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Abstract: In this paper, we introduce bi-periodic incomplete Horadam numbers as a natural generalization of incomplete
Horadam numbers. We study their basic properties and provide recurrence relations. In particular, we derive the
generating function of these numbers.

Key words: Fibonacci sequence, Horadam sequence, bi-periodic Horadam sequence, bi-periodic incomplete Horadam
sequence

1. Introduction
The Fibonacci sequence is one of the most famous and most studied sequences in mathematics. Its nth term
Fn , also called as the nth Fibonacci number, is defined by the recurrence relation Fn = Fn−1+Fn−2 for n ≥ 2

where F0 = 0 and F1 = 1 are the initial values. This recurrence relation also defines the Lucas sequence for
the initial values L0 = 2 and L1 = 1 . It is well known that Fn+1 counts the number of tilings of an n -board
using either square tiles or two-square-wide dominoes [3]. It can be expressed as

Fn+1 =

⌊n
2 ⌋∑

i=0

(
n− i

i

)
.

This expression gives rise to a fascinating class of integers called the incomplete Fibonacci numbers. They were
introduced by Flipponi [7] for integers n and k with 0 ≤ k ≤ ⌊n−1

2 ⌋ as

Fn(k) =

k∑
i=0

(
n− 1− i

i

)
.

Combinatorially, Fn+1(k) counts the number of ways to tile an n -board with at most k dominoes [2]. Flipponi
[7] also defined the incomplete Lucas numbers for 0 ≤ k ≤ ⌊n

2 ⌋ as

Ln(k) =

k∑
i=0

n

n− i

(
n− i

i

)
.
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Incomplete Fibonacci and Lucas numbers have many interesting properties. They generalize the Fibonacci and
Lucas numbers. In other words, incomplete Fibonacci numbers reduce to Fibonacci numbers when k = ⌊n−1

2 ⌋ ,
and incomplete Lucas numbers reduce to Lucas numbers when k = ⌊n

2 ⌋ .
Horadam sequence {Wn} with arbitrary integer initial values W0 and W1 is defined by the recurrence

relation Wn = pWn−1 + qWn−2 for n ≥ 2 . Its terms are called the Horadam numbers and they provide a
generalization for Fibonacci numbers and Lucas numbers. Indeed, {Wn} reduces to {Fn} for p = q = 1 and
W0 = 0,W1 = 1 , and to {Ln} for p = q = 1 and W0 = 2,W1 = 1 . With this in mind, a question arises whether
or not incomplete Fibonacci and Lucas numbers extend to Horadam-like numbers. Belbachir and Belkhir [1]
responded this question by introducing incomplete Horadam numbers for n ≥ 2 and 0 ≤ k ≤

⌊
n
2

⌋
as

Wn(k) =

k∑
i=0

(n− 2i)W1 + piW0

n− i

(
n− i

i

)
pn−2i−1qi, (1.1)

where p and q are integers. They also introduced hyper-Horadam numbers and provided a connection between
Horadam numbers, incomplete Horadam numbers, and hyper-Horadam numbers.

The bi-periodic Horadam sequence {wn} is a natural generalization of the Horadam sequence. For
arbitrary initial values w0 and w1 , its terms are defined recursively for n ≥ 2 by

wn = aξ(n+1)bξ(n)wn−1 + cwn−2, (1.2)

where a, b , and c are nonzero real numbers. Here, ξ(n) = 1−(−1)n

2 . It can easily be seen that the bi-
periodic Fibonacci sequence, the generalized bi-periodic Fibonacci sequence, the bi-periodic Lucas sequence,
the generalized bi-periodic Lucas sequence, and the classical Horadam sequence are special cases of the bi-
periodic Horadam sequence. For example, {wn} reduces to {Wn} when a = p , b = p , and c = q . For details,
we refer to [4–6, 12–14].

Ramírez [10] defined the bi-periodic incomplete Fibonacci numbers for n ≥ 1 and 0 ≤ k ≤
⌊
n−1
2

⌋
as

qn(k) = aξ(n−1)
k∑

i=0

(
n− 1− i

i

)
(ab)⌊

n−1
2 ⌋−i. (1.3)

In this spirit, Tan and Ekin [12] introduced the bi-periodic incomplete Lucas numbers for 0 ≤ k ≤
⌊
n
2

⌋
by

pn(k) = aξ(n)
k∑

i=0

n

n− i

(
n− i

i

)
(ab)⌊

n
2 ⌋−i. (1.4)

Motivated by the above studies, we introduce in this paper the bi-periodic incomplete Horadam numbers.
In particular, we give some recurrence relations and provide a connection between bi-periodic incomplete Fi-
bonacci numbers and bi-periodic incomplete Horadam numbers. We then derive the generating function of these
numbers. This new generalization shall give us a unified approach for many celebrated incomplete Fibonacci-
like sequences such as bi-periodic incomplete Fibonacci and Lucas sequences, incomplete Fibonacci and Lucas
sequences, incomplete balancing and Lucas-balancing sequences.
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2. Main results

In this section, we shall introduce bi-periodic incomplete Horadam numbers. To this purpose, we begin with
the following lemma. It provides a combinatorial expression for the bi-periodic Horadam numbers.

Lemma 2.1 For n ≥ 1 , the bi-periodic Horadam numbers satisfy

wn = aξ(n−1)

⌊n
2 ⌋∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n−1
2 ⌋−ici.

Proof We will use induction on n . Clearly, the equality holds for n = 1 . Now suppose that the lemma is
true for any integer m with 1 ≤ m ≤ n . Then by the inductive hypothesis, we can write

wn+1 = aξ(n)bξ(n+1)wn + cwn−1

= aξ(n)bξ(n+1)aξ(n−1)

⌊n
2 ⌋∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n−1
2 ⌋−ici +

aξ(n)
⌊n−1

2 ⌋∑
i=0

(n− 1− 2i)w1 + biw0

n− 1− i

(
n− 1− i

i

)
(ab)⌊

n
2 ⌋−i−1ci+1.

Since ξ(n− 1) = ξ(n+ 1) , we have

a−ξ(n)wn+1 =

⌊n
2 ⌋∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n−1
2 ⌋−i+ξ(n+1)ci +

⌊n−1
2 ⌋∑

i=0

(n− 1− 2i)w1 + biw0

n− 1− i

(
n− 1− i

i

)
(ab)⌊

n
2 ⌋−i−1ci+1

=

⌊n
2 ⌋∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici +

⌊n−1
2 ⌋∑

i=0

(n− 1− 2i)w1 + biw0

n− 1− i

(
n− 1− i

i

)
(ab)⌊

n
2 ⌋−i−1ci+1

=

⌊n
2 ⌋∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici +

⌊n+1
2 ⌋∑

i=1

(n− 2i+ 1)w1 + b(i− 1)w0

n− i

(
n− i

i− 1

)
(ab)⌊

n
2 ⌋−ici

556



TAN et al./Turk J Math

= w1(ab)
⌊n

2 ⌋ + ξ(n)(ab)−ξ(n)bw0c
⌊n+1

2 ⌋ +

⌊n
2 ⌋∑

i=1

[
(n− 2i)w1 + biw0

n− i

(
n− i

i

)
+

(n− 2i+ 1)w1 + b(i− 1)w0

n− i

(
n− i

i− 1

)]
(ab)⌊

n
2 ⌋−ici

=

⌊n+1
2 ⌋∑

i=0

(n− 2i+ 1)w1 + biw0

n− i+ 1

(
n− i+ 1

i

)
(ab)⌊

n
2 ⌋−i

ci.

Thus, the given formula is true for any positive integer n . 2

In the light of Lemma 2.1, we can define bi-periodic incomplete Horadam numbers as follows.

Definition 2.2 Let n and k be positive integers such that 0 ≤ k ≤
⌊
n
2

⌋
. We define the bi-periodic incomplete

Horadam numbers as

wn(k) = aξ(n−1)
k∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n−1
2 ⌋−ici.

Note that the incomplete Horadam numbers in (1.1) are a special case of this definition. They are
obtained for a = p , b = p , and c = q .

It can easily be seen that wn(0) = aξ(n−1)w1(ab)
⌊n

2 ⌋ and wn

(⌊
n
2

⌋)
= wn for n ≥ 1 . Similarly,

wn(1) = aξ(n−1)
(
w1(ab)

⌊n
2 ⌋ + [(n− 2)w1 + bw0] (ab)

⌊n−3
2 ⌋c

)
,

wn

(⌊
n− 2

2

⌋)
=

{
wn − w0c

n
2 , if n is even,

wn −
[
w1 +

(
n−1
2

)
bw0

]
c

n−1
2 , if n is odd,

for n ≥ 2 .

Example 2.3 For a = 3, b = 2, c = 1, w0 = 4, w1 = 2 and 1 ≤ n ≤ 10 , all the values of wn (k) are displayed
in the table on the next page.

Proposition 2.4 Consider the bi-periodic incomplete Horadam numbers wn(k) . For 0 ≤ k ≤ n−3
2 , they satisfy

the nonlinear recurrence relation

wn(k) = aξ(n+1)bξ(n)wn−1(k) + cwn−2(k − 1).

Proof Suppose n is even. Since
⌊
n−1
2

⌋
=

⌊
n
2

⌋
− 1 , we have

aξ(n+1)bξ(n)wn−1(k) + cwn−2(k − 1)
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Table. Examples of a few bi-periodic incomplete Horadam numbers.
n/k 0 1 2 3 4 5
1 2
2 6 10
3 12 22
4 36 72 76
5 72 156 174
6 216 504 594 598
7 432 1080 1344 1370
8 1296 3456 4536 4704 4708
9 2592 7344 10152 10752 10786
10 7776 23328 33912 36792 37062 37066

= aaξ(n)
k∑

i=0

(n− 2i− 1)w1 + biw0

n− i− 1

(
n− i− 1

i

)
(ab)⌊

n−2
2 ⌋−ici +

aξ(n−1)
k−1∑
i=0

(n− 2i− 2)w1 + biw0

n− i− 2

(
n− i− 2

i

)
(ab)⌊

n−1
2 ⌋−i−1ci+1

= aξ(n−1)
k∑

i=0

(n− 2i− 1)w1 + biw0

n− i− 1

(
n− i− 1

i

)
(ab)⌊

n
2 ⌋−1−ici +

aξ(n−1)
k∑

i=1

(n− 2i)w1 + b(i− 1)w0

n− i− 1

(
n− i− 1

i− 1

)
(ab)⌊

n−1
2 ⌋−ici

= aξ(n−1)
k∑

i=0

[
(n− 2i− 1)w1 + biw0

n− i− 1

(
n− i− 1

i

)
+

(n− 2i)w1 + b(i− 1)w0

n− i− 1

(
n− i− 1

i− 1

)]
(ab)⌊

n−1
2 ⌋−ici

= aξ(n−1)
k∑

i=0

[
w1

(
n− i− 1

i

)
+ bw0

(
n− i− 1

i− 1

)]
(ab)⌊

n−1
2 ⌋−ici

= aξ(n−1)
k∑

i=0

(n− 2i)w1 + biw0

n− i

(
n− i

i

)
(ab)⌊

n−1
2 ⌋−ici

= wn(k).

The proof is similar when n is odd. This completes the proof. 2
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Proposition 2.4 can be transformed into a nonhomogeneous recurrence relation as follows:

wn(k) = aξ(n+1)bξ(n)wn−1(k) + cwn−2(k − 1)

= aξ(n+1)bξ(n)wn−1(k) + cwn−2(k) + c
(
wn−2(k − 1)− wn−2(k)

)
= aξ(n+1)bξ(n)wn−1(k) + cwn−2(k)−

aξ(n+1) (n− 2k − 2)w1 + bkw0

n− k − 2

(
n− k − 2

k

)
(ab)⌊

n−3
2 ⌋−kck+1.

(2.1)

Proposition 2.5 For 0 ≤ k ≤ n−s−1
2 , we have

s∑
i=0

(
s

i

)
wn+i(k + i)a⌊

i+ξ(n+1)
2 ⌋b⌊

i+ξ(n)
2 ⌋cs−i = wn+2s(k + s). (2.2)

Proof We proceed by induction on s . The proof is clear for s = 0 and s = 1 from Proposition 2.4. So assume
the relation in (2.2) holds for all positive j < s+ 1 . We will only verify it for j = s+ 1 when n is even since
the proof is similar when n is odd. Now,

s+1∑
i=0

(
s+ 1

i

)
wn+i(k + i)a⌊

i+1
2 ⌋b⌊

i
2⌋cs+1−i

=

s+1∑
i=0

[(
s

i

)
+

(
s

i− 1

)]
wn+i(k + i)a⌊

i+1
2 ⌋b⌊

i
2⌋cs+1−i

=

s+1∑
i=0

(
s

i

)
wn+i(k + i)a⌊

i+1
2 ⌋b⌊

i
2⌋cs+1−i+

s+1∑
i=0

(
s

i− 1

)
wn+i(k + i)a⌊

i+1
2 ⌋b⌊

i
2⌋cs+1−i

=

(
s

s+ 1

)
wn+s+1(k + s+ 1)a⌊

s+2
2 ⌋b⌊

s+1
2 ⌋+

c

s∑
i=0

(
s

i

)
wn+i(k + i)a⌊

i+1
2 ⌋b⌊

i
2⌋cs−i+

s∑
i=−1

(
s

i

)
wn+i+1(k + i+ 1)a⌊

i+2
2 ⌋b⌊

i+1
2 ⌋cs−i

=

(
s

s+ 1

)
wn+s+1(k + s+ 1)a⌊

s+2
2 ⌋b⌊

s+1
2 ⌋ + cwn+2s(k + s)+

(
s

−1

)
wn(k)c

s+1 + a

s∑
i=0

(
s

i

)
wn+i+1(k + i+ 1)a⌊

i
2⌋b⌊

i+1
2 ⌋cs−i

= cwn+2s(k + s) + awn+2s+1(k + s+ 1) = wn+2s+2(k + s+ 1).

Hence the theorem holds for all j . This completes the proof. 2
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Proposition 2.6 For s ≥ 2k + 2 , we have

s−1∑
i=0

a⌊
s−ξ(n+1)

2 ⌋−⌊ i+ξ(n)
2 ⌋b⌊

s−ξ(n)
2 ⌋−⌊ i+ξ(n+1)

2 ⌋cwn+i(k)

= wn+s+1(k + 1)− a⌊
s+ξ(n+1)

2 ⌋b⌊
s+ξ(n)

2 ⌋wn+1(k + 1).

(2.3)

Proof We will use induction on s . We will only consider the case when n is odd since the proof is similar
when n is even.

Suppose n is odd. Then ξ(n) = 1 and ξ(n + 1) = 0 . For s = 2 , the right hand side of Equation 2.3 is
wn+3(k + 1)− abwn+1(k + 1) , and it simplifies to acwn(k) + cwn+1(k) by Proposition 2.4. This clearly equals
the left hand side. Hence, the proposition is true for s = 2 .

Now suppose that the proposition is true for all 2 < s. We prove it for s . Since
⌊
s+1
2

⌋
=

⌊
s
2

⌋
+ ξ(s) , we

have

s∑
i=0

a⌊
s+1−ξ(n+1)

2 ⌋−⌊ i+ξ(n)
2 ⌋b⌊

s+1−ξ(n)
2 ⌋−⌊ i+ξ(n+1)

2 ⌋cwn+i(k)

=

s∑
i=0

a⌊
s+1
2 ⌋−⌊ i+1

2 ⌋b⌊
s
2⌋−⌊ i

2⌋cwn+i(k)

=

s−1∑
i=0

a⌊
s+1
2 ⌋−⌊ i+1

2 ⌋b⌊
s
2⌋−⌊ i

2⌋cwn+i(k) + cwn+s(k)

=

s−1∑
i=0

a⌊
s
2⌋+ξ(s)−⌊ i+1

2 ⌋b⌊
s−1
2 ⌋+ξ(s+1)−⌊ i

2⌋cwn+i(k) + cwn+s(k)

= aξ(s)bξ(s+1)
s−1∑
i=0

a⌊
s+ξ(n+1)

2 ⌋−⌊ i+ξ(n)
2 ⌋b⌊

s−ξ(n)
2 ⌋−⌊ i+ξ(n+1)

2 ⌋cwn+i(k) + cwn+s(k)

= aξ(s)bξ(s+1)
[
wn+s+1(k + 1)− a⌊

s+ξ(n+1)
2 ⌋b⌊

s+ξ(n)
2 ⌋wn+1(k + 1)

]
+ cwn+s(k)

= aξ(s)bξ(s+1)wn+s+1(k + 1) + cwn+s(k)− aξ(s)+⌊
s
2⌋bξ(s+1)+⌊ s+1

2 ⌋wn+1(k + 1)

= aξ(s)bξ(s+1)wn+s+1(k + 1) + cwn+s(k)− a⌊
s+1
2 ⌋b⌊

s+2
2 ⌋wn+1(k + 1)

= wn+s+2(k + 1)− a⌊
s+1
2 ⌋b⌊

s+2
2 ⌋wn+1 (k + 1)

= wn+s+2(k + 1)− a⌊
s+1+ξ(n+1)

2 ⌋b⌊
s+1+ξ(n)

2 ⌋wn+1 (k + 1) .

This completes the proof. 2

We end this section by giving a connection between the generalized bi-periodic incomplete Fibonacci
numbers un(k) and the generalized bi-periodic incomplete Lucas numbers vn(k) .

Proposition 2.7 For 0 ≤ k ≤
⌊
n
2

⌋
, we have

vn(k) = un+1(k) + cun−1(k − 1).
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Proof Recall that

un(k) = aξ(n−1)
k∑

i=0

(
n− 1− i

i

)
(ab)⌊

n−1
2 ⌋−ici, 0 ≤ k ≤

⌊
n− 1

2

⌋
,

and

vn(k) = aξ(n)
k∑

i=0

n

n− i

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici, 0 ≤ k ≤

⌊n
2

⌋
.

So we have,
un+1(k) + cun−1(k − 1)

= aξ(n)
k∑

i=0

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici + caξ(n)

k−1∑
i=0

(
n− 2− i

i

)
(ab)⌊

n−2
2 ⌋−ici

= aξ(n)
k∑

i=0

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici + aξ(n)

k∑
i=1

(
n− 1− i

i− 1

)
(ab)⌊

n
2 ⌋−ici

= aξ(n)
k∑

i=0

[(
n− i

i

)
+

(
n− 1− i

i− 1

)]
(ab)⌊

n
2 ⌋−ici

= aξ(n)
k∑

i=0

n

n− i

(
n− i

i

)
(ab)⌊

n
2 ⌋−ici

= vn(k).

2

3. The generating function
In this section, we shall derive the generating function for the bi-periodic incomplete Horadam numbers. To
this purpose, we need the following lemma which can be obtained from [9] and [10]. We refer to Srivastava and
Monacha [11] for a general treatment of generating functions of special functions.

Lemma 3.1 Let {rn}∞n=0 be a given complex sequence, and let a, b , and c be complex numbers. Suppose that
a complex sequence {sn}∞n=0 satisfies the nonhomogeneous and nonlinear recurrence relation

sn =

{
bsn−1 + csn−2 + rn, if n is even,

asn−1 + csn−2 + arn, if n is odd,

for n > 1 . Then the generating function U(t) of {sn}∞n=0 is given by

U(t) =
aG(t) + (s0 − r0) + [s1 − a(s0 + r1)] t+ (b− a)tf(t) + (1− a)G1(t)

1− at− ct2

where f(t) , G(t) , and G1(t) are the generating functions of {s2n+1}∞n=0 , {rn}∞n=0 , and {r2n}∞n=0 , respectively,
and

f(t) =
[s1 − a(r0 + r1)] t+ c [a(s0 + r1)− s1] t

3 + atG1(t) + a(1− ct2)G2(t)

1− (ab+ 2c)t2 + c2t4
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where G2(t) denotes the generating function of {r2n−1}∞n=1 .

Proof Let U(t) =
∞∑

n=0
snt

n and G(t) =
∞∑

n=0
rnt

n . Then,

(1−at− ct2)U(t)− aG(t)

= (s0 − ar0) + [s1 − a(s0 + r1)] t+

∞∑
n=2

(sn − asn−1 − csn−2 − arn)t
n.

Let us simplify the summation above. Since s2n+1 = as2n+cs2n−1+ar2n+1 and s2m = bs2m−1+cs2m−2+r2m ,
it follows that

∞∑
n=2

(sn − asn−1 − csn−2 − arn)t
n =

∞∑
m=1

(s2m − as2m−1 − cs2m−2 − ar2m)t2m

=

∞∑
m=1

[(b− a)s2m−1 + (1− a)r2m] t2m

= (b− a)t

∞∑
m=1

s2m−1t
2m−1 + (1− a)

∞∑
m=1

r2mt2m

= (b− a)tf(t) + (1− a)G1(t)− (1− a)r0.

Hence,

(1− at− ct2)U(t)− aG(t) = (s0 − r0) + [s1 − a(s0 + r1)] t+ (b− a)tf(t) + (1− a)G1(t).

Then the formula for the generating function follows by solving the above equation for U(t) .
Next, we calculate f(t) . For m > 2 , it is easy to see that

s2m−1 = (ab+ 2c)s2m−3 − c2s2m−5 − a(cr2m−3 − r2m−2 − r2m−1).

Moreover,

s3 − (ab+ 2c)s1 + a(cr1 − r2 − r3) = as2 − cs1 − abs1 + acr1 − ar2

= acs0 − cs1 + acr1.

Then we have, [
1− (ab+2c)t2 + c2t4

]
f(t)− atG1(t) + a(ct2 − 1)G2(t)

=
[
s1 − a(r0 + r1)

]
t+ c

[
a(s0 + r1)− s1)

]
t3.

The formula follows by solving the above equation for f(t) . 2

Now, we are ready to state the generating function for the bi-periodic incomplete Horadam numbers.
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Theorem 3.2 Consider the bi-periodic incomplete Horadam numbers wn(k) . Let

G1(t) = −
ck+1

(
w0b− (w0b− w1)t

)
2

 t2(
1− (ab)

1
2 t
)k+1

+
t2(

1 + (ab)
1
2 t
)k+1



G2(t) = −
ck+1

(
w0b− (w0b− w1)abt

)
2(ab)

1
2

 t2(
1− (ab)

1
2 t
)k+1

− t2(
1 + (ab)

1
2 t
)k+1

 .

Then, the generating function Wk(t) of wn(k) is given by

Wk(t) =

∞∑
n=0

wn(k)t
n =

aG(t) + w2k + w2k−1t+ (b− a)tf(t) + (1− a)G1(t)

1− at− ct2

where G(t) = G1(t) +G2(t) , and

f(t) =
w2k+1t− cw2k−1t

3 + atG1(t) + a(1− ct2)G2(t)

1− (ab+ 2c)t2 + c2t4
.

Proof Let k be a fixed positive integer. It is easy to see that wn(k) = 0 for 0 ≤ n < 2k , and w2k(k) = w2k

and w2k+1(k) = w2k+1 . When n is even, it follows from the nonhomogeneous recurrence relation in Equation
2.1 that

wn(k) = awn−1(k) + cwn−2(k)

− b−1 (n− 2k − 2)w1 + bkw0

n− k − 2

(
n− k − 2

k

)
(ab)⌊

n−2
2 ⌋−kck+1.

Similarly, when n is odd

wn(k) = bwn−1(k) + cwn−2(k)

− (n− 2k − 2)w1 + bkw0

n− k − 2

(
n− k − 2

k

)
(ab)⌊

n−2
2 ⌋−kck+1.

Now let us define
s0 = w2k(k) = w2k, s1 = w2k+1(k) = w2k+1, sn = w2k+n(k),

and

r0 = r1 = 0, rn = − (n− 2)w1 + bkw0

n+ k − 2

(
n+ k − 2

k

)
(ab)⌊

n
2 ⌋−1ck+1.

Then,
G(t) = G1(t) +G2(t)

= −ck+1t2

2

[
w0b− (w0b− w1)t

]
+
[
w0b− (w0b− w1)abt

]
(ab)−

1
2(

1− (ab)
1
2 t
)k+1

+

[
w0b− (w0b− w1)t

]
−
[
w0b− (w0b− w1)abt

]
(ab)−

1
2(

1 + (ab)
1
2 t

)k+1
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is the generating function of the sequence {−rn} . Thus the generating function of the sequence {wn(k)}∞n=0

follows from [9, Lemma 3.1]. This completes the proof. 2
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