 (v) =

a∑
k=0

k∑
s=0

s∑
m=0

(
s

m

)
BmBs−mVa−k (λ)S1(k, s)

2sk!
.

By combining the right-hand sides of the above equation, we arrive at the following theorems, respectively:

Theorem 4.1 Let a ∈ N0 . Then we have

a∑
k=0

k∑
s=0

s∑
m=0

(
s

m

)
BmBs−mVa−k (λ)S1(k, s)

2sk!

=

a∑
k=0

k∑
j=0

j∑
s=0

k−j∑
m=0

(
k

j

)
Va−k (λ)S1(j, s)S1(k − j,m)BsBm

k!2s+m
.

Theorem 4.2 Let a ∈ N0 . Then we have

a∑
k=0

k∑
s=0

s∑
m=0

(
s

m

)
BmBs−mVa−k (λ)S1(k, s)

2sk!
=

a∑
k=0

k∑
j=0

(−1)k
djdk−jVa−k (λ)

4k
.

Theorem 4.3 Let a ∈ N0 . Then we have

a∑
k=0

k∑
s=0

s∑
m=0

(
s

m

)
BmBs−mVa−k (λ)S1(k, s)

2sk!
=

a∑
k=0

a−k∑
j=0

j∑
c=0

(−1)k
dkBcVa−k−j (λ)S1(j, c)

j!2c+2k
.

Theorem 4.4 Let a ∈ N0 . Then we have

a∑
k=0

k∑
s=0

s∑
m=0

(
s

m

)
BmBs−mVa−k (λ)S1(k, s)

2sk!

=

a∑
k=0

a−k∑
j=0

j∑
c=0

k∑
s=0

BcBsVa−k−j (λ)S1(j, c)S1(k, s)

j!k!2c+s
.
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