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Abstract: In this paper, the main identities on locally product-like statistical submersions are obtained with the
aid of statistical structures and their Riemannian curvature tensors. Some examples of locally product-like statistical
submersions are presented. Some results on F -invariant, F ∗ -invariant and antiinvariant locally product-like statistical
submersions are given.
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1. Introduction
Immersions and submersions are the most commonly used smooth maps to reveal the relationship between two
Riemannian manifolds. Although not as much as isometric immersions, the concept of submersions is widely
studied today and it is an interesting field of study in differential geometry. Riemannian submersions between
Riemannian manifolds were initially introduced by O’Neill [20] and Gray [16], independently. The notion of
antiinvariant Riemannian submersion in Riemannian submersion theory was firstly introduced by Şahin in [24].
Besides the mathematical applications, there exist some applications of these mappings in the Kaluza-Klein
theory [12, 18, 33], the statical machine learning process [36], medical imaging [22], the statical analysis [10]
and the robotic theory [4, 25, 26].

In addition to these facts, statistical manifolds were introduced by Amari [2] in 1985. Later, these
structures drew the attention of several authors. Some basic properties of hypersurfaces of statistical manifolds
were presented by Furuhata in [14, 15]. Various characterizations on submanifolds of statistical manifolds
admitting almost contact, complex and product structures were obtained in [5–8, 19, 27, 28], etc. Furthermore,
Riemannian submersions between statistical manifolds were studied in [17, 29, 30, 32], etc.

In [30, 31], the author developed a new perspective on statistical complex manifolds, which can be
considered as a generalization of Hermitian manifolds as follows.

Let (M̃, g̃) be a semi-Riemannian manifold endowed with two almost complex structures J and J∗

satisfying

g̃(JX, Y ) = g̃(X, J∗Y ) (1.1)
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for any tangent vector fields on M̃ . Then the triple (M̃, g̃, J) is called a Hermite-like manifold. It is clear that

if J = J∗ , then (M̃, g̃, J) becomes a Hermitian manifold. Inspiring the definition of Hermite-like manifolds,
almost product-like Riemannian manifolds were introduced by the authors in [11] (see equations (2.6) and (2.7)).

Motivated by the above facts, locally product-like statistical submersions are investigated in this pa-
per. Various characterizations on F -invariant, F ∗ -invariant and antiinvariant locally product-like statistical
submersions are obtained.

2. Preliminaries
An n -dimensional semi-Riemannian manifold is a smooth manifold Mn furnished with a metric tensor g , where
g is a symmetric, nondegenerate tensor field on M of constant index. The common value ν of index g on M

is called the index of M (0 ≤ ν ≤ n) and we denote a semi-Riemannian manifold by Mn
ν . If ν = 0 , then M

is a Riemannian manifold. For each p ∈ M , a tangent vector E to M is spacelike (resp. null, timelike) if
g(E,E) > 0 or E = 0 (resp. g(E,E) = 0 and E ̸= 0 , g(E,E) < 0). Let Rn

ν be an n -dimensional real vector
space with an inner product of signature (ν, n− ν) given by

⟨x, x⟩ = −
ν∑

i=1

x2
i +

n∑
i=ν+1

x2
i , (2.1)

where x = (x1, . . . , xn) is the natural coordinate of Rn
ν . Rn

ν is called an n -dimensional semi-Euclidean space.
If ν = 0 (resp. ν = 1), then Rn (resp. Rn

1 ) is an Euclidean space (resp. a Lorentzian space).
Let (M, g) be a semi-Riemannian manifold. Denote a torsion-free affine connection by ∇ . The triple

(M,∇, g) is called a statistical manifold if ∇g is symmetric. For the statistical manifold (M,∇, g) , we define
another affine connection ∇∗ by

Eg(G,H) = g(∇EG,H) + g(G,∇∗
EH) (2.2)

for vector fields E,G and H on M . The affine connection ∇∗ is called conjugate (or dual) to ∇ with respect
to g . The affine connection ∇∗ is torsion-free, ∇∗g is symmetric and satisfies (∇∗)∗ = ∇ . Clearly, the triple
(M,∇∗, g) is a statistical manifold. We denote the curvature tensors on M with respect to the affine connection
∇ and ∇∗ by R and R∗ , respectively. Then we find

g
(
R(E,G)H,E′

)
= −g

(
H,R∗(E,G)E′

)
(2.3)

for vector fields E,G,H,E′ on M , where R(E,G)H = [∇E ,∇G]H−∇[E,G]H . Therefore R vanishes identically
if and only if so is R∗ . We call that (M,∇, g) is flat if R vanishes identically.

Let M be a smooth manifold with a tensor field F of type (1, 1) on M such that

F 2 = I, (2.4)

where I stands for the identity transformation. Then we say that M is an almost product manifold with almost
product structure F . We consider the semi-Riemannian manifold on the almost product manifold M . If F

preserves the metric g , that is,

g(FE,FG) = g(E,G) (2.5)
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for any vector fields E and G on M , then (M, g, F ) is called an almost product semi-Riemannian manifold.
Now, we consider the semi-Riemannian manifold (M, g) with the almost product structure F which has another
tensor field F ∗ of type (1, 1) satisfying

g(FE,G) = g(E,F ∗G) (2.6)

for any vector fields E and G . Then the triple (M, g, F ) is called an almost product-like semi-Riemannian
manifold. We see that (F ∗)∗ = F, (F ∗)2 = I and

g(FE,F ∗G) = g(E,G). (2.7)

Lemma 2.1 ([11]) The triple (M, g, F ) is an almost product-like semi-Riemannian manifold if and only if so
is (M, g, F ∗) .

Let (N, gN ) be a submanifold of (M, g, F ) . From (2.7), it can be obtained

(1) F (TpN) ⊂ TpN if and only if F ∗ (TpN)
⊥ ⊂ (TpN)

⊥ ,

(2) F (TpN) ⊂ (TpN)
⊥ if and only if F ∗ (TpN) ⊂ (TpN)

⊥ ,

(3) F (TpN)
⊥ ⊂ TpN if and only if F ∗ (TpN)

⊥ ⊂ TpN ,

(4) F (TpN)
⊥ ⊂ (TpN)

⊥ if and only if F ∗ (TpN) ⊂ TpN .

If F (TpN) ⊂ TpN (resp. F ∗ (TpN) ⊂ TpN ) for each p ∈ N , then N is said to be F -invariant (resp. F ∗ -
invariant) in M . For more details on submanifolds of almost product-like Riemannian manifolds, we refer to
[11].

Example 2.2 Let

M+ = { (x1, x2, x3, x4) |x1 > 0 }, M− = { (x1, x2, x3, x4) |x1 < 0 }

be smooth manifolds which admit the following almost product structure F :

F =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

Thus the pair (M+, F ) and (M−, F ) are almost product manifolds. If we put

g =


−1 + ex1 0 0 0

0 e−x1 0 0

0 0 ex1 0

0 0 0 e−x1

 , F ∗ =


0 0 (1− e−x1)−1 0

0 0 0 1

1− e−x1 0 0 0

0 1 0 0

 ,

then (M+, g, F ) (resp. (M−, g, F )) is an almost product-like Riemannian (resp. semi-Riemannian) manifold
and so is (M+, g, F

∗) (resp. (M−, g, F
∗)).
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Next, if F is parallel with respect to the affine connection ∇ , then (M,∇, g, F ) is called a locally
product-like statistical manifold. From (2.6), we get

g((∇DF )E,G) = g(E, (∇∗
DF ∗)G). (2.8)

Hence we have ([11]).

Lemma 2.3 (M,∇, g, F ) is a locally product-like statistical manifold if and only if so is (M,∇∗, g, F ∗) .

We put for any vector fields E, G, H on the almost product-like statistical manifold
R(E,G)H = c [ g(G,H)E − g(E,H)G+ g(G,FH)FE − g(E,FH)FG+ {g(FE,G)− g(E,FG)}FH ], (2.9)

where c is a constant. Then the tensor R satisfies the 1st and 2nd Bianchi identities and FR(E,G) = R(E,G)F .
Moreover, we have

R∗(E,G)H = c[ g(G,H)E − g(E,H)G+ g(G,F ∗H)F ∗E − g(E,F ∗H)F ∗G

+ { g(F ∗E,G)− g(E,F ∗G)}F ∗H ]. (2.10)

Example 2.4 Let (M+, g, F ) (resp. (M−, g, F )) be an almost product-like Riemannian (resp. semi-
Riemannian) manifold of Example 2.2. We put the affine connection ∇ as follows:

∇∂1
∂1 = ∇∂3

∂3 = ex1∂1,

∇∂1
∂2 = ∇∂2

∂1 = ∇∂3
∂4 = ∇∂4

∂3 = −ex1∂2,

∇∂1
∂3 = ∇∂3

∂1 = ex1∂3,

∇∂1∂4 = ∇∂4∂1 = ∇∂2∂3 = ∇∂3∂2 = −ex1∂4,

∇∂2
∂2 = ∇∂4

∂4 = −e−x1∂1 + ex1∂4,

∇∂2
∂4 = ∇∂4

∂2 = ex1∂2 − e−x1∂3,

where ∂i =
∂

∂xi
(i = 1, 2, 3, 4) . Therefore ∂1 is timelike and ∂2, ∂3, ∂4 are spacelike on M− . Then we find

∇∗
∂1
∂1 = −ex1(ex1 − 2)(ex1 − 1)−1∂1,

∇∗
∂1
∂2 = ∇∗

∂2
∂1 = (ex1 − 1) ∂2,

∇∗
∂1
∂3 = ∇∗

∂3
∂1 = −(ex1 − 1) ∂3,

∇∗
∂1
∂4 = ∇∗

∂4
∂1 = (ex1 − 1) ∂4,

∇∗
∂2
∂2 = ∇∗

∂4
∂4 = (ex1 − 1)−1∂1 − ex1∂4,

∇∗
∂2
∂3 = ∇∗

∂3
∂2 = ex1∂4,

∇∗
∂2
∂4 = ∇∗

∂4
∂2 = −ex1∂2 + e−x1∂3,

∇∗
∂3
∂3 = −e2x1(ex1 − 1)−1∂1,

∇∗
∂3
∂4 = ∇∗

∂4
∂3 = ex1∂2.
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Therefore (M+,∇, g, F ) (resp. (M−,∇, g, F )) is a locally product-like statistical manifold and so is
(M+,∇∗, g, F ∗) (resp. (M−,∇∗, g, F ∗)).

Let M and B be semi-Riemannian manifolds. A surjective mapping π : M → B is called a semi-
Riemannian submersion if π has maximal rank and π∗ preserves lengths of horizontal vectors. Let π : M → B

be a semi-Riemannian submersion. We put dimM = m and dimB = n . For each point x ∈ B , semi-
Riemannian submanifold π−1(x) with the induced metric g is called a fiber and denoted by Mx or M simply.
We notice that the dimension of each fiber is always m−n . A vector field on M is vertical if it is always tangent
to fibers, horizontal if always orthogonal to fibers. We denote the vertical and horizontal subspace in the tangent
space TpM of the total space M by Vp(M) and Hp(M) for each point p ∈ M , and the vertical and horizontal
distributions in the tangent bundle TM of M by V(M) and H(M) , respectively. Then TM is the direct
sum of V(M) and H(M) . The projection mappings are denoted V : TM → V(M) and H : TM → H(M) ,
respectively. We call a vector field X on M projectable if there exists a vector field X∗ on B such that
π∗(Xp) = X∗π(p) for each p ∈ M , and say that X and X∗ are π -related. Also, a vector field X on M is called
basic if it is projectable and horizontal. Then we have ([9, 16, 20]).

Lemma 2.5 If X and Y are basic vector fields on M which are π -related to X∗ and Y∗ on B , then

(1) g(X,Y ) = gB(X∗, Y∗) ◦ π , where g is the metric on M and gB the metric on B ,

(2) H[X,Y ] is basic and π -related to [X∗, Y∗] ,

(3) H∇′
XY is basic and π -related to ∇̂′

X∗
Y∗ , where ∇′ and ∇̂′ are the Levi-Civita connections of M and

B , respectively.

Let (M,∇, g) be a statistical manifold and π : M → B be a semi-Riemannian submersion. We denote
the affine connections of M by ∇ and ∇∗ . Notice that ∇UV and ∇∗

UV are well-defined vertical vector fields
on M for vertical vector fields U and V on M , more precisely ∇UV = V∇UV and ∇∗

UV = V∇∗
UV . Moreover,

∇ and ∇∗ are torsion-free and conjugate to each other with respect to g . The triple (M,∇, g) is a statistical
manifold and so is (M,∇∗

, g) .

We call that π : (M,∇, g) → (B, ∇̂, gB) is a statistical submersion if π : M → B satisfies π∗(∇XY )p =

(∇̂X∗Y∗)π(p) for basic vector fields X, Y and p ∈ M . The tensor fields T and A of type (1,2) are defined by

TEG = H∇VEVG+ V∇VEHG, AEG = H∇HEVG+ V∇HEHG

for any vector fields E and G on M . Changing ∇ to ∇∗ in the above equations, we set T ∗ and A∗ , respectively.
Then we find T ∗∗ = T and A∗∗ = A . For vertical vector fields, T and T ∗ have the symmetry property. For
X,Y ∈ H(M) and U, V ∈ V(M) , we obtain

g(TUV,X) = −g(V, T ∗
UX), g(AXY, U) = −g(Y,A∗

XU). (2.11)

Thus, T (resp. A) vanishes identically if and only if T ∗ (resp. A∗ ) vanishes identically. Since A is related to
the integrability of H(M) , it is identically zero if and only if H(M) is integrable with respect to ∇ . Moreover,
if A and T vanish identically, then the total space is a locally product space of the base space and the fiber. If
T vanishes identically, then we said to be with isometric fiber. It is known that ([1]).
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Theorem 2.6 Let π : M → B be a semi-Riemannian submersion. Then (M,∇, g) is a statistical manifold if
and only if the following conditions hold:

(1) HSV X = AXV −A∗
XV ,

(2) VSXV = TV X − T ∗
V X ,

(3) (M,∇, g) is a statistical manifold for each x ∈ B ,

(4) (B, ∇̂, gB) is a statistical manifold,

where SEG = ∇EG−∇∗
EG for E, G ∈ TM .

For the statistical submersion π : (M,∇, g) → (B, ∇̂, gB) , we have the following lemmas ([30]):

Lemma 2.7 If X and Y are horizontal vector fields, then AXY = −A∗
Y X .

Lemma 2.8 For X,Y ∈ H(M) and U, V ∈ V(M) we have

∇UV = TUV +∇UV, ∇∗
UV = T ∗

UV +∇∗
UV,

∇UX = H∇UX + TUX, ∇∗
UX = H∇∗

UX + T ∗
UX,

∇XU = AXU + V∇XU, ∇∗
XU = A∗

XU + V∇∗
XU,

∇XY = H∇XY +AXY, ∇∗
XY = H∇∗

XY +A∗
XY.

Furthermore, if X is basic, then H∇UX = AXU and H∇∗
UX = A∗

XU .

We define the covariant derivatives ∇T and ∇A by

(∇ET )GH = ∇E(TGH)− T∇EGH − TG(∇EH),

(∇EA)GH = ∇E(AGH)−A∇EGH −AG(∇EH)

for E, G, H ∈ TM . We change ∇ to ∇∗ , then the covariant derivatives ∇∗T ∗ and ∇∗A∗ are defined
similarly. We consider the curvature tensor on the statistical submersion. Let R (resp. R

∗ ) be the curvature

tensor with respect to the induced affine connection ∇ (resp. ∇∗ ) of each fiber. Also, let R̂(X,Y )Z (resp.

R̂∗(X,Y )Z ) be a horizontal vector field such that π∗(R̂(X,Y )Z) = R̂(π∗X,π∗Y )π∗Z (resp. π∗(R̂
∗(X,Y )Z) =

R̂∗(π∗X,π∗Y )π∗Z ) at each p ∈ M , where R̂ (resp. R̂∗ ) is the curvature tensor on B of the affine connection

∇̂ (resp. ∇̂∗ ). Then we have ([30]).

Theorem 2.9 If π : (M,∇, g) → (B, ∇̂, gB) is a statistical submersion, then we get for X,Y, Z, Z ′ ∈ H(M)

and U, V,W,W ′ ∈ V(M)
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g(R(U, V )W,W ′) = g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′),

g(R(U, V )W,X) = g((∇UT )V W,X)− g((∇V T )UW,X),

g(R(U, V )X,W ) = g((∇UT )V X,W )− g((∇V T )UX,W ),

g(R(U, V )X,Y ) = g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )

−g(TV X,T ∗
UY )− g(AXU,A∗

Y V ) + g(AXV,A∗
Y U),

g(R(X,U)V,W ) = g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW )

+g(T ∗
UW,AXV ),

g(R(X,U)V, Y ) = g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )

−g(TUX,T ∗
V Y ),

g(R(X,U)Y, V ) = g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )

−g(AXU,AY V ),

g(R(X,U)Y, Z) = g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ)

+g(AXY, T ∗
UZ),

g(R(X,Y )U, V ) = g([V∇X ,V∇Y ]U, V )− g(∇[X,Y ]U, V ) + g(AXU,A∗
Y V )

−g(AY U,A
∗
XV ),

g(R(X,Y )U,Z) = g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ),

g(R(X,Y )Z,U) = g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ),

g(R(X,Y )Z,Z ′) = g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′)

+g(θXY,A∗
ZZ

′),

where we put θXY = AXY +A∗
XY = V[X,Y ] .

3. Locally product-like statistical submersions

Let (M,∇, g, F ) be a locally product-like statistical manifold and (B, ∇̂, gB) be a statistical manifold. The

statistical submersion π : (M,∇, g, F ) → (B, ∇̂, gB) is called a locally product-like statistical submersion. For
X ∈ H(M) , we put ([35])

FX = fX + hX, F ∗X = f∗X + h∗X, (3.1)

where fX, f∗X ∈ H(M) and hX, h∗X ∈ V(M) . For V ∈ V(M) , we set

FV = tV + sV, F ∗V = t∗V + s∗V, (3.2)

where tV, t∗V ∈ H(M) and sV, s∗V ∈ V(M) . From (F ∗)∗ = F , we find (f∗)∗ = f , (h∗)∗ = h , (t∗)∗ = t and
(s∗)∗ = s . Because of F 2 = I and (F ∗)2 = I , we get

f2 = I − th, hf + sh = 0, ft+ ts = 0, s2 = I − ht (3.3)
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and

(f∗)2 = I − t∗h∗, h∗f∗ + s∗h∗ = 0, f∗t∗ + t∗s∗ = 0, (s∗)2 = I − h∗t∗. (3.4)

Because of g(FE,G) = g(E,F ∗G) for any vector fields E and G on M , we find

g(fX, Y ) = g(X, f∗Y ), g(fX, f∗Y ) = g(X,Y )− g(hX, h∗Y ), (3.5)

g(hX, V ) = g(X, t∗V ), (3.6)

g(tU, Y ) = g(U, h∗Y ), (3.7)

g(sU, V ) = g(U, s∗V ), g(sU, s∗V ) = g(U, V )− g(tU, t∗V ). (3.8)

Thus t (resp. s) vanishes identically if and only if so is h∗ (resp. s∗ ), and f (resp. h) vanishes identically if
and only if so is f∗ (resp. t∗ ). Hence we have the following lemma.

Lemma 3.1 We find for each p ∈ M

(1) F (Vp(M)) ⊂ Vp(M) if and only if F ∗(Hp(M)) ⊂ Hp(M) .

(2) F (Hp(M)) ⊂ Hp(M) if and only if F ∗(Vp(M)) ⊂ Vp(M) .

(3) F (Vp(M)) ⊂ Hp(M) if and only if F ∗(Vp(M)) ⊂ Hp(M) .

(4) F (Hp(M)) ⊂ Vp(M) if and only if F ∗(Hp(M)) ⊂ Vp(M) .

If F (Vp(M)) ⊂ Vp(M) (resp. F ∗(Vp(M)) ⊂ Vp(M)) for each p ∈ M , then M is said to be an F -invariant
(resp. F ∗ -invariant) submanifold of M . Then t and h∗ (resp. h and t∗ ) vanish identically. Because of f2 = I

and g(fX, f∗Y ) = g(X,Y ) , the triple (M, g, f) is an almost product-like semi-Riemannian manifold and so is
(M, g, f∗) . If F (Vp(M)) ⊂ Hp(M) for each p ∈ M , then M is said to be an F -antiinvariant submanifold of
M . Since s = 0 is equivalent to s∗ = 0 , M is an F -antiinvariant if and only if M is an F ∗ -antiinvariant.
Thus, in this paper, it is simply referred to as antiinvariant.

Also, we have from (3.5)∼(3.8).

Lemma 3.2 Let π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion. We find

g((H∇Xf)Y, Z) = g(Y, (H∇∗
Xf∗)Z), g((H∇Uf)X,Y ) = g(X, (H∇∗

Uf
∗)Y ),

g(V∇Xh)Y, V ) = g(Y, (H∇∗
Xt∗)V ), g((∇Uh)Y, V ) = g(Y, (H∇∗

U t
∗)V ),

g((H∇Xt)V, Y ) = g(V, (V∇∗
Xh∗)Y ), g((H∇U t)V, Y ) = g(V, (∇∗

Uh
∗)Y ),

g((V∇Xs)U, V ) = g(U, (V∇∗
Xs∗)V ), g((∇Us)V,W ) = g(V, (∇∗

Us
∗)W ),

where we put

(H∇Xf)Y = H∇X(fY )− f(H∇XY ), (H∇Uf)X = H∇U (fX)− f(H∇UX),

(V∇Xh)Y = V∇X(hY )− h(H∇XY ), (∇Uh)X = ∇U (hX)− h(H∇UX),

(H∇Xt)V = H∇X(tV )− t(V∇XV ), (H∇U t)V = H∇U (tV )− t(∇UV ),

(V∇Xs)U = V∇X(sU)− s(V∇XU), (∇Us)V = ∇U (sV )− s(∇UV ),
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also, we set (H∇∗
Xf∗)Y = H∇∗

X(f∗Y )− f∗(H∇∗
XY ) , etc.

Hence we have the following corollary.

Corollary 3.3 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion, then we get

(1) H∇f = 0 is equivalent to H∇∗f∗ = 0 .

(2) V∇Xh = 0 (resp. ∇Uh = 0) is equivalent to H∇∗
Xt∗ = 0 (resp. H∇∗

U t
∗ = 0) .

(3) H∇Xt = 0 (resp. H∇U t = 0) is equivalent to V∇∗
Xh∗ = 0 (resp. ∇∗

Uh
∗ = 0) .

(4) V∇Xs = 0 (resp. ∇Us = 0) is equivalent to V∇∗
Xs∗ = 0 (resp. ∇∗

Us
∗ = 0) .

Because of ∇F = 0 and Lemma 2.8, we get the following proposition.

Proposition 3.4 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion, then we get

∇U (sV ) + TU (tV ) = h(TUV ) + s(∇UV ),

H∇U (tV ) + TU (sV ) = f(TUV ) + t(∇UV ),

∇U (hX) + TU (fX) = h(H∇UX) + s(TUX),

H∇U (fX) + TU (hX) = f(H∇UX) + t(TUX),

V∇X(sU) +AX(tU) = h(AXU) + s(V∇XU),

H∇X(tU) +AX(sU) = f(AXU) + t(V∇XU),

V∇X(hY ) +AX(fY ) = h(H∇XY ) + s(AXY ),

H∇X(fY ) +AX(hY ) = f(H∇XY ) + t(AXY )

for any U, V ∈ V(M) and X,Y ∈ H(M) .

From (3.3) and Proposition 3.4, we have the following lemma.

Lemma 3.5 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion, then we get

TUV = f{H∇U (tV ) + TU (sV )}+ t{∇U (sV ) + TU (tV )},

∇UV = h{H∇U (tV ) + TU (sV )}+ s{∇U (sV ) + TU (tV )},

H∇UX = f{H∇U (fX) + TU (hX)}+ t{∇U (hX) + TU (fX)},

TUX = h{H∇U (fX) + TU (hX)}+ s{∇U (hX) + TU (fX)},

AXU = f{H∇X(tU) +AX(sU)}+ t{V∇X(sU) +AX(tU)},

V∇XU = h{H∇X(tU) +AX(sU)}+ s{V∇X(sU) +AX(tU)},

H∇XY = f{H∇X(fY ) +AX(hY )}+ t{V∇X(hY ) +AX(fY )},

AXY = h{H∇X(fY ) +AX(hY )}+ s{V∇X(hY ) +AX(fY )}

for any U, V ∈ V(M) and X,Y ∈ H(M) .
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Lemma 3.6 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion, then we obtain

h(TUV ) = (∇Us)V + TU (tV ),

f(TUV ) = (H∇U t)V + TU (sV ),

s(TUX) = (∇Uh)X + TU (fX),

t(TUX) = (H∇Uf)X + TU (hX),

h(AXU) = (V∇Xs)U +AX(tU),

f(AXU) = (H∇Xt)U +AX(sU),

s(AXY ) = (V∇Xh)Y +AX(fY ),

t(AXY ) = (H∇Xf)Y +AX(hY ).

Thus we have the following corollary.

Corollary 3.7 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion. We find

(1) H∇f = 0 if and only if TU (hX) = t(TUX) and AX(hY ) = t(AXY ) .

(2) V∇h = 0 if and only if TU (fX) = s(TUX) and AX(fY ) = s(AXY ) .

(3) H∇t = 0 if and only if TU (sV ) = f(TUV ) and AX(sU) = f(AXU) .

(4) V∇s = 0 if and only if TU (tV ) = h(TUV ) and AX(tU) = h(AXU) .

Example 3.8 We put B = { (x2, x3, x4) |xi ∈ R (i = 2, 3, 4) } = R3 and

gB =

 e−x1 0 0

0 ex1 0

0 0 e−x1

 .

If we set

∇̂∂2∗∂2∗ = ∇̂∂4∗∂4∗ = ex1∂4∗, ∇̂∂2∗∂3∗ = ∇̂∂3∗∂2∗ = −ex1∂4∗,

∇̂∂2∗∂4∗ = ∇̂∂4∗∂2∗ = ex1∂2∗ − e−x1∂3∗, ∇̂∂3∗∂3∗ = 0,

∇̂∂3∗∂4∗ = ∇̂∂4∗∂3∗ = −ex1∂2∗

and

∇̂∗
∂2∗

∂2∗ = ∇̂∗
∂4∗

∂4∗ = −ex1∂4∗, ∇̂∗
∂2∗

∂3∗ = ∇̂∗
∂3∗

∂2∗ = ex1∂4∗,

∇̂∗
∂2∗

∂4∗ = ∇̂∗
∂4∗

∂2∗ = −ex1∂2∗ + e−x1∂3∗, ∇̂∗
∂3∗

∂3∗ = 0,

∇̂∗
∂3∗

∂4∗ = ∇̂∗
∂4∗

∂3∗ = ex1∂2∗,

then (B, ∇̂, gB) is a statistical manifold and so is (B, ∇̂∗, gB) , where ∂i∗ = ∂/∂xi (i = 2, 3, 4) . Let (M+,∇, g, F )

and (M−,∇, g, F ) be locally product-like statistical manifolds of Example 2.4. We define a locally product-like

statistical submersion π : (M±,∇, g, F ) → (B, ∇̂, gB) by

π(x1, x2, x3, x4) = (x2, x3, x4).
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For ∂2, ∂3, ∂4 ∈ H(M±) and ∂1 ∈ V(M±) , it is clear that

f =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , h =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

t =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 , s = 0.

Thus each fiber is antiinvariant of M± . The structure f satisfies f3 − f = 0 . Moreover, we obtain

T∂1∂1 = 0, ∇∂1∂1 = ex1∂1,

H∇∂1∂2 = −ex1∂2, T∂1∂2 = 0,

H∇∂1∂3 = ex1∂3, T∂1∂3 = 0,

H∇∂1∂4 = −ex1∂4, T∂1∂4 = 0,

A∂2∂1 = −ex1∂2, V∇∂2∂1 = 0,

A∂3∂1 = ex1∂3, V∇∂3∂1 = 0,

A∂4
∂1 = −ex1∂4, V∇∂4

∂1 = 0,

H∇∂2
∂2 = H∇∂4

∂4 = ex1∂4, A∂2
∂2 = A∂4

∂4 = −e−x1∂1,

H∇∂2
∂3 = H∇∂3

∂2 = −ex1∂4, A∂2
∂3 = A∂3

∂2 = 0,

H∇∂2
∂4 = H∇∂4

∂2 = ex1∂2 − e−x1∂3, A∂2
∂4 = A∂4

∂2 = 0,

H∇∂3
∂3 = 0, A∂3

∂3 = ex1∂1,

H∇∂3
∂4 = H∇∂4

∂3 = −ex1∂2, A∂3
∂4 = A∂4

∂3 = 0.

Therefore π has isometric fiber. Also, we find TU (tV ) = h(TUV ) and AX(tU) = h(AXU) .

Example 3.9 We denote subsets of R2 by

B+ = { (x1, x3) |x1 > 0 }, B− = { (x1, x3) |x1 < 0 }

and we set

gB =

(
−1 + ex1 0

0 ex1

)
.

If we put

∇̂∂1∗∂1∗ = ∇̂∂3∗∂3∗ = ex1∂1∗, ∇̂∂1∗∂3∗ = ∇̂∂3∗∂1∗ = ex1∂3∗

and

∇̂∗
∂1∗

∂1∗ = −ex1(ex1 − 2)(ex1 − 1)−1 ∂1∗, ∇̂∗
∂1∗

∂3∗ = ∇̂∗
∂3∗

∂1∗ = −(ex1 − 1) ∂3∗,

∇̂∗
∂3∗

∂3∗ = −e2x1(ex1 − 1)−1∂1∗,
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then (B+, ∇̂, gB) (resp. (B−, ∇̂, gB)) is a statistical manifold and so is (B+, ∇̂∗, gB) (resp. (B−, ∇̂∗, gB)),
where ∂i∗ = ∂/∂xi (i = 1, 3) . Let (M+,∇, g, F ) and (M−,∇, g, F ) be locally product-like statistical manifolds

of Example 2.4. We define a locally product-like statistical submersion π : (M±,∇, g, F ) → (B±, ∇̂, gB) by

π(x1, x2, x3, x4) = (x1, x3).

For ∂1, ∂3 ∈ H(M±) and ∂2, ∂4 ∈ V(M±) , it is easy to see that

f =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , h = 0, t = 0, s =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 .

Thus each fiber is F -invariant and F ∗ -invariant of M± . Moreover we get

T∂2∂2 = T∂4∂4 = −e−x1∂1, ∇∂2∂2 = ∇∂4∂4 = ex1∂4,

T∂2
∂4 = T∂4

∂2 = −e−x1∂3, ∇∂2
∂4 = ∇∂4

∂2 = ex1∂2,

H∇∂2
∂1 = H∇∂4

∂3 = 0, T∂2
∂1 = T∂4

∂3 = −ex1∂2,

H∇∂2
∂3 = H∇∂4

∂1 = 0, T∂2
∂3 = T∂4

∂1 = −ex1∂4,

A∂1
∂2 = A∂3

∂4 = 0, V∇∂1
∂2 = V∇∂3

∂4 = −ex1∂2,

A∂1
∂4 = A∂3

∂2 = 0, V∇∂1
∂4 = V∇∂3

∂2 = −ex1∂4,

H∇∂1
∂1 = H∇∂3

∂3 = ex1∂1, A∂1
∂1 = A∂3

∂3 = 0,

H∇∂1∂3 = H∇∂3∂1 = ex1∂3, A∂1∂3 = A∂3∂1 = 0.

Therefore each fiber is flat and H(M±) is integrable. We find TU (fX) = s(TUX) , TU (sV ) = f(TUV ) , H∇f = 0

and V∇s = 0 .

Example 3.10 We denote subsets of R3 by

B+ = { (x1, x2, x3) |x1 > 0 }, B− = { (x1, x2, x3) |x1 < 0 }

and we set

gB =

 −1 + ex1 0 0

0 e−x1 0

0 0 ex1

 .

If we put

∇̂∂1∗∂1∗ = ∇̂∂3∗∂3∗ = ex1∂1∗, ∇̂∂1∗∂2∗ = ∇̂∂2∗∂1∗ = −ex1∂2∗,

∇̂∂1∗∂3∗ = ∇̂∂3∗∂1∗ = ex1∂3∗, ∇̂∂2∗∂2∗ = −e−x1∂1∗,

∇̂∂2∗∂3∗ = ∇̂∂3∗∂2∗ = 0

and

∇̂∗
∂1∗

∂1∗ = −ex1(ex1 − 2)(ex1 − 1)−1 ∂1∗, ∇̂∗
∂1∗

∂2∗ = ∇̂∗
∂2∗

∂1∗ = (ex1 − 1) ∂2∗,

∇̂∗
∂1∗

∂3∗ = ∇̂∗
∂3∗

∂1∗ = −(ex1 − 1) ∂3∗, ∇̂∗
∂2∗

∂2∗ = (ex1 − 1)−1∂1∗,

∇̂∗
∂2∗

∂3∗ = ∇̂∗
∂3∗

∂2∗ = 0, ∇̂∗
∂3∗

∂3∗ = −e2x1(ex1 − 1)−1∂1∗,
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then (B+, ∇̂, gB) (resp. (B−, ∇̂, gB)) is a statistical manifold and so is (B+, ∇̂∗, gB) (resp. (B−, ∇̂∗, gB)),
where ∂i∗ = ∂/∂xi (i = 1, 2, 3) . Let (M+,∇, g, F ) and (M−,∇, g, F ) be locally product-like statistical manifolds

of Example 2.4. We define a locally product-like statistical submersion π : (M±,∇, g, F ) → (B±, ∇̂, gB) by

π(x1, x2, x3, x4) = (x1, x2, x3).

For ∂1, ∂2, ∂3 ∈ H(M±) and ∂4 ∈ V(M±) , it is clear that

f =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , h =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 ,

t =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , s = 0.

Thus each fiber is antiinvariant of M± . The structure f satisfies f3 − f = 0 . Moreover, we obtain

T∂4∂4 = −e−x1∂1, ∇∂4∂4 = ex1∂4,

H∇∂4∂1 = 0, T∂4∂1 = −ex1∂4,

H∇∂4∂2 = ex1∂2 − e−x1∂3, T∂4∂2 = 0,

H∇∂4∂3 = −ex1∂2, T∂4∂3 = 0,

A∂1∂4 = 0, V∇∂1∂4 = −ex1∂4,

A∂2∂4 = ex1∂2 − e−x1∂3, V∇∂2∂4 = 0,

A∂3∂4 = −ex1∂2, V∇∂3∂4 = 0,

H∇∂1∂1 = H∇∂3∂3 = ex1∂1, A∂1∂1 = A∂3∂3 = 0,

H∇∂1∂2 = H∇∂2∂1 = −ex1∂2, A∂1∂2 = A∂2∂1 = 0,

H∇∂1∂3 = H∇∂3∂1 = ex1∂3, A∂1∂3 = A∂3∂1 = 0,

H∇∂2∂2 = −e−x1∂1, A∂2∂2 = ex1∂4,

H∇∂2
∂3 = H∇∂3

∂2 = 0, A∂2
∂3 = A∂3

∂2 = −ex1∂4.

Therefore we find TU (tV ) = h(TUV ) and AX(tU) = h(AXU) .

Example 3.11 We denote subsets of R2 by

B+ = { (x1, x2) |x1 > 0 }, B− = { (x1, x2) |x1 < 0 }

and we set

gB =

(
−1 + ex1 0

0 e−x1

)
.
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If we put

∇̂∂1∗∂1∗ = ex1∂1∗, ∇̂∂1∗∂2∗ = ∇̂∂2∗∂1∗ = −ex1∂2∗, ∇̂∂2∗∂2∗ = −e−x1∂1∗

and

∇̂∗
∂1∗

∂1∗ = −ex1(ex1 − 2)(ex1 − 1)−1 ∂1∗, ∇̂∗
∂1∗

∂2∗ = ∇̂∗
∂2∗

∂1∗ = (ex1 − 1) ∂2∗,

∇̂∗
∂2∗

∂2∗ = (ex1 − 1)−1∂1∗,

then (B+, ∇̂, gB) (resp. (B−, ∇̂, gB)) is a statistical manifold and so is (B+, ∇̂∗, gB) (resp. (B−, ∇̂∗, gB)),
where ∂i∗ = ∂/∂xi (i = 1, 2) . Let (M+,∇, g, F ) and (M−,∇, g, F ) be locally product-like statistical manifolds

of Example 2.4. We define a locally product-like statistical submersion π : (M±,∇, g, F ) → (B±, ∇̂, gB) by

π(x1, x2, x3, x4) = (x1, x2).

For ∂1, ∂2 ∈ H(M±) and ∂3, ∂4 ∈ V(M±) , it is easy to see that

f = 0, h =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 , t =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , s = 0.

Thus each fiber is antiinvariant of M± . Moreover we get

T∂3
∂3 = ex1∂1, ∇∂3

∂3 = 0,

T∂3
∂4 = T∂4

∂3 = −ex1∂2, ∇∂3
∂4 = ∇∂4

∂3 = 0,

T∂4
∂4 = −e−x1∂1, ∇∂4

∂4 = ex1∂4,

H∇∂3
∂1 = 0, T∂3

∂1 = ex1∂3,

H∇∂3
∂2 = H∇∂4

∂1 = 0, T∂3
∂2 = T∂4

∂1 = −ex1∂4,

H∇∂4
∂2 = ex1∂2, T∂4

∂2 = −e−x1∂3,

A∂1
∂3 = 0, V∇∂1

∂3 = ex1∂3,

A∂1
∂4 = A∂2

∂3 = 0, V∇∂1
∂4 = V∇∂2

∂3 = −ex1∂4,

A∂2
∂4 = ex1∂2, V∇∂2

∂4 = −e−x1∂3,

H∇∂1
∂1 = ex1∂1, A∂1

∂1 = 0,

H∇∂1
∂2 = H∇∂2

∂1 = −ex1∂2, A∂1
∂2 = A∂2

∂1 = 0,

H∇∂2
∂2 = −e−x1∂1, A∂2

∂2 = ex1∂4.

Therefore each fiber is flat. We find TU (hX) = t(TUX) , AX(hY ) = t(AXY ) , TU (tV ) = h(TUV ) , AX(tU) =

h(AXU) , V∇h = 0 and H∇t = 0 .

Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion. If the curvature with
respect to the affine connection ∇ of the total space M satisfies the condition (2.9), then we find from Theorem
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2.9

g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′)

= c [ g(V,W )g(U,W ′)− g(U,W )g(V,W ′) + g(V, sW )g(sU,W ′)− g(U, sW )g(sV,W ′)

+{ g(sU, V )− g(U, sV )}g(sW,W ′) ], (3.9)

g((∇UT )V W,X)− g((∇V T )UW,X)

= c [ g(V, sW )g(tU,X)− g(U, sW )g(tV,X) + { g(sU, V )− g(U, sV )}g(tW,X) ], (3.10)

g((∇UT )V X,W )− g((∇V T )UX,W )

= c [ g(V, hX)g(sU,W )− g(U, hX)g(sV,W ) + { g(sU, V )− g(U, sV )}g(hX,W ) ], (3.11)

g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )− g(TV X,T ∗

UY )− g(AXU,A∗
Y V ) + g(AXV,A∗

Y U)

= c [ g(V, hX)g(tU, Y )− g(U, hX)g(tV, Y ) + { g(sU, V )− g(U, sV )}g(fX, Y ) ], (3.12)

g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW ) + g(T ∗

UW,AXV )

= c [ g(U, sV )g(hX,W )− g(X, tV )g(sU,W ) + { g(hX,U)− g(X, tU)}g(sV,W ) ], (3.13)

g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y )

= c [ g(U, V )g(X,Y ) + g(U, sV )g(fX, Y )− g(X, tV )g(tU, Y ) + {g(hX,U)− g(X, tU)}g(tV, Y )], (3.14)

g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V )

= c [ g(X,Y )g(U, V ) + g(U, hY )g(hX, V )− g(X, fY )g(sU, V ) + { g(hX,U)− g(X, tU)}g(hY, V ) ], (3.15)

g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ)

= c [ g(U, hY )g(fX,Z)− g(X, fY )g(tU, Z) + { g(hX,U)− g(X, tU)}g(fY, Z) ], (3.16)

g([V∇X ,V∇Y ]U, V )− g(∇[X,Y ]U, V ) + g(AXU,A∗
Y V )− g(AY U,A

∗
XV )

= c [ g(Y, tU)g(hX, V )− g(X, tU)g(hY, V ) + { g(fX, Y )− g(X, fY )}g(sU, V ) ], (3.17)

g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY )

= c [ g(Y, tU)g(fX,Z)− g(X, tU)g(fY, Z) + { g(fX, Y )− g(X, fY )}g(tU, Z) ], (3.18)

g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ) (3.19)

= c [ g(Y, fZ)g(hX,U)− g(X, fZ)g(hY, U) + { g(fX, Y )− g(X, fY )}g(hZ,U) ], (3.20)

g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′)

= c [ g(Y, Z)g(X,Z ′)− g(X,Z)g(Y, Z ′) + g(Y, fZ)g(fX,Z ′)− g(X, fZ)g(fY, Z ′)

+{ g(fX, Y )− g(X, fY )}g(fZ,Z ′) ] (3.21)

for X, Y, Z, Z ′ ∈ H(M) and U, V, W, W ′ ∈ V(M) . In the case of the locally product-like statistical submersion
with isometric fiber, that is, T = 0 , we get from (3.10)

c [ g(V, sW )g(tU,X)− g(U, sW )g(tV,X) + { g(sU, V )− g(U, sV )}g(tW,X) ] = 0,

which implies that c = 0 or

t [ g(V, sW )U − g(U, sW )V + { g(sU, V )− g(U, sV )}W ] = 0.
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We assume that g(V, sW )U −g(U, sW )V +{ g(sU, V )−g(U, sV )}W = 0 , which yields that s = 0 (dimM > 2) .
Thus we get t = 0 if s ̸= 0 . Hence we have the following theorem.

Theorem 3.12 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion with isometric
fiber. If the total space satisfies the condition (2.9), then

(1) the total space is flat, or

(2) each fiber is F -invariant of M , or

(3) each fiber is antiinvariant of M .

Corollary 3.13 Let π : (M,∇∗, g, F ∗) → (B, ∇̂∗, gB) be a locally product-like statistical submersion with
isometric fiber. If the total space satisfies the condition (2.10), then

(1) the total space is flat, or

(2) each fiber is F ∗ -invariant of M , or

(3) each fiber is antiinvariant of M .

Example 3.14 Let π : (M±,∇, g, F ) → (B±, ∇̂, gB) be a locally product-like statistical submersion of Example
3.8. Then π is with isometric fiber.

4. F -invariant locally product-like statistical submersions

The locally product-like statistical submersion π : (M,∇, g, F ) → (B, ∇̂, gB) is called an F -invariant locally
product-like statistical submersion if M is an F -invariant submanifold of M , that is, F (Vp(M)) ⊂ Vp(M) (see
(1) in Lemma 3.1). Thus we find f2 = I, hf + sh = 0 and s2 = I . From Lemmas 3.5, 3.6 and Corollary 3.7,
we find the following lemma.

Lemma 4.1 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an F -invariant locally product-like statistical submersion, then
we get

TUV = f(TU (sV )),

∇UV = h(TU (sV )) + s(∇U (sV )),

H∇UX = f{H∇U (fX) + TU (hX)},

TUX = h{H∇U (fX) + TU (hX)}+ s{∇U (hX) + TU (fX)},

AXU = f(AX(sU)),

V∇XU = h(AX(sU)) + s(V∇X(sU)),

H∇XY = f{H∇X(fY ) +AX(hY )},

AXY = h{H∇X(fY ) +AX(hY )}+ s{V∇X(hY ) +AX(fY )}.

861



TAKANO et al./Turk J Math

Lemma 4.2 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an F -invariant locally product-like statistical submersion, then
we obtain

(∇Us)V = h(TUV ),

(∇Uh)X + TU (fX) = s(TUX),

(H∇Uf)X + TU (hX) = 0,

(V∇Xs)U = h(AXU),

(V∇Xh)Y +AX(fY ) = s(AXY ),

(H∇Xf)Y +AX(hY ) = 0.

Corollary 4.3 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an F -invariant locally product-like statistical submersion.
We find

(1) H∇f = 0 if and only if TU (hX) = 0 and AX(hY ) = 0 .

(2) V∇h = 0 if and only if TUX = s(TU (fX)) and AXY = s(AX(fY )) .

(3) V∇s = 0 if and only if h(TUV ) = 0 and h(AXU) = 0 .

We assume that H∇f = 0 . We put V = hZ in (3.13). Then we obtain from (2.11), Lemma 2.7 and (1)
in Corollary 4.3

−g(TU ((V∇Xh)Z), Y ) + g(AX((∇Uh)Z), Y ) = c { g(U, hZ)g(X,Y ) + g(U, shZ)g(fX, Y )},

which implies that c = 0 or g(X,Y )hZ + g(fX, Y )shZ = 0 if V∇h = 0 . From the second equation, we find
h = 0 if tr f ̸= ±n . Hence we have the following theorem.

Theorem 4.4 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an F -invariant locally product-like statistical submersion
which the total space satisfies the condition (2.9). If H∇f = 0 and V∇h = 0 , then we get

(1) the total space is flat, or

(2) h = 0 if tr f ̸= ±n .

Corollary 4.5 Let π : (M,∇∗, g, F ∗) → (B, ∇̂∗, gB) be an F ∗ -invariant locally product-like statistical submer-
sion which the total space satisfies the condition (2.10) . If H∇∗f∗ = 0 and V∇∗h∗ = 0 , then the total space is
flat or h∗ = 0 if tr f ̸= ±n .

Example 4.6 Let π : (M±,∇, g, F ) → (B±, ∇̂, gB) be a locally product-like statistical submersion of Example
3.9. Then π is F -invariant.
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5. F ∗ -invariant locally product-like statistical submersions

Next, the locally product-like statistical submersion π : (M,∇, g, F ) → (B, ∇̂, gB) is called an F ∗ -invariant
locally product-like statistical submersion if M is an F ∗ -invariant submanifold of M , that is, F ∗(Vp(M)) ⊂
Vp(M) (see (2) in Lemma 3.1 ). Thus we find f2 = I, ft + ts = 0 and s2 = I . From Lemmas 3.5, 3.6 and
Corollary 3.7, we find the following lemma.

Lemma 5.1 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an F ∗ -invariant locally product-like statistical submersion,
then we get

TUV = f{H∇U (tV ) + TU (sV )}+ t{∇U (sV ) + TU (tV )},

∇UV = s{∇U (sV ) + TU (tV )},

H∇UX = f(H∇U (fX)) + t(TU (fX)),

TUX = s(TU (fX)),

AXU = f{H∇X(tU) +AX(sU)}+ t{V∇X(sU) +AX(tU)},

V∇XU = s{V∇X(sU) +AX(tU)},

H∇XY = f(H∇X(fY )) + t(AX(fY )),

AXY = s(AX(fY )).

Lemma 5.2 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an F ∗ -invariant locally product-like statistical submersion,
then we obtain

(∇Us)V + TU (tV ) = 0,

(H∇U t)V + TU (sV ) = f(TUV ),

(H∇Uf)X = t(TUX),

(V∇Xs)U +AX(tU) = 0,

(H∇Xt)U +AX(sU) = f(AXU),

(H∇Xf)Y = t(AXY ).

Corollary 5.3 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an F ∗ -invariant locally product-like statistical submersion.
We find

(1) H∇f = 0 if and only if t(TUX) = 0 and t(AXY ) = 0 .

(2) H∇t = 0 if and only if TUV = f(TU (sV )) and AXU = f(AX(sU)) .

(3) V∇s = 0 if and only if TU (tV ) = 0 and AX(tU) = 0 .

We assume that V∇s = 0 . We put Y = tW in (3.15). Then we obtain from (2.11), Lemma 2.7 and (3)
in Corollary 5.3

−g(TU ((H∇Xt)W ), V ) + g(AX((H∇U t)W ), V ) = c { g(X, tW )g(U, V )− g(X, ftW )g(sU, V )},
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which implies that c = 0 or g(X, tW )g(U, V )− g(X, ftW )g(sU, V ) = 0 if H∇t = 0 . From the second equation,
we find t = 0 . Hence we have the following theorem.

Theorem 5.4 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an F ∗ -invariant locally product-like statistical submersion
which the total space satisfies the condition (2.9). If H∇t = 0 and V∇s = 0 , then we get

(1) the total space is flat, or

(2) t = 0 .

Corollary 5.5 Let π : (M,∇∗, g, F ∗) → (B, ∇̂∗, gB) be an F -invariant locally product-like statistical submer-
sion which the total space satisfies the condition (2.10). If H∇∗t∗ = 0 and V∇∗s∗ = 0 , then the total space is
flat or t∗ = 0

Example 5.6 Let π : (M±,∇, g, F ) → (B±, ∇̂, gB) be a locally product-like statistical submersion of Example
3.9. Then π is F ∗ -invariant.

6. Antiinvariant locally product-like statistical submersions

The locally product-like statistical submersion π : (M,∇, g, F ) → (B, ∇̂, gB) is called an antiinvariant locally
product-like statistical submersion if M is an antiinvariant submanifold of M , that is, F (Vp(M)) ⊂ Hp(M)

(see (3) in Lemma 3.1 ). Thus we find f2 = I − th, hf = 0, ft = 0 and ht = I . From Lemmas 3.5, 3.6 and
Corollary 3.7, we find the following lemma.

Lemma 6.1 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an antiinvariant locally product-like statistical submersion,
then we get

TUV = f(H∇U (tV )) + t(TU (tV )),

∇UV = h(H∇U (tV )),

H∇UX = f{H∇U (fX) + TU (hX)}+ t{∇U (hX) + TU (fX)},

TUX = h{H∇U (fX) + TU (hX)},

AXU = f(H∇X(tU)) + t(AX(tU)),

V∇XU = h(H∇X(tU)),

H∇XY = f{H∇X(fY ) +AX(hY )}+ t{V∇X(hY ) +AX(fY )},

AXY = h{H∇X(fY ) +AX(hY )}.

Lemma 6.2 If π : (M,∇, g, F ) → (B, ∇̂, gB) is an antiinvariant locally product-like statistical submersion,
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then we obtain

TUV = t(TU (tV )),

(H∇U t)V = f(TUV ),

(∇Uh)X + TU (fX) = 0,

(H∇Uf)X + TU (hX) = t(TUX),

AXU = t(AX(tU)),

(H∇Xt)U = f(AXU),

(V∇Xh)Y +AX(fY ) = 0,

(H∇Xf)Y +AX(hY ) = t(AXY ).

Corollary 6.3 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an antiinvariant locally product-like statistical submersion.
We find

(1) H∇f = 0 if and only if TUX = h(TU (hX)) and AXY = h(AX(hY )) .

(2) V∇h = 0 if and only if TU (fX) = 0 and AX(fY ) = 0 .

(3) H∇t = 0 if and only if f(TUV ) = 0 and f(AXU) = 0 .

From Lemma 6.2 and Corollary 6.3, we have the following corollary.

Corollary 6.4 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an antiinvariant locally product-like statistical submersion.
If H∇f = 0 , then we get

f(TUV ) = 0, f(AXU) = 0, (6.1)

TU (fX) = 0, AX(fY ) = 0. (6.2)

We assume that H∇f = 0 . If we put Z = fZ in (3.18), then we obtain from (6.2)

c { g(Y, f2Z)g(hX,U)− g(X, f2Z)g(hY, U)} = 0,

which implies that c = 0 or h [ g(Y, f2Z)X − g(X, f2Z)Y ] = 0 . Because of h ̸= 0 , we find

g(Y, f2Z)X − g(X, f2Z)Y = 0.

Thus we obtain f2 = 0 (n ≥ 2) , which yields from (3.3) that f = 0 . Hence we have the following theorem.

Theorem 6.5 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be an antiinvariant locally product-like statistical submersion.
If the total space satisfies the condition (2.9) and H∇f = 0 , then we get

(1) the total space is flat, or

(2) f = 0 if n ≥ 2 .
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Corollary 6.6 Let π : (M,∇∗, g, F ∗) → (B, ∇̂∗, gB) be an antiinvariant locally product-like statistical submer-
sion. If the total space satisfies the condition (2.10) and H∇∗f∗ = 0 , then the total space is flat or f∗ = 0 if
n ≥ 2 .

Example 6.7 Let π : (M±,∇, g, F ) → (B±, ∇̂, gB) be a locally product-like statistical submersion of Examples
3.8, 3.10 and 3.11. Then π is antiinvariant.

7. Locally product-like statistical submersions satisfying f = 0

Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion satisfying f = 0 , that is,
F (Hp(M)) ⊂ Vp(M) (see (4) in Lemma 3.1). Thus we find th = I, sh = 0, ts = 0 and s2 = I − ht . From
Lemmas 3.5, 3.6 and Corollary 3.7, we find the following lemma.

Lemma 7.1 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion satisfying f = 0 ,
then we get

TUV = t{∇U (sV ) + TU (tV )},

∇UV = h{H∇U (tV ) + TU (sV )}+ s{∇U (sV ) + TU (tV )},

H∇UX = t(∇U (hX)),

TUX = h(TU (hX)) + s(∇U (hX)),

AXU = t{V∇X(sU) +AX(tU)},

V∇XU = h{H∇X(tU) +AX(sU)}+ s{V∇X(sU) +AX(tU)},

H∇XY = t(V∇X(hY )),

AXY = h(AX(hY )) + s(V∇X(hY )).

Lemma 7.2 If π : (M,∇, g, F ) → (B, ∇̂, gB) is a locally product-like statistical submersion satisfying f = 0 ,
then we obtain

(∇Us)V + TU (tV ) = h(TUV ),

(H∇U t)V + TU (sV ) = 0,

(∇Uh)X = s(TUX),

TU (hX) = t(TUX),

(V∇Xs)U +AX(tU) = h(AXU),

(H∇Xt)U +AX(sU) = 0,

(V∇Xh)Y = s(AXY ),

AX(hY ) = t(AXY ).

Corollary 7.3 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion satisfying
f = 0 . We find
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(1) V∇h = 0 if and only if s(TUX) = 0 and s(AXY ) = 0 .

(2) H∇t = 0 if and only if TU (sV ) = 0 and AX(sU) = 0 .

(3) V∇s = 0 if and only if TUX = h(TU (hX)) and AXY = h(AX(hY )) .

We assume that V∇s = 0 . It is easy to see from (3) in Corollary 7.3 that TU (sV ) = 0 and AX(sU) = 0 .
If we put V = sV in (3.13), then we obtain c g(U, sV )g(X,Y ) = 0 from (2.11) and Lemma 2.7, which implies
that c = 0 or s = 0 . Hence we have the following theorem.

Theorem 7.4 Let π : (M,∇, g, F ) → (B, ∇̂, gB) be a locally product-like statistical submersion satisfying
f = 0 . If the total space satisfies the condition (2.9) and V∇s = 0 , then we get

(1) the total space is flat, or

(2) s = 0 .

Corollary 7.5 Let π : (M,∇∗, g, F ∗) → (B, ∇̂∗, gB) be a locally product-like statistical submersion satisfying
f∗ = 0 . If the total space satisfies the condition (2.10) and V∇∗s∗ = 0 , then the total space is flat or s∗ = 0 .

Example 7.6 Let π : (M±,∇, g, F ) → (B±, ∇̂, gB) be a locally product-like statistical submersion of Example
3.11. Then π satisfies f = 0 .

Acknowledgment
The authors would like to thank the anonymous reviewers for their valuable and constructive comments.

References

[1] Abe N, Hasegawa K. An affine submersion with horizontal distribution and its applications. Differential Geometry
and its Applications 2001; 14 (3): 235-250. https://doi.org/10.1016/S0926-2245(01)00034-1

[2] Amari S. Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics. NY, USA: Springer-Verlag
Berlin Heidelberg, 1985.

[3] Amari S, Nagaoka H. Methods of Information Geometry. USA: AMS & Oxford University Press, 2000.

[4] Altafini C. Redundant robotic chains on Riemannian submersions. IEEE Transactions on Robotics and Automation
2004; 20 (2): 335–340. https://doi.org/10.1109/TRA.2004.824636

[5] Aydin ME, Mihai A, Mihai I. Some inequalities on submanifolds in statistical manifolds of constant curvature.
Filomat 2015; 29 (3): 465-477. https://doi.org/10.2298/FIL1503465A

[6] Aytimur H, Özgür C. Inequalities for submanifolds of Sasaki-like statistical manifolds. Turkish Journal of Mathe-
matics 2018; 42(6): 3149-3163. https://doi.org/10.3906/mat-1806-19

[7] Aytimur H, Özgür C. On cosymplectic-like statistical submersions. Mediterranean Journal of Mathematics 2019; 16
(3): Article number: 70. https://doi.org/10.1007/s00009-019-1332-z

[8] Aytimur H, Kon M, Mihai A, Özgür C. Takano K. Chen inequalities for statistical submanifolds of Kähler-like
statistical manifolds. Mathematics 2019; 7 (12): 1202. https://doi.org/10.3390/math7121202

[9] Besse, AL. Einstein manifolds. Springer-Verlag Berlin Heidelberg, 1987.

867



TAKANO et al./Turk J Math

[10] Bhattacharya R, Patrangenaru V. Nonparametic estimation of location and dispersion on Riemannian man-
ifolds.Journal of Statistical Planning and Inference 2002; 108 (1-2); 23–35. https://doi.org/10.1016/S0378-
3758(02)00268-9

[11] Erkan E, Takano K, Gülbahar M. Locally product-like statistical Riemannian manifolds and their hypersurfaces,
https://doi.org/10.48550/arXiv.2212.02862

[12] Falcitelli M, Pastore AM, Ianus S, Visinescu M. Some applications of Riemannian submersions in physics, Romanian
Journal of Physics 2003; 48 (5-6): 627-639.

[13] Furuhata H, Hasegawa I. Submanifold theorey in holomorphic statistical manifolds, Geometry of Cauchy-Riemann
Submanifolds. Singapore: Springer, 2016, pp. 179-215.

[14] Furuhata H. Hypersurfaces in statistical manifolds. Differential Geometry and its Applications 2009; 27 (3): 420-429.
https://doi.org/10.1016/j.difgeo.2008.10.019

[15] Furuhata H. Statistical hypersurfaces in the space of Hessian curvature zero. Differential Geometry and its Appli-
cations 2011; 29 Suppl.1 : S86-S90. https://doi.org/10.1016/j.difgeo.2011.04.012

[16] Gray A. Pseudo-Riemannian almost product manifolds and submersions. Journal of Mathematics and Mechanics
1967; 16 (7): 715-737.

[17] Kazan S, Takano K. Anti-invariant holomorphic statistical submersions. 2022.
http://dx.doi.org/10.48550/arXiv.2209.03627

[18] Kennedy LC. Some results on Einstein metrics on two classes of quotient manifolds. PhD, University of California,
United States of America, 2003.

[19] Küpeli Erken I, Murathan C, Yazla A. Almost cosympletic statistical manifolds. Quaestiones Mathematicae 2020;
43 (2): 265-282. https://doi.org/10.2989/16073606.2019.1576069

[20] O’Neill B. The fundamental equations of a submersion. Michigan Mathematical Journal 1966; 13 (4): 459-469.
https://doi.org/10.1307/mmj/1028999604

[21] O’Neill B. Semi-Riemannian Geometry with Application to Relativity. New York, USA: Academic Press, 1983.

[22] Mémoli F, Sapiro G, Thompson P, Implicit brain imaging. Neuro Image 2004; 23 Supp. 1: S179-S188.
https://doi.org/10.1016/j.neuroimage.2004.07.072

[23] Noguchi M. Geometry of statistical manifolds. Differential Geometry and its Applications 1992; 2: 197-222.

[24] Şahin B. Anti-invariant Riemannian submersions from almost Hermitian manifolds. Central European Journal of
Mathematics 2010; 8 (3): 437-447. https://doi.org/10.2478/s11533-010-0023-6

[25] Şahin B. Riemannian Submersions from almost Hermitian manifolds. Taiwanese Journal of Mathematics 2013; 17
(2): 629-659. https://doi.org/10.11650/tjm.17.2013.2191

[26] Şahin B. Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Academic
Press, 2017.

[27] Siddiqui AN, Murathan C, Siddiqi MD. The Chen’s first inequality for submanifolds of statistical warped product
manifolds. Journal of Geometry and Physics 2021; 169: 104344. https://doi.org/10.1016/j.geomphys.2021.104344

[28] Siddiqui AN, Al-Solamy FR, Shahid MH, Mihai I. On CR-statistical submanifolds of holomorphic statistical
manifolds. Filomat 2021; 35 (11): 3571-3584. https://doi.org/10.2298/FIL2111571S

[29] Siddiqui AN, Chen B-Y, Siddiqi, MD. Chen inequalities for statistical submersions between statisti-
cal manifolds. International Journal of Geometric Methods in Modern Physics 2021; 18 (04): 2150049.
https://doi.org/10.1142/S0219887821500493

[30] Takano K. Statistical manifolds with almost complex structures and its statistical submersions. Tensor New Series
2004; 65: 128-142.

868



TAKANO et al./Turk J Math

[31] Takano K. Statistical manifolds with almost contact structures and its statistical submersions. Journal of Geometry
2006; 85 (1): 171-187. https://doi.org/10.1007/s00022-006-0052-2

[32] Vîlcu GE. Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bulletin
des Sciences Mathématiques 2021; 171: 103018. https://doi.org/10.1016/j.bulsci.2021.103018

[33] Wang H, Ziller W. Einstein metrics on principal torus bundles. Journal of Differential Geometry 1990; 31 (11):
215-248. https://doi.org/10.4310/jdg/1214444095

[34] Watson B. Almost Hermitian submersion. Journal of Differential Geometry 1976; 11 (1): 147-165.
https://doi.org/0.4310/jdg/1214433303

[35] Yano K, Kon M. Structures on manifolds. World Scientific, 1984.

[36] Zhao H, Kelly AR, Zhou J, Lu J, Yang YY. Graph attribute embedding via Riemannian submersion learning.
Computer Vision and Image Understanding 2011; 115 (7): 962-975. https://doi.org/10.1016/j.cviu.2010.12.005

869


	Introduction
	Preliminaries
	Locally product-like statistical submersions
	F-invariant locally product-like statistical submersions
	F-invariant locally product-like statistical submersions
	Antiinvariant locally product-like statistical submersions
	Locally product-like statistical submersions satisfying f=0

