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Abstract: In this paper, we prove that the orthogonal complement F⊥ of a totally geodesic foliation F on a complete
semi-Riemannian manifold (M, g) satisfying a certain inequality between mixed sectional curvatures and the integrability
tensor of F⊥ is totally geodesic. We also obtain conditions for the existence of totally geodesic foliations on a complete
semi-Riemannian manifold (M, g) with bundle-like metric g .
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1. Introduction
The theory of foliations of manifolds has begun with the study of C. Ehresmann and G. Reeb [6] on a joint of
differential equations and the differential topology. In particular, totally geodesic foliations and the foliations
with bundle-like metric g on an ambient manifold (M, g) are substantial research subjects for topologists and
geometers. When all the leaves of a foliation F are totally geodesic submanifolds of M , we call F a totally
geodesic foliation on (M, g) . One important line of research on totally geodesic foliations focuses on the existence
of these foliations and several results have been obtained by solving a Riccati type differential equation or finding
a Riemannian metric g on M such that a given foliation becomes totally geodesic (see [3, 5, 8, 11, 13]). In
the Lorentzian context, the authors of [4, 10] recently studied the geometric properties and existence of totally
geodesic foliations of codimension one in a spacetime.

Another major research direction on totally geodesic foliations is the integrability of a transversal dis-
tribution and total geodesicity of the orthogonal complement of a totally geodesic foliation, which has been
intensively discussed with mixed sectional curvatures of the ambient manifold. S. Tanno [14] showed that if
all the mixed sectional curvatures of a Riemannian manifold Mn vanish identically on M and the transversal
distribution of a totally geodesic foliation F is integrable, then the foliation F⊥ defined by the transversal
distribution is also totally geodesic(see also [1]). G. Oshikiri [13] studied such subjects on compact or complete
Riemannian manifolds with some curvature constraints. In [2, 3], it was proved that on a positively or negatively
curved semi-Riemannian manifold, there exists no totally geodesic foliation with bundle-like metric on M such
that the orthogonal complement distribution of the foliation is integrable.

In this paper, we firstly investigate total geodesicity of the orthogonal complement F⊥ of a totally
geodesic foliation F on a complete semi-Riemannian manifold (M, g) . Unlike Riemannian manifolds, because
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the metric g does not need to be positive definite, it is necessary to find appropriate conditions accordingly.
In particular, we introduce special functions associated with integrable tensors A and T . Using ordinary
differential equations and inequalities related to the mixed sectional curvatures and the integrable tensor A

of F⊥ , we show that the orthogonal complement F⊥ of a totally geodesic foliation F on a complete semi-
Riemannian manifold (M, g) satisfying some suitable conditions is also totally geodesic. As an application, we
prove generalized results of the aforementioned theorems in [2, 13, 14]. Subsequently, we discuss the existence of
totally geodesic foliations on a complete semi-Riemannian manifold (M, g) with bundle-like metric g . We find a
key function related to the tensor A and show that if the mixed sectional curvatures of M satisfy an appropriate
inequality with the key function, then there exists a totally geodesic foliation on (M, g) with bundle-like metric
g .

2. Preliminaries
Let (M, g) be an n -dimensional semi-Riemannian manifold of index r and TM the tangent bundle of M . We
often use ⟨ , ⟩ as an alternative notation for g . Denote by ∇ the Levi-Civita connection of (M, g) , and by
Γ(TM) the C∞(M) -module of smooth sections of TM , where C∞(M) is the set of all real-valued smooth
functions on M . Mappings, vector fields, and manifolds are sufficiently differentiable.

In what follows, we consider a foliation F of dimension p (or codimension q = n − p) of M . The
tangent distribution to F and its complementary orthogonal distribution in TM are denoted by D and D⊥,

respectively. We assume that the induced metric tensor on D is nondegenerate and of the constant index. Then
let dim(F) be the dimension of Dm and ind(F) be the index of Dm at any m ∈ M . In this case, we say that
F is a nondegenerate foliation and (M, g,F) is a foliated semi-Riemannian manifold.

Let π⊥ : TM → D and π : TM → D⊥ be the natural projections. Tensors A and T of type (1, 2) are
defined as follows:

TV W = π(∇π⊥(V )π
⊥(W )) + π⊥(∇π⊥(V )π(W ))

and
AV W = π(∇π(V )π

⊥(W )) + π⊥(∇π(V )π(W ))

for V,W ∈ Γ(TM) . TV W is the second fundamental form of the leaves of F , and is symmetric. If TV W = 0

for all V,W ∈ Γ(D), then T = 0. The vanishing of T is thus equivalent to the property that all the leaves of F
are totally geodesic submanifolds of (M, g) . Such a foliation is said to be totally geodesic. The following lemma
is well-known and can be found in [2] (see also [9]).

Lemma 2.1 Let (M, g,F) be a foliated semi-Riemannian manifold. Then

(i) AXY = AY X for all X,Y ∈ Γ(D⊥) if and only if D⊥ is integrable.

(ii) A = 0 if and only if the foliation F⊥ defined by D⊥ is totally geodesic.

The Riemannian curvature tensor R of M is defined by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z
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for X,Y, Z ∈ Γ(TM) . If X and Y span a nondegenerate plane Π, the sectional curvature K(X,Y ) of Π is
defined by

K(X,Y ) =
⟨R(X,Y )X,Y ⟩

⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2
.

K(V,X) is called the mixed sectional curvature determined by V ∈ Γ(D) and X ∈ Γ(D⊥) (see [2, 12]).
In the remaining of this section, we give a generalization of a formula in [13] to the semi-Riemannian

manifolds by direct calculations. Unless otherwise stated, the indices i , j run through {1, · · · , p = dim(F)} ,
and α , β through {p+1, · · · , n = dim(M)} . Let {Ei} and {Xα} be orthonormal frame fields for D and D⊥ ,
respectively, where ϵi = ⟨Ei, Ei⟩ and ϵα = ⟨Xα, Xα⟩. For unit sections E ∈ Γ(D) and X ∈ Γ(D⊥) , we have

⟨R(E,X)X,E⟩ = ⟨∇[E,X]X,E⟩ − ⟨∇E∇XX,E⟩+ ⟨∇X∇EX,E⟩

=
∑
i

ϵi⟨[E,X], Ei⟩⟨∇Ei
X,E⟩+

∑
α

ϵα⟨[E,X], Xα⟩⟨∇Xα
X,E⟩

− ⟨∇E∇XX,E⟩+X⟨∇EX,E⟩ − ⟨∇EX,∇XE⟩

=
∑
i

ϵi⟨∇EX,Ei⟩⟨∇EX,Ei⟩ −
∑
i

ϵi⟨∇XE,Ei⟩⟨∇EX,Ei⟩

+
∑
α

ϵα⟨∇EX,Xα⟩⟨∇Xα
X,E⟩+

∑
α

ϵα⟨E,∇XXα⟩⟨∇Xα
X,E⟩

−
∑
i

ϵi⟨∇EX,Ei⟩⟨∇XE,Ei⟩ −
∑
α

ϵα⟨∇EX,Xα⟩⟨∇XE,Xα⟩

− ⟨∇E∇XX,E⟩ −X⟨X,∇EE⟩

= ⟨TEX,TEX⟩ − ⟨∇E∇XX,E⟩ −X⟨X,TEE⟩

− 2
∑
i

ϵi⟨∇XE,Ei⟩⟨∇EX,Ei⟩+
∑
α

ϵα⟨∇EX,Xα⟩⟨AXα
X,E⟩

+
∑
α

ϵα⟨E,AXXα⟩⟨AXα
X,E⟩+

∑
α

ϵα⟨∇EX,Xα⟩⟨AXXα, E⟩.

(2.1)

Thus,

K(E,X) = − 1

⟨E,E⟩⟨X,X⟩

{
⟨TEX,TEX⟩ − ⟨∇E∇XX,E⟩ −X⟨X,TEE⟩

− 2
∑
i

ϵi⟨∇XE,Ei⟩⟨∇EX,Ei⟩+
∑
α

ϵα⟨∇EX,Xα⟩⟨AXα
X,E⟩

+
∑
α

ϵα⟨E,AXXα⟩⟨AXα
X,E⟩+

∑
α

ϵα⟨∇EX,Xα⟩⟨AXXα, E⟩
}

If F is totally geodesic, this equality becomes

K(E,X) =
1

⟨E,E⟩⟨X,X⟩

{
⟨∇E∇XX,E⟩ −

∑
α

ϵα⟨∇EX,Xα⟩⟨AXα
X,E⟩

−
∑
α

ϵα⟨E,AXXα⟩⟨AXαX,E⟩ −
∑
α

ϵα⟨∇EX,Xα⟩⟨AXXα, E⟩
}
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for unit sections E ∈ Γ(D) and X ∈ Γ(D⊥) . In particular, we get∑
α

K(E,Xα) = −
∑
α, β

ϵβ
⟨E,E⟩ϵα

{
⟨∇EXα, Xβ⟩⟨AXβ

Xα, E⟩

+ ⟨E,AXα
Xβ⟩⟨AXβ

Xα, E⟩+ ⟨∇EXα, Xβ⟩⟨AXα
Xβ , E⟩

}
+
∑
α

1

⟨E,E⟩ϵα
⟨∇E∇XαXα, E⟩,

for any local orthonormal frame field {Xα} of D⊥ . Since ⟨∇EXα, Xβ⟩ is skew-symmetric in α and β , we have

∑
α

K(E,Xα) = −
∑
α, β

ϵβ
⟨E,E⟩ϵα

⟨AXα
Xβ , E⟩⟨AXβ

Xα, E⟩+
∑
α

1

⟨E,E⟩ϵα
⟨∇E∇Xα

Xα, E⟩. (2.2)

3. Main theorems
In this section, we state the conditions on M which guarantee that F⊥ associated with a totally geodesic
foliation F is also totally geodesic. Indeed, we will show that some conditions on the mixed sectional curvature
K of M play a central role in determining geometric properties of F⊥ .

From now on, we suppose that an n -dimensional semi-Riemannian manifold M of index r is complete,
that is, every geodesic of M can be extended on the entire real line, and a nondegenerate foliation F of
dimension p (or codimension q = n− p) is totally geodesic.

Given m ∈ M , let {xα} be an orthonormal basis of D⊥
m . Let γ be a unit-speed geodesic along F with

γ(0) = m and {Xα} the orthonormal frame field along γ obtained by the parallel translation of {xα} of D⊥
m.

As F is totally geodesic, {Xα} is an orthonormal frame field for D⊥ along γ . From (2.2) or direct calculation
using ∇γ′γ′ = 0 and ∇γ′Xα = 0 , we obtain

∑
α

K(γ′, Xα) = −
∑
α, β

ϵβ
⟨γ′, γ′⟩ϵα

⟨AXαXβ , γ
′⟩⟨AXβ

Xα, γ
′⟩+

∑
α

1

⟨γ′, γ′⟩ϵα
γ′⟨∇XαXα, γ

′⟩. (3.1)

Set G = π⊥(
∑

α ϵα∇Xα
Xα) . Then (3.1) can be expressed as

∑
α

⟨γ′, γ′⟩K(γ′, Xα) = −
∑
α, β

ϵβϵα⟨AXαXβ , γ
′⟩⟨AXβ

Xα, γ
′⟩+ γ′⟨G, γ′⟩.

Let f(t) = ⟨G, γ′⟩ . We have

(f(t))2 =
(∑

α

ϵα⟨AXα
Xα, γ

′⟩
)2

≤ q
∑
α

⟨AXα
Xα, γ

′⟩2 (q = dim(F⊥)).

Hence ∑
α

⟨γ′, γ′⟩K(γ′, Xα) ≤ f ′(t)− 1

q
f(t)2 −

∑
α̸=β

ϵβϵα⟨AXα
Xβ , γ

′⟩⟨AXβ
Xα, γ

′⟩. (3.2)

For the proofs of main theorems, we need the following lemma.
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Lemma 3.1 Let h ∈ C1(R) . If there is a constant k > 0 such that

h′(t)− kh(t)2 ≥ 0

for every t ∈ R , then h is identically zero.

Proof Suppose there is t0 ∈ R with h(t0) = c ̸= 0 . We may assume t0 = 0 and c > 0 . As h(t) is

nondecreasing, h(t) ≥ c > 0 for t ≥ 0 . This gives h′(t)
h(t)2 ≥ k , and integrating both sides, we get

− 1

h(t)
+

1

c
≥ kt.

This does not hold for t ≥ 1
kc since h(t) > 0 , a contradiction. Hence, h(t) = 0 for all t ∈ R . 2

In this setting, we can prove our main theorems.

Theorem 3.2 Let F be a totally geodesic nondegenerate foliation of codimension 1 on a complete semi-
Riemannian manifold M . If all the mixed sectional curvatures of M vanish identically on M then the foliation
F⊥ defined by D⊥ is totally geodesic.

Proof It is enough to show that AXY = 0 for all X,Y ∈ D⊥ by Lemma 2.1. As the codimension of F is 1 ,
the index α has no choice but α = n . Given m ∈ M , let γ be a unit-speed geodesic along F with γ(0) = m .
Then {xα} and {Xα} , defined in the beginning of this section, are just the singletons {xn} and {Xn} . Also,
as F is totally geodesic, we use (3.2) and get

⟨γ′, γ′⟩K(γ′, Xn) = f ′(t)− f(t)2.

Since all the mixed sectional curvatures of M vanish identically, we have f ′(t) = f(t)2 . By Lemma 3.1,
f(t) = 0 for every t ∈ R and every γ along F , which therefore concludes that F⊥ is totally geodesic.

2

For higher codimension cases, we define a function associated with the tensor A whose value on any
triple of u, v, w ∈ TmM for any m ∈ M is

A(u, v, w) = ⟨Auv, w⟩.

Note that the supremum of |Auv| over unit vectors u, v is related to the turbulence of F on a Riemannian
manifold (M, g) with bundle-like metric g (see [11]). Since in semi-Riemannian manifolds, however, the Cauchy-
Schwarz inequality is not available, that is, |Auv| can be less than |A(u, v, w)| over some unit vectors, we thus
must impose conditions and compute the result in terms of A(u, v, w) itself, so that we establish Theorem 3.3.
The function T (u, v, w) = ⟨Tuv, w⟩ over u, v, w ∈ TmM for any m ∈ M is also defined in the same way. Here,
we note that authors [4] investigated some conditions for a foliation F to be totally geodesic by introducing a
special number QF .

Theorem 3.3 Let F be a totally geodesic nondegenerate foliation of codimension q > 1 on a complete semi-
Riemannian manifold M . Suppose that for any m ∈ M and for any unit vector u ∈ Dm , the mixed sectional
curvature satisfies the condition∑

α

⟨u, u⟩K(u, xα) ≥ q2 max
p+1≤ι,κ≤n

(A(xι, xκ, u))
2
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where {xα} is an orthonormal frame at m for D⊥
m . Then D⊥ is integrable and the foliation F⊥ defined by

D⊥ is totally geodesic.

Proof Since F is totally geodesic, to apply (3.2), we consider the setting described in the beginning of this
section; for a given m ∈ M , let γ be a unit-speed geodesic and {Xα} the orthonormal frame field along γ .

Using the assumption, from (3.2) we get

f ′(t)− 1

q
f(t)2 ≥

∑
α

⟨γ′, γ′⟩K(γ′, Xα) +
∑
α̸=β

ϵαϵβ⟨AXαXβ , γ
′⟩⟨AXβ

Xα, γ
′⟩

≥ q2 max(⟨AXαXβ , γ
′⟩)2 +

∑
α ̸=β

ϵαϵβ⟨AXαXβ , γ
′⟩⟨AXβ

Xα, γ
′⟩

≥ max(⟨AXα
Xβ , γ

′⟩)2 +
∑
α<β

(ϵα⟨AXα
Xβ , γ

′⟩+ ϵβ⟨AXβ
Xα, γ

′⟩)2 ≥ 0.

By Lemma 3.1, f = 0 , so, ⟨AXαXβ , γ
′⟩ = 0 for any unit-speed geodesic γ along F . Consequently, D⊥

is integrable and F⊥ is also totally geodesic.
2

The next result is the special case that D⊥ is integrable.

Corollary 3.4 Let F be a totally geodesic nondegenerate foliation of codimension q > 1 on a complete semi-
Riemannian manifold M with sectional curvature K . Suppose that D⊥ is integrable and ind(M) = ind(F⊥) .
If K ≥ 0 then the foliation F⊥ defined by D⊥ is totally geodesic.

Proof When ind(M) = ind(F⊥) , all the leaves of F are totally geodesic spacelike submanifolds of M , so
we can use the same setting in the proof of Theorem 3.3 for a spacelike geodesic. Since D⊥ is integrable, by
Lemma 2.1, we obtain

f ′(t)− f(t)2

q
≥

∑
α

K(γ′, Xα) +
∑
α̸=β

⟨AXα
Xβ , γ

′⟩2,

for all unit-speed geodesic γ along F .
When any sectional curvature of M is nonnegative, by Lemma 3.1, f = 0 and from (3.1)∑

α

K(γ′, Xα) = −
∑
α, β

⟨AXαXβ , γ
′⟩2 ≥ 0.

Hence we have ⟨AXαXβ , γ
′⟩ = 0 for all γ along F , so F⊥ is totally geodesic. 2

As inferred from the above proof, we can get the same conclusion by having the other hypotheses in
Corollary 3.4 and replacing the nonnegativity of sectional curvatures of M with mixed sectional curvature
K(V,X) = 0 for any V ∈ Γ(D) and X ∈ Γ(D⊥) . The following corollary is directly deduced from Theorem
3.2 and Corollary 3.4 for Riemannian manifolds (see [2, 13, 14]) and Lorentzian manifolds.

Corollary 3.5 Let F be a totally geodesic spacelike foliation on a complete Lorentzian (or Riemannian)
manifold M . Suppose that D⊥ is integrable. If all the mixed sectional curvatures of M vanish identically on
M then the foliation F⊥ defined by D⊥ is totally geodesic.
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4. Bundle-like metric
In this section, we discuss the existence of totally geodesic foliations with bundle–like metric g . The metric g

is said to be bundle-like for F if each geodesic in (M, g) that is tangent to the normal distribution to F at one
point remains tangent for its entire length (cf. [3]). We present the following properties of bundle-like metrics
(see [2, 3, 9, 11]).

1. ⟨∇XE, Y ⟩+ ⟨X,∇Y E⟩ = 0 for E ∈ Γ(D) and X,Y ∈ Γ(D⊥)

2. AXY = −AY X for all X,Y ∈ Γ(D⊥) if and only if the metric g on M is bundle-like for F .

Given a point m ∈ M , let γ be a unit-speed geodesic which is orthogonal to D with γ(0) = m . Choose
local orthonormal frames {Ei} and {Xα} along γ as usual. Based on the formula (2.1), we have an equation
(which is a semi-Riemannian version of the Riccati type equations obtained in [11])

∑
i

ϵi⟨R(Ei, γ
′)γ′, Ei⟩ =

∑
i,j

ϵiϵj⟨γ′,∇Ei
Ej⟩⟨γ′,∇Ei

Ej⟩ −
∑
i

ϵiγ
′⟨γ′,∇Ei

Ei⟩

+ 2
∑
i,j

ϵiϵj⟨∇γ′Ei, Ej⟩⟨γ′,∇Ei
Ej⟩ −

∑
α,i

ϵαϵi⟨Ei, Aγ′Xα⟩2.

Since ⟨∇γ′Ei, Ei⟩ = 0 and ⟨γ′, [Ei, Ej ]⟩ = 0 , we get

∑
i

ϵi⟨R(Ei, γ
′)γ′, Ei⟩ =

∑
i,j

ϵiϵj⟨γ′,∇Ei
Ej⟩2 −

∑
i

ϵiγ
′⟨γ′,∇Ei

Ei⟩ −
∑
α,i

ϵαϵi⟨Ei, Aγ′Xα⟩2

=
∑
i,j

ϵiϵj⟨γ′,∇Ei
Ej⟩2 −

∑
i

ϵiγ
′⟨γ′,∇Ei

Ei⟩ −
∑
α

ϵα⟨Aγ′Xα, Aγ′Xα⟩.
(4.1)

Let G = π(
∑

i ϵi∇Ei
Ei) and f(t) = ⟨G, γ′⟩ . Then from (4.1)

f ′(t)− 1

p
f2(t) ≥

∑
i

⟨γ′, γ′⟩K(Ei, γ
′)−

∑
α

ϵα⟨Aγ′Xα, Aγ′Xα⟩+
∑
i ̸=j

ϵiϵj⟨γ′, TEi
Ej⟩2 (4.2)

To discuss the next result, consider the following function for the tensor A on a semi-Riemannian manifold
(M, g) with bundle-like metric g

Φ(u) =
∑
α

ϵα⟨Axα
u,Axα

u⟩

over u ∈ D⊥
m for any m ∈ M , where {xα} is an orthonormal frame at m for D⊥

m (see [7]). Note that the
definition of Φ(u) is independent of the choice of the frame at m . This means if {yβ} is related to the frame
{xα} by an orthogonal transformation of D⊥

m then

∑
β

ϵβ⟨Ayβ
u,Ayβ

u⟩ =
∑
α

ϵα⟨Axαu,Axαu⟩.

The next consequence is a semi-Riemannian version of a theorem by Kim–Tondeur [11].
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Theorem 4.1 Let (M, g,F) be a foliated semi-Riemannian manifold, where F is a nondegenerate foliation of
codimension q (p = dim(F)) and g is a bundle-like metric for F . Suppose that for any m ∈ M and for any
unit vector u ∈ D⊥

m , the mixed sectional curvature satisfies the condition

∑
i

⟨u, u⟩K(ei, u) ≥ Φ(u) + 2p ind(F) max
1≤j,k≤p

(T (ej , ek, u))
2,

where {ei} is an orthonormal frame at m for Dm . Then F is totally geodesic.

Proof Given a point m ∈ M , let γ be a unit-speed geodesic which is orthogonal to Dm with γ(0) = m .
Choose local orthonormal frames {Ei} and {Xα} for D and D⊥ , respectively, along γ with Xn = γ′ , and so
Aγ′Xn = 0 . Since the number of cases where ϵiϵj = −1 is not more than 2p ind(F) , by (4.2),

f ′(t)− 1

p
f2(t) ≥

∑
i

⟨γ′, γ′⟩K(Ei, γ
′)−

∑
α

ϵα⟨Aγ′Xα, Aγ′Xα⟩

+
∑
i̸=j

ϵiϵj⟨γ′, TEi
Ej⟩2

=
∑
i

⟨γ′, γ′⟩K(Ei, γ
′)−

∑
α

ϵα⟨Aγ′Xα, Aγ′Xα⟩

+
∑

i̸=j, ϵiϵj=1

ϵiϵj⟨γ′, TEi
Ej⟩2 +

∑
ϵiϵj=−1

ϵiϵj⟨γ′, TEi
Ej⟩2

≥
∑
i

⟨γ′, γ′⟩K(Ei, γ
′)− Φ(γ′)− 2p ind(F) max

1≤j,k≤p
(T (ej , ek, γ

′))2.

(4.3)

By hypothesis, f ′(t)− 1
pf

2(t) ≥ 0 .

Thus, we conclude by Lemma 3.1 that f has only the trivial solution f = 0 . Moreover, from (4.3),

(
2p ind(F)max

i,j
(⟨TEiEj , γ

′⟩)2 −
∑

ϵiϵj=−1

⟨γ′,∇EiEj⟩2
)
+

∑
i ̸=j, ϵiϵj=1

⟨γ′,∇EiEj⟩2 = 0.

Since all the terms are nonnegative, we have ⟨TEiEj , γ
′⟩ = 0 for all i , j and any unit-speed geodesic γ ,

which means T = 0 . Hence F is totally geodesic. 2

If F is totally geodesic, that is, T = 0 , then ⟨γ′,∇EiEj⟩ = 0 for all i , j , so by using (4.1) we have

∑
i

⟨γ′, γ′⟩K(Ei, γ
′) =

∑
α

ϵα⟨Aγ′Xα, Aγ′Xα⟩.

The integrability of D⊥ is equivalent to AXY = 0 for X,Y ∈ Γ(D⊥), and we thus deduce

Corollary 4.2 [2] Let M be a semi-Riemannian manifold with positive(or negative) sectional curvature K .
Then there exists no totally geodesic foliation with bundle-like metric on M such that D⊥ is integrable.
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