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Abstract: In this paper, we study a second order rational difference equation. We analyze the stability of the unique
positive equilibrium of the equation and prove the existence of a Neimark-Sacker bifurcation, validating our theoretical
analysis via a numerical exploration of the system.
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1. Introduction
Nonlinear systems of difference equations have applications in the study of systems in which the (k + 1) state
depends on the previous k states. These type of equations appears in the modeling of multiple phenomena in
biology, ecology, physics, economics, etc. [3, 6, 9, 12–14]. This is the reason why, recently, many scientists have
devoted their work to the study of the theory of difference equations [1, 19], the boundedness, the periodicity,
the global asymptotic stability of their solutions and the existence of bifurcations. A bifurcation occurs when a
small smooth variation made to the parameters of a system causes a sudden qualitative change in its behavior.
In a Neimark–Sacker bifurcation, a closed invariant curve emerges from a fixed point in discrete dynamical
systems when the fixed point changes its stability through a pair of complex eigenvalues with unit modulus
[8–11, 16]. The bifurcation can be supercritical or subcritical, resulting in a stable or unstable closed invariant
curve, respectively. Recently, many authors have focused their efforts on the study of the existence of this
bifurcation in many difference equations. Thus, DeVault et al. [5] consider the difference equation

xn+1 = p+
xn−k

xn
,

where n ∈ N0 , k ∈ N2 , p > 0 , and the initial conditions x−k, . . . , x0 > 0 , and perform a detailed analysis of
the boundedness and the stability of its solutions. Saleh and coworkers [17] analyze the same equation, showing
that each positive solution of the equation is globally asymptotically stable. They also analyze some properties
concerning the semicycles of that equation. Tasdemir [18] studies a similar equation, given by

xn+1 = p+ q
xn

x2
n−m

,

where p, q > 0 , n ∈ N0 , and m ∈ N2 . In his work, the author studies the boundedness of the solutions to
the equation, their periodicity and their global stability. Beso et al. [3] show that the equation introduced by
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Tasdemir presents a Neimark–Sacker bifurcation, giving an asymptotic approximation of the invariant curve
in the vicinity of the equilibrium point. He and Qiu [7] also investigate the existence of a Neimark–Sacker
bifurcation in a difference equation of the type

xn+1 =
βxn + αxn−2

1 + xn−1
, (1.1)

where α, β > 0 and the initial conditions x−2, x−1, x0 ∈ R+
0 .

In a recent paper, Berkal and Navarro [2] carry out a qualitative analysis of the system defined by

xn+1 =
(1 + ha)xn

1 + hbxn + hyn
, yn+1 =

yn(1 + hcxn)

1 + h
, (1.2)

being h, a, b, c > 0 . The authors prove the existence of a Neimark–Sacker bifurcation.
Here, we have used the following notations: N for the set of natural numbers, Nν for the set {n ∈ Z :

n ≥ ν} , R+
0 for {x ∈ R : x ≥ 0} , and R+ for {x ∈ R : x > 0} .

The studies cited above have led us to analyze in this paper the qualitative behavior of the rational
difference equation of second order given by

Xn+1 = A+B
Xm

n

Xm+1
n−1

, m ≥ 1 , (1.3)

where A,B and the initial conditions x−1 , x0 are positive real numbers. In order to carry out this qualitative
study, we introduce the change of variable

xn =
Xn

A
, (1.4)

which transforms Eq. (1.3) into

xn+1 = 1 + p
xm
n

xm+1
n−1

, m ≥ 1 . (1.5)

Note that this equation has a unique positive equilibrium, given by

x̄ =
1 +

√
1 + 4p

2
.

In Section 2, we calculate the positive equilibrium of Eq. (1.5) and determine its stability. Section 3 is devoted
to the study of the existence of a Neimark–Sacker bifurcation. Finally, in Section 4, we perform a numerical
exploration of a particular case of Eq. (1.5) in order to illustrate the theoretical results.

2. Stability analysis

In this section, we perform a local stability analysis of the positive equilibrium of Eq. (1.5). In order to discuss
the stability of the equilibrium, we use the following Lemma [12]:

Lemma 2.1 Let ρ(λ) = λ2 − Cλ+D , ρ(1) > 0 , and λ1 , λ2 be the roots of ρ(λ) = 0 . Then:

1. | λ1 |< 1 and | λ2 |< 1 if and only if ρ(−1) > 0 and ρ(0) < 1 .
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2. | λ1 |< 1 and | λ2 |> 1 , or | λ1 |> 1 and | λ2 |< 1 if and only if ρ(−1) < 0 .

3. | λ1 |> 1 and | λ2 |> 1 if and only if ρ(−1) > 0 and ρ(0) > 1 .

4. λ1 = −1 and | λ2 |̸= 1 if and only if ρ(−1) = 0 and ρ(0) ̸= ±1 .

5. λ1 and λ2 are complex conjugates, with | λ1 |=| λ2 |= 1 if and only if | C |< 2 and ρ(0) = 1 .

Let us start this analysis by converting Eq. (1.5) into a two dimensional system. To this end, we define
yn = xn−1 , so that Eq. (1.5) adopts the following form,

xn+1 = 1 + p
xm
n

ym+1
n−1

,

yn+1 = xn . (2.1)

Eq. (2.1) has a positive fixed point, given by E = (x̄, x̄) . In order to discuss the linear stability of E , we
determine the Jacobian matrix of this system evaluated at this equilibrium:

J(x, y) =

 mp
xm−1

ym+1
−(m+ 1)p

xm

ym+2

1 0

 . (2.2)

The evaluation of this matrix at the equilibrium

E =

(
1 +

√
1 + 4p

2
,
1 +

√
1 + 4p

2

)
results

J(x̄, x̄) =

 mp

x̄2

−(m+ 1)p

x̄2

1 0

 , (2.3)

with characteristic polynomial

ρ(λ) = λ2 − mp

x̄2
λ+

(m+ 1)p

x̄2
. (2.4)

Lemma 2.2 System (2.1) has a unique positive equilibrium point,

E =

(
1 +

√
1 + 4p

2
,
1 +

√
1 + 4p

2

)
and

1. E is locally asymptotically stable (stable sink) if

p <
m+ 1

m2
.

2. E is unstable (source) if

p >
m+ 1

m2
.
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3. The roots of equation ρ(λ) = 0 are complex numbers with modulus one if

C < 2

and

p =
m+ 1

m2
.

Proof From Eq. (2.3), it follows that

ρ(0) =
(m+ 1)p

x̄2
> 0 , ρ(1) = 1 +

p

x̄2
> 0

and

ρ(−1) = 1 +
(2m+ 1)p

x̄2
> 1 .

Taking into account that

x̄ =
1 +

√
1 + 4p

2
,

we can express ρ(−1) and ρ(0) as

ρ(−1) = 4p(m+ 1) +
√

1 + 4p+ 1 , ρ(0) = p+ 1− m+ 1

m2
.

Moreover, | C |< 2 because
m+ 1

m+ 1 +

(
1 +

2

m
+m

√
1 +

4(m+ 1)

m2

) < 1 ,

where p =
m+ 1

m2
and, then, the application of Lemma 2.1 concludes the proof. 2

3. Neimark-Sacker bifurcation
In this section, we study the existence of a Neimark-Sacker bifurcation in Eq. (2.1). A Neimark-Sacker
bifurcation occurs when a closed invariant curve emerges from an equilibrium point in a discrete dynamical
system and, then, the stability of the equilibrium changes via a pair of complex eigenvalues with unit modulus
[9–11, 16].

First of all, we should remark that the roots of (2.4) are conjugate complex numbers if and only if

p =
m+ 1

m2
. (3.1)

Let us define then Ns as the set of parameters of Eq. (2.1) satisfying the condition (3.1),

Ns =

{
m ∈ R+ : p =

m+ 1

m2

}
.
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The change of variable defined by
un = xn − x̄ , vn = yn − x̄ ,

transforms the system (2.1) into

un+1 = 1 + p
(un + x̄)m

(vn−1 + x̄)m+1
− x̄ ,

vn+1 = un . (3.2)

For any p ∈ Ns , we define the function

F (u, v) →

 1 + p
(u+ x̄)m

(v + x̄)m+1
− x̄

u

 , (3.3)

where p =
m+ 1

m2
. The origin is the unique fixed point of F (u, v) , and the Jacobian matrix of F (u, v) evaluated

at (0, 0) is given by

JF (0, 0) =

 mp

x̄2

−(m+ 1)p

x̄2

1 0

 .

The eigenvalues of JF (0, 0) are λ(p,m) = α(p,m) + iβ(p,m) and λ̄(p,m) = α(p,m)− iβ(p,m) , being

α(p,m) =
mp

(1 + 2p+
√
1 + 4p)

and

β(p,m) =

√
m2p2 − 2p(m+ 1)(1 + 2p+

√
1 + 4p)

(1 + 2p+
√
1 + 4p)

.

If we assume that F has the following form near the origin,

F (p, u, v) =

 mp

x̄2

−(m+ 1)p

x̄2

1 0

( u
v

)
+

(
f1(p, u, v)
f2(p, u, v)

)
, (3.4)

then  1 + p
(u+ x̄)m

(v + x̄)m+1
− x̄

u

 = F (p, u, v) , (3.5)

from which

f1(p, u, v) = 1 + p
(u+ x̄)m

(v + x̄)m+1
− x̄− mp

x̄2
u+

−(m+ 1)p

x̄2
v

and
f2(p, u, v) = 0 .
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Let p0 be

p0 =
m+ 1

m2
.

For p = p0 , it is easy to see that x̄ =
m+ 1

m
and

JF (0, 0) = J0 =

( m

m+ 1
−1

1 0

)
.

The eigenvalues of J0 are

λ(m), λ̄(m) =
m± i

√
3m2 + 8m+ 4

2(m+ 1)
, (3.6)

and their corresponding eigenvectors can be written as

µ(m), µ̄(m) =

(
m∓ i

√
3m2 + 8m+ 4

2(m+ 1)
, 1

)
.

Taking into account Eq. (3.6), one can easily check that | λ(m) |= 1 and

λ2(m) =
−(m2 + 4m+ 2) + i

√
3m2 + 8m+ 4

2(m+ 1)2
,

λ3(m) = − (m3 + 7m2 + 10m+ 4) + i(m2 + 3m+ 2)
√
3m2 + 8m+ 4

4(m+ 1)3
,

λ4(m) =
(m4 + 5m3 + 12m2 + 12m+ 4)− i(m3 + 5m2 + 6m+ 2)

√
3m2 + 8m+ 4

4(m+ 1)3
,

from which follows that λk(m) ̸= 1 for any k = 1, 2, 3, 4 .

For p = p0 and x̄ =
m+ 1

m
, (3.5) adopts the form

F (u, v) =

( m

m+ 1
−1

1 0

)(
u
v

)
+

(
g1(u, v)
g2(u, v)

)
,

where

g1(u, v) = f1(p, u, v) =
(m+ 1)(u+ m+1

m )m

m2(v + m+1
m )m+1

− 1

m
− m

(m+ 1)
u+ v

and
g2(u, v) = f2(p, u, v) = 0 .

Hence, (for p = p0 ), (3.2) is equivalent to

(
un+1

vn+1

)
=

 m

m+ 1
−1

1 0

( un

vn

)
+

(
g1(u, v)
g2(u, v)

)
.
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Let (
un

vn

)
= T

(
ξn
ηn

)
,

where

T =

 −1 0

−m

2(m+ 1)

−
√
3m2 + 8m+ 4

2(m+ 1)


and

T−1 =

 −1 0

−m√
3m2 + 8m+ 4

−2(m+ 1)√
3m2 + 8m+ 4

 .

Using this transformation, the normal form of (3.2) is computed as

(
ξn+1

ηn+1

)
=


m

2(m+ 1)
−
√
3m2+8m+4
2(m+1)

5m2 + 8m+ 4

2(m+ 1)
√
3m2 + 8m+ 4

−2m

2(m+ 1)


(

ξn

ηn

)
+ T−1G

(
T

(
ξn

ηn

))
,

where

G

(
u

v

)
=

(
g1(u, v)

g2(u, v)

)
.

Let

H

(
u

v

)
=

(
h1(u, v)

h2(u, v)

)
= T−1G

(
T

(
u

v

))
.

After some calculations, we obtain that

h1(u, v) =
m+ 1

m2
Π(u, v) +

1

m
− m

2(m+ 1)
u−

√
3m2 + 8m+ 4

2(m+ 1)
v ,

being

Π(u, v) = −
(
m+ 1

m
− u

)m
(
m+ 1

m
− m

2(m+ 1)
u−

√
3m2 + 8m+ 4

2(m+ 1)
v

)−(m+1)

,

and

h2(u, v) =
−m√

3m2 + 8m+ 4
h1(u, v) .

Next, in order to determine the direction of the appearance of the invariant curve in a system exhibiting a

Neimark–Sacker bifurcation, we consider the first Lyapunov coefficients at the point (u, v, p0) =

(
0, 0,

m+ 1

m

)
,

given by

L(m) =

(
Re(λ̄(m)ξ21)−Re

(
(1− 2λ(m))λ̄(m)2

1− λ(m)
ξ20ξ11

)
− 1

2
| ξ11 |2 − | ξ02 |2

)
,
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where

λ(m) =
m+ i

√
3m2 + 8m+ 4

2(m+ 1)
, λ̄(m) =

m− i
√
3m2 + 8m+ 4

2(m+ 1)
,

and

ξ20 =
1

8
[h1uu − h1vv + 2h2uv + i (h2uu − h2vv − 2h1uv)] ,

ξ11 =
1

4
[h1uu + h1vv + i (h2uu + h2vv)] ,

ξ02 =
1

8
[h1uu − h1vv − 2h2uv + i (h2uu − h2vv + 2h1uv)] ,

ξ21 =
1

16
[h1uuu + h1uvv + h2uuv + h2vvv + i (h2uuu + h2uvv − h1uuv − h1vvv)] ,

being

h1uu =
∂h2

1

∂u2
, h2uv =

∂h2
2

∂u∂v
, h1uuv =

∂h3
1

∂u2∂v
, . . .

We can see that

| λ(p) |=
√
α(p)2 + β(p)2 =

2(m+ 1)p

1 + 2p+
√
1 + 4p

and, thus, (
d | λ(p) |

dp

)
p=p0

=

(
2(m+ 1)√

p(4p+ 1)(1 +
√
1 + 4p)

)
p=p0

.

Since (
d | λ(p) |

dp

)
p=p0

=
m2

m+ 1
> 0 ,

the above analysis leads to the following result [10, 15, 16, 21].

Theorem 3.1 Suppose that L ̸= 0 and the parameter p changes its value in a small vicinity of Ns . Then,

Eq. (2.1) presents a Neimark-Sacker bifurcation at the positive equilibrium E =

(
1 +

√
1 + 4p

2
,
1 +

√
1 + 4p

2

)
.

Moreover, if a L > 0 (respectively L < 0), there exists a unique repelling (respectively attracting) invariant
closed curve Υs which bifurcates from E .

4. Illustrative example

In this section, we illustrate the results obtained in the previous sections by analyzing the solution to the
difference equation given by

xn+1 = 1 + p
x2
n

x3
n−1

, (4.1)

with initial conditions x0 and x−1 .
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In Eq. (4.1), m = 2 and p0 = 0.75 ,

h1(u, v) = −3

4

(
3

2
− u

)2
(
3

2
− 1

3
u− 2

√
2

3
v

)−3

+
1

2
− 1

3
u− 2

√
2

3
v

and

h2(u, v) =
−
√
2

4
h1(u, v) .

Furthermore, the calculation of the partial derivatives of h1 and h2 gives

h1uu =
4

27
, h1uv =

8
√
2

27
, h1vv =

−64

27
, h1uuu =

−8

243
,

h1uuv =
80
√
2

243
, h1uvv =

128

243
, h1vvv =

−1280
√
2

243
, h2uu =

−
√
2

27
,

h2uv =
−4

27
, h2vv =

16

27
, h2uuu =

2
√
2

243
, h2uuv =

−40

243
,

h2uvv =
−32

√
2

243
, h2vvv =

640

243
.

Now, we can obtain

ξ20 =
5

18
− i

16 + 17
√
2

216
= 0.27− 0.132i ,

ξ11 =
5

9
+ i

16−
√
2

216
= 0.555 + 0.151i ,

ξ02 =
19

54
+ i

16− 15
√
2

216
= 0.018 + 0.024i ,

ξ21 =
720

243
+ i

1160
√
2

243
= 2.962 + 6.809i .

Also,

λ(2) =
1 + i2

√
2

3
= 0.33 + 0.440i

and

λ̄(2) =
1− i2

√
2

3
= 0.33− 0.440i .

Finally,

L(m = 2) =

(
Re(λ̄(2)ξ21)−Re

(
(1− 2λ(2))λ̄(2)2

1− λ(2)
ξ20ξ11

)
− 1

2
| ξ11 |2 − | ξ02 |2

)
= 7.49966 > 0 .

Since L(m) > 0 , by varying the value of p from p < p0 to p > p0 , a supercritical Neimark–Sacker bifurcation
arises at p0 = 0.75 (see Figure 1). Namely, if p = 0.748 < p0 , the fixed point x̄ = 1.5 is asymptotically stable.
In Figure 1a, we depict in red 900 000 iterations of the orbit with initial conditions (x0, x−1) = (1.7, 1.7) .
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If p > p0 (see Figure 1b–1d), we find an attracting closed invariant curve Υs encircling the fixed point. In
Figure. 1b–1d, we depict some 900, 000 iterations of the orbits with initial conditions (x0, x−1) = (0.485, 0.485)

(in blue and located in the interior of the invariant curve) and (x0, x−1) = (1.7, 1.7) (in red and located at the
outside of the invariant curve). The stable invariant curve Υs has been colored in green. In all these cases, (b),
(c), and (d), the blue orbit leaves the unstable fixed point x̄ and tends to the invariant curve Υs .

(a) (b)

(c) (d)

Figure 1. Trajectories (blue and red) for m = 2 , p0 = 0.75 , x̄ = 1.5 and P : (a) p = 0.748 , (b) p = 0.7515 , (c)
p = 0.755 , (d) p = 0.758 .

In Figure 2, we show the bifurcation diagram of Eq. (4.1), for values of the parameter p in the interval
(0, 1] . Figure 3 shows an asymptotic approximation of the invariant curve. We can conclude that all the
trajectories with initial conditions in the region enclosed by the invariant curve tends asymptotically to Υs ,
except the fixed point x̄ . The trajectories with initial conditions in the outside to the invariant curve tend to
Υs . For values of the parameter p larger than p0 , the invariant curve Υs tends to expand as the value of p

gets larger. Finally, for any p ≤ p0 , the invariant curve reduces and tends to the fixed point.
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Figure 2. Bifurcation diagram in (p, xn) . Figure 3. Asymptotic approximation of the invariant
curve, for p = 0.758 .

5. Conclusion
This paper focuses on a qualitative analysis of the solutions to the difference system given by Eq. (2.1). This
system depends on two parameters, m and p , and has one positive equilibrium E . We have analyzed the
stability of E , finding that the positive equilibrium is asymptotically stable if p < (m+ 1)/m2 and unstable if
p > (m+ 1)/m2 .

We have also proved the existence of a Neimark–Sacker bifurcation through the analysis of the normal
form of the system, concluding that a Neimark–Sacker bifurcation occurs when the parameter p varies in a
small vicinity of p0/(m+1)/m2 . Finally, we have illustrated this theoretical result with the help of a numerical
example.
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