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Abstract: In this paper, we describe ss-supplement submodules in terms of a special class of endomorphisms. Let R be a
ring with semisimple radical and P be a projective R−module. We show that there is a bijection between ss-supplement
submodules of P and ss-supplement submodules of EndR(P ) . Moreover, we define radical-s-projective modules as a
generalization of projective modules. We prove that every ss-supplement submodule of a projective R−module is
radical-s-projective over the ring R with semisimple radical. We show that over SSI -ring R , every radical-s-projective
R−module is projective. We provide that over a ring R with semisimple radical, every ss-supplement submodule of a
projective R−module is a direct summand if and only if every radical-s-projective R−module is projective.
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1. Introduction
Throughout this study, R is associative ring with identity, all modules are unital left R−modules and homo-
morphisms operate on the right. Let M be an R−module. The notation U ≤M means that U is a submodule
of M . A submodule U of M is called small in M , denoted as U ≪ M , if M ̸= U + K for every proper
submodule K of M . An R−module homomorphism f : M → N is called a small epimorphism if it is an
epimorphism with Ker(f) ≪ M . A projective module P together with a small epimorphism f : P → M is
called projective cover of M . EndR(M) indicates the endomorphism ring of an R−module M . By Rad(M) ,
we denote the intersection of all maximal submodules of M , equivalently the sum of all small submodules of
M . Moreover, Soc(M) stands for the socle of a module M , i.e. the sum of all simple submodules of M . Note
that Soc(M) is the largest semisimple submodule of a module M (see [13]).

Let M be a module and U, V be submodules of M . V is called a supplement of U in M if V is minimal
element in the set of submodules L ≤ M with M = U + L , equivalently M = U + V and U ∩ V ≪ V (see
[13]).

Following [14], the sum of all simple submodules of M which are small in M is named with Socs(M)

for a module M , that is, Socs(M) =
∑

{U ≪ M | U is simple} . Denote that Socs(M) ≤ Soc(M) and
Socs(M) ≤ Rad(M) . In [7], a submodule V is called an ss-supplement of U in a module M if M = U + V

and U ∩ V ≤ Socs(V ) . In the same paper, it is proved that V is an ss-supplement of U in M if and only if
M = U + V , U ∩ V ≪ V and U ∩ V is semisimple if and only if M = U + V , U ∩ V ≤ Rad(V ) and U ∩ V is
semisimple. Now it is clear that the following implication on submodules of a module holds:

∗Correspondence: emine.onal@ahievran.edu.tr
2010 AMS Mathematics Subject Classification: 16D10, 16D40, 16D60

This work is licensed under a Creative Commons Attribution 4.0 International License.
502

https://orcid.org/0000-0002-3025-3290


ÖNAL KIR/Turk J Math

direct summands =⇒ ss-supplement submodules =⇒ supplement submodules

In [4], an element x of a ring R is called left (CE) element if there exists a ∈ R such that ax2 = x

and x − x2 ∈ Rad(R) . An element x of a ring R is called weak left (CE) element if there exists b ∈ R such
that bx2 = x and for every b′ ∈ R with b′x2 = x , there exists c ∈ R with cb′x = x . Note that every left
(CE) element is a weak left (CE) element. The author showed that there is a relationship between left (CE)

elements of endomorphism ring of a projective module M and supplement submodules of M . In addition, he
described radical-projective modules as a generalization of projective modules. A module M is called radical-
projective if for every R−module epimorphism g : A → B and a homomorphism f : M → B , there exists a
homomorphism h :M → A such that (M)(f−hg) ≪ B . The obtained results in [4] allow to extend some of the
characterizations of the rings for which every supplement submodule of a finitely generated projective module
is a direct summand to those in which every supplement submodule of a (nonnecessarily finitely generated)
projective module is a direct summand.

In this paper, we start by searching what kind of connection there is between ss-supplements of a projective
module M over the ring with semisimple radical and left (CE) elements of the ring EndR(M) . We show that
ss-supplement submodules in a projective module M over the ring with semisimple radical are of the form
Im(f) for a left (CE) endomorphism f of M .

In Section 3 , we define radical-s-projective modules as a generalization of projective modules. We prove
that every ss-supplement submodule of a projective module is radical-projective. We also provide that ss-
supplements in projective modules are radical-s-projective over the rings with semisimple radical. Over a ring
with semisimple radical, we show that for a radical-s-projective module M , Rad(M) = Rad(R)M , Rad(M)

is semisimple and ss-supplements in M are radical-s-projective. We give some examples of projective modules
whose ss-supplements are direct summands. Moreover, we give an example of a ring whose every radical-s-
projective module is projective.

2. ss-Supplement submodules in projective modules
First of all, we state the rings whose every submodule is an ss-supplement in the following proposition.

Proposition 2.1 The following statements are equivalent for a ring R :

1. R is a semisimple ring.

2. Every submodule of RR is an ss-supplement in RR .

3. Every submodule of RR is a supplement in RR .

Proof (1) =⇒ (2) and (2) =⇒ (3) are clear.
(3) =⇒ (1) follows from [9, Lemma 2.13]. 2

In general, every supplement submodule of a projective module is not an ss-supplement submodule. For
example; consider the ring R = Z8 . The projective module RR is a supplement of Rad(RR) in RR ; but RR

is not an ss-supplement.

Lemma 2.2 Let R be a ring with semisimple Rad(R) , P be a projective left R−module and K,L ≤ P . Then
K is an ss-supplement of L in P if and only if K is a supplement of L in P .
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Proof The necessity is clear.
Conversely, suppose that K is a supplement of L in P . Then P = K + L and K ∩ L ≪ K . Thus, we

have that K ∩ L ≤ Rad(P ) = Rad(R)P ≤ Soc(RR)P = Soc(P ) , since P is projective and by the assumption.
Hence, K is an ss-supplement of L in P from [7, Lemma 3]. 2

Left (CE) elements were used by Zöschinger in [15] and their relationship with supplements in projective
modules was given by Izurdiaga in [4]. Now we shall give the relationship of left (CE) elements with ss-
supplements in projective modules over the rings whose radical is semisimple.

Proposition 2.3 Let P be a projective R−module where Rad(R) is semisimple and f ∈ EndR(P ) . Then the
following statements are equivalent:

1. f is a left (CE) element in EndR(P ) .

2. Im(f) is an ss-supplement of Im(1P − f) in P .

Proof (1) =⇒ (2) Since f ∈ EndR(P ) is left (CE) , then by [4, Proposition 1.4] Im(f) is a supplement of
Im(1P − f) in P . Thus, Im(f) is an ss-supplement of Im(1P − f) in P from Lemma 2.2.

(2) =⇒ (1) Im(f) is a supplement of Im(1P − f) in P , by the hypothesis. Thus, f is a left (CE)

element in EndR(P ) by [4, Proposition 1.4]. 2

Proposition 2.4 Let P be a projective R−module where Rad(R) is semisimple and f ∈ EndR(P ) . Then the
following statements are equivalent:

1. f is weak left (CE) element in EndR(P ) .

2. Im(f) is an ss-supplement of Ker(f) in P .

Proof (1) =⇒ (2) Let f be weak left (CE) endomorphism of P . Then by [4, Proposition 1.3], Im(f) is a
supplement of Ker(f) in P . Thus, Im(f) is an ss-supplement of Ker(f) in P from Lemma 2.2.

(2) =⇒ (1) Let Im(f) be an ss-supplement of Ker(f) in P . Then Im(f) is a supplement of Ker(f)
in P . Hence, f is a weak left (CE) element of EndR(P ) by [4, Proposition 1.3]. 2

It is well known that if M is a module and f is an endomorphism of M , then M = Im(f)⊕Im(1M −f)
if and only if f is idempotent. The above propositions generalize this one in the case of projective modules
over the rings whose radical is semisimple, ss-supplements and left (CE) endomorphisms.

The following result shows that when the module is projective over a ring with semisimple radical, every
ss-supplement is of the form Im(f) for a left (CE) endomorphism f . This is a generalization of the well known
result about direct summands (see, for example, [1, 5.7]).

Theorem 2.5 Let R be a ring with semisimple Rad(R) , P be projective R−module and K,L ≤ P . Then the
following statements are equivalent:

1. K is an ss-supplement of L in P .

2. There exists f ∈ EndR(P ) left (CE) such that:
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a) Im(f) = K .

b) Im(1P − f) ≤ L

c) (L)f ≪ K and (L)f is semisimple.

3. There exists f ∈ EndR(P ) weak left (CE) such that:

a) Im(f) = K .

b) Ker(f) ≤ L

c) (L)f ≪ K .

Proof (1) =⇒ (2) We can easily write the decomposition P
K∩L = K

K∩L⊕ L
K∩L , by the hypothesis. By using this

decomposition and the projectivity of P , we can construct the following commutative diagram with canonical
projections π1 and π2

P

f

}}{{
{{
{{
{{
{

π2

��
K

π1

// K
K∩L

and there exists a homomorphism f : P → K such that fπ1 = π2 . Since (K)fπ1 = K
K∩L , f |K is an

epimorphism by [1, 5.15], and so (a) holds. Since P is projective, then we get from the following diagram that
there is a g ∈ EndR(P ) such that gf2 = f .

P
g

vvmmm
mmm

mmm
mmm

mmm
m

f

��
P

f
// K

f |K
// Im(f)

Now for every x ∈ P , x = k + l where k ∈ K and l ∈ L . Then we have that (x)fπ1 = (k + l)fπ1 = (k + l)π2 .
Thus, the equality (x)f +K ∩L = k+K ∩L implies that k− (x)f ∈ K ∩L . Since k+ l− (x)f − l ∈ K ∩L ≤ L ,
we deduce that x − (x)f ∈ L. Thus, (b) holds; and so we get that (P )(1P − f)fπ1 = (P )(f − f2)π1 = 0 . It
follows immediately that (P )(f − f2) ≤ Ker(π1) = K ∩L≪ K ≤ P ; and thus f − f2 ∈ Rad(EndR(P )) by [1,
17.11]. On the other hand, since (L)fπ1 = (L)f +K ∩ L = (L)π2 = 0 , then we get that (L)f ≤ K ∩ L ≪ K

and (L)f is semisimple as a submodule of K ∩ L from [6, 8.1.5]; hence, (c) holds.
(2) =⇒ (3) is clear.
(3) =⇒ (1) Im(f) is an ss-supplement of Ker(f) in P from Proposition 2.4. Thus, we have that

P = K +L . Now let X be a submodule of K such that P = X +L . Since (L)f ≪ K , then from the equality
(X)f + (L)f = (P )f = K , we get that K = (X)f . Therefore, P = X + Ker(f) . Since K = Im(f) is a
supplement of Ker(f) in P , we obtain that X = K . Consequently, K is an ss-supplement of L in P by
Lemma 2.2. 2

Corollary 2.6 Let R be a ring with semisimple Rad(R) and K,L be left ideals of R . Then the following
statements are equivalent:
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1. K is an ss-supplement of L in RR .

2. There exists left (CE) element x of R such that:

a) Rx = K .

b) R(1− x) ⊆ L

c) Lx≪ K and Lx is semisimple.

3. There exists a weak left (CE) element x of R such that:

a) Rx = K .

b) {r ∈ R | rx = 0} ⊆ L

c) Lx≪ K .

Proof It follows from Theorem 2.5. 2

We should note that the left (CE) endomorphisms which are obtained in Theorem 2.5 is not uniquely
determined by K and L . Now we give an example of this case.

Example 2.7 Let consider the ring R =

[
Z3 Z3

0 Z3

]
. Let K =

[
0 Z3

0 Z3

]
, L =

[
Z3 Z3

0 0

]
and a, b ∈ Z3 distinct

and nonzero. Note that L = Soc(RR) . K is an ss-supplement of L in RR . Also, since f =

[
0 a
0 1

]
and

g =

[
0 b
0 1

]
are idempotent elements of R , they are distinct left (CE) endomorphisms of R that satisfy the

conditions of Theorem 2.5.

Now we shall give the relationship between ss-supplement submodules of a projective module M over a
ring with semisimple radical and ss-supplement submodules of endomorphism ring of M . For a module M , we
denote by Ss(M) the set of ss-supplement submodules of M .

Proposition 2.8 Let R be a ring with semisimple Rad(R) . For every projective R−module P with endomor-
phism ring E = EndR(P ) , there is a bijective function between the sets Ss(P ) and Ss(EE) .

Proof Let take any ss-supplement submodule of P , say K , we have left (CE) endomorphism fK of P
such that Im(fK) = K by Theorem 2.5. Now consider the left ideal E.fK of E . By Corollary 2.6, the left
ideal E.fK is an ss-supplement submodule of EE . We claim that the left ideal E.fK does not depend on the
election of the endomorphism fK . For every left (CE) endomorphism f ′ with Im(f ′) = K , we can construct
the following commutative diagram

P

h~~~~
~~
~~
~~

f ′

��
P

h′
>>~~~~~~~~

fK

// K

that means h′f ′ = fK and hfK = f ′ as P is projective. Thus, for every g ∈ E , we obtain that gfK =

g(h′f ′) = (gh′)f ′ ∈ E.f ′ . Conversely, for every g′ ∈ E , we get that g′f ′ = g′(hfK) = (g′h)fK ∈ E.fK . Hence,
we deduce that E.fK = E.f ′ .
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Analogously, if we take an ss-supplement submodule of EE , say L , then there exists a left (CE) element
xL in E such that L = E.xL by Corollary 2.6. In this case, Im(xL) is an ss-supplement submodule in P by
Proposition 2.3 and this submodule does not depend on the election of xL , as the reason can be checked as
above with the help of the projectivity of P .

Now we define the maps Φ : Ss(P ) → Ss(EE) via Φ(K) = E.fK where Im(fK) = K for all K ∈ Ss(P )

and Ψ : Ss(EE) → Ss(P ) via Ψ(L) = Im(xL) where L = E.xL for all L ∈ Ss(EE) . It can be easily checked
that Φ and Ψ are mutually inverse. 2

3. Radical-s-projective modules
We shall define radical-s-projective modules as a generalization of radical-projective modules.

Definition 3.1 We call a module M is radical-s-projective if for every R−module epimorphism g : A → B

and every homomorphism f : M → B , there exists a homomorphism h : M → A such that (M)(f − hg) ≪ B

and (M)(f − hg) is semisimple.

Now we have the following implications on modules under given definitions:

projective modules =⇒ radical-s-projective modules =⇒ radical-projective modules

Proposition 3.2 Let P be a projective module and K be an ss-supplement submodule in P . Then K is
radical-projective.

Proof If K is an ss-supplement in P , then K is a supplement submodule in P . Hence, K is radical-projective
from [4, Lemma 2.2]. 2

Proposition 3.3 Let R be a ring with semisimple Rad(R) . Then every ss-supplement submodule of a projective
R−module is radical-s-projective.

Proof Let P be a projective R−module and K be an ss-supplement submodule of P . Then there exists
t ∈ EndR(P ) left (CE) such that Im(t) = K by Proposition 2.3. Let g : A→ B be an R−module epimorphism
and f : K → B be a homomorphism. Since P is projective, there exists a commutative diagram

P

h′

��~~
~~
~~
~~

tf

��
A

g
// B

such that h′g = tf . Note that, since t is left (CE) endomorphism, then (P )(t − t2) ≪ P by [1, 17.11]. Now
put h = h′ |K , then we deduce that

(K)(f − hg) = (K)t(f − hg) = (K)(1B − t)hg = (K)(t− t2)hg ≪ B

by [13, 19.3(4)], since (K)(t− t2) ≪ K . Moreover, (K)(t− t2) ≤ Rad(K) = Rad(R)K from [15, Lemma 2.1].
Therefore, we get that (K)(f − hg) = (K)(t − t2)hg ≤ (Rad(R)K)hg = Rad(R)(K)hg ≤ Soc(RR)(K)hg ≤
Soc((K)hg) by the assumption. It completes the proof. 2
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Remark 3.4 Note that the homomorphism h that is obtained in Proposition 3.3 satisfies (K)(f − hg) ≤
Rad(R)B since Rad(K) = Rad(R)K and (K)(t− t2) ≤ Rad(R)K by [15, Lemma 2.1].

The following lemma is a slight generalization of [8, Lemma 2.3] for ss-supplement submodules.

Lemma 3.5 Let R be a ring with semisimple Rad(R) , P be a projective R−module and K ≤ P . Then the
following statements are equivalent:

1. K is an ss-supplement in P .

2. There exist a small R−module epimorphism q :M → K and a homomorphism p : P →M such that qp
is small epimorphism and Ker(qp) is semisimple.

Moreover, when these conditions are verified, for every small epimorphism q′ :M → K there exists p′ : P →M

such that q′p′ is a small epimorphism with semisimple Ker(q′p′) . In addition, the homomorphism p′ can be
obtained so that p′q′ is left (CE) endomorphism of P with image K .

Proof (1) =⇒ (2) If K is an ss-supplement in P , then there exists a left (CE) endomorphism t of P such that
Im(t) = K , by Theorem 2.5. Thus, Im(t) is an ss-supplement of Ker(t) in P from Proposition 2.4. Thus, we
can see q = t |K : K → P is a small epimorphism because Im(q) = K and Ker(q) = K ∩Ker(t) ≪ K . Hence,
the first part of (2) is verified. Note that K ∩Ker(t) is semisimple, by the hypothesis. Now let q′ : M → K

be a small epimorphism. Since P is projective, we can construct the following commutative diagram

P
p′

~~||
||
||
||

t

��
M

q′
// K

from which we infer that there exists a homomorphism p′ : P →M such that p′q′ = t . Since (K)p′q′ = (K)t =

K and q′ is small epimorphism, then p′ |K is an epimorphism by [1, 5.15]. Since q is small epimorphism, i.e
Ker(q) = Ker(t |K) ≪ K , it is obtained that Ker(p′ |K) ≪ K . This means that p′ |K is small epimorphism.
Therefore, q′p′ = q′(p′ |K) is a small epimorphism as a composition of two such epimorphism from [13, 19.3(1)].
Moreover, since P is projective, Ker(q′p′) ≤ Rad(P ) = Rad(R)P ≤ Soc(RR)P = Soc(P ) by the assumption,
and so Ker(q′p′) is semisimple.

(2) =⇒ (1) Let q : M → K be small epimorphism and p : P → M be a homomorphism such that qp
is small epimorphism with semisimple Ker(qp) . We may assume that M is a submodule of K , and of P ,
too. In this case, since qp is an epimorphism by the hypothesis, then we get that P = K + Ker(p) . Since
K ∩Ker(p) ≤ Ker(qp) is small in K , we obtain that K ∩Ker(p) ≪ K . Hence, K is an ss-supplement in P

by Lemma 2.2. 2

Now we shall determine ss-supplement submodules of free modules in terms of radical-s-projective
modules using left (CE) morphisms.

Theorem 3.6 Let R be a ring with semisimple Rad(R) and M be an R−module. Then the following
statements are equivalent:
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1. M is radical-s-projective.

2. There exist a free R−module F , an ss-supplement submodule K of F , and a small epimorphism
φ :M → K with semisimple Ker(φ) .

Proof (1) =⇒ (2) Let F be a convenient free module such that there exists an epimorphism ψ : F → M .
Since M is radical-s-projective, there exists a homomorphism h :M → F such that (M)(1M − hψ) ≪M and
(M)(1M − hψ) is semisimple. Since the equality M = (M)hψ + (M)(1M − hψ) implies that M = (M)hψ , hψ
is an epimorphism. Moreover, since Ker(hψ) ≤ Im(1M − hψ) ≪ M and (M)(1M − hψ) is semisimple, hψ is
a small epimorphism with semisimple Ker(hψ) . By Lemma 3.5, Im(h) is an ss-supplement submodule of F .
However, since Ker(h) ≤ Ker(hψ) , h : M → Im(h) is a small epimorphism with semisimple Ker(h) . Hence,
the result follows, if we take K = Im(h) and φ = h .

(2) =⇒ (1) By Lemma 3.5, there exists a homomorphism p : F →M such that φp is small epimorphism
with semisimple Ker(φp) , and in addition pφ is a left (CE) element in EndR(F ) with Im(pφ) = K . Let
g : A → B be an R−module epimorphism and f : M → B be a homomorphism. By Proposition 3.3, K is
radical-s-projective, and so we can construct the following diagram

K

h′

~~~~
~~
~~
~~

p|Kf

��
A

g
// B

and (K)(pf −h′g) ≪ B and (K)(pf −h′g) is semisimple. Put h = φh′ . Since pφ is left (CE) with image K ,
p |K φ is an epimorphism, and so p |K is too, by [1, 5.15]. Since φp and φ are small epimorphisms, we obtain
that

(M)(f − hg) = (M)φp(f − hg) = (M)φp(f −φh′g) = (K)p(f −φh′g) = (K)(pf − h′g+ h′g− pφh′g) ≤
(K)(pf − h′g) + (K)(1F − pφ)h′g. (1)

There exists t ∈ EndR(F ) with t(pφ)2 = pφ , since pφ is left (CE) . Note that t(pφ − (pφ)2) ∈
Rad(EndR(F )) since Rad(EndR(F )) is a left ideal of EndR(F ) . So that, by using (K)pφ = K we obtain from
[1, 17.11] that

(K)(1F − pφ)h′g = (K)(pφ− (pφ)2)h′g = (K)t(pφ− (pφ)2)pφh′g ≪ B. (2)

Therefore, by [13, 19.3(3)], we deduce from (1) and (2) that (M)(f − hg) ≤ (K)(pf − h′g) + (K)(1F −
pφ)h′g ≪ B. Moreover, since (K)t(pφ− (pφ)2)pφ ≤ Rad(K) = Rad(R)K by [15, Lemma 2.1], then we get that
(K)t(pφ − (pφ)2)pφh′g ≤ (Rad(R)K)h′g = Rad(R)(K)h′g ≤ Soc(RR)(K)h′g ≤ Soc((K)h′g) . Consequently,
(M)(f − hg) is semisimple by [6, 8.1.5]. 2

Corollary 3.7 Let R be a ring where Rad(R) is semisimple and M be radical-s-projective module. Then;

1. Rad(M) = Rad(R)M and Rad(M) is semisimple.

2. ss-Supplement submodules of M are radical-s-projective.
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Proof (1) By Theorem 3.6, we have K that is an ss-supplement submodule of a free module and φ :M → K

that is a small epimorphism with semisimple Ker(φ) , since M is radical-s-projective. By Lemma 3.5, there
exists a homomorphism p : K → M such that φp is small epimorphism with semisimple Ker(φp) . Since
φ is small epimorphism, p is too, from [8, Lemma 2.1]. Thus, we obtain that Rad(M) = (Rad(K))p =

(Rad(R)K)p = Rad(R)(K)p = Rad(R)M by [1, 9.15] and [15, Lemma 2.1], as desired. On the other hand,
since Rad(R) is semisimple, Rad(M) ≤ Soc(RR)M ≤ Soc(M) .

(2) Let L be an ss-supplement submodule of M . Since M is radical-s-projective, there are free module
F , an ss-supplement submodule K of F and a small epimorphism φ : M → K with semisimple Ker(φ) , by
Theorem 3.6. Note that M

Ker(φ)
∼= φ(M) = K . Consider the canonical projection π : M → M

Ker(φ) . By the

way, if L is an ss-supplement in M , then φ(L) is an ss-supplement submodule of K , because L+Ker(φ)
Ker(φ) is an

ss-supplement in M
Ker(φ) . Thus, φ(L) is a supplement submodule of K . Since K is a supplement submodule

of F , by [3, 20.6(2)] φ(L) is a supplement submodule of F . Note that φ(L) is an ss-supplement submodule
of F from Lemma 2.2. Since Ker(φ) ≪ M , then we get that L ∩Ker(φ) ≪ L from [13, 41.1(5)]. Therefore,
φ |L: L → φ(L) is a small epimorphism with semisimple kernel by [6, 8.1.5]. Hence, L is radical-s-projective
from Theorem 3.6. 2

Recall from [13] that an ideal I of a ring R is left t-nilpotent if for every sequence a1, a2, ... of elements
in I , there is a k ∈ Z+ with akak−1...a1 = 0 .

In [8] a module M is said to be J(R)-projective if for every R−module epimorphism g : A → B with
Rad(R)B = 0 and every homomorphism f : M → B , there exists a homomorphism h : M → A such that
f = hg .

If a module M is radical-s-projective, then Remark 3.4 follows that the homomorphism h that is obtained
verifies (M)(f − hg) ≤ Rad(R)B . Thus if Rad(R)B = 0 , then f = hg . Hence, M is J(R) -projective, but the
converse is not true in general, as the following example shows:

Example 3.8 Let R = Z2[[x]] the ring of formal power series in x with coefficients in Z2 . Then R is
left noetherian ring and Rad(R) is not left t-nilpotent. Thus, there exists a left R−module M such that
Rad(R)M = M from [1, 28.3]. Therefore, M is J(R)−projective, but M is not radical-s-projective module
from [4, 3.11].

Now we give necessary conditions for J(R) -projective modules to be radical-s-projective.

Proposition 3.9 Let R be a ring with semisimple Rad(R) and M be a finitely generated R−module. Then
M is radical-s-projective if and only if M is J(R)-projective.

Proof Let M be J(R) -projective module. Let g : A → B be an R−module epimorphism and f : M → B

be a homomorphism. Consider the canonical projection π : B → B
Rad(R)B . Since M is J(R) -projective, then

there exists a commutative diagram
M

h

||xx
xx
xx
xx
xx

fπ

��
A

gπ
// B
Rad(R)B
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such that there exists a homomorphism h :M → A with hgπ = fπ . Thus, we obtain that 0 = (M)(fπ−hgπ) =
(M)(f − hg)π , and so (M)(f − hg) ≤ Rad(R)B ≤ Rad(B) . Since M is finitely generated, (M)(f − hg) is
finitely generated. Since finitely generated submodules that are contained in radical are small, (M)(f−hg) ≪ B .
Moreover, we have that (M)(f − hg) ≤ Rad(R)B ≤ Soc(RR)B ≤ Soc(B) by the assumption. Hence, M is
radical-s-projective. 2

Rings for which every supplement submodule of a finitely generated (in [4] not necessarily finitely
generated) projective module is a direct summand have been widely studied (see, for example, [8], [15]). Now
we shall give the analogous fact for ss-supplement submodules of projective modules.

Lemma 3.10 Let R be a ring with semisimple Rad(R) , P be a projective R−module, and K be an ss-
supplement submodule of P . Then the following statements are equivalent:

1. K is a direct summand.

2. K is projective.

3. For every K ′ ≤ P such that K is an ss-supplement of K ′ , the factor module P
K′ has a projective cover

whose kernel is semisimple.

4. K has a projective cover whose kernel is semisimple.

Proof (1) =⇒ (2) follows from [13, 18.1]
(2) =⇒ (1) By Theorem 2.5 there exists a left (CE) element f in EndR(P ) with Im(f) = K .

Since K ∼= P
Ker(f)

∼= K
K∩Ker(f) , we deduce that K ∩Ker(f) is a direct summand of K . On the other hand,

K ∩Ker(f) is small in K , by Proposition 2.4. Therefore, K ∩Ker(f) = 0 . Again from Proposition 2.4, we
get that P = K ⊕Ker(f) .

(2) =⇒ (3) Let K ′ be a submodule of P such that K is an ss-supplement of K ′ . Thus, we can
write that P

K′
∼= K

K∩K′ . Then the canonical projection π : K → K
K∩K′ is a projective cover with semisimple

Ker(π) = K ∩K ′ , as required.

(3) =⇒ (4) Let K be an ss-supplement of K ′ in P . Note that P
K′

∼= K
K∩K′ . Let φ : Q → K

K∩K′ be
the projective cover of K

K∩K′ whose kernel is semisimple. Since Q is projective, there exists a homomorphism
ψ : Q → K such that ψπ = φ where π : K → K

K∩K′ is the canonical projection. Then we have that
Ker(ψ) ≤ Ker(φ) ≪ Q , and also Ker(ψ) is semisimple. Hence ψ is the required projective cover.

(4) =⇒ (2) Let φ : Q → K be a projective cover of K whose kernel is semisimple. By Proposition
3.3, K is radical-s-projective. Thus, there exists a homomorphism h : K → Q such that (K)(1K − hφ) ≪ K

and (K)(1K − hφ) is semisimple. Since K = (K)(1K − hφ) + (K)hφ , hφ is an epimorphism. Since φ is
a small epimorphism, then h is an epimorphism by [1, 5.15]. Moreover, since Q is projective, there exists
a homomorphism f : Q → K such that fh = 1Q , and so K = Im(f) ⊕ Ker(h) . On the other hand, since
Ker(h) ≤ (K)(1K−hφ) , Ker(h) is small in K . Therefore, Ker(h) has to be zero. Hence, h is an isomorphism
and K is projective. 2

For the modules M and N , N is said to be M−cyclic if there exists an epimorphism φ :M → N .
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Corollary 3.11 Let R be a ring with semisimple Rad(R) , P be a projective R−module with endomorphism
ring E = EndR(P ) . Then the following statements are equivalent:

1. Every ss-supplement submodule of P is a direct summand.

2. Every ss-supplement submodule of EE is a direct summand.

3. Every P−cyclic radical-s-projective R−module is projective.

4. Every P−cyclic radical-s-projective R−module has a projective cover whose kernel is semisimple.

Proof (1) =⇒ (2) Let L be a left ideal of E and suppose that L is an ss-supplement in E . Since there
is a bijective function between ss-supplement submodules of P and ss-supplement submodules of EE from
Proposition 2.8, by following the notation of the proof of Proposition 2.8, Ψ(L) is a direct summand of P by
assumption. Thus, there exists an idempotent element e in E with Ψ(L) = Im(e) by [1, 5.8]. Again applying
Proposition 2.8, we have that L = ΦΨ(L) = E.e . Hence, L is a direct summand of E .

(2) =⇒ (1) Let K be an ss-supplement submodule of P . By following the notation of the proof of
Proposition 2.8, since there is a bijective function Φ from the set of ss-supplement submodules of P to the set
of ss-supplement submodules of EE by Proposition 2.8, then Φ(K) is an ss-supplement submodule of EE . By
assumption, Φ(K) is a direct summand in EE . Thus, we get that Φ(K) = E.f for some idempotent element
f of E by [1, 5.8]. Now we deduce that K = ΨΦ(K) = Im(f) is a direct summand in P .

(1) =⇒ (3) Let M be a P−cyclic radical-s-projective module. Then there exist an ss-supplement K of
P and a small epimorphism φ : M → K with semisimple Ker(φ) by Theorem 3.6. By assumption, K is a
direct summand of P , and so K is projective from [13, 18.1]. Thus, there exists a homomorphism f : K →M

such that fφ = 1K . Therefore, M = Ker(φ)⊕ Im(f) , but since Ker(φ) is small in M , then Ker(φ) has to
be zero. Hence, φ is an isomorphism and M is projective.

(3) =⇒ (4) Let M be a P−cyclic radical-s-projective module. By hypothesis, M is projective. Hence,
1M is the desired projective cover of M .

(4) =⇒ (1) Let K be an ss-supplement submodule of P . From Theorem 2.5, there exists a left (CE)

endomorphism f of P with Im(f) = K . Then K is P−cyclic. Also, from Proposition 3.3, K is radical-s-
projective. Thus, K has a projective cover whose kernel is semisimple, by the assumption. Hence, K is a direct
summand of P from Lemma 3.10. 2

The following result gives a characterization of rings with semisimple radical for which every ss-supplement
submodule of a projective module is a direct summand. For a set Γ , RFMΓ(R) will indicate the ring of row
finite Γ−matrices with entries in R .

Recall that a ring R is called von-Neumann regular if every element x can be written in the form xax ,
for some a ∈ R . A ring R is von-Neumann regular if and only if for every x ∈ R , Rx is a direct summand of
RR (see [6, p. 38]).

Corollary 3.12 Let R be a ring with semisimple Rad(R) . Then the following statements are equivalent:

1. Every ss-supplement submodule of a projective R−module is a direct summand.

2. Every supplement submodule of a projective R−module is a direct summand.

3. For any set Γ , every weak left (CE) matrix A ∈ RFMΓ(R) is (von-Neumann) regular.
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4. For any set Γ , every left (CE) matrix A ∈ RFMΓ(R) is (von-Neumann) regular.

5. For every set Γ , left (CE) matrix A ∈ RFMΓ(R) and B ∈ RFMΓ(R) with BA2 = A it is provided
that ABA = A .

6. Every radical-s-projective R−module has a projective cover whose kernel is semisimple.

7. Every radical-s-projective R−module is projective.

Proof It is clear from Lemma 2.2, Corollary 3.11, and [4, Corollary 3.4] . 2

Recall that a module M is called hereditary (respectively, semihereditary) if every (respectively, finitely
generated) submodule of M is projective. A ring R is called left hereditary (respectively, left semihereditary)
if RR is hereditary (respectively, semihereditary) (see [13]).

Example 3.13 Every (respectively, finitely generated) ss-supplement submodule of a hereditary (respectively,
semihereditary) projective R−module is a direct summand where Rad(R) is semisimple by Lemma 3.10.
Moreover, if R is a hereditary (respectively, semihereditary) ring with semisimple Rad(R) , then every ss-
supplement submodule of a (respectively, finitely generated) projective R−module is a direct summand by Lemma
3.10.

In [5], a ring R is said to be a left V -ring if every simple left R−module is injective. It is well known
that a ring R is a left V -ring if and only if Rad(M) = 0 for every left R−module M .

Example 3.14 Consider the commutative ring
∏∞

i≥1 Fi where Fi = F is any field. Let R be the subring of
this ring of the formed by all sequences (rn)n∈N such that there exist r ∈ F , m ∈ N with rn = r for all n ≥ m .
Then R is a left V−ring such that Soc(RR) is a maximal submodule of RR by [11, Example 2.5]. Clearly,
every ss-supplement submodule of RR is a direct summand, since Rad(R) = 0 . Thus, every radical-s-projective
R−module is projective by Corollary 3.12.

In [2], a ring R is called SSI-ring if every semisimple left R−module is injective.

Proposition 3.15 Let R be SSI-ring and M be an R−module. If M is radical-s-projective, then M is
projective.

Proof Let g : A → B be an R−module epimorphism and f : M → B be any homomorphism. Then by
the hypothesis, there exists a homomorphism h : M → A such that (M)(f − hg) ≪ B and (M)(f − hg) is
semisimple. Since R is SSI -ring, then (M)(f − hg) is injective. Thus, (M)(f − hg) is a direct summand of B
by [10, Theorem 2.15], but since (M)(f − hg) is small in B , it has to be zero. Hence, we obtain that f = hg ,
so M is a projective module. 2

Recall from [12] that a module M is said to have the exchange property if for any module K and any
two decompositions

K =M ′ ⊕ L =
⊕

i∈I Ai

where M ′ ∼=M , there are submodules A′
i ≤ Ai such that
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K =M ′ ⊕ (
⊕

i∈I A
′
i) .

Note that M has finite exchange property if this holds whenever the index set I is finite. A ring R is called
an exchange ring if RR has the exchange property. For finitely generated modules, the exchange and finite
exchange properties coincide.

Example 3.16 (1) Let P be a projective module such that E = EndR(P ) is an exchange ring. Since every
ss-supplement submodule of P is a supplement, then it is a direct summand of P from [4, Example 3.10(iii)]
as idempotents lift modulo Rad(E) by [15, Example 2].

(2) Let R be the ring of eventually constant sequences r = (s1, s2, ..., sn, t, t, t, ...) where s1, s2, ..., sn ∈ Q ,
t is in the set of integers localised at the prime ideal 2Z and n depends on r . Then R is an exchange ring
with Rad(R) = 0 from [3, 11.42(3)]. Since RR has finite exchange property, by [12, Theorem 2] EndR(RR) is
an exchange ring for all 0 ̸= n ∈ N . So that every ss-supplement in a finitely generated projective R−module
is a direct summand by [4, Example 3.10(iii)].
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