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Abstract: In the present manuscript, the Benjamin-Bona-Mahony-Burgers (BBMB) equation will be handled numer-
ically by Strang time-splitting technique. While applying this technique, collocation method based on quintic B-spline
basis functions is applied. In line with our purpose, after splitting the BBM-Burgers equation given with appropriate
initial boundary conditions into two subequations containing the derivative in terms of time, the quintic B-spline based
collocation finite element method (FEM) for spatial discretization and the suitable finite difference approaches for time
discretization is applied to each subequation and hereby two different systems of algebraic equations are obtained. Four
test problems are utilized to test the efficiency and reliability of the presented method. The error norms L2 and L∞

with mass, energy, and momentum conservation constants I1 ,I2 and I3 , respectively, are computed. To do a compar-
ison with the other studies in the literature, the newly found approximate solutions are exhibited in both tabular and
graphical formats. Also, stability analysis of numerical approach by the von Neumann method is researched.
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1. Introduction
Bruzon and Gandarias [7] considered a generalized BBM-Burgers equation given as

Ut − Uxxt − αUxx + βUx + (g(U))x = 0, (1.1)

in which α is a given nonnegative real-number, β ∈ R and g(U) is a predefined nonlinear function. Peregrine

[43] first proposed equation and Benjamin et al. [5] broadly explained it. In this article, by taking g(U) = U2

2 ,
we are going to handle the BBM-Burgers equation as follows:

Ut − Uxxt − αUxx + βUx + UUx = 0, x ∈ [xL, xR], t ∈ [0, T ], (1.2)

with the condition given at initial time
U(x, 0) = g0(x), (1.3)

and the conditions given at the boundaries
U(xL, t) = U(xR, t) = 0,

Ux(xL, t) = Ux(xR, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0 t > 0.

(1.4)
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If α = 0 is taken in Eq. (1.2), the (RLW) equation is obtained in form

Ut − Uxxt + βUx + UUx = 0 (1.5)

and this is named as the Benjamin-Bona-Mahony (BBM) equation. The approximate solution of the BBM-
Burgers equation is the subject of research by many authors using various methods. Among them, Jain et al. [30]
solved BBM equation with a combination of the splitting method and cubic B-spline technique. Gardner et al.
[22] applied A B-spline finite element method (FEM) involving Galerkin method based on quadratic B‐splines.
Gardner et al. [23] presented a least-squares techniques, Doğan [16] investigated equation using Galerkin method
via linear space finite elements. Soliman and Raslan [46] and Soliman and Hussien [47] proposed quadratic and
septic splines collocation method, respectively. Dağ et al. [17] studied with cubic B-spline collocation finite
element method. Esen and Kutluay [20] used quadratic B-spline lumped Galerkin method and in the same year
they [32] presented a linearized finite difference method for equation. Omrani and Ayadi [41] used finite difference
method and also showed with the Brower’s fixed point theorem to existence of solutions. Moreover, Arora et
al. [1] utilized collocation method with quartic B-spline for the BBMB equation. Yağmurlu et al. [53] solved
by the Strang splitting technique using the finite element collocation method with cubic B-splines. Karakoç
and Bhowmik [31] implemented a lumped Galerkin technique to the BBM-Burgers equation and founded to
the existence and uniqueness of solutions. Zarebnia and Parvaz [54–57] proposed collocation method based
on cubic, quadratic and quintic B-splines for the numerical algorithm of BBM-Burgers equation, respectively.
Also, related studies for approximate solutions of the equation can be found as [3, 4, 6, 9, 21, 40, 45], [34–37]
and [10–15]. Mehdi et al. [18] performed a finite difference formula for solving numerically of the generalized
BBM-Burgers equation and then applied the energy method for the stability and convergence analyses. Zhang
et al. [58] suggested two linearized finite difference schemes and proved convergence and unique solvability of the
BBMB equation with the convergence order O(τ2+h2). Arora et al. [2] improved a hybrid technique including
quintic Hermite splines collocation method (QHCM) for solving numerically of the BBM-Burgers equation. For
studies on the splitting technique, the reader may refer to [24–29] and [33, 39, 42, 48, 50, 52, 59].
We can say that the problem discussed throughout the article can be solved more effectively and faster
numerically by Strang time-splitting technique combined with quintic B-spline collocation method. This article
is designed as follows: In Section 2, a brief information about the Strang time-splitting technique is given.
In Section 3 after explaining the collocation method with quintic B-spline in detail, Eq. (1.2) is split into two
subequations and each of them is solved numerically with Strang time-splitting technique by applying the quintic
B-spline collocation method. Also, In Section 4, the stability analysis for the numerical approach otained with
the present method is examined. In Section 5, four test problems are offered, one of which is inhomogeneous
BBM-Burgers equation and the others are BBM-Burgers equations given by different initial condition and in
this section the error norms L2 and L∞ with invariant values I1 , I2 and I3 are calculated to analyze the
effectiveness and accuracy of the presented method and the computed values are given in tables and graphics
to compare with existing studies in the literature. Lastly, Section 6 presents a brief conclusion as an overview.

2. Strang time-splitting technique

Before proceeding to the application of the method, it would be appropriate to give information about the
Strang splitting technique, which is of great importance in the approximate solution for the given problem. To
use this technique, the given complex problem is first divided into simpler two subproblems with smaller time
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steps. If a Cauchy problem is assumed to have the following form

dU(t)

dt
= ÂU(t) + B̂U(t), U(0) = U0, t ∈ [0, T ] . (2.1)

Then, the problem is split into such that dU
dt = ÂU , dU

dt = B̂U where U(x, t) is a semidiscretized function

given on spatial direction and Â and B̂ are lie operators. In this case, the proposed technique tries to solve
Eq. (1.2) either numerically or analitically [8]. Let the exact or numerical solutions of the equations containing

the operators Â and B̂ in dU
dt = ÂU , dU

dt = B̂U be ρ
[Â]
∆t and ρB̂∆t , and let ψ∆t be the exact solution of the

equation (2.1). In this case, first-order splitting methods are defined as [51]

ρ
[B̂]
∆t oρ

[Â]
∆t = e∆tB̂e∆tÂ or ρ[Â]

∆toρ
[B̂]
∆t = e∆tÂe∆tB̂ .

With the aid of the Taylor series, for an initial value U0 it is seen that there is a first-order approximation to
the solution of equation (2.1) as follows:

ψ∆t(U0) = (ρ
[Â]
∆toρ

[B̂]
∆t )(U0) + 0(∆t2).

Exchanging the operators Â and B̂ , combination for half time steps can be taken as follows:

U(tn+1) = (e
∆t
2 Âe

∆t
2 B̂)(e

∆t
2 B̂e

∆t
2 Â)U(tn)

= e
∆t
2 Âe∆tB̂e

∆t
2 ÂU(tn).

Then we can characterize the approach mentioned as

S∆t = e
∆t
2 Âe∆tB̂e

∆t
2 Â or S∗

∆t = e
∆t
2 B̂e∆tÂe

∆t
2 B̂ .

As it is widely known, this is referred to as Strang splitting technique [38] which have the ”Â − B̂ − Â” and
”B̂− Â− B̂” or the so-called symmetric Marchuk. The procedure for Strang splitting scheme can be presented
as

dU∗(t)

dt
= ÂU∗(t), U∗(0) = U0, t ∈

[
tn, tn+ 1

2

]
dU∗∗(t)

dt
= B̂U∗∗(t), U∗∗(0) = U∗(

∆t

2
), t ∈ [tn, tn+1] (2.2)

dU∗∗∗(t)

dt
= ÂU∗∗∗(t), U∗∗∗(0) = U∗∗(∆t), t ∈

[
tn, tn+ 1

2

]
.

in which tn+1 = tn +∆t, tn+ 1
2
= tn + ∆t

2 . Here the desired solutions are easily obtained through the equation

of U(tn+1) = U∗∗∗(tn+1). The formal solution of Equation (2.1) is written as U(tn+1) = e∆t(Â+B̂)U(tn) , where
∆t = tn+1 − tn is the time step. Taylor series expansion of this solution can be expressed as

U(tn+1) = e∆t(Â+B̂)U(tn) =

∞∑
k=0

tk

k!

(
Â(u(t))

∂

∂U
+ B̂(u(t))

∂

∂U

)k
U(tn).
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It is obtained in the following form such that Te is a local truncation error

U(tn+1) = e∆t(Â+B̂)U(tn) ≈ e
∆t
2 Âe∆tB̂e

∆t
2 Â +∆tTe

Te =
1

∆t

[
e∆t(Â+B̂) − e

∆t
2 Âe∆tB̂e

∆t
2 Â

]
U(tn). (2.3)

If the Taylor series expansion of the e∆t(Â+B̂) and e
∆t
2 Âe∆tB̂e

∆t
2 Â exponential functions are substituted in

(2.3), the local truncation error Te called as splitting error is obtained as follows:

Te =
∆t2

24
(
[
Â,

[
B̂, Â

]]
−
[
B̂,

[
Â, B̂

]]
)U(tn) +O(∆t3)

and this shows the fact that the proposed technique is of the second-order.

3. Collocation method via quintic B-spline
Before starting the numerical process, initially the interval xL ≤ x ≤ xR is partitioned into uniformly such that
h = xm − xm+1 = xR−xL

N by knots xm in which (m = 0(1)N − 1) and xL = x0 < x1 < ... < xN = xR . The
quintic B-spline functions φm(x) on [xL, xR] stated as the solution region for (m = −2(1)N + 2) at the nodes
xm are introduced as follows [44]:

φm(x) =
1

h5



(x− xm−3)
5, x ∈ [xm−3, xm−2]

(x− xm−3)
5 − 6(x− xm−2)

5, x ∈ [xm−2, xm−1]

(x− xm−3)
5 − 6(x− xm−2)

5 + 15(x− xm−1)
5, x ∈ [xm−1, xm]

(xm+3 − x)5 − 6(xm+2 − x)5 + 15(xm+1 − x)5, x ∈ [xm, xm+1]

(xm+3 − x)5 − 6(xm+2 − x)5, x ∈ [xm+1, xm+2]

(xm+3 − x)5, x ∈ [xm+2, xm+3]

0, otherwise.

(3.1)

For detailed information, the reader can refer to Ref. [19] related to B-slines. All of the quintic basis functions
are zero on the element [xm, xm+1] except those φm−2(x), φm−1(x), φm(x), φm+1(x), φm+2(x), φm+3(x). The
approximate solution UN (x, t) of Eq. (1.2) on [xm, xm+1] can be described as

Ue
N (x, t) =

m+3∑
j=m−2

φj(x)δj(t) , (3.2)

where φj(x) (j = (m− 2)(1)(m+3)) are B-spline element functions and δj(t) (j = m− 2,m− 1, ...,m+3) are
time-dependent element parameters to be found out. The values of Ue

N and its first and second order derivatives
with respect to variable x at the nodal points xm can be calculated in terms of δm

Ue
N (xm, t) = (Ue

N )m = (δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2)

(Ue
N )

′

m = U
′

m =
5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2)

(Ue
N )

′′

m = U
′′

m =
20

h2
(δm−2 + 2δm−1 − 6δm + 2δm+1 + δm+2).

(3.3)
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Eq. (1.2) can be split as follows:
Ut − Uxxt − αUxx + βUx = 0 (3.4)

Ut − Uxxt + UUx = 0. (3.5)

When the values of U and its first and second-order derivatives are used in Eqs. (3.4) and (3.5), one obtains
the following system of algebraic equations

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2 −
20

h2
(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

−20α

h2
(δm−2 + 2δm−1 − 6δm + 2δm+1 + δm+2) +

5β

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0

(3.6)

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2 −
20

h2
(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

+
5zm
h

(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0 .

(3.7)

Here, ′′.′′ symbolizes the first derivative according to time t and zm is considered

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2

as a linearization scheme. The values δ−2, δ−1, δN+1 and δN+2 are found from U and its first derivative. In
this case, we use zm as an approximate value at the nodal points (m = 0(1)N) until the until next time. That
is;

z0 = 0,

z1 = δ−1 + 26δ0 + 66δ1 + 26δ2 + δ3,

...

zN−1 = δN−3 + 26δN−2 + 66δN−1 + 26δN + δN+1,

zN = 0.

(3.8)

By writing δn+1
m + δnm

2
as Crank-Nicolson approximation instead of the parameter δm and δn+1

m − δnm
∆t

as forward

difference approximation instead of the parameter δ̇m in Eqs. (3.6) and (3.7), we can acquire a system of
algebraic equations (3.9) and (3.10) given in the following

c1δ
n+1
m−2 + c2δ

n+1
m−1 + c3δ

n+1
m + c4δ

n+1
m+1 + c5δ

n+1
m+2 = c6δ

n
m−2 + c7δ

n
m−1 + c8δ

n
m + c9δ

n
m+1 + c10δ

n
m+2 (3.9)

d1δ
n+1
m−2 + d2δ

n+1
m−1 + d3δ

n+1
m + d4δ

n+1
m+1 + d5δ

n+1
m+2 = d6δ

n
m−2 + d7δ

n
m−1 + d8δ

n
m + d9δ

n
m+1 + d10δ

n
m+2 (3.10)

c1 = 1−20

h2
−10α∆t

h2
−5β∆t

2h
, c2 = 26−40

h2
−20α∆t

h2
−25β∆t

h
, c3 = 66+

120

h2
+
60α∆t

h2
, c4 = 26−40

h2
−20α∆t

h2
+
25β∆t

h
,
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c5 = 1−20

h2
−10α∆t

h2
+
5β∆t

2h
, c6 = 1−20

h2
+
10α∆t

h2
+
5β∆t

2h
, c7 = 26−40

h2
+
20α∆t

h2
−25β∆t

h
, c8 = 66+

120

h2
−60α∆t

h2
,

c9 = 26− 40

h2
+

20α∆t

h2
+

25β∆t

h
, c10 = 1− 20

h2
+

10α∆t

h2
− 5β∆t

2h

d1 = 1− 20

h2
− 5zm∆t

2h
, d2 = 26− 40

h2
− 25zm∆t

h
, d3 = 66 +

120

h2
, d4 = 26− 40

h2
+

25zm∆t

h
,

d5 = 1− 20

h2
+

5zm∆t

2h
, d6 = 1− 20

h2
+

5zm∆t

2h
, d7 = 26− 40

h2
+

25zm∆t

h
, d8 = 66 +

120

h2
,

d9 = 26− 40

h2
− 25zm∆t

h
, d10 = 1− 20

h2
− 5zm∆t

2h
.

The systems (3.9) and (3.10) include (N +5) unknowns and (N +1) equations. Since each system has dummy
parameters δ−2, δ−1 and δN+1, δN+2 which stand not inside the solution area, we first need to eliminate these
illusory ones in order to obtain a unique solution of each system. For this reason, we have to use U and U

′

in Eq. (3.3) and the boundary conditions U(xL, t) = U(xR, t) = 0 and Ux(xL, t) = Ux(xR, t) = 0 in Eq.
(1.4). Then we are able to obtain matrix system (N + 1) x (N + 1) for each of the above systems. The
systems (3.9) and (3.10) are solved by Strang time-splitting technique and an inner iteration presented by form

(δ∗)n = δn +
1

2
(δn − δn−1) is applied 3 or 5 times throughout the computer run at every time step to the term

of nonlinear zm in Eq. (3.10) to acquire results closer to analytical solution.
The initial vector δ0m is needed to solve systems (3.9) and (3.10). To calculate this initial vector, we can use
the condition given at initial time

U(x, 0) = g0(x), (3.11)

with the conditions given at the boundaries

Ux(xL, t) = Ux(xL, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0.
(3.12)

Therefore, to explain in more detail, this parameter is computed from the system of algebraic equations presented
in the following form, found from the initial condition and its derivatives in Eq. (3)

δ0m−2 + 26δ0m−1 + 66δ0m + 26δ0m+1 + δ0m+2 = g0(xm),m = 0(1)N

−δ0−2 − 10δ0−1 + 10δ01 + δ02 = g
′

0(xL)

δ0−2 + 2δ0−1 − 6δ00 + 2δ01 + δ02 = g
′′

0 (xL)

δ0N−2 + 2δ0N−1 − 6δ0N + 2δ0N+1 + δ0N+2 = g
′′

0 (xR)

−δ0N−2 − 10δ0N−1 + 10δ0N+1 + δ0N+2 = g
′

0(xR).

(3.13)
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Therefore, the matrix equation for the initial vector δ0 is finally obtained as



54 60 6
25.25 67.5 26.25 1
1 26 66 26 1

. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54





δ00
δ01
δ02
.
.
.

δ0N−2

δ0N−1

δ0N


=



U0

U1

U2

.

.

.
UN−2

UN−1

UN


.

4. Stability analysis

Here, we are going to investigate the stability analysis of numerical schemes (3.9) and (3.10) by von Neumann
method [49]. Firstly, for the half-time step, writing the expressions c1, c2, ..., c9, c10 that we find in Section 3
and the expression δnm = eiγmhζn in Eq. (3.9), we obtain equations in the following form after the necessary
operations

σ1 = σA

(ζn+1

2

ζn

)
=
A1 + iB

A2 − iB
, (4.1)

A1 = (c1 + c5)cos(2γh) + (c2 + c4)cos(γh) + c3,

A2 = (c6 + c10)cos(2γh) + (c7 + c9)cos(γh) + c8,

B =
5β∆t

h
sin(2γh) +

50β∆t

h
sin(γh),

 where

(c1 + c5) = 2− 40

h2
− 20α∆t

h2
, (c2 + c4) = 52− 80

h2
− 40α∆t

h2

(c6 + c10) = 2− 40

h2
+

20α∆t

h2
, (c7 + c9) = 52− 80

h2
+

40α∆t

h2

c3 = 66 +
120

h2
+

60α∆t

h2
, c8 = 66 +

120

h2
− 60α∆t

h2
.

From Eq. (4.1), it can be clearly written that

|σ1|2 = σ1σ̄1 =
A2

1 +B2

A2
2 +B2

and we can say that A1 ≤ A2, hence |σ1| ≤ 1. This confirms that numerical scheme (3.9) is unconditionally
stable. Secondly, to implement the von Neumann method to Eq. (3.10), first of all, when the U in the nonlinear
term UUx in system (16) is linearized, zm be going to behave as a local constant, that is, zm in system (3.10)
will be a fixed number. Thus the von Neumann method will become applicable to research the stability of

543



KARTA/Turk J Math

numerical scheme (3.10). Writing the expressions d1, d2, ..., d9, d10 that we find in section 3 and δnm = eiγmhζn

in scheme (3.10), we obtain equations in the following form

σ2 = σB

(ζn+1

ζn

)
=
A3 + iD

A4 − iD
(4.2)

A3 = (d1 + d5)cos(2γh) + (d2 + d4)cos(γh) + d3,

A4 = (d6 + d10)cos(2γh) + (d7 + d9)cos(γh) + d8,

D =
5zm∆t

h
sin(2γh) +

50zm∆t

h
sin(γh),

where

(d6 + d10) = (d1 + d5) = 2− 40

h2
,

(d7 + d9) = (d2 + d4) = 52− 80

h2
,

d3 = d8 = 66 +
120

h2
.

Here it is clear that A3 = A4 . Hence, |σ2| ≤ 1 and as a result, we can state that the scheme (3.10) is
unconditionally stable since the condition |σ2| ≤ 1 from Eq. (4.2) is satisfied. In that case, it can be clearly
seen that

|ρ(ζ)| ≤ |σ1||σ2||σ1|

and consequently schemes (3.9) and (3.10) obtained by Strang time-splitting technique are unconditionaly
stability.

5. Numerical examples and results

In the present section, we will handle four model problems to visually present the performence and effectiveness
of the proposed method. The numerical solution of Equations (3.9) and (3.10) obtained by the second-order
Strang splitting algorithms bring about the (N + 1) x (N + 1) matrix system that are easily and effectively
calculated by means of Thomas algorithm. All computer calculations in the study have been carried out with
the software Mathlab 2019b on a computer which has a memory 20GB and 64 bit. In order to determine how
good the obtained results are, the error norms L2 and L∞ characterized in the following are computed

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2

L∞ = ||U − UN ||∞ = max
j

|U − UN |.
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The BBMB equation given with appropriate initial and boundary conditions has the following three conservation
constants

I1 =

∫ xR

xL

U(x, t)dx,

I2 =

∫ xR

xL

[U2(x, t) + U2
x(x, t)]dx,

I2 =

∫ xR

xL

[U3(x, t) + 3U2
x(x, t)]dx,

(5.1)

standing for mass, energy, momentum, respectively. These proportions can be watched in order to control the
protected features of the numerical algorithm.

Example 5.1 For the first example, we are going to consider the present equation having the initial condition
U(x, 0) = exp(−x2) taking α = β = 1 in Eq. (1.2) on the domain [−10, 10] . Figures 1 and 2 display graphically
the numerical approach of Example 5.1 for ∆t = 0.01 , N = 100 at times t ≤ 10 and these graphs exhibit the
same physical behaviour as in those of [41], [1].

Figure 1. Approximate solutions of Example 5.1 at times
t ∈ [0, 3] for parameters α = β = 1.

Figure 2. Approximate solutions of Example 5.1 at times
t ∈ [4, 10] for parameters α = β = 1.

Example 5.2 For the second test problem, we are going to consider the nonhomogeneous BBM-Burgers
equation in form

Ut − Uxxt − αUxx + βUx + UUx = F, x ∈ [0, π], t ∈ [0, T ] (5.2)

in which F (x, t) = exp(−t)[cosx− sinx+
1

2
e−tsin(2x)] . The analytical solution of Eq. (5.2) is presented with

U(x, t) = e−tsinx as in [57] and here IC and BCs can be gotten from the analytical solution. All numerical
calculations are done for ∆t = 0.01 and α = β = 1 over the range [0, π] . Table 1 gives a comparison of the
computed L2 error norm for different values of N at t = 10 as in those of [41], [1] and [57]. Table 2 shows
a comparison of the error norms L2 and L∞ for N = 121 and at various time-levels as given in those of [1]
and [2]. It can be clearly said from Tables 1 and 2 that the approximate results obtained by the second-order
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Strang scheme are quite small. That is, our results are the lowest of all of ones we compare in tables and hence
much closer to the exact solutions. Figure 3 shows graphically the numerical approach of Example 5.2 at times
t ≤ 8 and this graph exhibits the same physical behaviour as in [1] and [2].

Table 1. A comparison of the error norm results L2 of Example 5.2 for various values of N.

N [41] [1] [57] Present
10 0.0218e− 0 1.7147e− 4 2.9703e− 4 3.5538e− 5

20 0.0053e− 0 5.6341e− 5 1.1446e− 4 9.1027e− 6

40 0.0013e− 0 − 4.9603e− 5 2.2965e− 6

80 3.3291e− 4 7.2635e− 6 2.3227e− 5 5.7782e− 7

160 8.3133e− 5 − 1.1275e− 5 1.4685e− 7

320 2.0766e− 5 8.1631e− 7 5.5619e− 6 3.9234e− 8

640 5.1898e− 6 − 2.7632e− 6 1.3053e− 8

Table 2. A comparison of the error norm results L2 and L∞ of Example 5.2 at various time-levels.

[1] [2] Present
t L2 L∞ L2 L∞ L2 L∞

1 5.13E − 03 7.67E − 03 1.51E − 03 1.46E − 03 3.01e− 05 1.34e− 04

2 1.73E − 03 2.84E − 03 1.21E − 03 1.18E − 03 1.59e− 05 5.47e− 05

4 2.12E − 04 3.84E − 04 3.95E − 04 3.96E − 04 6.62e− 06 8.90e− 06

10 4.08E − 06 4.06E − 06 2.75E − 06 3.22E − 06 2.54e− 07 2.21e− 07

Figure 3. Approximate solutions of Example 5.2 at times t ≤ 5 for parameters α = β = 1.

Example 5.3 For the third example, we are going to consider to the numerical approach of Eq. (1.2) presented

with the initial condition U = (x, 0) = sech2[
x

4
] for α = 0, β = 1. The analytical solution of this problem is

given as in [57]

U(x, t) = sech2[
x

4
− t

3
].

546



KARTA/Turk J Math

Here, we perform a comparison of the solutions of the presented method with the earlier studies in literature
for various position and time steps up to t = 40 over the region [−40, 100]. For this, the error norm values L2

and L∞ with invariants I1 ,I2 and I3 are computed. The computed values are displayed in Tables 3 and 4.
This tables clearly exhibit that the results achieved by our scheme are much smaller than those of the others
and invariants I1 ,I2 and I3 are almost the same at increasing time values. This situation shows consistency
between the obtained invariants and their exact values. Figure 4 displays the numerical solutions obtained with
Strang time-splitting technique at times t = 0, 10, 20, 30 and 40 for using parameters h = 0.05 , ∆t = 0.025.

From this figure, it is clear that the single solitary waves go toward right having a constant velocity and protects
its amplitude and shape as time progresses. At the beginning, we can say that the single solitary wave whose
amplitude is 1 at time t = 0 , position x = 0 and has the same amplitude at time t = 40 , position x = 53.35.

Also, the error distribution graph is shown in Figure 5 for the parameter h = 0.05 , ∆t = 0.025 at time t = 40 .

Table 3. A comparison of the error norms L2 and L∞ at various times on the range [40, 100] of Example 5.3.

t = 10 t = 20 t = 30 t = 40
h = 0.2,∆t = 0.4

Present L2 0.00041695 0.00073104 0.000994851 0.01238753

L∞ 0.00019018 0.00030898 0.00040563 0.00049613

[40] L∞ − − − 0.10976282

[31] L2 0.03195399 0.05446985 0.07306022 0.09025102

L∞ 0.01477190 0.02321340 0.03003074 0.03638003

h = ∆t = 0.1

Present L2 0.00026149 0.00045867 0.00062439 0.00077763

L∞ 0.00011930 0.00019395 0.00025496 0.00031177

[40] L∞ − − − 0.00747237

[31] L2 0.00204484 0.00341396 0.00457929 0.00571248

L∞ 0.00095720 0.00147163 0.00189531 0.00231941

h = 0.05, ∆t = 0.025

Present L2 0.00001635 0.00002867 0.00003904 0.00004862

L∞ 0.00000746 0.00001213 0.00001594 0.00001949

[40] L∞ − − − 0.00046983

[31] L2 0.00012459 0.00025628 0.00040853 0.00055868

L∞ 0.00005984 0.00010502 0.00016268 0.00021891

h = 0.2, ∆t = 0.01

Present L2 0.00000304 0.00000513 0.00000689 0.00000851

L∞ 0.00000145 0.00000223 0.00000288 0.00000349

[1] L2 − 0.00060007 − −
L∞ − 0.00031641 − −

[31] L2 0.00051267 0.00077372 0.00107317 0.00141405

L∞ 0.00017784 0.00031687 0.00045923 0.00060343

Example 5.4 For the fourth example, we are going to consider for the approximate solution of Equation (1.2)
with α = 0, β = 1. The analytical solution for the test problem can be given as in [57]

U = (x, t) = 3csech2[k(x− x0 − vt)]

in which v = 1+c stand for the wave speed and k =
1

2

√
c

1 + c
. This solution represent the movement of a single
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Table 4. A comparison of the invariants I1 , I2 and I3 at various times on the range [40, 100] of Example 5.3.

t = 10 t = 20 t = 30 t = 40
h = 0.2,∆t = 0.4

Present I1 7.99999991 7.99999981 7.99999972 7.99999963

I2 5.59999982 5.59999965 5.59999947 5.59999930

I3 20.2666611 20.2666560 20.2666530 20.2666512

[31] I1 8.0000005 8.0000001 7.9999998 7.9999995

I2 5.6000315 5.6000536 5.6000631 5.6000671

I3 20.2664360 20.2662535 20.2661684 20.2661288

h = ∆t = 0.1

Present I1 8.00000006 8.00000013 8.00000018 8.00000024

I2 5.60000000 5.60000000 5.60000000 5.60000000

I3 20.2666667 20.2666666 20.2666666 20.2666666

[31] I1 8.0000020 8.0000020 8.0000020 8.0000020

I2 5.6000016 5.6000019 5.6000021 5.6000022

I3 20.2666713 20.2666716 20.2666717 20.2666718

h = 0.05,∆t = 0.025

Present I1 8.00000007 8.00000014 8.00000020 8.00000026

I2 5.60000000 5.60000000 5.60000000 5.60000000

I3 20.2666667 20.2666667 20.2666666 20.2666667

[31] I1 7.9999964 7.9999964 7.9999964 7.9999964

I2 5.6000010 5.6000010 5.6000010 5.6000010

I3 20.2666706 20.2666706 20.2666706 20.2666706

h = 0.2,∆t = 0.01

Present I1 8.00000006 8.00000011 8.00000017 8.00000022

I2 5.60000000 5.60000000 5.60000000 5.60000000

I3 20.2666667 20.2666667 20.2666667 20.2666667

[31] I1 8.0000009 8.0000009 8.0000009 8.0000009

I2 5.6000005 5.6000010 5.6000011 5.6000012

I3 20.2666697 20.2666713 20.2666719 20.2666721

Figure 4. Approximate solutions of Example 5.3 at vari-
ous times for h = 0.05,∆t = 0.025 on the solution domain
[−40, 100] .

Figure 5. The error distribution graph of Example 5.3
at various times for ∆t = 0.025, h = 0.05 over the region
[−40, 100] .

solitary wave with amplitude 3c with width k and initially centered at x0. To be able do a comparison with
the earlier studies in literature, the error norm values L2 and L∞ with invariants I1 ,I2 and I3 are computed
with the parameters h = ∆t = 0.1 for c = 0.1 at the different times over the region [−40, 60]. The exact values
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for the conservative constants are I1 = 3.9799497, I2 = 0.81046249 and I3 = 2.579007 for c = 0.1. These
calculated values are indicated in Tables 5 and 6. This tables clearly exhibit that the results achieved by our
scheme are much smaller than those of the others and invariants I1 ,I2 and I3 are almost the same at increasing
time values. This situation shows consistency between the obtained invariants and their exact values. Figure 6
displays the numerical solutions obtained with Strang time-splitting technique at various times t = 0, 5, 10, 15

and 20. From this figure, it is clear that the single solitary waves go to right with a fixed velocity and protects
its amplitude and shape as time progresses. At the beginning, we can say that the single solitary wave whose
amplitude is 0.3 at time t = 0 , position x = 0 and has the same amplitude at time t = 20 , position x = 22.

Also, the error distribution graph is shown in Figure 7 at time t = 20.

Table 5. A comparison of error norms L2 and L∞ for ∆t = h = 0.1, c = 0.1 at various times on the range [−40, 60]
for Example 5.4.

Method Error t
4 8 12 16 20

Present L2x10
3 0.00829132 0.01652186 0.02400207 0.03060004 0.03710617

L∞x10
3 0.00436056 0.00556405 0.00662545 0.00875511 0.01268449

[22] L2x10
3 39.82 79.46 118.8 157.7 196.1

L∞x10
3 13.74 27.66 41.35 54.60 67.35

[15] L2x10
3 0.0006 0.0026 0.0064 0.0115 0.0184

L∞x10
3 0.1458 0.5786 0.9223 1.2148 1.5664

[16] L2x10
3 0.116 0.224 0.325 0.417 0.511

L∞x10
3 0.054 0.100 0.139 0.171 0.198

[17] L2x10
3 − − − − 0.30

L∞x10
3 − − − − 0.116

[32] L2x10
3 0.12 0.23 0.34 0.45 0.55

L∞x10
3 0.05 0.09 0.14 0.18 0.21

[20] L2x10
3 0.048 0.094 0.138 0.180 0.219

L∞x10
3 0.019 0.038 0.056 0.071 0.086

[1] L2x10
3 0.042 0.033 0.13 0.16 0.20

L∞x10
3 0.015 0.033 0.049 0.064 0.078

[55] L2x10
3 0.0149 0.0271 0.0364 0.0429 0.0476

L∞x10
3 0.0060 0.0105 0.0132 0.0145 0.0150

[56] L2x10
3 0.0646 0.1282 0.1901 0.2498 0.3072

L∞x10
3 0.0250 0.0505 0.0747 0.0971 0.1177

[53] L2x10
3 0.0169 0.0329 0.0474 0.06039 0.0723

L∞x10
3 0.0072 0.0141 0.0199 0.0247 0.0288

[31] L2x10
3 0.0475 0.0929 0.1365 0.1773 0.2162

L∞x10
3 0.0188 0.0379 0.0553 0.0706 0.0846

[57] L2x10
3 0.0203 0.0383 0.0525 0.0630 0.0719

L∞x10
3 0.0084 0.0160 0.0210 0.0241 0.0270

6. Conclusion
In this work, the approximate solution of the BBM-Burgers equation with convenient initial and boundary
conditions is obtained using Strang time-splitting technique via finite element collocation method (FEM) with
quintic B- spline. The efficiency and accuracy of the present method are demonstrated on four examples. The
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Table 6. A comparison of I1 ,I2 and I3 invariants for c = 0.1, ∆t = h = 0.1 at various times on the range [40, 60] for
Example 5.4.

t = 0 t = 4 t = 8 t = 12 t = 16 t = 20
Present I1 3.97992702 3.97995533 3.97997867 3.97999973 3.98001245 3.97999912

I2 0.81046249 0.81046249 0.81046249 0.81046249 0.81046249 0.81046249

I3 2.57900744 2.57900744 2.57900744 2.57900744 2.57900744 2.57900744

[22] I1 − 4.42017 4.41822 4.41623 4.41423 4.41219

I2 − 0.899873 0.899236 0.898601 0.897967 0.897342

I3 − 2.86339 2.86106 2.85863 2.85613 2.85361

[16] I1 3.97993 3.98039 3.98083 3.98125 3.98165 3.98206

I2 0.810461 0.810610 0.810752 0.810884 0.811014 0.811164

I3 2.57901 2.57950 2.57996 2.58041 2.58083 2.58133

[32] I1 3.97992 3.97995 3.97997 3.97999 3.97999 3.97997

I2 0.810459 0.810459 0.810459 0.810459 0.810459 0.810459

I3 2.57901 2.57901 2.57901 2.57901 2.57901 2.57901

[20] I1 3.97993 3.97993 3.97993 3.97992 3.97991 3.97988

I2 0.810465 0.810465 0.810465 0.810465 0.810465 0.810465

I3 2.57901 2.57901 2.57901 2.57901 2.57901 2.57901

[55] I1 − 3.97993 3.97993 3.97993 3.97992 3.97988

I2 − 0.810462 0.810462 0.810463 0.810463 0.810464

I3 − 2.57901 2.57901 2.57901 2.57901 2.57901

[56] I1 − 3.97993 3.97993 33.9799 3.97992 3.97988

I2 − 0.810461 0.810461 0.810461 0.810461 0.810461

I3 − 2.579 2.579 2.579 2.579 2.579

[53] I1 3.979927 3.979954 3.979971 3.979984 3.979987 3.979962

I2 0.810462 0.810462 0.810462 0.810462 0.810462 0.810462

I3 2.579007 2.579007 2.579007 2.579007 2.579007 2.579007

[31] I1 3.9799274 3.9799294 3.9799277 3.9799250 3.9799164 3.9798820

I2 0.8104627 0.8104627 0.8104627 0.8104627 0.8104627 0.8104627

I3 2.5790082 2.5790082 2.5790083 2.5790083 2.5790083 2.5790083

Figure 6. Approximate solutions of Example 5.4 for h =
∆t = c = 0.1 over the region [−40, 60].

Figure 7. The error distribution graph of Example 5.4
for h = ∆t = c = 0.1 over region [−40, 60].

error norms L2 and L∞ with invariants I1 ,I2 and I3 are calculated and compared by other studies in the
literature. The new results achieved from the numerical approach show that the error norms L2 and L∞ are
fairly small and invariants I1 ,I2 and I3 reasonably protect and remain almost constant during computer run
time. The results produced in the article have been compared with some existing studies in the literature in
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the form of tables and graphics, and it can be said that the approach used in our study produces very good
results. As a result, we can easily say that this technique is easy to apply and useful in obtaining more accurate
numerical results.
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