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Abstract: A ring A is (principally) nilary, denoted (pr-)nilary, if whenever XY = 0, then there exists a positive integer
n such that either Xn = 0 or Y n = 0 for all (principal) ideals X , Y of A . We determine necessary and/or sufficient
conditions for the group ring A[G] to be (principally) nilary in terms of conditions on the ring A or the group G . For
example, we show that: (1) If A[G] is (pr-)nilary, then A is (pr-)nilary and either G is prime or the order of each
finite nontrivial normal subgroup of G is nilpotent in A . (2) Assume that G is finite. Then G is nilpotent and A[G]

is (pr-)nilary if and only if G is a p -group, char(A) = pα (p is a prime), and A is (pr-)nilary. (3) Let G be a finite
supersolvable group such that q is the smallest prime dividing |G|, and F is a field with char(F ) = q . Then F [G] is
nilary if and only if G is a q -group. Examples are provided to illustrate and delimit our results.
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1. Introduction
Throughout, all rings are associative with a nonzero unity; R denotes such a ring; and G denotes a group.
Also, we consider all groups to be nontrivial (i.e. of order greater than one) unless indicated otherwise. Recall
that a ring R is called Quasi-Frobenius (denoted, QF) if R is right Artinian and right self-injective.

This paper is the second in a series of papers on the classification of indecomposable QF-rings. The
following facts are well-known: (1) Every QF-ring is a finite direct sum of indecomposable QF-rings. (2) Let
R be a commutative ring. Then R is an indecomposable QF-ring if and only if R is a local Artinian ring with
simple socle. (3) R is a prime QF-ring if and only if R is isomorphic to a n−by−n (n ∈ N) matrix ring
over a division ring. Note that a nonprime local QF-ring has a nonzero nilpotent Jacobson radical which is a
prime ideal. So from the above facts and other properties of QF-rings, it seems reasonable to investigate the
classification of indecomposable QF-rings.
As a first step in our investigation, we recognized that the classes of nilary rings and pr-nilary rings properly
contain the class of all rings with a nilpotent prime ideal (e.g., all prime rings and all local rings with nilpotent
Jacobson radical).

Recall from [2], a ring R is (principally) nilary, if whenever XY = 0 then there exists n ∈ N such that
either Xn = 0 or Y n = 0 for all (principal) ideals X , Y of R . We use pr-nilary to denote principally nilary.
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These classes of rings have the following useful properties (see [2]): (1) Every nilary ring is pr-nilary, but the
converse is not true even for commutative rings [2, Example 1.10(ii)]. However, if R has ACC on ideals, then
R is pr-nilary if and only if R is nilary [2, Proposition 1.4]. (2) Every pr-nilary ring is indecomposable [2,
Proposition 1.4]. (3) The nilary and pr-nilary properties are Morita invariants [2, Theorem 3.5]. (4) If I is a
nilpotent ideal of R and R

I is a nilary ring, then R is a nilary ring [2, Proposition 1.6]. Thus, we can classify the
indecomposable QF-rings into the class of nilary QF-rings and the class of nonnilary indecomposable QF-rings.

In [1, Theorem 2.2], we characterized the nilary QF-rings. Among the characterizations, the following
is useful in this paper: Let R be a QF-ring.“Then R is nilary if and only if there exists a set of orthogonal
primitive idempotents {e1, · · · , em} , such that e1R, · · · , emR represent a complete set of isomorphism classes
of principal indecomposable modules with each ReiR right essential”in R .

The class of group algebras of the form, R = F [G], where F is a field and G is a finite group are Frobenius
algebras (hence QF-rings) which have important applications in group representation theory, algebraic coding
theory, and physics through the symmetry group of a physical system. In this paper, after some basic results
on (pr-)nilary (i.e. pr-nilary or nilary) rings and an example of an indecomposable QF-ring which is not nilary,
we investigate the pr-nilary and nilary conditions on group rings of the form, R = A[G] , where A is a ring
and G is a group, in Section 2. In particular, we find necessary and/or sufficient conditions on the ring A

and the group G for R to be nilary or pr-nilary. For example, we show (let A be a ring, G be a group, and
p be a prime): (1) If A[G] is (pr-)nilary, then either G is prime or the order of each finite nontrivial normal
subgroup of G is nilpotent in A (Theorem 2.10(i)). (2) Assume that G is finite. Then G is nilpotent and
A[G] is (pr-)nilary if and only if G is a p -group, char(A) = pα (p is a prime and α is a positive integer), and
A is (pr-)nilary (Corollary 2.30). (3) Let G be a finite supersolvable group such that q is the smallest prime
dividing |G|, and char(A) = qα . Then A[G] is (pr-)nilary if and only if G is a q -group (Theorem 2.31).

In Section 3, we apply the results of Sections 1 and 2 and [1] to investigate (pr-) nilary group algebras of
the form R = F [G] where F is a field and G is a group. In particular, we begin the search for a characterization
of the nilary QF-algebra of the form R = F [G] where F is a field and G is a finite group, in terms of the
properties of F and G . Also, we characterize the nilary group algebras which have a nilpotent prime ideal
(Theorem 3.5).

We use N, Z, and Zn (n > 1) to denote the set of positive integers, the ring of integers, and the ring
of integers modulo n, respectively; I � A means that I is an ideal (a two-sided) of the ring A , K ≤ RR and
K ≤ess RR denote that K is a right ideal of R and K is right essential in R (i.e. K ∩Y ̸= 0 for each nonzero
right ideal Y of R), respectively; and we use < X > for the ideal generated by the nonempty subset X of
A. P (A) , J(A) , gcd(a, b) , U(A) , char(A) , and cent(A) denote the prime radical, the Jacobson radical of a
ring A , the greatest common divisor of a and b, the units of A, the characteristic of A, and the center of A ,
respectively. The left (right) annihilator of the subset X of the ring A is denoted by ℓA(X) = {a ∈ A | aX = 0}
( rA(X) = {a ∈ A | Xa = 0}) . For other terminology see [9, 10, 11].

2. nilary rings

Definition 2.1 [2, Definition 1.1 (i)-(iii) and Definition 2.1]

(i) “An ideal I of a ring R is said to be a (principally) right primary ideal if whenever X and Y are
(principal) ideals of R with XY ⊆ I, then either X ⊆ I or Y n ⊆ I for some positive integer n depending
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on X and”Y .

(ii) “An ideal I is called a (principally) nilary ideal if whenever X and Y are (principal) ideals of R with
XY ⊆ I , then either Xn ⊆ I or Y n ⊆ I for some positive integer n depending on X ”and Y.

(iii) “A ring R is said to be a (principally) right primary ring or (principally) nilary ring if the zero ideal is
a (principal) right primary or a (principal) nilary”ideal of R, respectively.

(iv) “An ideal I of R is called a strongly pr-nilary ideal if
√
I is a prime ideal of R . R is called a strongly

pr-nilary ring if the zero ideal of R is a strongly pr-nilary. Every strongly pr-nilary ideal (ring) is a
pr-nilary ideal”(ring) [2, Proposition 2.4(i)].

In this paper, p-groups are used in conjunction with the principally nilary concept. In order to avoid
confusion, we use ”pr-” as an abbreviation for ”principally”. Thus pr-nilary ring denotes principally nilary ring.
Note that in [2] a principally nilary ring (ideal) is denoted as a p-nilary ring (ideal). Also, we use ”(pr-) nilary”
to denote ”principally nilary or nilary, respectively”.

In parts (i) and (iii) above, the left-sided version is defined analogously. Define
√
I =

∑
{V �R | V n ⊆

I for some n ∈ N};
√
I is called the pseudo radical of I. Let

√
0R, and

√
0A[G] denote the pseudo radical

(i.e. Wedderburn radical) of R, and A[G], respectively.
Observe, from Proposition 2.8, that if R has a nilpotent prime ideal, then R is nilary and strongly pr-

nilary. For example, all prime rings and all local rings with nilpotent Jacobson radical are nilary and strongly
pr-nilary. See [2] for more examples.

Lemma 2.2 Let I be an ideal of a ring R. The following conditions are equivalent:

(i) I is a nilary ideal of R .

(ii) AB ⊆ I implies that Am ⊆ I or Bm ⊆ I for some m ∈ N and for all left ideals A,B of R.

(iii) Let B be any left ideal of R and (I : B) = {r ∈ R|rB ⊆ I}. Then Bm ⊆ I or (I : B)m ⊆ I for some
m ∈ N .

(iv) R
I is a nilary ring.

Proof
(i) ⇒ (ii) Assume I is nilary and AB ⊆ I . Then (A(RB))R ⊆ I. So (AR)(BR) ⊆ I. Hence, (AR)m ⊆ I

or (BR)m ⊆ I, for some m ∈ N . Therefore, Am ⊆ I or Bm ⊆ I .
(ii) ⇒ (iii) Observe that (B : I) is a two sided ideal of R and (I : B)B ⊆ I . So (I : B)m ⊆ I or

Bm ⊆ I for some positive integer m .
(iii) ⇒ (i) Let A,B be ideals of R such that AB ⊆ I . Then A ⊆ (I : B) . Therefore, Am ⊆ I or

Bm ⊆ I for some positive integer m .
(vi) ⇔ (i) The proof of this implication is routine.

2

Corollary 2.3 The “following conditions are equivalent:
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(i) R is a nilary ring.

(ii) IJ = 0 implies that Im = 0 or Jm = 0 for some m ∈ N and for all left ideals I, J of R.

(iii) For any left ideal J of R either Jm = 0 or ℓ(J)m = 0 for some m ∈ N .

(iv) For any right ideal I of R either Im = 0 or r(I)m = 0 for”some m ∈ N .

Results similar to Lemma 2.2 and Corollary 2.3 hold for pr-nilary ideals and rings, respectively. These
results are used implicitly throughout the paper.

Lemma 2.4 “

(i) If R/I is a nilary ring and I is a nilpotent ideal, then R is a nilary ring.

(ii) If R/I is a pr-nilary ring and
√
I is a sum of nilpotent ideals, then R is a pr-nilary ring.

(ii)
√
0R is nilpotent if and only if P (R) is nilpotent, in either case,

√
0R = P (R).

”

Proof

(i) This is [2, Proposition 1.6(iii)].

(ii) This is [2, Proposition 1.6(iv)].

(iii) Clearly
√
0R ⊆ P (R); hence, P (R) nilpotent implies

√
0R = P (R) . So

√
0R is nilpotent. Now assume

√
0R is nilpotent. Then [7, P.184] yields

√
0R = P (R). So P (R) is nilpotent.

2

Proposition 2.5 (i) P (R) is a (pr-)nilary ideal if and only if P (R) is a prime ideal.
(ii) P (R) =

√
0R and P (R) is a pr-nilary ideal if and only if R is a strongly pr-nilary ring.

(iii) Assume
√
0R is a nilpotent pr-nilary ideal. Then P (R) =

√
0R, P (R) is a prime ideal, R is a nilary and

strongly pr-nilary ring.
(iv) R has a nilpotent prime ideal if and only if

√
0R is a nilpotent pr-nilary ideal if and only if P (R) is a

nilpotent prime ideal.

Proof (i) Since P (R) is a semiprime ideal, this part follows from [2, Proposition 1.3(i)].
(ii) Part(i) and [2, Proposition 2.3 ] yields this part.
(iii) Assume

√
0R is a nilpotent pr-nilary ideal. From Lemma 2.4(iii), P (R) =

√
0R. By part (i), P (R) is a

prime ideal and R is strongly pr-nilary. From Lemma 2.4(i), R is a nilary ring.
(iv) Assume X is a nilpotent prime ideal. Then X ⊆

√
0R ⊆ P (R) ⊆ X. The remainder of the proof follows

from Lemma 2.4(iii) and part(i).
2
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Proposition 2.6 Let R be a commutative ring. The following are equivalent.
(i) R is pr-nilary.
(ii) P (R) is a prime ideal.
(iii) R is a strongly pr-nilary.

Proof (i) ⇒ (ii) Suppose R is pr-nilary. Let x, y ∈ R such that xy ∈ P (R). Since P (R) is the set of nilpotent
elements of R , there exists a positive integer m such that (xy)m = xmym = 0. Then (xmR)(ymR) = 0 . Since
R is pr-nilary, there exists a positive integer k such that (xmR)k = 0 or (ymR)k = 0 . Then xmk = 0 or
ymk = 0. Therefore, either x ∈ P (R) or y ∈ P (R), so P (R) is a prime ideal of R .
(ii) ⇒ (iii) Since R is commutative,

√
0R = P (R). So R is strongly pr-nilary.

(iii) ⇒ (i) This implication follows from [2, Proposition 2.4(i)]
2

Note that Proposition 2.6 is not true for noncommutative rings. In Example 4.13 or [1, Example 2.13], it
is shown that R = Z3[S3] is a nilary ring such that P (R) = J(R) is nilpotent; but R

P (R)
∼= Z3 ⊕Z3. Therefore,

P (R) is not a prime ideal of R .

Corollary 2.7 Assume R is (pr-)nilary and S is a subring of R .

(i) If S ⊆ cent(R) , then S is a (pr-)nilary ring and S
P (S) is a domain.

(ii) If R is right duo (i.e. every right ideal is an ideal), then S is (pr-)nilary.

Proof

(i) Assume that R is nilary and X,Y � S such that XY = 0. Then (XR)(Y R) = 0. So there exist m ∈ N
such that (XR)m = 0 or (Y R)m = 0. Hence, Xm = 0 or Y m = 0. Therefore, S is nilary. The pr-nialry
part is similar. By Proposition 2.6, S

P (S) is a domain.

(ii) We show the nilary case. The pr-nilary case is similar. Let X,Y � S such that XY = 0. Then
XR,Y R ≤ RR . Hence, (XR)(Y R) = X(RY R) = XY R = 0. So (XR)m = 0 or (Y R)m = 0 for
some m ∈ N. Therefore, Xm = 0 or Y m = 0.

2

Proposition 2.8 (i) If R has a nilpotent prime ideal, then R is nilary and strongly pr-nilary. In particular,
prime rings and local rings with nilpotent Jacobson radical are nilary and strongly pr-nilary.
(ii) Let M be an (R,R)-bimodule and T (R,M) the trivial (also called the split-null) extension of M by R. If
R is (pr-)nilary, then T (R,M) is (pr-)nilary.

Proof (i) This part follows from Proposition 2.5 (iii) and (iv).

(ii) Let (0,M) = {(0,m)|m ∈ M}. Then (0,M) is a nilpotent ideal of T (R,M) and T (R,M)
(0,M)

∼= R. The

remainder of the proof follows from Lemmas 2.2 and 2.4. 2

Theorem 2.9 Let R be a (pr-)nilary ring. Then either char(R) = 0 or char(R) = pβ for some positive
integer β, where p is a prime number. If R is semiprime and char(R) ̸= 0, then char(R) = p.
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Proof Assume that char(R) > 0 and char(R) = pαm for some α,m ∈ N, where p is a prime number such
that gcd(p,m) = 1. Since ⟨pα⟩⟨m⟩ = 0 and R is a (pr-)nilary ring, either p or m is nilpotent in R. In case p

is nilpotent in R, then p ∈ J(R); this implies that m ∈ U(R) because gcd(p,m) = 1. Now, we have

0 = (char(R) · 1)m−1 = pαmm−1 = pα;

thus, pα = 0 in R; but char(R) = pαm, so m = 1 . In case m is nilpotent in R, then m ∈ J(R); this implies
that p ∈ U(R) and pα ∈ U(R) because gcd(pα,m) = 1. Now, we have

0 = p−α(1 · char(R)) = p−αpαm = m;

hence, m = 0 in R; but char(R) = pαm, a contradiction. So either char(R) = 0 or char(R) = pα for some
α ∈ N. In the last part of the result, since R is semiprime and p ∈ cent(R), char(R) = p. 2

Example 2.10 This example is an indecomposable Frobenius basic ring R with u.dim(RR) = 3 which is not a
nilary ring (see [11, Example 16.19(4)]). In fact, this example can be extended to an indecomposable Frobenius
basic ring R with u.dim(RR) = n for n ≥ 3 which is not a nilary ring. Let K be a division ring, and

R =




a1 x1 0 0 0 0
0 a2 0 0 0 0
0 0 a2 x2 0 0
0 0 0 a3 0 0
0 0 0 0 a3 x3

0 0 0 0 0 a1

 |ai, xi ∈ K for i = 1, 2, 3


.

Let E = {e1, e2, e3} where e1 =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , e2 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 , and e3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 . Then E is a complete set of orthogonal primitive idempotents for R. To see that

R is indecomposable, assume c is a nontrivial central idempotent of R . Then either c or 1 − c is in E.

Since no element of E is central, R is indecomposable. To see that R is not nilary, let I = Re1R. Then

I =




0 x1 0 0 0 0
0 a 0 0 0 0
0 0 a x2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 | a, xi ∈ K for i = 1, 2


and
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r(I) = Re2R




b y1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 y2
0 0 0 0 0 b

 | b, yi ∈ K for i = 1, 2


.

Since neither I nor r(I) are nilpotent, R cannot be nilary.

3. Group rings that are (pr-)nilary

If“A is a ring and G is a group, A[G] will denote the group ring of G over A. Consider the function ε : A[G] → A

defined by ε(Σg∈Gagg) = Σg∈Gag. This function is called the augmentation map, and ε is a ring homomorphism
that maps A[G] onto A. Ker(ε) = {α = Σg∈Gagg ∈ A[G] | ε(α) = Σg∈Gag = 0}. Ker(ε) is a nontrivial ideal
called the augmentation (fundamental) ideal of A[G] and is denoted by ∆(G). The ideal ∆(G) consists of
the elements of the form a1(1 − g1) + · · · + ak(1 − gk) with each ai ∈ A, each gi ∈ G, and k a positive
integer. From the above, it is clear that A[G]/∆(G) ∼= A. Let H be a normal subgroup of G. Then the natural
homomorphism G → G/H mapping g to gH induces a ring homomorphism” εH : A[G] → A[G/H] defined by
εH(Σg∈Gagg) = Σg∈GaggH ∈ A[G/H]. Also, Ker(εH) = ∆(G,H) for the kernel of this homomorphism. The
ideal ∆(G,H) consists of the elements of the form a1g1(1 − h1) + · · · + akgk(1 − hk) with each ai ∈ A, each
gi ∈ G, hi ∈ H, and k a positive integer. A[G]∆(H) is the kernel of εH ( i.e. ∆(G,H) = A[G]∆(H) ). In
particular, if H = G, then ε = εG, and we write ∆(G) = ∆(G,G). For a nonempty subset I of A, we have I

is a right ideal of A if and only if I[G] (IA[G] = I[G]) is a right ideal of A[G]; if I is an ideal, then I[G] is an
ideal and A[G]/I[G] ∼= (A/I)[G]. We use ν(G) to denote the set of orders of all finite normal subgroups; Z(G)

to denote the center of a group G; ρ(G) is the set of g ∈ G which have only a finite number of conjugates;
σ(G) denotes the set of g ∈ ρ(G) of finite order; groups with σ(G) = G are called locally normal, an equivalent
definition being every finite subset is contained in a finite normal subgroup; Sn is the symmetric group and
An its alternating subgroup; Cn is used for the cyclic group of order n (n ≥ 1); the subgroup ⟨g⟩ is called the
cyclic subgroup of G generated by g; a group G is called a p -group if the order of each element of G is a power
of p; |G| denotes the order of G; the order of an element g is denoted by o(g); G is called a torsion group if,
for every g ∈ G there exists a nonzero n ∈ N with o(g) = n; G is prime if it satisfies either one of the following
two equivalent conditions: (i) σ(G) = 1, (ii) ν(G) = {1}, i.e. G contains no finite normal subgroup except
1; G is called a Dedekind group if every subgroup of G is normal. Also, for a prime p and a finite group G

we denote by Op(G) the maximal normal subgroup of G such that its order is divisible by p ; and Op′(G) the
maximal normal subgroup of G such that its order is not divisible by p . These definitions and concepts may
be found in [5, 11, 15].

This section is devoted to obtaining and investigating results related to nilary group rings. The results
of Connell, in [5], which relate to prime rings are (partially) generalized to the class of nilary rings. We start
with finding necessary conditions on A and G so that A[G] is nilary.

Lemma 3.1 Let A be a ring and G be a group. The following statements are equivalent:
(i)

√
0A[G] = ∆(G);

(ii) P (A[G]) =
√
0A[G] = ∆(G);

1057



AL-MALLAH et al./Turk J Math

(iii) G is a locally normal p-group, A is semiprime, and p = 0 in A.

Proof See [5, p. 682, Theorem 10]. 2

Recall that if G is a group and H is a finite subgroup, then Ĥ =
∑

h∈H h.

Lemma 3.2 [11, Lemma 3.4.3] and [5, p. 651, Propsition 1]
Let H be a subgroup of a group G and let A be a ring. Then ℓA[G](∆(G,H)) ̸= 0 if and only if H is finite.
In this case, we have

ℓA[G](∆(G,H)) = A[G]Ĥ.

Furthermore, if H is normal in G, then the element Ĥ is central in A[G] and we have

ℓA[G](∆(G,H)) = rA[G](∆(G,H)) = ĤA[G].

Lemma 3.3 [5, p. 656, Proposition 4(ii)] The left and right annihilator ideals of ∆(G) coincide and are given
by

(∆(G))∗ =

{
0 if G is infinite,
A
∑

g∈G g if G = {g1, g2, ..., gn}.

In the latter case

∆(G) ∩ (∆(G))∗ = {a
∑
g∈G

g | a ∈ A,na = 0}.

From Lemma 3.3, observe that if R = A[G] is nilary, then either ℓ(∆(G)) = r(∆(G)) = 0, ∆(G) is nilpotent,
or Ĝ is a central nilpotent element of R .

Proposition 3.4 Let A be a ring, G be a group, and H �G .

(i) ∆(G,H) is a (pr-)nilary ideal if and only if A[G/H] is a (pr-)nilary ring.

(ii) ∆(G) is a (pr-)nilary ideal if and only if A is a (pr-)nilary ring.

Proof (i) This part follows from Lemma 2.2 and the fact that A[G/H] ∼= A[G]/∆(G,H) for any normal
subgroup H of G [11, Corollary 3.3.5].
(ii) Put H = G in part(i). 2

Lemma 3.5 [5, p. 681, Theorem 9] Let A be a ring and G be a group. Then
∆(G) is nilpotent if and only if

(i) G is a finite p-group, and

(ii) p is nilpotent in A.
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Proposition 3.6 Let A be a ring, G a group and H �G.

(i) H is a finite p-subgroup and p is nilpotent in A if and only if ∆(G,H) is nilpotent.
(ii) Assume H is a finite p-subgroup and p is nilpotent in A . If A[GH ] is (pr-)nilary, then A[G] is (pr-) nilary.
(iii) Let G = H ⋊K where H is a finite p-subgroup and p is nilpotent in A . If A[K] is (pr-)nilary, then A[G]

is (pr-)nilary.

Proof (i) (⇒) Since
∆(G,H) = A[G]∆(H) = ∆(H)A[G],

we have ∆(G,H))n = (A[G]∆(H))n = A[G](∆(H))n. The result follows from Lemma 3.5.
(⇐) Since ∆(H) ⊆ ∆(G,H). If ∆(G,H) is nilpotent, then ∆(H) is nilpotent. By Lemma 3.5, then H

is a finite p -subgroup and p is nilpotent in A.

(ii) By part(i), ∆(G,H) is nilpotent. From [11, Corollary 3.3.5], A[G]
∆(G,H) = A[GH ]. Now, Lemma 2.4 yields the

result.
(iii) This part follows from part(ii).

2

From [1, Example 2.13 or Example 4.3], Z3[S3] is nilary. By Proposition 3.6(iii), Z3[C3n × S3] is nilary
for each positive integer n.

Lemma 3.7 Let A be a ring and G be a group.Then, A[G] is prime if and only if A is prime and G is prime.

Proof See [5, p. 675, Theorem 8]. 2

Lemma 3.8 Let A be a ring and G be a group. If G is prime, then A[G] is semiprime if and only if A is
semiprime.

Proof See [5, p. 676]. 2

Theorem 3.9 Let A be a ring and H a subgroup of G such that H ⊆ Z(G).

(i) If J is a nilary ideal of A[G], then J ∩A[H] is a nilary ideal of A[H].

(ii) If J is a pr-nilary ideal of A[G], then J ∩A[H] is a pr-nilary ideal of A[H].

(iii) If A[G] is a (pr-)nilary ring, then A[H] is a (pr-)nilary ring.

(iv) If A[G] is a (pr-)nilary ring, then A is a (pr-)nilary ring.

(v) If A[G] is a (pr-)nilary, then A[Z(G)] is a (pr-)nilary ring.

Proof

(i) Let R = A[G] and let R′ = A[H] . Assume that I,K � R′ with IK ⊆ J ∩ R′. Now, we have that
(IK)R ⊆ (J ∩R′)R ⊆ JR = J. Since H ⊆ Z(G), we get, RK = KR and so (IK)R = (IR)(KR). Then
(IR)(KR) ⊆ J. Hence, (IR)n ⊆ J or (KR)n ⊆ J for some n ∈ N because J is a nilary ideal. Assume
that (IR)n ⊆ J. Since R is a unitary ring, In ⊆ (IR)n ⊆ J. Therefore, In ⊆ J ∩R′. If (KR)n ⊆ J, then
Kn ⊆ J ∩R′. Hence, J ∩R′ is a nilary ideal of R′.
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(ii) Notice that if I is a (principal) finitely generated ideal of A[H] , then IA[G] is a (principal) finitely
generated ideal of A[G]. By using part(i) and [2, Proposition 1.3(iii)], we have the result.

(iii) Put J = {0} in Part(i) and (ii).

(iv) Put H = {1} in Part(iii).

(v) Put H = Z(G) in Part(iii).

2

Theorem 3.10 Let A be a ring, p be a prime, and G be a group.

(i) If A[G] is (pr-)nilary, then either G is prime or the order of each finite nontrivial normal subgroup of G

is nilpotent in A.

(ii) If char(A) = 0 and A[G] is (pr-)nilary, then G is prime (i.e. ν(G) = 1).

(iii) If char(A) = pα, and A[G] is (pr-)nilary, then p divides |H| for each nontrivial finite normal subgroup
H of G .

(iv) If G is finite and char(A) = pα, and A[G] is (pr-)nilary, then Op′(G) = 1 .

Proof

(i) Assume that G is not prime. Then there exists a finite nontrivial normal subgroup H of G. Now, we have
that ∆(G,H) is a finitely generated ideal of A[G], and by Lemma 3.2 0 ̸= r

A[G]
(∆(G,H)) is a principal

ideal of A[G] generated by Ĥ =
∑n

i=1 hi, with |H| = n. Now, we have

(∆(G,H)) rA[G](∆(G,H)) = 0.

Since A[G] is (pr-)nilary, either ∆(G,H) or rA[G](∆(G,H)) is nilpotent (see [2, Proposition1.3(iii)]), so
either (∆(G,H))m = 0 or (rA[G](∆(G,H)))m = 0 for some m ∈ N, by Lemma 2.3(ii).

Suppose (∆(G,H))m = 0. By Proposition 3.6, H is a p-group and p is a nilpotent in A. Hence, n is
nilpotent in A. Since n was arbitrary, this implies it is nilpotent in A for each 1 ̸= n ∈ ν(G).

Now suppose (r
A[G]

(∆(G,H)))m = 0. Since x = Ĥ ∈ r
A[G]

(∆(G,H)), xm = 0. Also, x2 = Ĥx =∑n
i=1 hix = nx; hence, x3 = (x2)x = (nx)x = n(x2) = n(nx) = (n · n)x = (n2)x = n2x. Therefore,

xm = nm−1x, since xm = 0. Then nm−1x = 0. So nm−1Ĥ = nm−1(h1+h2+h3+ · · ·+hn) = 0. Since H

is linearly independent over A, nm−1 = 0 in A. Since n is arbitrary, this implies that the order of each
finite nontrivial normal subgroup of G is nilpotent in A.

(ii) Assume that G is not prime. There is a nontrivial finite normal subgroup H of G. Since A[G] is (pr-
)nilary, either ∆(G,H) or rA[G](∆(G,H)) is nilpotent. By using part(i), we find |H| is nilpotent in A.

However, |H| ̸= 0, and char(A) = 0, a contradiction. Hence, σ(G) = 1. Therefore, G is prime.
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(iii) Assume that G has a nontrivial finite normal subgroup H. By part(i) we have |H| is nilpotent in A.

However, |H| ̸= 0, and char(A) = pα . Hence, o(1) = pα in the additive group A . So pα||H| . Therefore,
p||H|, since p is a prime.

(iv) Assume that Op′(G) is nontrivial. Hence, Op′(G) is a nontrivial normal subgroup of G. Then p divides
|Op′(G)|. By Cauchy’s Theorem, we find that Op′(G) contains an element of order p , a contradiction.

2

The following examples illustrate and delimit Theorem 3.10.

Example 3.11 Let A be a domain (e.g., A = Q , the rational numbers) and G = S∞ (the infinite symmetric
group). Notice that A is prime and G is prime, and hence A[G] is a prime ring by Lemma 3.7. Therefore,
A[G] is (pr-)nilary. However, G has infinitely many nontrivial finite subgroups which are not normal and A

contains no nonzero nilpotent elements.

Example 3.12 From [1, Proposition 1.4(iii)], a (pr-) nilary ring is indecomposable. Then it is free of nontrivial
central idempotents. Hence, for any (pr-)nilary group algebra F [G] , the principal block is the unique block of
G over the field F. So if the group algebra F [G] has more than one block, then it is not (pr-)nilary. By using
[6, Theorem 4], we find that Z2[A5] is not nilary because it has two bockls. Therefore, the converse of Theorem
3.10 part(i) is false, since A5 has only one nontrivial normal subgroup and its order is nilpotent in Z2 .

Corollary 3.13 Let A be a ring and G be a finite group.
If A[G] is (pr-)nilary, then A is (pr-)nilary and |G| is nilpotent in A.

Proof The proof follows from Theorems 3.9 part(iv) and 3.10(i). 2

Corollary 3.14 Let A be a semiprime ring and G be a group. If either G is prime or char(A) = 0, then
A[G] is a (pr-)nilary ring if and only if A[G] is a prime ring.

Proof Suppose A[G] is (pr-)nilary. First, assume that char(A) = 0. From Theorem 3.10(ii), G is prime.
Since A[G] is a (pr-)nilary ring, A is a (pr-)nilary ring, by Theorem 3.9(iv) . From [2, Proposition 1.3(i)] A

is prime. Hence, A[G] is prime because A is prime and G is prime, (see, Lemma 3.7). The converse is clear.
Next, assume that G is prime. This proof is similar to that used for char(A) = 0 . The converse is routine.

2

Remark 3.15 Let A = Zpn with n ∈ N, and p be a prime number.
(i) If n = 1 then A is prime and hence nilary.
(ii) If n > 1 then A is nilary, but it is not prime.

The next result provides examples of (pr-)nilary group rings A[G] where G is a prime group, but A[G]

is not a prime ring.

Proposition 3.16 Assume that G is prime. Let A be a commutative ring with a nonzero nilpotent prime ideal
I . Then A[G] is (pr-)nilary which is not prime.
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Proof Put B = A/I, since I is prime then B is a prime ring. Hence, B[G] = (A/I)[G] ∼= A[G]/I[G], by [5,
p. 654, (9)]. Since B is prime and G is prime, B[G] is prime, by Lemma 3.7. Therefore, B[G] ∼= A[G]/I[G] is
prime. Hence, A[G]/I[G] is (pr-)nilary. Since I[G] is nilpotent, A[G] is (pr-)nilary, by Lemma 2.4. Since A is
not prime, A[G] is not prime, by Lemma 3.7.

2

For a particular example, take A = Zpm and G = S∞, for some m ∈ N and m > 1.

Proposition 3.17 Let A be a ring, G be a group, H ◁ G, and and R = A[G].

(i) If |G| = ∞, then ∆(G) ≤ess RR and ∆(G) ≤ess
RR.

(ii) If |G| = m < ∞, R is pr-nilary, and A[GH ] is semiprime, then A is a prime ring, char(A) =

p, ∆(G,H) ≤ess RR and ∆(G,H) ≤ess
RR.

Proof Let X ≤ RR such that X ∩∆(G) = 0. Then X ⊆ ℓ(∆(G,H)) = ĤR by Lemma 3.2.
(i) Since |G| = ∞, X = 0 by Lemma 3.3. Therefore, ∆(G,H) ≤ess RR. Similarly, ∆(G,H) ≤ess

R R.

(ii) Since R
∆(G,H)

∼= A[GH ] , A is semiprime and ∆(G,H) is a semiprime ideal of R . Hence, P (R) ⊆ ∆(G,H).

By Theorem 3.9(iv), A is pr-nilary ring. From‘[2, definition 1.1(iii) and Proposition 1.3(i) ], A is a prime ring.
Theorem 2.9 yields that char(A) = 0 or char(A) = p for some prime p . If char(A) = 0, then G is prime
by Theorem 3.10(ii). This is a contradiction to |G| = m < ∞. So char(A) = p. By Theorem 3.10(iii), p||H|.

Then X2 ⊆ (ĤR)2 = |H|ĤR = 0. So X ⊆ X ∩ P (R) ⊆ X ∩∆(G,H) = 0. Then ∆(G,H) ≤ess RR. A similar
argument yields ∆(G,H) ≤ess

RR. 2

Proposition 3.18 Let A be a ring and G be a Dedekind group. Assume A[G] is (pr-)nilary, then T (G) is
trivial or T (G) is a p-group where p is a prime number.

Proof From Theorem 2.9, if A is nilary then either char(A) = 0 or char(A) = pα for some prime p

and positive integer α. If char(A) = 0, then by Theorem 3.10 G is prime. Hence, T (G) is trivial. Assume
char(A) = pα and T (G) is nontrivial. Let g ∈ G of finite order and g ̸= 1 . Let H =< g > . Since G is
Dedekind, then H is a finite normal subgroup of G . By Theorem 3.10, p divides |H| . Assume that there is a
prime number q ̸= p such that q divides |H| . Notice that H is cyclic, so abelian; thus, there is a subgroup K

of H such that the order of K is q . Also, K is a subgroup G ; therefore , K is normal because G is Dedekind.
Again, by Theorem 3.10, p divides |K|, a contradiction. Therefore, T (G) is a p-group.

2

A group G is hypercentral if there exists a smallest ordinal α such that Zα = G, where Z0 = 1, Z1 = Z(G)

if λ is a limit ordinal Zλ =
∪

β<λ Zβ and Zβ+1

Zβ
= Z( G

Zβ
). Furthermore, α is called the class of G . If α is finite,

G is also called nilpotent.
If π is a set of primes, a group is said to be π -free if it contains no nontrivial elements whose order is a

π -number (i.e. a product of primes in π ).

Lemma 3.19 [13, Theorem 2.2.12] Let G be a group with π -free center. Then each upper central factor, and
therefore the hypercenter of G, h(G), is π -free.

Theorem 3.20 Let A be a ring and G be any group.
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(i) If A[G] is (pr-)nilary, then T (h(G)) is either trivial or a p-group for some prime number p.

(ii) If char(A) = 0 and A[G] is (pr-)nilary, then h(G) is either trivial or torsion-free.

Proof

(i) Assume that A[G] is (pr-)nilary. Then, by Theorem 3.9(v), A[Z(G)] is (pr-)nilary. By using Proposition
3.18, if T (Z(G)) is nontrivial, then it is a p-group for some prime number p. Assume that T (h(G)) is
nontrivial. Now, if T (Z(G)) is trivial, then it is q -free for any prime q , by Lemma 3.19. T (h(G)) is also
q -free for any prime q . Therefore, T (h(G)) is trivial which is contrary to our assumption. Thus, T (Z(G)

is nontrivial. So we have that T (Z(G)) is a p-group for some prime number p . From Lemma 3.19, we
have that T (h(G)) is a p-group.

(ii) Assume that Z(G) ̸= {1}. If Z(G) is not torsion-free, then there is g ∈ Z(G) with o(g) < ∞. Put
H = ⟨g⟩ . Then H � Z(G). By using Theorem 3.10, we find that |H| is nilpotent in A , contrary to
char(A) = 0 . So Z(G) is torsion-free. Hence, it is q-free for each prime number q. From Lemma 3.19,
we have that T (h(G)) is torsion-free.

2

Theorem 3.21 Let A be a ring and G be a nontrivial nilpotent group.

(i) If G is torsion and A[G] is (pr-)nilary, then char(A) = pα and G is a p-group for some prime number
p.

(ii) If char(A) = pα and A[G] is a (pr-)nilary ring, then T (G) is either trivial or a p-group.

(iii) If char(A) = 0 and A[G] is a (pr-)nilary ring, then T (G) is trivial and G is torsion-free.

Proof

(i) Let G be a torsion nilpotent group; hence, G is not prime. By Theorem 3.10(iii) and Theorem 3.9, we find
that char(A) = pα for some prime number p. Since G is torsion and nilpotent, h(G) = T (h(G)) = G.

From Theorem 3.20(ii), we find that G is a p-group.

(ii) Since G is a nilpotent group, T (G) = T (h(G)). By using Theorem 3.20 (ii), we find that T (G) is either
trivial or a p -group.

(iii) This part follows directly from Theorem 3.20 part(iii).

2

Remark 3.22 Theorem 2.21 (i) and (ii) are false, if we replace the condition ”G is nontrivial nilpotent” with
”G is nontrivial solvable.” To see this, observe that for A = Z3 and G = S3 , then A[G] is nilary (see Example
3.13), G is solvable, T (G) = G , char(A) = 3 ; but G is not a p-group.

Now, we give some sufficient conditions on A and G so that A[G] is (pr-)nilary ring.
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Lemma 3.23 Let G be a nontrivial locally normal p-group, and A a pr-nilary ring such that p is nilpotent in
A. Then
(i) ∆(G) ⊆

√
0A[G].

(ii)
√

0A[G] ⊆ ∆(G) ⇔ A is semiprime ⇔ A is prime.

Proof (i) Let g ∈ G and H be the normal closure < g > (i.e. the smallest normal subgroup of G containing
g ). Then, ∆A(H) is nilpotent, say (∆A(H))m = 0, by Lemma 3.5. Now an element of ∆(G,H) is a sum of
terms of the form (1−g1)r1(1−g2)r2 · · · (1−gm)rm, gi ∈ H , ri ∈ A[G]. From the normality of H , x ∈ ∆(G,H)

is a sum of terms of the form

y = (1− g′l)(1− g′2) · · · (1− g′n)r, g′i ∈ H, r ∈ A[G];

hence, y = 0, since (1 − g′1) · · · (1 − g′n) ∈ (∆A(H))n. Thus, ∆A(G,H) is nilpotent and 1 − g ∈ ∆(G,H).

Therefore, ∆(G) ⊆
√
0A[G].

(ii) Assume
√
0A[G] ⊆ ∆(G). From part(i), ∆(G) =

√
0A[G]. By Lemma 3.1, A is semiprime. Now assume A

is semiprime, by [2, Proposition 1.3(i)], A is a prime ring.
Finally, assume A is a prime ring. Since p is a central nilpotent element of A , p = 0 in A . From Lemma

3.1, ∆(G) =
√
0A[G].

2

Theorem 3.24 Let G be a nontrivial locally normal p-group, A be a ring such that p is nilpotent in A , and
either

√
0A[G] ⊆ ∆(G) or A is semiprime. Consider the following conditions:

(i) A[G] is pr-nilary.
(ii) A is pr-nilary.
(iii) A is prime.
(iv) P (A[G]) is a prime ideal.
Then, (i) ⇔ (ii) ⇔ (iii) and (iii) ⇒ (iv). If A is semiprime, then (iv) ⇒ (iii).

Proof (i) ⇒ (ii) This implication follows from, Theorem 3.9(iv).
(ii) ⇔ (iii) This equivalence is a consequence of Lemma 3.23.
(ii) ⇒ (i) and (iv) Since A is pr-nilary, A is a prime ring by Lemma 3.23. Hence, ∆(G) is a prime ideal of
A[G]. By Lemma 3.1 and Lemma 3.23, ∆(G) =

√
0A[G] = P (A[G]) is a prime ideal. Let X,Y be ideals of A[G]

such that XY = 0. Then XY ⊆
√
0A[G]. Hence, X ⊆

√
0A[G] or Y ⊆

√
0A[G]. From [2, Proposition1.3(ii) ],

A[G] is pr-nilary.

(iii) ⇒ (iv) By Lemma 3.1, P (A[G]) = ∆(G). Hence, A[G]
P (A[G]) = A[G]

∆(G)
∼= A. Therefore, P (A[G]) is a prime

ideal.
(iv) ⇒ (iii) Assume A is semiprime and P (A[G]) is a prime ideal. From Lemma 3.1, P (A[G]) = ∆(G). Then

A ∼= A[G]
∆(G) =

A[G]
P (A[G]) . Therefore, A is a prime ring. 2

Example 3.25 Let F be a field such that char(F ) = p , A be the ring of n × n matrices over F, and
G ∼= Cp

⊕
Cp2 + Cp3

⊕
· · ·

⊕
Cpn

⊕
· · · . Then A[G] is a pr-nilary ring by Theorem 3.24.
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Theorem 3.26 Let G be a finite p-group and p be a nilpotent in A. Assume that I�A. Then I is a (pr-)nilary
ideal of A, if and only if I[G] is a (pr-)nilary ideal of A[G].

Proof (⇒) Assume that I is a (pr-)nilary ideal of A, then Ā = A
I is a (pr-)nilary ring. Since p is nilpotent in

A. Then pk = 0 in A for some k ∈ N . This implies that pkA = 0. Hence, pkĀ = 0. Thus, ∆Ā(G) is nilpotent

because G is a finite p -group and pkĀ = 0, by Lemma 3.5. Since Ā ∼= Ā[G]
∆Ā(G) , Ā[G] is a (pr-)nilary ring, by

Lemma 2.4. Since Ā[G] = (AI )[G] ∼= A[G]
I[G] .

A[G]
I[G] is a (pr-)nilary ring. Then I[G] is a (pr-)nilary ideal of A[G].

(⇐) Assume that I[G] is a (pr-)nilary ideal of A[G] . Then A[G]
I[G]

∼= (AI )[G] is (pr-)nilary. From Theorem 3.9(iv),
A
I is (pr-)nilary. Therefore, I is (pr-)nilary. 2

Corollary 3.27 Let A be a ring and G a finite p-group such that p is nilpotent in A . Then, A[G] is a
(pr-)nilary ring if and only if A is a (pr-)nilary ring.

Proof Use Theorem 3.26 with I = 0. 2

Theorem 3.28 Let G be a locally normal p-group, A a ring such that p is nilpotent in A , I �A, and either√
0Ā[G] ⊆ ∆Ā(G) or Ā is semiprime, where Ā = A

I . Then I is a pr-nilary ideal of A if and only if I[G] is a
pr-nilary ideal of A[G].

Proof (⇒) Assume I is a pr-nilary ideal of A . Then Ā = A
I is pr-nilary. Since p is nilpotent in A , pk = 0

for some k ∈ N. As in the proof of Theorem 3.26, pkĀ = 0. By Theorem 3.24, Ā[G] = A
I [G] = A[G]

I[G] is pr-nilary.

Therefore, I[G] is a pr-nilary ideal of A[G].

(⇐) Assume I[G] is a pr-nilary ideal of A[G] . Then A[G]
I[G] = A

I [G] = Ā[G] is pr-nilary. By Theorem 3.9(iv),

Ā = A
I is pr-nilary. Therefore, 3.9(iv), I is a pr-nilary ideal of A .

2

Theorem 3.29 Let A be a ring with char(A) = pn and G be a nontrivial nilpotent group.

(i) If G is finite, then A[G] is a (pr-)nilary ring if and only if A is (pr-)nilary and G is a p-group.

(ii) If T (G) is finite, and A is prime, then A[G] is a (pr-)nilary ring if and only if T (G) is a p-group.

(iii) Let G be a locally normal torsion group such that
√

0A[G] ⊆ ∆(G) or A is semiprime. Then A[G] is a
pr-nialry ring if and only if A is (pr-)nilary and G is a p-group.

Proof

(i) Assume that G is a finite p-group and A is (pr-)nilary. Then by Corollary 3.27, it follows that A[G] is a
(pr-)nilary ring. Conversely, assume that A[G] is a (pr-)nilary ring. Hence, A is (pr-)nilary, by Theorem
3.9(iv). Since G is nilpotent, by Theorem 3.21 it follows that G is a p -group.

(ii) Let A be a prime ring and G be a nilpotent group such that T (G) is a finite p -group. If G
T (G) is trivial,

then G is finite p-group. From part(i), it follows that A[G] is a (pr-)nilary ring. If G
T (G) is nontrivial, then
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G
T (G) is torsion-free, hence a prime group. So A[ G

T (G) ] is a prime ring, by Lemma 3.7. Hence, A[ G
T (G) ]

is (pr-)nilary. Now we have A[ G
T (G) ]

∼= A[G]
∆(G,T (G)) . Since T (G) is a finite p -group, by using Proposition

3.6(i), it follows that the ideal ∆(G,T (G)) is nilpotent. By Lemma 2.4, we conclude that A[G] is a nilary
ring. Conversely, if A[G] is a nilary ring, then T (G) is a finite p -group by Theorem 3.21.

(iii) Assume that A[G] is pr-nilary. By Theorem 3.9(iv), A is pr-nilary. Then Theorem 3.21(i) yields that G

is a p-group. Conversely, assume that A is pr-nilary and G is a p-group. By Lemma 3.23, A is prime.
From Theorem 3.24, A[G] is a pr-nilary ring.

2

Corollary 3.30 Assume that G is a finite group and A is a ring. Then G is nilpotent and A[G] is (pr-)
nilary if and only if G is a p-group, char(A) = pα (p is a prime), and A is (pr-) nilary.

Proof This result follows from Theorems 3.9(iv), 3.21(i), 3.29(i). 2

Theorem 3.31 Let G be a finite supersolvable group such that q is the smallest prime dividing |G|; and A

be a ring such that char(A) = qα for some positive integer α. Then, A[G] is (pr-)nilary if and only if A is
(pr-)nilary and G is a p-group for some prime p.

Proof (⇒) Assume A[G] is (pr-)nilary. Then A is (pr-)nilary by Theorem 3.9(iv). Suppose G is not a
p-group. Then G is not a q-group. From (p.16, Theorem 4.24, Subgroup series 2,
https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries2.pdf ), the set N of all elements of order
prime to q forms a normal subgroup of G. Since G is not a q-group, |N | > 1. By Theorem 3.10(i), |N | is
nilpotent in A . Hence, q divides |N |, a contradiction. Therefore, G is a p-group.
(⇐) Assume A is (pr-)nilary and G is a p-group. Then G is a q-group. The result follows from Corollary 3.27.

2

Observe that the condition, char(A) = qα, where q is the smallest prime divisor of |G| is not superflous
in Theorem 3.31. For example, S3 is a finite supersolvable group. Let R1 = Z3[S3] . From Example 4.13
or [2, Example 2.13], R1 is nilary; but S3 is not a p-group. Also, from Theorem 3.31, we can conclude that
R2 = Z2m [S3] is not nilary for any positive integer m .

4. Nilary group algebra

In this section, we determine necessary and/or sufficient conditions for a group algebra, R = F [G], to be pr-
nilary or nilary in terms of properties of the field F and the group G. For example, we show: (1) If char(F ) = 0 ,
then R is prime ⇔ R is (pr-)nilary ⇔ G is prime (Proposition 4.3). (2) If G is finite, then R is local ⇔
char(F ) = p and G is a p-group ⇔ J(R) = ∆(G) ⇔ R is strongly pr-nilary ⇔ G is nilpotent and F [G]

is nilary (Theorem 4.5). In the remainder of the section, we consider R where char(F ) = p and G is a finite
solvable group. We apply our results to show that Z3[S3] , Z2[A4] , and Z2[S4] are nilary group rings which are
not rings with a nilpotent prime ideal, hence neither prime nor local.

Proposition 4.1 Let F be a field with char(F ) = 2 and G be a finite simple nonabelian group. If F [G] is
nilary, then G is either M22 or M24 .
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Proof
Since any nilary ring is indecomposable as a ring, then it is free of central idempotents. Hence, for any

group algebra F [G] , the principal block is the unique block of G over F. So if the group algebra F [G] has more
than one block, then it is not nilary. By using [6, Theorem 4], we find that G is either M22 or M24 .

2

Proposition 4.2 Let F be a field, char(F ) = 0; and let G be a group. Then the following conditions are
equivalent:
(i) G is a prime group;
(ii) F [G] is a (pr-)nilary ring;
(iii) F [G] is a prime ring.

Proof (iii)⇒ (ii) Clear. (ii)⇒ (i) Since char(F ) = 0, F [G] is semiprime. By [2, Proposition 1.3(i)], F [G] is
prime. From Lemma 3.7, G is prime. (i)⇒ (iii) Use Lemma 3.7. 2

Proposition 4.3 Let G be a finite group, F a field and R = F [G] .
(i) R is a prime ring if and only if |G| = 1 .
(ii) Assume |G| > 1 . If R is nilary then char(F ) = p , a prime integer, and p divides |G| . Also, Op′(G) = 1.

(iii) If R is indecomposable and |G| > 1 , then Soc(RR) ≤ess J(R) ≤ess ∆(G) ≤ess RR and Soc(RR) ≤ess

J(R) ≤ess ∆(G) ≤ess
RR .

Proof (i) This part follows from [5, p.675].
(ii) This part is a consequence of Theorem 3.10.
(iii) Since R = R

∆(G)
∼= F , ∆(G) is a maximal left and right ideal. Hence, J(R) ⊆ ∆(G). From [10, Example

16.56], R is a Frobenius algebra (hence a QF-ring). Now the result follows from [1, Lemma 1.6].
2

Theorem 4.4 Let F be a field.
(i) Assume that F [G] is (pr-)nilary and G is a nilpotent torsion group. Then char(F ) = p (a prime) and G

is a p-group.
(ii) Assume that char(F ) = p (a prime), and G is a locally normal p-group. Then F [G] is a pr-nilary local
ring.

Proof (i) This part follows from Theorem 3.21.
(ii) By Theorem 3.24, F [G] is a pr-nilary ring. From Lemma 3.1,

√
0F [G] = P (F [G]) = ∆(G). Since

F [G]
∆(G)

∼= F, ∆(G) is a maximal left and right ideal of F [G] . Then P (F [G]) ⊆ J(F [G]) ⊆ ∆(G) ⊆ P (F [G]) , so

J(F [G]) = ∆(G). By [9, Theorem 19.1], F [G] is a local ring.
2

From [4], a ring is called an idempotent fine ring (denoted IF-ring) if each of its nonzero idempotents is a
sum of a nilpotent element and a unit (e.g., any ring with trivial idempotents such as local rings and domains).

Theorem 4.5 Let R = F [G] where F is a field and G is a finite group such that |G| > 1. The following
statements are equivalent.
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(i) R is a local ring.
(ii) RR is indecomposable.
(iii) R

J(R) is a simple ring.

(iv) char(F ) = p and G is a p-group, where p is a prime.
(v) J(R) = ∆(G).

(vi) R is an IF-ring.
(vii) R is strongly pr-nilary.
(viii) R has a nilpotent prime ideal.
(ix) G is nilpotent and R is nilary.
(x) G is nilpotent and R is right primary.

Proof (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) These equivalences are in [9, p. 294, Excercise 19.4].
(i) ⇒ (v) From Proposition 4.3(iii), J(R) ⊆ ∆(G). Since R is local, J(R) ⊆ ∆(G) .
(v) ⇒ (i) Assume J(R) = ∆(G) . Then R

J(R) =
R

∆(G)
∼= F. By [9, Theorem 19.1], R is local.

(i) ⇒ (vi) Clear.
(vi) ⇒ (vii) From [4, Proposition 7], every IF-ring is idempotent simple (i.e. R = ReR for each 0 ̸= e = e2 ∈ R

). The concept of an idempotent-simple ring has been previously defined in [1, Definition 2.4] as a full ring.
Since R is a QF-ring [10, Example 16.56], [1, Theorem 2.10] yields that R is strongly pr-nilary.
(vii) ⇒ (viii) Assume that R is strongly pr-nilary. Since R is right Artinian,

√
0R is nilpotent. From

Proposition 2.5(ii), R has a nilpotent prime ideal.
(viii) ⇒ (vii) This implication follows from Proposition 2.8(i).
(vii) ⇒ (iii) Since R is strongly pr-nilary,

√
0R is a prime ideal. Because R is right Artinian, J(R) is nilpotent.

So
√
0R ⊆ P (R) ⊆ J(R) ⊆

√
0R; hence, J(R) is a prime ideal. Therefore, R

J(R) is simple.

(iv) ⇒ (ix) This implication follows from Theorem 4.4(ii), since G is a finite p-group.
(ix) ⇒ (iv)This implication follows from Theorem 3.21(ii).
(vii) ⇒ (x) This implication follows from [2, Lemma 3.13].
(x) ⇒ (ix) This implication is clear from the definitions of right primary and nilary rings.

2

Note that in Theorem 4.5 if R is local, then R
J(R)

∼= F, since J(R) = ∆(G).

Corollary 4.6 Let F be a field, G be a group and H a nontrivial locally finite subgroup of Z(G) . If F [G] or
F [Z(G)] is (pr-)nilary, then H is a p-group, char(F ) = p (a prime) and F [H] is a (pr-)nilary local ring.

Proof
From Corollary 3.7, F [H] is (pr-)nilary. Let 1 ̸= x ∈ H, and X be the subgroup generated by x. From

Theorem 4.5, char(F ) = p and X is a p-group. Since x was arbitrary, H is a p-group. By Theorem 4.4, F [H]

is local. 2

Proposition 4.7 Let G be a group, H be a finite normal p-subgroup of G, K be a group such that G
H

∼= K

and F be a field such that char(F ) = p, where p is a prime. If F [K] is (pr-)nilary, then F [G] is (pr-)nilary.

Proof This proof is a consequence of Proposition 3.6(ii). 2
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Corollary 4.8 Let G = H ⋊ K where H is a finite normal p-subgroup of G and F is a field such that
char(F ) = p, where p is a prime. If F [K], is (pr-)nilary, then F [G] is (pr-)nilary.

Example 4.9 Let G = C3m × S3 where m ∈ N, and F = Z3. From [1, Example 2.13], F [S3] is nilary.
Therefore, F [G] is nilary by Corollary 4.8.

Proposition 4.10 Let G be a finite supersolvable group such that q is the smallest prime dividing |G|, and F

is a field with char(F ) = q . Then F [G] is nilary if and only if G is a q-group.

Proof This result is a corollary of Theorem 3.31. 2

Theorem 4.11 Let R = F [G] , where F is a field; and G is a group. Assume H is a finite subnormal subgroup
of G such that F [H] is nilary.
(i) If H ̸= {1}, then J(F [H])R ⊆ J(R) and J(F [H])R is left and right essential in R.

(ii) If I is a nonnilpotent ideal of F [H], then IR is right essential in R. In particular, ReR is left and right
essential in R for all 0 ̸= e = e2 ∈ F [H].

(iii) If {ei|1 ≤ i ≤ m} ⊆ F [H] is an orthogonal set of idempotents such that e1R, · · · , emR represents a
complete set of isomorphism classes of the principal indecomposable modules of R, then R is nilary.

Proof Note that F [H] is a Frobenius algebra (hence a QF-ring) [10, pp. 442-443, Example 16.56].
(i) Using the subnormality of H , Proposition 4.3(iii) and an induction argument with [9, p.137, Excercise 8.5]
and [12, p.467, Excercise 27], we obtain the result.
(ii) Since F [H] is a QF-ring, [1, Theorem 2.2] yields that each nonnilpotent ideal I of F [H] is left and right
essential in F [H] . Now the result follows from the subnormality of H and [12, p 467, Excercise 27]
(iii) This part is a consequence of part (ii) and [1, Theorem 2.2].

2

For the ring R = F [G] where F is a field and G is a finite solvable group, our next result provides a
method for determining nilary subrings of R of the form F [H] where H is a subnormal subgroup of G . The
three examples following this result illustrate this method. Moreover, the examples are nilary group algebras
which are not rings with a nilpotent prime ideal, hence neither prime nor local.

Theorem 4.12 Let G be a finite solvable group which is not a p-group, p a prime, H0 be a nontrivial subnormal
p-subgroup of G , F be a field such that char(F ) = p and R = F [G] . Then there exists a composition series,

{1} ⊴ · · · ⊴ H0 ⊴ · · · ⊴ Hk ⊴ · · · ⊴ Hm ⊴ · · · ⊴ Hn = G

such that Ri = F [Hi] and:
(i) H0, · · · ,Hk−1 are p-groups;
(ii) Ri is a nilary local ring for all i = 0, 1, · · · , k − 1 ;
(iii) | Hk

Hk−1
| = q , where q is a prime and q ̸= p;

(iv) F [Hk]
∆(Hk,Hk−1)

∼= F [ Hk

Hk−1
] ∼= F [Cq] ∼= ⊕t

j=1F (j) where each F (j) is a cyclotomic extension of F ;

(v) there exists a complete set, {e1, · · · , et}, of orthogonal primitive idempotents of F [Hk], so, u.dim(Rk) = t;

(vi) J(Rk) = ∆(Hk,Hk−1), and Rk is a basic ring.
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(vii) If RkejRk is right essential in Rk for each ej and each ej is primitive in Rm for j = 1, · · · , t where
m ≥ k, then Rm is nilary.

Proof It is well known that the indicated composition series exists, see [14, p.80], and that it satisfies condi-
tion(i).
(ii) This part follows from Theorem 4.5.
(iii) This part is a property of the composition series [14, p.75].
(iv) The first isomorphism is due to [11, Corollary 3.3.5]. The second isomorphism follows from part (iii). For
the third, see [11, p.144-145].
(v) From Proposition 3.6, ∆(Hk,Hk−1) is nilpotent. Hence, the complete set of orthogonal primitive idempo-
tents from the decomposition of F [Cq] lift to F [Hk], see [9, pp.319-321]. From [10, pp.442-443, Example 16.56],
Rk is a symmetric algebra, hence a QF-ring. So each efRk is the injective hull of a minimal right ideal and
Soc(RkRk

) is right essential in Rk . Therefore, u.dim(Rk) = t.

(vi) Since ∆(Hk,Hk−1) is nilpotent and J( Rk

∆(Hk,Hk−1
) = 0 by part(iv), then ∆(Hk,Hk−1) = J(Rk), see [9,

p.51,Proposition 4.6]. From [9, Proposition 25.10], Rk is a basic ring.
(vii) This part follows from Theorem 4.11(iii).

2

The following three examples of nilary nonlocal group algebras are applications of Theorem 4.12.
Throughout these examples, we use the notation of Theorem 4.12, and σ denotes the permutation (1 2 3).

Recall from [1, Definition 2.4], R is antifull, if R has a nontrivial idempotent and for each 1 ̸= e = e2 ∈ R ,
ReR ̸= R .

Example 4.13 Let R = Z3[S3]. Then R is a nilary nonlocal basic antifull group algebra. To see this, observe
that H0 =< σ >=

{
1, σ, σ2

}
, and R0 = Z3[C3] is a nilary local ring by Theorem 4.5. Next, we have

Z3[S3]

∆(S3,H0)
∼= Z3[C2] ∼=

Z3[x]

(x+ 1)
⊕ Z3[x]

(x− 1)
∼= Z3 ⊕ Z3.

Then {e, 1− e} is a complete set of orthogonal primitive idempotents of R, where e = σ + σ2; and
u.dim(R) = 2. J(R) = ∆(S3,H0) , and R is basic by [9, Proposition 25.10]. Since ReR = eR⊕ (1− e)R∩ReR

and (1 − e)R ∩ ReR ̸= 0, ReR ≤ess RR. Similarly, R(1 − e)R ≤ess RR. So R is nilary. Alternatively, one
can show that e is not central, so 1 − e is not central; hence, R is indecomposable. By [1, Corollary 2.3], R

is nilary. R is antifull from [1, Proposition 2.5].

Example 4.14 Let R = Z2[A4]. Then R is a nilary nonlocal basic antifull group algebra. To see this, observe
that H0 = {1, (12)(34), (13)(24), (14)(23)} ∼= K4, and R0 = Z2[K4] is a nilary local ring by Theorem 4.5. Next,

Z2[A4]

∆(A4,H0)
∼= Z2[C3] ∼=

Z2[x]

(x− 1)
⊕ Z2[x]

(x2 + x+ 1)

Then {e, 1− e} is a complete set of orthogonal primitive idempotents of R where e = σ+σ2; and u.dim(R) = 2.

J(R) = ∆(A4,H0), and R is basic by [9, Proposition 25.10]. Again neither e nor 1 − e is central in R . By
[1, Corrolary 2.3], R is nilary, and R is antifull from [1, Proposition 2.5].
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Example 4.15 Let R = Z2[S4]. Then, R is a nilary non-local group algebra. To see this, observe

{1} ⊴ {1, (12)(34)} ⊴ H0 ⊴ H1 ⊴ H2 = S4

is a composition series where H0 is as in Example 4.14, H1 = A4 and H2 = S4 . Then,

Z2[S4]

∆(S4,H0)
∼= Z2[

S4

H0
] ∼= Z2[S3]

It can be shown by computer or hand calculations that {e, 1− e} is a complete set of orthogonal primitive
idempotents of Z2[S3], where e = σ + σ2. Since ∆(S4,H0) is nilpotent by Proposition 3.6, {e, 1− e} is a
complete set of orthogonal primitive idempotents of Z2[S4]. From Example 3.14, R1 = Z2[A4] is nilary, so
R1eR1 ≤ess R1R1

and R1(1−e)R1 ≤ess R1R1
, from [1, Theorem 2.2]. By Theorem 4.12(vii), R2 = R is nilary

and nonlocal.

Corollary 4.16 Let F be a field with char(F ) = p, and G be a finite group such that G = C2 ⋉Gp where Gp

is a p-group and C2 is not normal in G . Then R = F [G] is a nilary ring.

Proof If p = 2 then G is a p-group. By Theorem 4.5, R is a nilary ring. Assume p > 2 . Then G is solvable.
By using the notation of Theorem 4.12, Op(G) = H0 = Hk−1 = Gp, H1 = Hk = G, q = 2. Then,

F [Hk]

∆(Hk,Hk−1)
=

F [G]

∆(G,Gp)
∼= F [C2].

Hence, u.dim(F (C2)) ≤ dim(F [C2]) = 2. So F [G] has a complete set {e, 1− e} , of orthogonal primitive
idempotents, by Theorem 4.12. Now, we claim that F [G] is indecomposable. Indeed, since G has order 2pn

and G has a normal p-Sylow subgroup, then G is p-constrained and it is clear that Op′(G) = 1 . Therefore, by
using [8, p.112, Proposition 1.12], we have that F [G] is indecomposable. Since F [G] is QF-ring, by our claim
and by using [1, Corollary 2.3], we get that F [G] is nilary. 2

Note that for p ̸= 2, R is neither local nor prime.

Corollary 4.17 Let F be a field with char(F ) = p, and G be the dihedral group G = Dpn for a positive
integer n and a prime p . Then F [G] is a nilary ring. In particular, the ring F [S3] is nilary, for any field F

with char(F ) = 3.

Open Problem:

Characterize the nilary group algebras, F [G] , where char(F ) = p (a prime) in terms of properties of G and F .
Note that the case for char(F ) = 0 is included in Proposition 4.2.
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