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Abstract: This paper studies oscillatory properties of solutions of a dynamic equation on the set of time scales Tλ

provided that the graininess function µλ approaches zero as λ → 0 . We derived the conditions under which oscillation
of solutions of differential equations implies that of solutions of the corresponding equations defined on time scales with
the same initial data, and vice versa.
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1. Introduction
The theory of differential (dynamic) equations on time scales was introduced by Hilger in [16] as a way to unify
the fields of discrete and continuous dynamical systems. This theory was further developed in [5, 6]. Analogues
of classical results were obtained in the theory of ordinary differential equations, the optimal control theory
[9, 11, 12], stochastic systems on time scales [7], etc. Some interesting results on the topological structure of
Cantor-type time scales were obtained in [21]. We are especially interested in the behavior of the solutions of
dynamic equations that are defined on a family of time scales Tλ when the graininess function µλ goes to zero
as λ → 0 . In such a case, the intervals of the time scale [t0, t1]λ = [t0, t1] ∩ Tλ approach [t0, t1] (for instance,
in the Hausdorff metric). The question naturally arises as to whether solutions of equations on time scales and
the corresponding differential equations share the same properties.

In this paper, we study the relation between the oscillatory behavior of solutions of second-order linear
differential equations and solutions of corresponding equations on time scales. We show that if the graini-
ness function is small enough, oscillation of solutions of a differential equation is equivalent to that of the
corresponding equation on a time scale.

Oscillatory properties of solutions of differential equations are essential in various areas since the time
of Sturm: partial differential equations (Sturm-Liouville problems; see, for example, [14]), spectral theory [24],
quantum mechanics [15], etc. The fundamentals of Sturm’s theory on oscillation of solutions of second-order
linear differential equations are provided in numerous classic textbooks; see, for instance, [22]. The basics of
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the analogous theory for equations on time scales are well presented in the monographs [1, 2] and papers [3, 4].
The issues considered in this paper were previously studied in [8, 23] for a special case of Eulerian time scales
T = nh , n ∈ N , h > 0 , i.e. for difference equations. In the present work, we provide stronger results.

Firstly, in the aforementioned papers, the time scales are discrete: all points on scales are isolated, and
the ∆ -derivative turns into a difference ratio. Here, we consider general time scales that allow the presence of
limit points as well, which greatly complicates the study.

Secondly, the main result of [8, 23] generally means the following: if a solution of a differential equation has
at least three zeros on an interval, then the solution of the corresponding difference equation with a sufficiently
small step oscillates on the interval (has at least two generalized zeros), and vice versa. In the present paper,
we obtain a more accurate result: for a sufficiently small graininess function µλ , the numbers of zeros of the
corresponding solutions of differential and dynamic equations on the interval coincide, and these zeros approach
each other as µλ → 0 .

We note that the issues of preserving various properties of solutions in the transition from differential to
dynamical systems and vice versa were considered earlier in the following papers. In [18, 19], the connection
between the existence of solutions of differential equations and dynamical equations bounded on the axis is
studied. The paper [20] considers the optimal control problems for differential equations and corresponding
dynamical equations on time scales.

The rest of this paper is organized as follows. Section 2.1 provides some basic concepts of the theory of
time scales. In Section 2.2, we state the problem and obtain some auxiliary results. We state the main results
and prove them in Section 2.3. Section 2.4 considers a weakly nonlinear case. A numerical illustration of the
results obtained is given on the example of the Airy equation in Section 2.5.

2. Auxiliary and main results
2.1. Basic concepts of the theory of time scales

We present some basic notions of the theory of time scales [5].

• A time scale T is an arbitrary nonempty closed subset of the real axis.

• For every set A ⊂ R , we define AT := A ∩ T .

• For a time scale T , the forward jump operator σ : T → T is defined by σ(t) := inf{s ∈ T|s > t}, and the
backward jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T|s < t}.

Hereinafter we assume inf ∅ := supT and sup ∅ := inf T .

• The graininess function µ : T → [0,∞) is defined as µ(t) := σ(t)− t .

• A point t ∈ T is called left-dense (LD) (left-scattered (LS), right-dense (RD), or right-scattered (RS)), if
ρ(t) = t (ρ(t) < t , σ(t) = t , or σ(t) > t , respectively).

• If T has a left-scattered maximum M , then we define Tk = T \ {M} ; otherwise, Tk = T .

• A function f : T → Rd is called ∆ -differentiable at t ∈ Tk if the finite limit

f∆(t) = lim
s→t

f(σ(t))− f(t)

σ − t
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exists in Rd , and the number f∆(t) is called the ∆ -derivative at the point t .

We cite some known results [5]:

(a) If t ∈ Tk is a right-dense point of a time scale T , then f is ∆ -differentiable at t iff the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists in Rd .

(b) If t ∈ Tk is a right-scattered point of a time scale T and f is continuous at t , then f is ∆ -differentiable
at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

2.2. Problem statement and auxiliary results

We consider the second-order linear equation on the interval [0, a]

ẍ+ p(t)x = 0, (2.1)

with p ∈ C1([0, a]) , and the corresponding dynamic equation defined in the set of time scales Tλ

x∆∆
λ + p(t)xλ = 0, (2.2)

where t ∈ Tλ , λ ∈ Λ ⊂ R , λ = 0 is a limit point of the set Λ , xλ : Tλ → Rd , and x∆λ (t) is the ∆ -derivative of
xλ(t) in Tλ .

Let µλ := supt∈Tλ
µλ(t) , where µλ : Tλ → [0,∞) is the graininess function. If µλ → 0 as λ → 0 , then

Tλ approaches the continuous time scale T0 = [0, a] .
Since p(t) is continuous on [0, a] , equation (2.1) with arbitrary initial data at t0 ∈ [0, a] has a unique

solution on [0, a] (see [22]).

Definition 2.1 A solution xλ(t) of equation (2.2) has a generalized zero at t ∈ Tλ , if one of the following
conditions holds:

(i) xλ(t) = 0 ;

(ii) if t is right-scattered, then xλ(t) · xλ (σ(t)) < 0 .

Remark 2.2 In monograph [6], a generalized zero is defined in the following way: a solution x(t) of a dynamic
equation has a generalized zero at a point t if x(t) = 0 , or x(ρ(t))x(t) < 0 provided t is left-scattered. However,
the definition via the forward jump operator is more suitable for our reasoning.

Definition 2.3 A solution xλ(t) is called oscillatory on an interval if it has at least two generalized zeros on
this interval.
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Definition 2.4 The solutions x(t) and xλ of equations (2.1) and (2.2), respectively, are called corresponding
solutions if x(t0) = xλ(t0) = x0 and ẋ(t0) = ẋ0 .

In what follows, we will need the following result on corresponding solutions.
Let us consider the system of differential equations

dx

dt
= X(t, x), t ∈ [0, a], (2.3)

where x ∈ D, D ⊂ Rd is a domain in the space Rd , and the corresponding system of equations defined on Tλ

x∆λ = X(t, xλ). (2.4)

.
Here system (2.3) corresponding to differential equation (2.1) is of the form

{
dx
dt = y,
dy
dt = −p(t)x,

(2.5)

and system (2.4) corresponding to dynamic equation (2.2) is of the form

{
∆x
∆t = yλ,
∆y
∆t = −p(t)xλ.

(2.6)

Assume that X(t, x) is continuously differentiable and bounded with its partial derivatives, i.e. there
exists C > 0 such that

|X(t, x)|+
∣∣∣∣∂X(t, x)

∂t

∣∣∣∣+ ∥∥∥∥∂X(t, x)

∂x

∥∥∥∥ ≤ C (2.7)

for t ∈ Tλ and x ∈ D . Here ∂X
∂x is the corresponding Jacobian matrix, | · | is the Euclidian norm of a vector,

and || · || is the norm of a matrix.
Let t0 ∈ Tλ , and let x(t) and xλ(t) be solutions of (2.1) and (2.2), and the respective systems (2.3) on

[t0, t0 + T ] and (2.4) on [t0, t0 + T ]Tλ
.

Lemma 2.5 [19] If xλ and x(t) are the corresponding solutions of (2.4) and (2.3), then the inequality

|x(t)− xλ(t)| ≤ µ(λ)K(T ) (2.8)

holds for t ∈ [t0, t0 + T ]Tλ
. Here K is a constant depending on T and µ(λ) = supt∈[t0,t0+T ]Tλ

µλ(t) .

Since the matrix X of system (2.4) is rd-continuous, bounded, regressive and Lipschitz continuous for
sufficiently small µλ , it follows from Theorem 8.16 in [5] that the solution of the Cauchy problem x(s) = x0 ∈
D, s ∈ Tλ, can be continued both to the right and to the left of the point t0 . Hence, the matrix exponential eX
is nonsingular, and solutions of the system can be continued backward to the point t0 = 0 . Thus, all solutions
are determined by the initial data at t0 = 0 .
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Below we present some other necessary statements. In the following lemmas, we consider solutions of
equation (2.1) with initial data x(0) = x0 , ẋ(0) = x1 , where

x20 + x21 = 1. (2.9)

Let us denote this sphere by S . Let x(t) be such a solution, and let tk be its zeros on (0, a) .

Lemma 2.6 There exists a number ν > 0 such that for any zero tk of any solution x(t) of equation (2.1) with
initial condition (2.9) the following inequality holds:

|ẋ(tk)| ≥ ν. (2.10)

Proof We argue by contradiction. Let us assume that the statement of Lemma is not true. Then there
exists a sequence νn → 0 such that for every n there exists a solution xn(t) with initial data xn0 = xn(0) ,
xn1 = ẋn(0) , that has at least one zero tn such that xn(tn) = 0 , |ẋn(tn)| ≤ νn . Since S is compact, there
exist converging sequences xn0 → x0 , xn1 → x1 , where x0, x1 ∈ S .

Let us consider a solution x∗(t) of equation (2.1) with initial data x0, x1 and zeros tn → t∗ ∈ [0, a] . Due
to continuous dependence of solutions on initial data, we have

supt∈[0,a] (|xn(t)− x∗(t)|+ |ẋn(t)− ẋ∗(t)|) → 0, n→ ∞. (2.11)

Then
|xn(tn)− x∗(t∗)| ≤ |xn(tn)− x∗(tn)|+ |x∗(tn)− x∗(t∗)| → 0, n→ ∞, (2.12)

which implies x∗(t∗) = 0 .
In a similar way, we obtain |ẋn(tn)− ẋ∗(t∗)| → 0 , but since ẋn(tn) → 0, n→ ∞ , we have ẋ∗(t∗) = 0 .

Hence, x∗(t) is a trivial solution of equation (2.1), which contradicts the assumption.
We thus obtain

|ẋ(tk)| ≥ ν.

2

Lemma 2.7 There exists an ε-neighborhood of zeros tk of all solutions x(t) of equation (2.1) with initial data
(2.9) such that for all t ∈ [tk − ε, tk + ε] the following inequality holds:

|ẋ(t)| > 0. (2.13)

Proof Let us assume the contrary. Then there exists a sequence {εn} such that εn → 0 as n → ∞ and a
sequence of solutions xn(t) of (2.1) with zero at tn , in the εn -neighborhood of which there exists τn such that
ẋn(τn) = 0 .

From the previous lemma it is known that zeros tn of a solution x(t) of (2.1) approach (in a subsequence)
to t0 , which is the zero of the limit solution x∗(t) , but τn → t0 as n → ∞ ; hence, x∗(t) is a trivial solution,
which contradicts our assumption. 2

Lemma 2.8 For any δ ≤ ε , where ε is from Lemma 2.7, there exists γ > 0 such that for any zero tn of the
solution x(t) of equation (2.1) with initial data (2.9) the following inequalities hold:

|x(tn − δ)| ≥ γ and |x(tn + δ)| ≥ γ. (2.14)
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Proof Assume the contrary, that is, there exist δ ≤ ε , a sequence {γn} (γn → 0 as n→ ∞), and a sequence
of solutions xn(t) with zeros at tn , such that, e.g.,

|x(tn − δ)| < γn. (2.15)

The sequences xn(t) and ẋn(t) converge uniformly to x0(t) and ẋ0(t) , respectively, for t ∈ [0, a] . The
sequence of zeros tn tends to t0 , and x0(t0) = 0 . Then, by (2.15), we have xn(tn − δ) → 0 , n → ∞ , but
it follows from the uniform convergence of xn(t) that x0(t0 − δ) = 0 . Therefore, there exists a solution such
that x0(t0 − δ) = x0(t0) = 0 . The δ -neighborhood of the point t0 lies in the ε -neighborhood of t0 , where, by
Lemma 2.7, the derivative ẋ0(t) does not vanish. However, since x0(t0 − δ) = x0(t0) = 0 , by Rolle’s theorem,
there exists at least one point t̃ ∈ (t0 − δ, t0) such that ẋ0( t̃ ) = 0 . This contradiction proves the lemma. 2

Let us now consider equation (2.2) for t ∈ [0, a]Tλ
, a > 0 , and p ∈ C([0, a]) . We will study solutions of

equation (2.2) with initial data similar to (2.9): t0 = 0 , xλ(0) = x0 , and x∆λ (0) = x1 , where

x20 + x21 = 1. (2.16)

Lemma 2.9 There exists a number ν(µλ) > 0 such that for any generalized zero tk of a solution xλ(t) of
equation (2.2) with initial data (2.16) the following inequality holds:∣∣x∆λ (tk)∣∣ ≥ ν(µλ). (2.17)

Proof Let us assume to the contrary that (2.17) does not hold. Then there exists a sequence {νn} , νn → 0

as n → ∞ , such that for any n ∈ N there exists a solution x
(n)
λ (t) with initial data tn0 = 0 , xn0 = x

(n)
λ (0) ,

xn1 =
(
x
(n)
λ

)∆
(0) , satisfying (2.16) and having at least one generalized zero tn , i.e. one of the following

conditions holds:
1) x

(n)
λ (tn) = 0; (2.18)

2) tn are right-scattered and x
(n)
λ (tn) · x(n)λ (σ (tn)) < 0; (2.19)

and
∣∣∣∣(x(n)λ

)∆
(tn)

∣∣∣∣ ≤ νn .

Since the set of initial data (2.16) is compact, the sequence (xn0, xn1) has subsequences that converge to
(x0, x1). Without loss of generality, we can assume that the sequence (xn0, xn1) is convergent:

(xn0, xn1) → (x0, x1), n→ ∞, (2.20)

where x02 + x1
2 = 1 .

Let us consider the nontrivial solution x∗λ(t) of equation (2.2) with initial data x∗λ(0) = x0 , (x∗λ)
∆
(0) =

x1 , x20+x21 = 1 . Without loss of generality, we suppose that the sequence {tn} is convergent, tn → t∗ ∈ [0, a]λ ,
n→ ∞ .

Due to continuous dependence of solutions on initial data of the Cauchy problem on a finite interval [17,
������� 3.2], we have

sup
t∈[0,a]λ

(∣∣∣x(n)λ (t)− x∗λ(t)
∣∣∣+ ∣∣∣∣(x(n)λ

)∆
(t)− (x∗λ)

∆
(t)

∣∣∣∣)→ 0, n→ ∞. (2.21)
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Then from ∣∣∣x(n)λ (tn)− x∗λ(t
∗)
∣∣∣ ≤ ∣∣∣x(n)λ (tn)− x∗λ(tn)

∣∣∣+ |x∗λ(tn)− x∗λ(t
∗)| → 0, n→ ∞, (2.22)

we obtain
x
(n)
λ (tn) → x∗λ(t

∗), n→ ∞. (2.23)

In a similar way, we get (
x
(n)
λ

)∆
(tn) → (x∗λ)

∆
(t∗), n→ ∞. (2.24)

Let us consider such generalized zeros tn that x(n)λ (tn) = 0 and
∣∣∣∣(x(n)λ

)∆
(tn)

∣∣∣∣ ≤ νn . Then x∗λ(t
∗) = 0 .

Since
(
x
(n)
λ

)∆
(tn) → 0, n→ ∞ , we have (x∗λ)

∆
(t∗) = 0 . Hence, x∗λ(t) is a trivial solution of equation

(2.1), which contradicts our assumption.
We thus obtain ∣∣x∆λ (tk)∣∣ ≥ ν(µλ).

Let us now consider generalized zeros tn that are right-scattered and satisfy

x
(n)
λ (tn) · x(n)λ (σ(tn)) < 0 and

∣∣∣∣(x(n)λ

)∆
(tn)

∣∣∣∣ ≤ νn.

Note that if a solution starting at zero is nontrivial, then, by [5, Th.8.16], there is no point on the time
scale from which the solution degenerates into the trivial one.

We consider the sequence {σ(tn)} for zeros tn . Since
(
x
(n)
λ

)∆
(tn) → 0 as n→ 0 , from the definition of

the ∆−derivative at a right-scattered point we have

(
x
(n)
λ

)∆
(tn) =

x
(n)
λ (σ(tn))− x

(n)
λ (tn)

µn
→ 0, n→ 0.

Since µn ≤ C , for some constant independent of n , we have |x(n)λ (σ(tn))−x(n)λ (tn)| → 0 , n→ ∞ . Thus,

x
(n)
λ (σ(tn)) → x∗λ(t

∗) .
Passing to the limit in inequality (2.19), we have

x∗λ(t
∗) · x∗λ(t∗) ≤ 0, (2.25)

that is x∗λ(t∗) = 0 .

It follows from
(
x
(n)
λ

)∆
(tn) → 0 , n → ∞ that (x∗λ)

∆
(t∗) = 0 . Hence, x∗λ(t) is the trivial solution of

equation (2.1), which contradicts our assumption.
Thus, we obtain ∣∣x∆λ (tk)∣∣ ≥ ν(µλ).

2
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The following lemma applies to linear systems (2.3) and (2.4), namely, to the systems of the form

dx

dt
= A(t)x (2.26)

and
x∆λ = A(t)xλ. (2.27)

If the matrix A(t) is continuous for t ≥ 0 , then all solutions of systems (2.26) and (2.27) are unboundedly
continued to the right. We will consider solutions with initial data x(t0) = xλ(t0) = x0 , t0 ≥ 0 , and

|x0| = 1. (2.28)

Let us denote M(T, t0) = max[t0,t0+T ] ∥A(t)∥ , where T > 0 is fixed.

Lemma 2.10 All solutions of the Cauchy problems for systems (2.26) and (2.27) with initial data (2.28) are
uniformly bounded, i.e. there exists R > 0 , depending only on T and M(T, t0) , such that for all t ∈ [t0, t0+T ]

and t ∈ [t0, t0 + T ]Tλ
the following inequalities hold:

|x(t)| ≤ R and |xλ(t)| ≤ R. (2.29)

Proof Any solution of system (2.26) has the integral representation

x(t) = x0 +

t∫
t0

A(t1)x(t1) dt1. (2.30)

Using the method of successive approximations [13, p.73], we obtain the formal representation of the solution

x(t) = Ωt
t0x0, (2.31)

where

Ωt
t0 = x0 +

t∫
t0

A(t1)x(t0) dt1 +

t∫
t0

A(t1) ds

t1∫
t0

A(t2)x(t2) dt2 + · · · .

Then, for t ∈ [t0, t0 + T ] , in view of |t− t0| ≤ T , we obtain the estimate

|x(t)| ≤ ∥Ωt
t0∥|x0| ≤ 1 +MT +

M2T 2

2!
+ · · · = eMT = R.

Let us now consider solutions of system (2.27) that are represented as

xλ(t) = x0 +

∫
[t0,t]Tλ

A(t1)xλ(t1)∆t1.

Using the method of successive approximations and replacing xλ(t1) with the sum

xλ(t1) = xλ(t0) +

∫
[t0,t1]Tλ

A(t2)xλ(t2)∆t2,
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we obtain

xλ(t) = x0 +

∫
[t0,t]Tλ

A(t1)xλ(t0)∆t1 +

∫
[t0,t]Tλ

A(t1)∆t1

∫
[t0,t1]Tλ

A(t2)xλ(t2)∆t2.

Repeating this process, an infinite number of times, we obtain a formal representation of the solution

xλ(t) = x0 +

∫
[t0,t]Tλ

A(t1)xλ(t0)∆t1 +

∫
[t0,t]Tλ

A(t1)∆t1

∫
[t0,t1]Tλ

A(t2)xλ(t2)∆t2 + · · · .

We then get the estimate

|xλ(t)| ≤ |x0|+
∫
[t0,t]Tλ

∥A(t1)∥ |xλ(t0)| ∆t1 +
∫
[t0,t]Tλ

∥A(t1)∥∆t1
∫
[t0,t1]Tλ

∥A(t2)∥ |xλ(t2)| ∆t2 + · · · .

In what follows, we use the following inequality (see Lemma 5 [10]):∫
[t0,t)T

(τ − t0)
k∆τ ≤ (t− t0)

k+1

k + 1
, for every k ∈ N and every t ∈ T.

Proceeding in a similar way, in view of∫
[t0,t]Tλ

∥A(t1)∥∆t1 ≤M |t− t0| ,

∫
[t0,t]Tλ

∥A(t1)∥∆t1
∫
[t0,t1]Tλ

∥A(t2)∥ |xλ(t2)| ∆t2 ≤ M2 |t− t0|2

2!
,

and |t− t0| ≤ T , we obtain

|x(t)| ≤ 1 +MT +
M2 |t− t0|2

2!
+ · · · =

∞∑
n=0

(MT )n

n!
= eMT = R,

which proves the lemma. 2

Lemma 2.11 There exist µ0 and B0 such that for all 0 < µλ ≤ µ0 the following inequality holds:

ν(µλ) ≥ B0, (2.32)

where ν(µλ) is from Lemma 2.9.

Proof Suppose, to the contrary, that the statement is not true. Then there exists a sequence of graininess
functions {µλn(t)} . Let us assume that µn = supt∈[0,a]λn

(µλn(t)) is such that µn > 0 , µn → 0 , n→ ∞ , and

ν(µn) → 0, n→ ∞. (2.33)

Hence, it follows from (2.33) that for every µn there exists a solution xλn
of equation (2.2) (for simplicity,

we denote it by xn ) with given µn and initial data x0n = xλn(0) , x1n = x∆λn(0) satisfying (2.16), such that for
any n ∈ N we can choose a generalized zero tn of the solution xn(t) such that

x∆n (tn) → 0, n→ ∞. (2.34)
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We have either xn(tn) = 0 or xn(tn) · xn(σ(tn)) < 0 , if tn is right-scattered. Taking into account
σ(tn) = tn + µn(tn) , we rewrite the latter inequality as

xn(tn) · xn(tn + µn(tn)) < 0. (2.35)

It follows from µn → 0 , n → ∞ , that µn(tn) → 0 . Using an analogue of Lagrange’s formula (Theorem
1.22 [6]), we have

|xn(tn + µn(tn))− xn(tn)| ≤ R · µn(tn) → 0, n→ ∞. (2.36)

Note that due to Lemma 2.10, the constant R does not depend on the time scale Tλn . Thus, by (2.35)
and (2.36), xn(tn) → 0 as n→ ∞ .

The sequence (x0n, x1n) can be considered convergent; hence,

(x0n, x1n) → (x0, x1), n→ ∞. (2.37)

Let tn ∈ [0, a]λn on the time scale with given µn denote the argument at which the derivative possesses
property (2.34). We thus have

xλn(tn) → 0, n→ ∞ (2.38)

and
x∆λn(tn) → 0, n→ ∞. (2.39)

The sequence {tn} also has a convergent subsequence. Without loss of generality, we assume that {tn}
itself is convergent. Hence, tn → t∗ , n→ ∞ , t∗ ∈ [0, a] .

Let us now consider the solution of the differential equation (2.1) with initial data (2.9). Obviously, it is
nontrivial. We denote it by x(t, x0, x1) . We also denote by x(t, x0n, x1n) the solution of equation (2.1) with
initial data (x0n, x1n) .

Obviously,
x(tn, x0, x1) → x(t∗, x0, x1), n→ ∞. (2.40)

Since solutions of the Cauchy problem on a finite interval are continuously dependent on initial data, we
have

sup
t∈[0,a]

|x(t, x0n, x1n)− x(t, x0, x1)| → 0 if (x1n, x0n) → (x0, x1).

Then
|x(tn, x0n, x1n)− x(tn, x0, x1)| → 0, n→ ∞. (2.41)

By Lemma 2.10, all solutions of the Cauchy problems for equation (2.1) and dynamic equation (2.2)
with initial data (2.9) are uniformly bounded on [0, a] and [0, a]λ , respectively. Hence, by Lemma 2.5, the
uniform estimate (2.8) holds for the corresponding solutions of these equations. Uniformity here means that
the constants K(T ) and R in Lemmas 2.5 and 2.10, respectively, can be chosen with respect to a and the
maximum of the function |p(t)| on [0, a] .

Consequently,
|x(tn, x0n, x1n)− xλn(tn)| → 0, n→ ∞. (2.42)
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Thus, from (2.38), (2.40-2.42), we obtain

x(t∗, x0, x1) = 0. (2.43)

In a similar way, it can be shown that ẋ(t∗, x0, x1) = 0 . This contradicts the fact that x(t, x0, x1) is a
nontrivial solution. 2

Lemma 2.12 There exist ε > 0 and µ0 > 0 such that for 0 < µλ ≤ µ0 , the ∆-derivative x∆λ (t) of every
solution xλ(t) of equation (2.2) with initial data (2.16) preserves its sign in ε-neighborhood of all generalized
zeros tk . That is, either

∀t ∈ [tk − ε; tk + ε] : x∆λ (t) > 0, (2.44)
or

∀t ∈ [tk − ε; tk + ε] : x∆λ (t) < 0. (2.45)

Proof Let us suppose that condition (2.44) does not hold. Then, for every ε > 0 there exists a sequence
{µn(ε)} such that µn(ε) → 0 as n→ ∞ , where µn = maxt∈[0,a]λ µλ(t) and

∣∣x∆λ (t)∣∣ = 0 .
Hence, there is a sequence εn → 0 , n→ 0 , for each term of which there exists a corresponding sequence

{µk(εn)} such that µk(εn) → 0 , k → ∞ , and
∣∣x∆λ (t)∣∣ = 0 .

Using the diagonal method, we obtain that there exist a sequence εn → 0 , a corresponding sequence
µn(εn) , a solution xλn(t) with initial condition (x0n, x1n) , and a generalized zero tn such that there exists
τn ∈ (tn − εn; tn + εn) ∩ [0, a]λn for which either x∆λn

(τn) = 0 or x∆λn
(τn) · x∆λn

(tn) < 0 .

Suppose x∆λn
(tn) > 0 . By Lemma 2.11, there exists B0 > 0 such that the inequality

x∆λn
(tn) ≥ B0 (2.46)

holds uniformly on all time scales. Then either x∆λn
(τn) = 0 or x∆λn

(τn) < 0 .
Let us now consider the solution x(t, x0, x1) of the differential equation (2.1) with initial data (2.9), which

is obviously nontrivial. We denote by x(t, x0n, x1n) the solution of equation (2.1) with initial data (x0n, x1n)

such that (x0n, x1n) converges to (x0, x1) uniformly on all time scales.
Let tn → t∗ for εn → 0 , n→ ∞ . Then τn → t∗ , n→ ∞ .
By Lemma 2.5, we have

|xλn(t)− x(t, x0n, x1n)| ≤ Kµn(εn) (2.47)

and ∣∣x∆λn
(t)− ẋ(t, x0n, x1n)

∣∣ ≤ Kµn(εn). (2.48)

Clearly, |ẋ(t, x0n, x1n)− ẋ(t, x0, x1)| → 0 , n→ ∞ , whence

x∆λn
(τn) → ẋ(t∗, x0, x1) n→ ∞. (2.49)

If x∆λn
(τn) = 0 , then from (2.49), we have ẋ(t∗, x0, x1) = 0 . However, x∆λn

(tn) → ẋ(t∗, x0, x1) = 0 as
n→ ∞ , which contradicts (2.46).

If x∆λn
(τn) < 0 , then x∆λn

(τn) → ẋ(t∗, x0, x1) ≤ 0 as n → ∞ . Since x∆λn
(tn) > 0 , we have x∆λn

(tn) →
ẋ(t∗, x0, x1) ≥ 0 as n→ ∞ . We then obtain ẋ(t∗, x0, x1) = 0 , which contradicts (2.46).

Thus, our assumption is not true, and the proof is complete. 2
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Lemma 2.13 For any δ ≤ ε , where ε is from Lemma 2.12, there exist µ0 and γ > 0 such that for any µλ ≤ µ0

and any generalized zero t0 of a solution xλ(t) of equation (2.2) the following inequalities hold:

|xλ(tl)| ≥ γ (2.50)

and
|xλ(tr)| ≥ γ, (2.51)

where tl = inf{t ∈ Tλ|t > t0 − δ} , tr = sup{t ∈ Tλ|t < t0 + δ} .

Remark 2.14 If the points t0 ± δ belong to the time scale, then tl = t0 − δ and tr = t0 + δ , respectively.
Otherwise, for every fixed δ , by choosing a small graininess function µλ(t) ≤ µλ ≤ µ0 , we can always guarantee
the existence of scale points, different from t0 , in the δ -neighborhood of the point t0 .

Proof Let us suppose that the statement of Lemma does not hold, i.e. there exists δ ≤ ε , where ε is from
Lemma 2.12, such that for any µ0 and γ there exists the time scale µλ < µ0 for which the inequalities (2.50)
and (2.51) are not true. Then for any sequence γk → 0, k → ∞ , there exists a sequence of time scales {µk(n)}
such that the statement is not true.

Again we use the diagonal method. Then there exist sequences γn → 0, n → ∞, and corresponding

sequences {µn(n)} such that on any such time scale there is a solution x
(n)
λn

(t) with initial data (x0n, x1n) and

the generalized zero t
(n)
n such that

either
∣∣∣x(n)λn

(
t
(n)
n,l

)∣∣∣ < γn, or
∣∣∣x(n)λn

(
t(n)n,r

)∣∣∣ < γn, (2.52)

where t(n)n,l = inf{t ∈ Tλ|t > t
(n)
n − δ} and t

(n)
n,r = sup{t ∈ Tλ|t < t

(n)
n + δ} .

We again consider the solution x(t, x0, x1) of the differential equation (2.1) with initial data (2.9).
Obviously, it is not trivial. We denote by x(t, x0n, x1n) the solution of equation (2.1) with initial data (x0n, x1n)

that converge to (x0, x1) uniformly on all time scales.

Let t(n)n → t∗ as n → ∞ , then, in view of µn(t
(n)
n ) → 0 , we obtain σ

(
t
(n)
n

)
= t

(n)
n + µn

(
t
(n)
n

)
→ t∗ ,

n→ ∞ .
It follows from Lemma 2.5 that∣∣∣x(n)λn

(t)− x(t, x0n, x1n)
∣∣∣ ≤ Kµn(t

(n)
n ). (2.53)

Clearly, |ẋ(t, x0n, x1n)− ẋ(t, x0, x1)| → 0 , n→ ∞ , whence∣∣∣x(n)λn
(t)− x(t, x0, x1)

∣∣∣→ 0, n→ ∞. (2.54)

From (2.52),(2.54) and γn → 0 , n→ ∞ , we obtain

x(t∗l ) = 0. (2.55)

If t(n)n is such that x(n)λn
(t

(n)
n ) = 0 , then x(t∗) = 0 .
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If t(n)n is right-scattered and such that x
(n)
λn

(t
(n)
n ) · x(n)λn

(σ(t
(n)
n )) < 0 , then, passing to the limit in the

latter inequality, we obtain x(t∗)2 ≤ 0 , whence

x(t∗) = 0. (2.56)

It follows from Lemmas 2.5 and 2.12 that

ẋ(t, x0, x1) ̸= 0 (2.57)

for any t ∈
(
t∗ − ε

2 , t
∗ + ε

2

)
(it may be assumed that δ < ε).

However, due to (2.55) and (2.56), by Rolle’s theorem, there exists at least one point on the interval
(t∗l , t

∗) such that ẋ( t̃ ) = 0 . This contradiction proves the lemma.
2

2.3. Main results
We now proceed with the main results on the relation between the oscillatory behavior of solutions of linear
second-order differential equations (2.1) and corresponding dynamic equations (2.2).

Theorem 2.15 For any ε , there exists µ0 = µ0(λ) such that for all µλ ≤ µ0 the following statement holds
true:

If x(t) is a solution of equation (2.1) with initial data x(0) = x1 , ẋ = x1 , and xλ(t) is the corresponding
solution of the dynamic equation (2.2) with initial data xλ(0) = x0 , x∆λ (0) = x1 , then there is at least one zero
t0λ of the corresponding solution of equation (2.2) in the ε-neighborhood of any zero t0 of the solution x(t) .

Proof Let us choose an arbitrary ε > 0 and an arbitrary nontrivial solution x(t) of equation (2.1). The
function y(t) = 1√

x2
0+x2

1

x(t) is also a solution of equation (2.1), and zeros of x(t) coincide with zeros of y(t) ,

but the initial data for y(t) lie on S , a unit sphere in R2 .
We choose µ0 so that for µλ ≤ µ0 the corresponding solutions of equations (2.1) and (2.2) satisfy the

inequalities

|xλ(t)− y(t)| < γ

2

and ∣∣x∆λ (t)− ẏ(t)
∣∣ < γ

2

for t ∈ [0, a]λ . Then, by Lemma 2.8, in the ε -neighborhood of any zero t0 of the solution y(t) there exist
numbers t1, t2 ∈ Tλ such that xλ(t1) > 0 and xλ(t2) < 0 .

Thus, xλ has a generalized zero in the ε -neighborhood of the zero of the solution y(t) , and hence of the
zero of the solution x(t) . 2

Remark 2.16 Theorem 2.15 implies the following statement:
If {tn}N1 are zeros of an arbitrary nontrivial solution x(t) of equation (2.1) on [0, a] , then the corre-

sponding solution xλ(t) of equation (2.2) for sufficiently small µλ also has at least N zeros {tnλ
} on [0, a] ,

and
|tnλ

− tn| → 0, λ→ 0.
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Remark 2.17 If a solution x(t) of equation (2.1) oscillates on [0, a] , then the corresponding solution xλ(t) of
equation (2.2) oscillates on [0, a]λ as well.

Theorem 2.18 For any ε > 0 , there exists µ0 = µ0(ε) such that the following statement holds for all µλ ≤ µ0 :
If xλ(t, x0, x1) is a solution of dynamic equation (2.2) with initial data xλ(0) = x0 , x∆λ (0) = x1 , and x(t)

is the corresponding solution of differential equation (2.1) with the same initial data, then in the ε-neighborhood
of a generalized zero t0λ of the solution xλ(t) there is at least one zero t0 of the corresponding solution of
equation (2.1).

Proof Let us choose an arbitrary ε > 0 and an arbitrary nontrivial solution xλ(t, x0, x1) of equation (2.2).
The function yλ(t) = 1√

x2
0+x2

1

xλ(t) also satisfies equation (2.2), and generalized zeros of the solution xλ(t)

coincide with those of the solution yλ(t) , but the initial data for yλ(t) lie on S , the unit sphere in R2 .
We choose µ0 so that for µλ ≤ µ0 the corresponding solutions of (2.2) and (2.1) satisfy the inequalities

|x(t)− yλ(t)| <
γ

2

and ∣∣ẋ(t)− y∆λ (t)
∣∣ < γ

2

for t ∈ [0, a]λ .
Then, by Lemmas 2.12 and 2.13, in the ε -neighborhood of an arbitrary zero t0λ of the solution yλ(t)

there exist such numbers t1, t2 ∈ R that x(t1) > 0 and x(t2) < 0 . Hence, due to continuity of the x(t) on R ,
there is a point t0 ∈ (t1, t2) such that x(t0) = 0 .

Thus, x(t) has a zero in the ε -neighborhood of a generalized zero of the solution yλ(t) , and hence in the
ε -neighborhood of a zero of the solution xλ(t) . 2

Remark 2.19 Theorem 2.18 implies the following statement: If {tnλ
}N1 are zeros of an arbitrary nontrivial

solution xλ(t) of equation (2.2), then the corresponding solution x(t) of equation (2.1), for sufficiently small
µλ , also has at least N zeros {tn} on [0, a] , and |tn − tnλ

| → 0 as λ→ 0 .

Remark 2.20 The above statement implies that if a solution xλ(t) of equation (2.2) oscillates on [0, a]λ , then
the corresponding solution x(t) of equation (2.1) oscillates on [0, a] as well.

The following statement follows from Theorems 2.15 and 2.18.

Corollary 2.21 For any ε > 0 there exists µ0 = µ0(ε) such that the following statement holds true for all
µλ ≤ µ0 :

If x(t) is a solution of equation (2.1) with initial data x(0) = x1 , ẋ = x1 , and xλ(t) is the corresponding
solution of the dynamic equation (2.2) with initial data xλ(0) = x0 , x∆λ (0) = x1 , then exactly one zero t0λ of
xλ(t) lies in the ε-neighborhood of an arbitrary zero t0 of x(t) , and vice versa.
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2.4. Weakly nonlinear case
The following result relates to oscillatory properties of solutions of nonlinear equations.

We consider the nonlinear differential equation

ẍ+ p(t)x+ εf(t, x, ẋ) = 0, (2.58)

where ε > 0 is a small parameter, t ∈ [0, a] .
The requirements on f(t, x, y) and p(t) for x, y ∈ R1 , t ∈ [0, a] are as follows:

1. f(t, x, y) is continuous in all variables;

2. f(t, x, y) is a linear growth function in x and y , i.e. there exists N > 0 such that the following inequality
holds:

|f(t, x, y)| ≤ N(1 + |x|+ |y|);

3. p(t) ≥ 0 ;

4. p(t) satisfies the Lipschitz condition on [0, a] .

We consider equation (2.58) with initial data

x(0) = x0, y(0) = y0,

that belong to a compact, (x0, y0) ∈ K , which does not contain the point (0, 0) .
When ε = 0 , equation (2.58) turns into the equation

ẍ+ p(t)x = 0, (2.59)

whose corresponding dynamic equation is of the form

x∆∆
λ + p(t)xλ = 0, (2.60)

where t ∈ Tλ , xλ : Tλ → Rd , x∆λ (t) is the ∆ -derivative of xλ(t) on Tλ . Initial conditions for equations (2.59)
and (2.60) are x(0) = x0 , ẋ(0) = y0 and xλ(0) = x0 , x∆λ (0) = y0 , respectively.

Along with equation (2.60), we consider the nonlinear equation

x∆λ + p(t)xλ + εf(t, xλ, x
∆
λ ) = 0. (2.61)

We are interested in conditions under which the oscillatory behavior of the solution of equation (2.60)
implies that of the solution of equation (2.58), as well as in conditions under which the oscillatory behavior of
the solution of equation (2.59) implies that of the solution of equation (2.61).

In what follows, we will need the following two auxiliary statements.
We consider solutions x(t) of equation (2.59) with initial data x(t0) = x0 , x(t0) = x1 , where t0 ∈ [0, µ̄]

and
x20 + x21 = 1. (2.62)

Here µ̄ is fixed and satisfies 0 < µ̄ < a .
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If such a solution oscillates on (0, a) , then it has at least two zeros. Let tk and tk+1 denote two
consecutive zeros on (0, a) of this oscillating solution.

Let us introduce the following quantity:

Mx
k = max

t∈[tk,tk+1]
|x(t)|.

We will call this finite number sequence the sequence of amplitudes of oscillations of the solution x(t) on
the interval (0, a) .

Lemma 2.22 [8] Let p ∈ C([0, a]) in equation (2.59). Then there exists ∆ > 0 such that an arbitrary
oscillatory solution of equation (2.59) with initial data (2.62) satisfies the inequality

Mx
k ≥ ∆. (2.63)

Thus, for an arbitrary oscillatory on (0, a) solution of equation (2.59) with initial data (2.62), the sequence
of amplitudes of oscillations is bounded below by a number ∆ that is independent of the solution�����������.

We also consider solutions of equation (2.60) with initial data xλ(t0) = x0 , ∆xλ(t0) = x1 , where
t0 ∈ [0, a]λ and

x20 + x21 = 1. (2.64)

Let there be a unique solution xλ(t) on [0, a]λ . If this solution oscillates on [0, a]λ , then it has at least two
generalized zeros. Let tp and tm denote two consecutive generalized zeros of xλ(t) (tp < tm) on [0, a]λ . We
introduce the finite number sequence

Mx
p = max

t∈[tp,tm]
|xλ(t)| ,

which is called the sequence of amplitudes of oscillations of the solution xλ(t) on the interval [0, a]λ .

Lemma 2.23 Let p(t) ∈ C([0, a]λ) and p(t) ≥ 0 . Then there exists ∆(µλ) > 0 such that any oscillatory
solution of equation (2.60) with initial data (2.64) satisfies the inequality

Mx
p (µλ) ≥ ∆(µλ). (2.65)

Proof To prove this lemma, it is necessary to prove an analogue of the Weierstrass theorem for continuous
functions, namely: If f(t) ∈ C([a, b]T) , then it is f bounded on [a, b]T and reaches its largest and smallest
values on this interval.

It is known that if a function f : T → R is continuous then f is regulated [5, Th.1.60], and every
regulated function on compact interval is bounded [5, Th.1.65]. Hence, f(t) ∈ C([a, b]T) is bounded on [a, b]T .
Thus, f attains its least upper bound and its greatest lower bound on this interval.

Let us denote M = sup[a,b]T f(t) . Suppose, contrary to the claim of the theorem, that f(t) < M for all

t ∈ [a, b]T . Consider the function φ(t) = 1
M−f(t) > 0 .

It follows from M − f(t) ̸= 0 that φ(t) ∈ C([a, b]T) . Hence, φ(t) is bounded on [a, b]T ; that is, there is
M0 > 0 such that φ(t) ≤M0 for all t ∈ [a, b]T .

Then, we have

M − f(t) ≥ 1

M0
,
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or

f(t) ≥M − 1

M0
,

which means that M ̸= sup[a,b]T f(t) . Thus, the assumption is not true, and there is t∗ ∈ [a, b]T such that
f(t∗) =M . Thus, the function f(t) attains on [a, b]T its least upper bound and hence its maximum value.

It can be shown in a similar way that f(t) attains on [a, b]T its greatest lower bound and hence its
minimum value.

The statement is proven. Let us return to the proof of the lemma.

Suppose that (2.65) is not valid. Then there exists an infinite sequence of oscillatory solutions x(n)λ (t) of
equation (2.60) with initial data t0n ∈ [0, a]λ , x0n , x1n , satisfying (2.64), such that for every n an amplitude

M
x
(n)
λ

p(n)(µλ) can be chosen from this sequence, so that

M
x
(n)
λ

p(n)(µλ) → 0, n→ ∞. (2.66)

Here Mx
(n)
λ

p(n)(µλ) = max
t∈[tp(n),tm(n)]

∣∣∣x(n)λ (t)
∣∣∣ . Let t∗n ∈ [tp(n), tm(n)] be a point, at which this maximum is attained.

Then ∆x
(n)
λ (t∗n) = 0 ,

∣∣∣x(n)λ (t∗n)
∣∣∣ =M

x
(n)
λ

p(n)(µλ) .

Since the set of initial data (2.64) is compact, then the sequence contains a convergent subsequence.
Without loss of generality, let us assume that the sequence (t0n, x0n, x1n) itself is convergent. Then,

(t0n, x0n, x1n) → (t0, x0, x1), n→ ∞ (2.67)

where t0 ∈ [0, a]λ , x20 + x21 = 1 .
Let xλ(t) be the solution of equation (2.60) with initial conditions xλ(t0) = x0 , ∆x(t0) = x1 . Obviously,

this solution is nontrivial.
We also select a convergent subsequence from the sequence t∗n and denote it by t∗n . Hence, t∗n → t∗ ∈

[0, a]λ, n→ ∞ .
Due to continuous dependence of a solution on initial data for the Cauchy problem on a finite interval

[17, Theorem 3.2], and in view of the inequality∣∣∣x(n)λ (t∗n)− xλ(t
∗)
∣∣∣ ≤ ∣∣∣x(n)λ (t∗n)− xλ(t

∗
n)
∣∣∣+ |xλ(t∗n)− xλ(t

∗)|

it follows that
xn(t

∗
n) → x(t∗), ∆x

(n)
λ (t∗n) → ∆x(t∗). (2.68)

However, on the other hand, x(n)λ (t∗n) → 0 as n → ∞ , and ∆x
(n)
λ (t∗n) = 0 for any n . Consequently, xλ(t) is a

trivial solution. This contradiction proves the lemma. 2

Theorem 2.24 If f(t, x, y) and p(t) satisfy conditions 1-4, then there exist ε0 > 0 and µ0 > 0 such that for
any 0 < ε < ε0 and 0 < µλ < µ0 the following statement holds true:

If a solution of equation (2.60) has at least three generalized zeros on the interval [0, a]Tλ
, then the

corresponding solution of equation (2.58) oscillates on [0, a] .
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Proof Since the initial data (x0, y0) of equation (2.59) lie in the compact K , then, by Lemma 2.22, there
is ∆ > 0 such that the amplitude of oscillations of an arbitrary solution x(t) with initial data (x0, y0) ∈ K is
bounded below:

Mx
k ≥ ∆.

Let us show the proximity of solutions of equations (2.58) and (2.59).
We represent equation (2.58) as the system{

ẋ = y,

ẏ = −p(t)x− εf(t, x, y).
(2.69)

Let us denote A(t) =
(

0 1
−p(t) 0

)
, z =

(
x
y

)
, z(0) = z0 . Then

ż =

(
ẋ
ẏ

)
= A(t)z − εf(t, z). (2.70)

We now rewrite equation (2.59) in the form

ż1 = A(t)z1, (2.71)

where z1(0) = z0 .
Let X(t, s) be a fundamental system of solutions of (2.71). Then

z1(t) = X(t, 0)z0. (2.72)

The integral representation of (2.70) is

z(t) = X(t, 0)z0 + ε

∫ t

0

X(t, s)f(s, z(s))ds. (2.73)

Since f(t, x, y) is a linear growth function, we have

|f(t, z)| ≤ N (1 + |z|) .

Then, for corresponding solutions of equations (2.70), (2.71),(2.72), and (2.73), we obtain

|z(t)− z1(t)| ≤ ε

∫ t

0

CN (1 + |z(s)|) ds, (2.74)

where ||X(t, s)|| ≤ C , t, s ∈ [0, a] , C is a constant.
Let us now estimate z(s) . From (2.73), we obtain

|z(t)| ≤ C|z0|+ εNCa+ εNC

∫ t

0

|z(s)| ds. (2.75)

Hence, by Gronwall’s lemma, we obtain the following estimate:

|z(t)| ≤ (C|z0|+ εNCa) eεNCa, t ∈ [0, a]. (2.76)
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Since z0 ∈ K , there is R > 0 such that |z0| ≤ R . Then

|z(t)| ≤ (CR+ εNCa) eεNCa ≡ B, (2.77)

where B is a constant.
Hence, from (2.74), we obtain

|z(t)− z1(t)| ≤ ε

∫ t

0

CN(1 +B)ds ≤ εNCa(1 +B), (2.78)

which estimates the proximity of the corresponding solutions of equations (2.58) and (2.59).
It follows from Theorem 2.18 that if a solution of equation (2.60) has N generalized zeros on [0, a]λ ,

then the corresponding solution of equation (2.59) has at least N zeros on [0, a] .
Then, if the solution of equation (2.60) has three generalized zeros on [0, a]Tλ

, then the solution of
(2.59) has at least three zeros on [0, a] . Hence, taking into account estimate (2.78), Lemma 2.22, and the
correspondence of solutions of equations (2.58) and (2.59), we obtain that there exist ε0 > 0 and ∆ > 0 such
that the solution of nonlinear equation (2.58) has at least two zeros on [0, a] , that is, the solution is oscillatory.

2

Theorem 2.25 If f(t, x, y) and p(t) satisfy conditions 1-4, then there exist ε0 > 0 and µ0 > 0 such that for
arbitrary 0 < ε < ε0 and 0 < µλ < µ0 the following statement holds true:

If a solution of the linear equation (2.59) has at least three zeros on the interval [0, a] , then the
corresponding solution of equation (2.61) oscillates on [0, a]Tλ

.

Proof Let us estimate the norm of the difference between the corresponding solutions of equations (2.60) and
(2.61). We represent equation (2.61) as the system

{
x∆λ = yλ,

y∆λ = −p(t)xλ − εf(t, xλ, yλ).
(2.79)

Let us denote A(t) =
(

0 1
−p(t) 0

)
, φλ =

(
xλ
yλ

)
, and φλ(0) = φ0 . Then

φ∆ = A(t)φ− εf(t, φ). (2.80)

Similarly, with the notation ψλ =

(
xλ
yλ

)
, we represent equation (2.60) in the form

ψ∆
λ (t) = A(t)ψ, (2.81)

where ψλ(0) = ψ0 .
Let X(t, s) be the fundamental system of solutions of equation (2.81) [5]. Hence,

ψλ(t) = X(t, 0)ψ0. (2.82)

494



STANZHYTSKYI et al./Turk J Math

Rewriting (2.80) in an integral form, according to [6], we have

φλ(t) = X(t, 0)φ0 + ε

∫
[0,t]λ

X(t, σ(s))f(s, φλ(s))∆s. (2.83)

It follows from (2.82) and (2.83) that

|φλ(t)− ψλ(t)| ≤ ε

∫
[0,t]λ

|X(t, σ(s))f(s, φλ(s))|∆s. (2.84)

Since f(t, xλ, yλ) is a linear growth function, we obtain

|f(t, φλ(t))| ≤ N(1 + |φλ(t)|), (2.85)

which yields

|φλ(t)| ≤ C1|φ0|+ ε

∫
[0,t]λ

C1N(1 + φλ(s))∆s ≡ B1, (2.86)

where ||X(t, s)|| ≤ C1 , t, s ∈ [0, a]Tλ
.

Consequently,

|φλ(t)− ψλ(t)| ≤ εNC1

∫
[0,t]λ

(1 +B1)∆s. (2.87)

We then have the estimate

|φλ(t)− ψλ(t)| ≤ εNC1a(1 +B1). (2.88)

Theorem 2.18 implies that if a solution of differential equation (2.59) has at least two zeros on the interval
[0, a] , then there is µ0 > 0 such that the corresponding solution of equation (2.60) oscillates on this interval,
i.e. it has at least two generalized zeros.

By Lemma 2.23, there is ∆(µλ) > 0 such that the amplitude of oscillations of any solution of equation
(2.60) is bounded below:

Mx
p (µλ) ≥ ∆(µλ),

where Mx
p = maxt∈[tp,tm] |xλ(t)| , tp and tm are two consecutive generalized zeros of the solution xλ .

Hence, from (2.88) it follows that there exist ε > 0 and µ0 > 0 such that if a solution of linear differential
equation (2.59) has three zeros on [0, a] , then the corresponding solution of nonlinear dynamic equation (2.61)
has at least two generalized zeros on the interval [0, a]Tλ

, which means that this solution oscillates. 2

2.5. Example
Let us illustrate the results obtained for the linear case by the following example.

We consider the Airy equation
ẍ+ t · x = 0 (2.89)

on the interval [0, 7π2 ] with initial data
x(0) = 0; ẋ(0) = 1, (2.90)
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satisfying condition (2.9), and the corresponding equation

x∆∆
λ + t · xλ = 0 (2.91)

on the set of scales Tλ = hZ with the same initial data. Note that the graininess function of every such scale
is constant and µλ = h .

Equation (2.91) has the form of a difference equation:

∆2
kx+ h2 · kh · x(kh) = 0, (2.92)

where h > 0 is the step size of the difference equation on [0, 7π2 ] , kh = tk ∈ Tλ = hZ , ∆kx = x(σ(tk))−x(tk) =

x(tk+1)− x(tk) , ∆2
kx = ∆k(∆kx) , k = 0, 1, 2, . . . .

Let us denote xhk = x(tk) and rewrite equations (2.92) in the form of systems

{
xhk+1 = xhk + hyhk ,

yhk+1h = yhk − h · tkxhk ,
(2.93)

with initial data
xh0 = 0, yh0 = 1. (2.94)

The solution of the Cauchy problem (2.89, 2.90) can be represented in the form [25]:

x(t) = −1

2

(
−1

3

) 2
3

Γ(
1

3
)
(√

3Bi(−t)− 3Ai(−t)
)
, (2.95)

where Ai(t) is the Airy function of the first kind, Bi(t) is the Airy function of the second kind, and Γ(t) is the
gamma function.

For t ∈
[
π
2 ,

7π
2

]
, by the comparison theorem [22], a solution of equation (2.89) has no less zeros as a

solution of equation

ẍ+
π

2
x = 0, (2.96)

and no more zeros as a solution of equation

ẍ+
7π

2
x = 0, (2.97)

with the same initial data (2.90). The solution of equation (2.96) with initial data (2.90) is of the form

x(t) =

√
2

π
sin

(√
π

2
t

)
, (2.98)

and has four zeros on
[
π
2 ,

7π
2

]
. The solution of equation (2.97) with the same initial data is of the form

x(t) =

√
2

7π
sin

(√
7π

2
t

)
, (2.99)
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and has ten zeros on the given interval.
Similarly, if we choose for the study an arbitrary t0 ∈

(
0, π2

)
, we obtain that on the interval

(
t0,

π
2

]
the

solution of equation (2.89) with initial data (2.90) has no zeros, since the solution of equation (2.96) with the
same initial data has no zeros as well. Thus, the solution of the Cauchy problem (2.89),(2.90) on the interval
(0, 7π2 ) has no less than four zeros, but no more than ten zeros.

We have plotted an approximate graph of the solution (2.95) of equation (2.89) (see Figure 1) and obtained
seven zeros on

(
0, 7π2

]
. Their approximate values tn are listed in Table 1.

Figure 1. Approximate solution of Cauchy problem (2.89),(2.90)

Table 1. Approximate values of zeros of the solution of the Cauchy problem (2.89),(2.90)

t1 t2 t3 t4 t5 t6 t7

tn 2.666 4.342 5.741 6.986 8.128 9.196 10.204

Tables 2–5 provide the following values:

tn , approximate values of zeros of the solution x(t) of the Cauchy problem for equation (2.89) with
initial data (2.90);

tnλ
, generalized zeros in a neighborhood of tn of the solution xhk(t) of system (2.93) with initial

data (2.94), for fixed hλ ;

xhk(tλn) , values of the solution at generalized zeros for fixed hλ ;

|tn − tλn| , differences between zeros of the differential equation and the dynamic equation for fixed
h .

Table 2. Comparison of values when h = 7π
94

.

t1 t2 t3 t4 t5 t6 t7

tn 2.666 4.342 5.741 6.986 8.128 9.196 10.204
tλn 2.57343 4.44501 5.84870 7.25240 8.65609 9.82583 -
xhk(tλn) 0.48026 –0.54678 2.16404 –4.31641 1.61439 –9.84481 -
|tn − tλn| 0.09256 0.10301 0.10770 0.26640 0.52809 0.62983 -
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Table 3. Comparison of values when h = 7π
96

.

t1 t2 t3 t4 t5 t6 t7

tn 2.666 4.342 5.741 6.986 8.128 9.196 10.204
tλn 2.74889 4.35241 5.95593 7.33038 8.47575 9.62112 10.7664
xhk(tλn) 0.08729 –0.89673 1.00212 –1.89404 11.653 –37.4452 104.816
|tn − tλn| 0.08289 0.01041 0.21493 0.34438 0.34775 0.42512 0.56249

Table 4. Comparison of values when h = 7π
200

.

t1 t2 t3 t4 t5 t6 t7

tn 2.666 4.342 5.741 6.986 8.128 9.196 10.204
tλn 2.63893 4.39822 5.82765 7.03716 8.24668 9.34623 10.33583
xhk(tλn) 0.14208 –0.03916 0.031304 –0.51241 0.3775 –0.59169 2.79772
|tn − tλn| 0.02706 0.05623 0.08665 0.05117 0.11868 0.15024 0.13184

Table 5. Comparison of values when h = 7π
2000

.

t1 t2 t3 t4 t5 t6 t7

tn 2.666 4.342 5.741 6.986 8.128 9.196 10.204
tλn 2.66093 4.34325 5.73969 6.98219 8.12573 9.19230 10.2039
xhk(tλn) 0.01472 –0.00646 0.012657 –0.02092 0.02143 –0.02634 0.02075
|tn − tλn| 0.00507 0.00125 0.00131 0.00381 0.00227 0.00369 0.00017

As can be seen from Tables 2–5, there exists h0 = 7π
96 such that for all h < h0 in neighborhoods of every

zero tn of the solution x(t) of problem (2.89), (2.90) there is a generalized zero tλn of the solution xhk(t) of
(2.93), (2.94).

Moreover, by calculating the generalized zeros of problem (2.93), (2.94) with h = 7π
200 and h = 7π

2000 , it
can be easily seen that the generalized zeros approach the zeros of the solution of problem (2.89), (2.90) as h
approaches 0. This is illustrated by Figures 2–5.

Figure 2. Comparing the solutions of (2.89) and (2.91) when h = 7π
94

.
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Figure 3. Comparing the solutions of (2.89) and (2.91) when h = 7π
96

.

Figure 4. Comparing the solutions of (2.89) and (2.91) when h = 7π
200

.

Figure 5. Comparing the solutions of (2.89) and (2.91) when h = 7π
2000

.
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