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Abstract: A ring A is (principally) nilary, denoted (pr-)nilary, if whenever XY = 0, then there exists a positive integer
n such that either X™ =0 or Y™ = 0 for all (principal) ideals X, Y of A. We determine necessary and/or sufficient
conditions for the group ring A[G] to be (principally) nilary in terms of conditions on the ring A or the group G. For
example, we show that: (1) If A[G] is (pr-)nilary, then A is (pr-)nilary and either G is prime or the order of each
finite nontrivial normal subgroup of G is nilpotent in A. (2) Assume that G is finite. Then G is nilpotent and A[G]
is (pr-)nilary if and only if G is a p-group, char(A) = p® (p is a prime), and A is (pr-)nilary. (3) Let G be a finite
supersolvable group such that ¢ is the smallest prime dividing |G|, and F is a field with char(F) = q. Then F[G] is

nilary if and only if G is a g-group. Examples are provided to illustrate and delimit our results.
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1. Introduction

Throughout, all rings are associative with a nonzero unity; R denotes such a ring; and G denotes a group.
Also, we consider all groups to be nontrivial (i.e. of order greater than one) unless indicated otherwise. Recall
that a ring R is called Quasi-Frobenius (denoted, QF) if R is right Artinian and right self-injective.

This paper is the second in a series of papers on the classification of indecomposable QF-rings. The
following facts are well-known: (1) Every QF-ring is a finite direct sum of indecomposable QF-rings. (2) Let
R be a commutative ring. Then R is an indecomposable QF-ring if and only if R is a local Artinian ring with
simple socle. (3) R is a prime QF-ring if and only if R is isomorphic to a n—by—n (n € N) matrix ring
over a division ring. Note that a nonprime local QF-ring has a nonzero nilpotent Jacobson radical which is a
prime ideal. So from the above facts and other properties of QF-rings, it seems reasonable to investigate the
classification of indecomposable QF-rings.

As a first step in our investigation, we recognized that the classes of nilary rings and pr-nilary rings properly
contain the class of all rings with a nilpotent prime ideal (e.g., all prime rings and all local rings with nilpotent

Jacobson radical).

Recall from [2], a ring R is (principally) nilary, if whenever XY = 0 then there exists n € N such that
either X™ =0 or Y = 0 for all (principal) ideals X, Y of R. We use pr-nilary to denote principally nilary.
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These classes of rings have the following useful properties (see [2]): (1) Every nilary ring is pr-nilary, but the
converse is not true even for commutative rings [2, Example 1.10(ii)]. However, if R has ACC on ideals, then
R is pr-nilary if and only if R is nilary [2, Proposition 1.4]. (2) Every pr-nilary ring is indecomposable [2,
Proposition 1.4]. (3) The nilary and pr-nilary properties are Morita invariants [2, Theorem 3.5]. (4) If I is a
nilpotent ideal of R and ? is a nilary ring, then R is a nilary ring [2, Proposition 1.6]. Thus, we can classify the
indecomposable QF-rings into the class of nilary QF-rings and the class of nonnilary indecomposable QF-rings.

In [1, Theorem 2.2], we characterized the nilary QF-rings. Among the characterizations, the following
is useful in this paper: Let R be a QF-ring. Then R is nilary if and only if there exists a set of orthogonal
primitive idempotents {e1,--- ,emn}, such that e; R, - , e, R represent a complete set of isomorphism classes
of principal indecomposable modules with each Re; R right essential in R.

The class of group algebras of the form, R = F[G], where F is a field and G is a finite group are Frobenius
algebras (hence QF-rings) which have important applications in group representation theory, algebraic coding
theory, and physics through the symmetry group of a physical system. In this paper, after some basic results
on (pr-)nilary (i.e. pr-nilary or nilary) rings and an example of an indecomposable QF-ring which is not nilary,
we investigate the pr-nilary and nilary conditions on group rings of the form, R = A[G], where A is a ring
and G is a group, in Section 2. In particular, we find necessary and/or sufficient conditions on the ring A
and the group G for R to be nilary or pr-nilary. For example, we show (let A be a ring, G be a group, and
p be a prime): (1) If A[G] is (pr-)nilary, then either G is prime or the order of each finite nontrivial normal
subgroup of G is nilpotent in A (Theorem 2.10(i)). (2) Assume that G is finite. Then G is nilpotent and
A[G] is (pr-)nilary if and only if G is a p-group, char(A) = p* (p is a prime and « is a positive integer), and
A is (pr-)nilary (Corollary 2.30). (3) Let G be a finite supersolvable group such that ¢ is the smallest prime
dividing |G|, and char(A) = ¢*. Then A[G] is (pr-)nilary if and only if G is a g-group (Theorem 2.31).

In Section 3, we apply the results of Sections 1 and 2 and [1] to investigate (pr-) nilary group algebras of
the form R = F[G] where F is a field and G is a group. In particular, we begin the search for a characterization
of the nilary QF-algebra of the form R = F[G] where F is a field and G is a finite group, in terms of the
properties of F' and G. Also, we characterize the nilary group algebras which have a nilpotent prime ideal
(Theorem 3.5).

We use N, Z, and Z,, (n > 1) to denote the set of positive integers, the ring of integers, and the ring
of integers modulo n, respectively; I < A means that I is an ideal (a two-sided) of the ring A, K < Rr and
K <°%* Rp denote that K is a right ideal of R and K is right essential in R (i.e. KNY # 0 for each nonzero
right ideal Y of R), respectively; and we use < X > for the ideal generated by the nonempty subset X of
A. P(A), J(A), ged(a,b), U(A), char(A), and cent(A) denote the prime radical, the Jacobson radical of a
ring A, the greatest common divisor of a and b, the units of A, the characteristic of A, and the center of A,
respectively. The left (right) annihilator of the subset X of the ring A is denoted by £4(X) ={a € A | aX =0}
(ra(X)={a€ A | Xa=0}). For other terminology see [9, 10, 11].

2. nilary rings

Definition 2.1 [2, Definition 1.1 (i)-(iii) and Definition 2.1]

(i) An ideal I of a ring R is said to be a (principally) right primary ideal if whenever X and Y are
(principal) ideals of R with XY C I, then either X C I or Y™ C I for some positive integer n depending
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on X and Y.

(ii) An ideal I is called a (principally) nilary ideal if whenever X and Y are (principal) ideals of R with
XY C I, then either X™ C I or Y™ C I for some positive integer n depending on X and Y.

(ii) A ring R is said to be a (principally) right primary ring or (principally) nilary ring if the zero ideal is
a (principal) right primary or a (principal) nilary ideal of R, respectively.

(iv) An ideal I of R is called a strongly pr-nilary ideal if \/I is a prime ideal of R. R is called a strongly
pr-nilary ring if the zero ideal of R is a strongly pr-nilary. Every strongly pr-nilary ideal (ring) is a

pr-nilary ideal (ring) [2, Proposition 2.4(i)].

In this paper, p-groups are used in conjunction with the principally nilary concept. In order to avoid
confusion, we use "pr-" as an abbreviation for "principally”. Thus pr-nilary ring denotes principally nilary ring.
Note that in [2] a principally nilary ring (ideal) is denoted as a p-nilary ring (ideal). Also, we use ”(pr-) nilary”
to denote principally nilary or nilary, respectively”.

In parts (i) and (iii) above, the left-sided version is defined analogously. Define v =3 {V IR | V" C
I for some n € N}, VT is called the pseudo radical of I. Let /0, and \/(T[G] denote the pseudo radical
(i.e. Wedderburn radical) of R, and A[G], respectively.

Observe, from Proposition 2.8, that if R has a nilpotent prime ideal, then R is nilary and strongly pr-
nilary. For example, all prime rings and all local rings with nilpotent Jacobson radical are nilary and strongly

pr-nilary. See [2] for more examples.

Lemma 2.2 Let I be an ideal of a ring R. The following conditions are equivalent:
(i) I is a nilary ideal of R.
(i) AB C I implies that A™ C I or B™ C I for some m € N and for all left ideals A, B of R.

(tii) Let B be any left ideal of R and (I : B) ={r € R|rB C I}. Then B™ C1I or (I:B)™ C I for some
m € N.

(iv) & is a nilary ring.

Proof

(7) = (i) Assume [ isnilary and AB C I. Then (A(RB))R C I. So (AR)(BR) C I. Hence, (AR)™ C I
or (BR)™ C I, for some m € N. Therefore, A™ CT or B™ C I.

(#3) = (i13) Observe that (B : I) is a two sided ideal of R and (I : B)B C I. So (I : B)™ C I or
B™ C I for some positive integer m.

(#i1) = (i) Let A, B be ideals of R such that AB C I. Then A C (I : B). Therefore, A™ C I or
B™ C I for some positive integer m.

(vi) < (i) The proof of this implication is routine.

Corollary 2.3 The following conditions are equivalent:
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(i) R is a nilary ring.
(it) IJ =0 implies that I"™ =0 or J™ =0 for some m € N and for all left ideals I,J of R.
(iii) For any left ideal J of R either J™ =0 or £(J)™ =0 for some m € N.

(iv) For any right ideal I of R either I"™ =0 or r(I)™ =0 for some m € N.

Results similar to Lemma 2.2 and Corollary 2.3 hold for pr-nilary ideals and rings, respectively. These

results are used implicitly throughout the paper.

Lemma 2.4

(i) If R/I is a nilary ring and I is a nilpotent ideal, then R is a nilary ring.
(ii) If R/I is a pr-nilary ring and /I is a sum of nilpotent ideals, then R is a pr-nilary ring.

(ii) +/Og is nilpotent if and only if P(R) is nilpotent, in either case, /Or = P(R).

Proof
(i) This is [2, Proposition 1.6(iii)].
(ii) This is [2, Proposition 1.6(iv)].

(iii) Clearly v/Or C P(R); hence, P(R) nilpotent implies v/Or = P(R). So /0r is nilpotent. Now assume
v/0g is nilpotent. Then [7, P.184] yields v/Og = P(R). So P(R) is nilpotent.

Proposition 2.5 (i) P(R) is a (pr-)nilary ideal if and only if P(R) is a prime ideal.

(ii) P(R) = +/0r and P(R) is a pr-nilary ideal if and only if R is a strongly pr-nilary ring.

(iii) Assume \/OR is a nilpotent pr-nilary ideal. Then P(R) =+/Or, P(R) is a prime ideal, R is a nilary and
strongly pr-nilary ring.

(iv) R has a nilpotent prime ideal if and only if \/Or is a nilpotent pr-nilary ideal if and only if P(R) is a

nilpotent prime ideal.

Proof (i) Since P(R) is a semiprime ideal, this part follows from [2, Proposition 1.3(i)].

(ii) Part(i) and [2, Proposition 2.3 ] yields this part.

(iii) Assume /0 is a nilpotent pr-nilary ideal. From Lemma 2.4(iii), P(R) = /Og. By part (i), P(R) is a
prime ideal and R is strongly pr-nilary. From Lemma 2.4(i), R is a nilary ring.

(iv) Assume X is a nilpotent prime ideal. Then X C y/0g C P(R) C X. The remainder of the proof follows

from Lemma 2.4(iii) and part(i).
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Proposition 2.6 Let R be a commutative ring. The following are equivalent.
(i) R is pr-nilary.

(i) P(R) is a prime ideal.

(ii) R is a strongly pr-nilary.

Proof (i) = (i) Suppose R is pr-nilary. Let z,y € R such that xy € P(R). Since P(R) is the set of nilpotent
elements of R, there exists a positive integer m such that (zy)™ = 2™y™ = 0. Then (z™R)(y™R) = 0. Since
R is pr-nilary, there exists a positive integer k such that (z™R)¥ = 0 or (y™R)* = 0. Then 2™* = 0 or
y™F = 0. Therefore, either z € P(R) or y € P(R), so P(R) is a prime ideal of R.
(1) = (4i1) Since R is commutative, v/0g = P(R). So R is strongly pr-nilary.
(#4i) = (¢) This implication follows from [2, Proposition 2.4(i)]
O
Note that Proposition 2.6 is not true for noncommutative rings. In Example 4.13 or [1, Example 2.13], it

is shown that R = Z3[Ss] is a nilary ring such that P(R) = J(R) is nilpotent; but % & Zs3 @ Zs. Therefore,
P(R) is not a prime ideal of R.

Corollary 2.7 Assume R is (pr-)nilary and S is a subring of R.

(i) If S C cent(R), then S is a (pr-)nilary ring and % is a domain.

(i) If R is right duo (i.e. every right ideal is an ideal), then S is (pr-)nilary.

Proof

(i) Assume that R is nilary and X,Y <S5 such that XY = 0. Then (XR)(YR) = 0. So there exist m € N

such that (XR)™ =0 or (YR)™ = 0. Hence, X" =0 or Y™ = 0. Therefore, S is nilary. The pr-nialry

part is similar. By Proposition 2.6, % is a domain.

(ii) We show the nilary case. The pr-nilary case is similar. Let X,Y <5 such that XY = 0. Then
XR, YR < Rr. Hence, (XR)(YR) = X(RYR) = XYR =0. So (XR)™ =0 or (YR)™ = 0 for
some m € N. Therefore, X" =0 or Y™ = 0.

O

Proposition 2.8 (i) If R has a nilpotent prime ideal, then R is nilary and strongly pr-nilary. In particular,
prime rings and local rings with nilpotent Jacobson radical are nilary and strongly pr-nilary.

(ii) Let M be an (R, R)-bimodule and 7 (R, M) the trivial (also called the split-null) extension of M by R. If
R is (pr-)nilary, then (R, M) is (pr-)nilary.

Proof (i) This part follows from Proposition 2.5 (iii) and (iv).

(ii) Let (0,M) = {(0,m)|m € M}. Then (0,M) is a nilpotent ideal of .7 (R, M) and ‘67(8{%]@[]\)4) =~ R. The

remainder of the proof follows from Lemmas 2.2 and 2.4. O

Theorem 2.9 Let R be a (pr-)nilary ring. Then either char(R) = 0 or char(R) = p® for some positive
integer B, where p is a prime number. If R is semiprime and char(R) # 0, then char(R) = p.
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Proof Assume that char(R) > 0 and char(R) = p*m for some a,m € N, where p is a prime number such
that ged(p,m) = 1. Since (p®*)(m) =0 and R is a (pr-)nilary ring, either p or m is nilpotent in R. In case p
is nilpotent in R, then p € J(R); this implies that m € U(R) because gcd(p,m) = 1. Now, we have

0 = (char(R) - )m™' = p*mm~" = p*;

thus, p® =0 in R; but char(R) = p*m, so m = 1. In case m is nilpotent in R, then m € J(R); this implies
that p € U(R) and p* € U(R) because ged(p®, m) = 1. Now, we have

0=p “(1-char(R)) =p~ “p*m =m;

hence, m = 0 in R; but char(R) = p®m, a contradiction. So either char(R) = 0 or char(R) = p* for some

a € N. In the last part of the result, since R is semiprime and p € cent(R), char(R) = p. O

Example 2.10 This example is an indecomposable Frobenius basic ring R with u.dim(Rg) = 3 which is not a
nilary ring (see [11, Example 16.19(4)]). In fact, this ezample can be extended to an indecomposable Frobenius

basic ring R with u.dim(Rgr) = n for n > 3 which is not a nilary ring. Let K be a division ring, and

al X1 O O O O
0 ac 0 0 0 O
o 0 0 as T2 0 0 ] ) .
R= 0 0 0 as 0 0 la;,z; € K for i=1,2,3
0 0 0 0 as I3
0 0 0 0 0 a
000 000 1000 00
01 00 00 000 00O
00 1 0 00 00 0 0 0 O
Let E = {e1,ea,e3} where e; = coooool"©2=1o0o00o00o0l and ez =
000 00O 000 000
000 000 000 001

Then E is a complete set of orthogonal primitive idempotents for R. To see that

oo o oo
OO O OO
OO O oo
O~ O OO
_— o O oo
o O O OO

00 0 O0O0O

R is indecomposable, assume c is a nontrivial central idempotent of R. Then either ¢ or 1 —c¢ is in FE.

Since no element of E is central, R is indecomposable. To see that R is not nilary, let I = ReiR. Then
0

o

I 0

la,z; € K for i =1,2 3 and

coococoo
coocoe
cocooa o
coof oo
coocoo
cocoocoo
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b y1 0 0 0 0
0 0 000 O
0 0 000 O .
r(I) = ResR 00 000 0 |b,y; € K fori=1,2
00 00 0 w
0 0 00 0 b

—~

Since neither I nor r(I) are nilpotent, R cannot be nilary.

3. Group rings that are (pr-)nilary

If Aisaringand G isa group, A[G] will denote the group ring of G over A. Consider the function ¢ : A[G] — A
defined by e(X4cqay9) = Xgecay. This function is called the augmentation map, and ¢ is a ring homomorphism
that maps A[G] onto A. Ker(e) = {a =X cqaq9 € A[G] | e(a) = ¥yeqay = 0}. Ker(e) is a nontrivial ideal
called the augmentation (fundamental) ideal of A[G] and is denoted by A(G). The ideal A(G) consists of
the elements of the form a1(1 — ¢g1) + -+ - + ar(l — gx) with each a; € A, each ¢g; € G, and k a positive
integer. From the above, it is clear that A[G]/A(G) = A. Let H be a normal subgroup of G. Then the natural
homomorphism G — G/H mapping g to gH induces a ring homomorphism e : A[G] — A[G/H] defined by
er(Bgecagg) = XgecaggH € A[G/H]. Also, Ker(eg) = A(G, H) for the kernel of this homomorphism. The
ideal A(G, H) consists of the elements of the form a1g1(1 — h1) + -+ + argr(1 — hy) with each a; € A, each
g9i € G, h; € H, and k a positive integer. A[G]A(H) is the kernel of ey (ie. A(G,H) = A[G]A(H) ). In
particular, if H = G, then € = ¢, and we write A(G) = A(G,G). For a nonempty subset I of A, we have I
is a right ideal of A if and only if I[G] (I A[G] = I|G]) is a right ideal of A[G]; if I is an ideal, then I[G] is an
ideal and A[G]/I[G] = (A/I)[G]. We use v(G) to denote the set of orders of all finite normal subgroups; Z(G)
to denote the center of a group G; p(G) is the set of g € G which have only a finite number of conjugates;
o(G) denotes the set of g € p(G) of finite order; groups with o(G) = G are called locally normal, an equivalent
definition being every finite subset is contained in a finite normal subgroup; S,, is the symmetric group and
A, its alternating subgroup; C,, is used for the cyclic group of order n (n > 1); the subgroup (g) is called the
cyclic subgroup of G generated by g; a group G is called a p-group if the order of each element of G is a power
of p; |G| denotes the order of Gj; the order of an element g is denoted by o(g); G is called a torsion group if,
for every g € G there exists a nonzero n € N with o(g) = n; G is prime if it satisfies either one of the following
two equivalent conditions: (i) o(G) = 1, (ii) v(G) = {1}, i.e. G contains no finite normal subgroup except
1; G is called a Dedekind group if every subgroup of G is normal. Also, for a prime p and a finite group G
we denote by O,(G) the maximal normal subgroup of G such that its order is divisible by p; and O, (G) the
maximal normal subgroup of G such that its order is not divisible by p. These definitions and concepts may
be found in [5, 11, 15].

This section is devoted to obtaining and investigating results related to nilary group rings. The results
of Connell, in [5], which relate to prime rings are (partially) generalized to the class of nilary rings. We start

with finding necessary conditions on A and G so that A[G]is nilary.

Lemma 3.1 Let A be a ring and G be a group. The following statements are equivalent:

(i) \/Oaic) = A(G);

(i) P(A[G]) = \/0ajq) = A(G);
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(ii) G is a locally normal p-group, A is semiprime, and p =0 in A.

Proof See [5, p. 682, Theorem 10]. O

Recall that if G is a group and H is a finite subgroup, then H= donen M-

Lemma 3.2 [11, Lemma 3.4.3] and [5, p. 651, Propsition 1]
Let H be a subgroup of a group G and let A be a ring. Then Laq)(A(G, H)) # 0 if and only if H is finite.

In this case, we have

Caie)(A(G, H)) = A[G]H.
Furthermore, if H is normal in G, then the element H is central in A[G] and we have

Caie)(A(GL H)) = rajq)(A(G, H)) = HA[G].

Lemma 3.3 [5, p. 656, Proposition 4(ii)] The left and right annihilator ideals of A(G) coincide and are given
by

0 if G is infinite,

(B = {Adecg if G =1{91,92, - 9n}

In the latter case

AG)N(AG) ={a) g | a€Ana=0}.

geG

From Lemma 3.3, observe that if R = A[G] is nilary, then either ¢{(A(G)) = r(A(G)) = 0, A(G) is nilpotent,

or G is a central nilpotent element of R.

Proposition 3.4 Let A be a ring, G be a group, and H 1G.
(i) A(G,H) is a (pr-)nilary ideal if and only if A[G/H) is a (pr-)nilary ring.
(ii) A(G) is a (pr-)nilary ideal if and only if A is a (pr-)nilary ring.

Proof (i) This part follows from Lemma 2.2 and the fact that A[G/H] = A[G]/A(G, H) for any normal
subgroup H of G [11, Corollary 3.3.5].
(ii) Put H = G in part(i). O

Lemma 3.5 [5, p. 681, Theorem 9] Let A be a ring and G be a group. Then
A(G) is nilpotent if and only if
(i) G is a finite p-group, and

(i) p is nilpotent in A.

1058



AL-MALLAH et al./Turk J Math

Proposition 3.6 Let A be a ring, G a group and H < G.

(i) H is a finite p-subgroup and p is nilpotent in A if and only if A(G, H) is nilpotent.

(it) Assume H is a finite p-subgroup and p is nilpotent in A. If A[%] is (pr-)nilary, then A[G| is (pr-) nilary.
(iti) Let G = H x K where H is a finite p-subgroup and p is nilpotent in A. If A[K] is (pr-)nilary, then A[G]
is (pr-)nilary.

Proof (i) (=) Since
A(G,H) = A|G]A(H) = A(H)A[G],
we have A(G, H))"™ = (A[G]A(H))™ = A[G](A(H))™. The result follows from Lemma 3.5.

(<) Since A(H) C A(G,H). If A(G, H) is nilpotent, then A(H) is nilpotent. By Lemma 3.5, then H
is a finite p-subgroup and p is nilpotent in A.

(ii) By part(i), A(G, H) is nilpotent. From [11, Corollary 3.3.5], A’(L‘C[;GIL) = A[%] Now, Lemma 2.4 yields the

result.
(iii) This part follows from part(ii).

O
From [1, Example 2.13 or Example 4.3], Z3[Ss] is nilary. By Proposition 3.6(iii), Z3[Cs» x S3] is nilary
for each positive integer n.

Lemma 3.7 Let A be a ring and G be a group. Then, A[G] is prime if and only if A is prime and G is prime.

Proof See [5, p. 675, Theorem 8. O

Lemma 3.8 Let A be a ring and G be a group. If G is prime, then A[G] is semiprime if and only if A is
semiprime.

Proof See [5, p. 676]. O

Theorem 3.9 Let A be a ring and H a subgroup of G such that H C Z(G).

(i) If J is a nilary ideal of A|G], then JN A[H| is a nilary ideal of A[H].

(i) If J is a pr-nilary ideal of A[G|, then JN A[H] is a pr-nilary ideal of A[H].
(iii) If A[G] is a (pr-)nilary ring, then A[H] is a (pr-)nilary ring.

(iv) If A[G] is a (pr-)nilary ring, then A is a (pr-)nilary ring.

(v) If A[G] is a (pr-)nilary, then A[Z(G)] is a (pr-)nilary ring.
Proof

(i) Let R = A[G] and let R’ = A[H]. Assume that I, K < R’ with IK C JN R'. Now, we have that
(IK)RC (JNR)RC JR =J. Since H C Z(G), we get, RK = KR and so (IK)R = (IR)(KR). Then
(IR)(KR) C J. Hence, (IR)® C J or (KR)® CJ for some n € N because J is a nilary ideal. Assume
that (IR)™ C J. Since R is a unitary ring, I" C (IR)™ C J. Therefore, I™ C JNR'. If (KR)" C J, then
K" C JNR'. Hence, JN R is a nilary ideal of R’.
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(ii) Notice that if I is a (principal) finitely generated ideal of A[H], then IA[G] is a (principal) finitely
generated ideal of A[G]. By using part(i) and [2, Proposition 1.3(iii)], we have the result.

(iif) Put J = {0} in Part(i) and (ii).
(iv) Put H = {1} in Part(iii).

(v) Put H = Z(G) in Part(iii).

Theorem 3.10 Let A be a ring, p be a prime, and G be a group.

(i) If A|G] is (pr-)nilary, then either G is prime or the order of each finite nontrivial normal subgroup of G

1s nilpotent in A.
(ii) If char(A) =0 and A[G] is (pr-)nilary, then G is prime (i.e. v(G)=1).

(iii) If char(A) = p®, and A[G] is (pr-)nilary, then p divides |H| for each nontrivial finite normal subgroup
H of G.

(v) If G is finite and char(A) =p®, and A[G] is (pr-)nilary, then Oy (G) =1.
Proof

(i) Assume that G is not prime. Then there exists a finite nontrivial normal subgroup H of G. Now, we have
that A(G, H) is a finitely generated ideal of A[G], and by Lemma 3.2 0 # r, ., (A(G, H)) is a principal

AlG

ideal of A[G] generated by H = Y27 h;, with |H| = n. Now, we have

(A(G, H)) rajq)(A(G, H)) = 0.

Since A[G] is (pr-)nilary, either A(G, H) or 74(6)(A(G, H)) is nilpotent (see [2, Proposition1.3(iii)]), so
either (A(G, H))™ =0 or (ra1¢)(A(G,H)))™ =0 for some m € N, by Lemma 2.3(ii).

Suppose (A(G, H))™ = 0. By Proposition 3.6, H is a p-group and p is a nilpotent in A. Hence, n is

nilpotent in A. Since n was arbitrary, this implies it is nilpotent in A for each 1 # n € v(G).

Now suppose (7, (A(G,H)))™ = 0. Since z = Her o (A(G, H)), ™ = 0. Also, 2 = Hr =

Al
S hix = nx; hence, 2° = (2?)z = (nz)z = n(2?) = n(nz) = (n-n)x = (n?)z = n?z. Therefore,
2™ = n™ 1z, since 2™ = 0. Then n™ 'z =0. So n™'H = n™ Y(hy+hy+hg+---+hy,) =0. Since H
is linearly independent over A, n™~! = 0 in A. Since n is arbitrary, this implies that the order of each

finite nontrivial normal subgroup of G is nilpotent in A.

(ii) Assume that G is not prime. There is a nontrivial finite normal subgroup H of G. Since A[G] is (pr-
)nilary, either A(G, H) or r4;6)(A(G, H)) is nilpotent. By using part(i), we find |H| is nilpotent in A.
However, |H| # 0, and char(A) = 0, a contradiction. Hence, o(G) = 1. Therefore, G is prime.
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(iif) Assume that G has a nontrivial finite normal subgroup H. By part(i) we have |H| is nilpotent in A.
However, |H| # 0, and char(A) = p*. Hence, o(1) = p* in the additive group A. So p®||H|. Therefore,

p||H|, since p is a prime.

(iv) Assume that O, (G) is nontrivial. Hence, O, (G) is a nontrivial normal subgroup of G. Then p divides

|0, (G)]. By Cauchy’s Theorem, we find that O,/ (G) contains an element of order p, a contradiction.

The following examples illustrate and delimit Theorem 3.10.

Example 3.11 Let A be a domain (e.g., A = Q, the rational numbers) and G = S (the infinite symmetric
group). Notice that A is prime and G is prime, and hence A[G] is a prime ring by Lemma 3.7. Therefore,
A[G] is (pr-)nilary. However, G has infinitely many nontrivial finite subgroups which are not normal and A

contains no nonzero nilpotent elements.

Example 3.12 From [1, Proposition 1.4(iii)], a (pr-) nilary ring is indecomposable. Then it is free of nontrivial
central idempotents. Hence, for any (pr-)nilary group algebra F[G], the principal block is the unique block of
G over the field F. So if the group algebra F[G] has more than one block, then it is not (pr-)nilary. By using
[6, Theorem 4], we find that Zy[As] is not nilary because it has two bockls. Therefore, the converse of Theorem

3.10 part(i) is false, since As has only one nontrivial normal subgroup and its order is nilpotent in Z .

Corollary 3.13 Let A be a ring and G be a finite group.
If A[G] is (pr-)nilary, then A is (pr-)nilary and |G| is nilpotent in A.

Proof The proof follows from Theorems 3.9 part(iv) and 3.10(i). O

Corollary 3.14 Let A be a semiprime ring and G be a group. If either G is prime or char(A) = 0, then
A[G] is a (pr-)nilary ring if and only if A[G] is a prime ring.

Proof Suppose A[G] is (pr-)nilary. First, assume that char(A) = 0. From Theorem 3.10(ii), G is prime.
Since A[G] is a (pr-)nilary ring, A is a (pr-)nilary ring, by Theorem 3.9(iv) . From [2, Proposition 1.3(i)] A
is prime. Hence, A[G] is prime because A is prime and G is prime, (see, Lemma 3.7). The converse is clear.
Next, assume that G is prime. This proof is similar to that used for char(A) = 0. The converse is routine.

O

Remark 3.15 Let A =Zy» with n € N, and p be a prime number.
(i) If n =1 then A is prime and hence nilary.
(it) If n > 1 then A is nilary, but it is not prime.

The next result provides examples of (pr-)nilary group rings A[G] where G is a prime group, but A[G]

is not a prime ring.

Proposition 3.16 Assume that G is prime. Let A be a commutative ring with a nonzero nilpotent prime ideal

I. Then A[G] is (pr-)nilary which is not prime.
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Proof Put B = A/I, since I is prime then B is a prime ring. Hence, B[G] = (A/I)[G] = A[G]/I[G], by [5,
p. 654, (9)]. Since B is prime and G is prime, B[G] is prime, by Lemma 3.7. Therefore, B|G] = A[G]/I]G] is
prime. Hence, A[G]/I[G] is (pr-)nilary. Since I[G] is nilpotent, A[G] is (pr-)nilary, by Lemma 2.4. Since A is
not prime, A[G] is not prime, by Lemma 3.7.

O
For a particular example, take A = Z,» and G = S, for some m € N and m > 1.

Proposition 3.17 Let A be a ring, G be a group, H < G, and and R = A[G].

(Z) If ‘Gl = 00, then A(G) <ess RR and A(G) <ess RR~

(ic) If |G| = m < oo, R is pr-nilary, and A[%] is semiprime, then A is a prime ring, char(A) =
D, A(G7H) <es Rp and A(G,H) <ess pR.

Proof Let X < Rp such that X N A(G) = 0. Then X C /(A(G,H)) = HR by Lemma 3.2.

(i) Since |G| = 00, X =0 by Lemma 3.3. Therefore, A(G, H) <°*° Rg. Similarly, A(G,H) <%*® R.

(ii) Since ﬁ = A[%}, A is semiprime and A(G, H) is a semiprime ideal of R. Hence, P(R) C A(G, H).
By Theorem 3.9(iv), A is pr-nilary ring. From‘[2, definition 1.1(iii) and Proposition 1.3(i) ], A is a prime ring.
Theorem 2.9 yields that char(A) = 0 or char(A) = p for some prime p. If char(A) = 0, then G is prime
by Theorem 3.10(ii). This is a contradiction to |G| = m < co. So char(A) = p. By Theorem 3.10(iii), p||H|.
Then X2 C (HR)? = |H|HR=0. So X C XN P(R) C X NA(G,H) =0. Then A(G, H) <°* Rg. A similar
argument yields A(G, H) <°** gR. O

Proposition 3.18 Let A be a ring and G be a Dedekind group. Assume A[G] is (pr-)nilary, then T(G) is

trivial or T(G) is a p-group where p is a prime number.

Proof From Theorem 2.9, if A is nilary then either char(4) = 0 or char(A) = p* for some prime p

and positive integer a. If char(A4) = 0, then by Theorem 3.10 G is prime. Hence, T(G) is trivial. Assume

char(A) = p* and T(G) is nontrivial. Let g € G of finite order and g # 1. Let H =< g >. Since G is

Dedekind, then H is a finite normal subgroup of G. By Theorem 3.10, p divides |H|. Assume that there is a

prime number ¢ # p such that ¢ divides |H|. Notice that H is cyclic, so abelian; thus, there is a subgroup K

of H such that the order of K is ¢q. Also, K is a subgroup G; therefore , K is normal because G is Dedekind.
Again, by Theorem 3.10, p divides |K|, a contradiction. Therefore, T(G) is a p-group.

O

A group G is hypercentral if there exists a smallest ordinal « such that Z, = G, where Zy = 1,7, = Z(G)

if A is a limit ordinal Z\ = (Js_, Zp and Zg—;l = Z(Zgﬁ) Furthermore, « is called the class of G. If « is finite,

G is also called nilpotent.
If 7 is a set of primes, a group is said to be mw-free if it contains no nontrivial elements whose order is a

m-number (i.e. a product of primes in 7).

Lemma 3.19 [13, Theorem 2.2.12] Let G be a group with w-free center. Then each upper central factor, and
therefore the hypercenter of G, h(G), is m-free.

Theorem 3.20 Let A be a ring and G be any group.
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(i) If A[G] is (pr-)nilary, then T(h(G)) is either trivial or a p-group for some prime number p.
(i) If char(A) =0 and A[G] is (pr-)nilary, then h(G) is either trivial or torsion-free.
Proof

(i) Assume that A[G] is (pr-)nilary. Then, by Theorem 3.9(v), A[Z(G)] is (pr-)nilary. By using Proposition
3.18, if T(Z(G)) is nontrivial, then it is a p-group for some prime number p. Assume that T'(h(G)) is
nontrivial. Now, if T(Z(QG)) is trivial, then it is ¢-free for any prime ¢, by Lemma 3.19. T'(h(G)) is also
g-free for any prime ¢. Therefore, T(h(G)) is trivial which is contrary to our assumption. Thus, T(Z(G)
is nontrivial. So we have that T(Z(G)) is a p-group for some prime number p. From Lemma 3.19, we
have that T'(h(G)) is a p-group.

(ii) Assume that Z(G) # {1}. If Z(G) is not torsion-free, then there is g € Z(G) with o(g) < oco. Put
H = (g). Then H <4 Z(G). By using Theorem 3.10, we find that |H| is nilpotent in A, contrary to
char(A) = 0. So Z(G) is torsion-free. Hence, it is g-free for each prime number q. From Lemma 3.19,
we have that T'(h(Q)) is torsion-free.

Theorem 3.21 Let A be a ring and G be a nontrivial nilpotent group.
(i) If G is torsion and A[G)] is (pr-)nilary, then char(A) = p® and G is a p-group for some prime number
.
(ii) If char(A) =p* and A[G] is a (pr-)nilary ring, then T(G) is either trivial or a p-group.
(iii) If char(A) =0 and A[G] is a (pr-)nilary ring, then T(G) is trivial and G is torsion-free.
Proof

(i) Let G be a torsion nilpotent group; hence, G is not prime. By Theorem 3.10(iii) and Theorem 3.9, we find
that char(A) = p* for some prime number p. Since G is torsion and nilpotent, h(G) = T'(h(G)) = G.
From Theorem 3.20(ii), we find that G is a p-group.

(if) Since G is a nilpotent group, T'(G) = T(h(G)). By using Theorem 3.20 (ii), we find that T'(G) is either

trivial or a p-group.
(iif) This part follows directly from Theorem 3.20 part(iii).

O

Remark 3.22 Theorem 2.21 (i) and (ii) are false, if we replace the condition "G is nontrivial nilpotent” with
"G is nontrivial solvable.” To see this, observe that for A =Zs and G = Ss, then A[G] is nilary (see Example
3.13), G is solvable, T(G) = G, char(A) = 3; but G is not a p-group.

Now, we give some sufficient conditions on A and G so that A[G] is (pr-)nilary ring.
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Lemma 3.23 Let G be a nontrivial locally normal p-group, and A a pr-nilary ring such that p is nilpotent in
A. Then

(i) A(G) € /04

(i) \/0a[c) € A(G) & A is semiprime < A is prime.

Proof (i) Let g € G and H be the normal closure < g > (i.e. the smallest normal subgroup of G containing
g). Then, A4(H) is nilpotent, say (As(H))™ = 0, by Lemma 3.5. Now an element of A(G, H) is a sum of
terms of the form (1—g1)r1(1—g2)ra - (1 —gm)rm, ¢; € H ,r; € A[G]. From the normality of H, z € A(G, H)

is a sum of terms of the form

y=00-g)1—g5)---(1—g,)r, gi€HreAG];

hence, y = 0, since (1 —g¢}) ---(1—g,,) € (Aa(H))". Thus, Aa(G, H) is nilpotent and 1 — g € A(G, H).
Therefore, A(G) € /04q)-
(ii) Assume ,/04(q) € A(G). From part(i), A(G) = /04(g)- By Lemma 3.1, A is semiprime. Now assume A
is semiprime, by [2, Proposition 1.3(i)], A is a prime ring.

Finally, assume A is a prime ring. Since p is a central nilpotent element of A, p =0 in A. From Lemma

3.1, A(G) = \/0aq-

O

Theorem 3.24 Let G be a nontrivial locally normal p-group, A be a ring such that p is nilpotent in A, and
either \/m C A(G) or A is semiprime. Consider the following conditions:

(i) A[G] is pr-nilary.

(it) A is pr-nilary.

(iii) A is prime.

(iv) P(A[G]) is a prime ideal.

Then, (i) < (i1) < (i5i) and (i) = (). If A is semiprime, then (iv) = (iii).

Proof (i) = (it) This implication follows from, Theorem 3.9(iv).

(#4) < (i4i) This equivalence is a consequence of Lemma 3.23.

(i1) = (i) and (iv) Since A is pr-nilary, A is a prime ring by Lemma 3.23. Hence, A(G) is a prime ideal of
A[G]. By Lemma 3.1 and Lemma 3.23, A(G) = /041q] = P(A[G]) is a prime ideal. Let X,Y be ideals of A[G]

such that XY = 0. Then XY C /0. Hence, X C /041q) or Y C /04(g). From [2, Proposition1.3(ii) ],
A[G] is pr-nilary.
(iii) = (iv) By Lemma 3.1, P(A[G]) = A(G). Hence, piid = % >~ A. Therefore, P(A[G]) is a prime

P(A[G]) —
ideal.
(iv) = (i4i) Assume A is semiprime and P(A[G]) is a prime ideal. From Lemma 3.1, P(A[G]) = A(G). Then
A= % = %. Therefore, A is a prime ring. O

Example 3.25 Let F be a field such that char(F) = p, A be the ring of n X n matrices over F, and
G=C,PC+CP---PCn@---. Then A[G] is a pr-nilary ring by Theorem 3.24.
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Theorem 3.26 Let G be a finite p-group and p be a nilpotent in A. Assume that I <XA. Then I is a (pr-)nilary
ideal of A, if and only if I|G] is a (pr-)nilary ideal of A[G].

Proof (=) Assume that [ isa (pr-)nilary ideal of A, then A = £ is a (pr-)nilary ring. Since p is nilpotent in

A. Then p* =0 in A for some k € N. This implies that p* A = 0. Hence, p*A = 0. Thus, A 4(G) is nilpotent

because G is a finite p-group and p*A = 0, by Lemma 3.5. Since A = %, A[G] is a (pr-)nilary ring, by

Lemma 2.4. Since A[G] = (£)[G] = %. % is a (pr-)nilary ring. Then I[G] is a (pr-)nilary ideal of A[G].

(<) Assume that I[G] is a (pr-)nilary ideal of A[G]. Then % =~ (4)[G] is (pr-)nilary. From Theorem 3.9(iv),

4 is (pr-)nilary. Therefore, I is (pr-)nilary. O

Corollary 3.27 Let A be a ring and G a finite p-group such that p is nilpotent in A. Then, A[G] is a
(pr-)nilary ring if and only if A is a (pr-)nilary ring.

Proof Use Theorem 3.26 with I = 0. O

Theorem 3.28 Let G be a locally normal p-group, A a ring such that p is nilpotent in A, I < A, and either
04jq] € A4(G) or A is semiprime, where A = 4. Then I is a pr-nilary ideal of A if and only if I[G] is a

pr-nilary ideal of A[G].

Proof (=) Assume I is a pr-nilary ideal of A. Then A = % is pr-nilary. Since p is nilpotent in A, p* =0
for some k € N. As in the proof of Theorem 3.26, p* A = 0. By Theorem 3.24, A[G] = %[G] = % is pr-nilary.
Therefore, I[G] is a pr-nilary ideal of A[G].

(<) Assume I[G] is a pr-nilary ideal of A[G]. Then % = £[G] = A[G] is pr-nilary. By Theorem 3.9(iv),

A= ? is pr-nilary. Therefore, 3.9(iv), I is a pr-nilary ideal of A.

Theorem 3.29 Let A be a ring with char(A) = p™ and G be a nontrivial nilpotent group.
(i) If G is finite, then A[G] is a (pr-)nilary ring if and only if A is (pr-)nilary and G is a p-group.
(i) If T(G) is finite, and A is prime, then A[G] is a (pr-)nilary ring if and only if T(G) is a p-group.
(ii) Let G be a locally normal torsion group such that \/0aic) € A(G) or A is semiprime. Then A[G] is a
pr-nialry ring if and only if A is (pr-)nilary and G is a p-group.
Proof

(i) Assume that G is a finite p-group and A is (pr-)nilary. Then by Corollary 3.27, it follows that A[G] is a
(pr-)nilary ring. Conversely, assume that A[G] is a (pr-)nilary ring. Hence, A is (pr-)nilary, by Theorem
3.9(iv). Since G is nilpotent, by Theorem 3.21 it follows that G is a p-group.

(ii) Let A be a prime ring and G be a nilpotent group such that T'(G) is a finite p-group. If % is trivial,

then G is finite p-group. From part(i), it follows that A[G] is a (pr-)nilary ring. If % is nontrivial, then
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% is torsion-free, hence a prime group. So A[%] is a prime ring, by Lemma 3.7. Hence, A[%]

is (pr-)nilary. Now we have A[T(%)] = A(é[TG(]G)). Since T(G) is a finite p-group, by using Proposition

3.6(i), it follows that the ideal A(G,T(G)) is nilpotent. By Lemma 2.4, we conclude that A[G] is a nilary
ring. Conversely, if A[G] is a nilary ring, then T(G) is a finite p-group by Theorem 3.21.

(i) Assume that A[G] is pr-nilary. By Theorem 3.9(iv), A is pr-nilary. Then Theorem 3.21(i) yields that G
is a p-group. Conversely, assume that A is pr-nilary and G is a p-group. By Lemma 3.23, A is prime.
From Theorem 3.24, A[G] is a pr-nilary ring.

O

Corollary 3.30 Assume that G is a finite group and A is a ring. Then G is nilpotent and A[G] is (pr-)
nilary if and only if G is a p-group, char(A) =p* (p is a prime), and A is (pr-) nilary.

Proof This result follows from Theorems 3.9(iv), 3.21(i), 3.29(i). O

Theorem 3.31 Let G be a finite supersolvable group such that q is the smallest prime dividing |G|; and A
be a ring such that char(A) = ¢* for some positive integer o. Then, A[G] is (pr-)nilary if and only if A is

(pr-)nilary and G is a p-group for some prime p.

Proof (=) Assume A[G] is (pr-)nilary. Then A is (pr-)nilary by Theorem 3.9(iv). Suppose G is not a
p-group. Then G is not a g-group. From (p.16, Theorem 4.24, Subgroup series 2,
https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries2.pdf ), the set N of all elements of order
prime to ¢ forms a normal subgroup of G. Since G is not a g-group, |N| > 1. By Theorem 3.10(i), |N| is
nilpotent in A. Hence, ¢ divides |N|, a contradiction. Therefore, G is a p-group.

(<) Assume A is (pr-)nilary and G is a p-group. Then G is a g-group. The result follows from Corollary 3.27.
O

Observe that the condition, char(A) = g%, where ¢ is the smallest prime divisor of |G| is not superflous
in Theorem 3.31. For example, Ss is a finite supersolvable group. Let R; = Z3[S3]. From Example 4.13
or [2, Example 2.13], R; is nilary; but Ss is not a p-group. Also, from Theorem 3.31, we can conclude that

Ry = Zom[S3] is not nilary for any positive integer m.

4. Nilary group algebra

In this section, we determine necessary and/or sufficient conditions for a group algebra, R = F[G], to be pr-
nilary or nilary in terms of properties of the field F' and the group G. For example, we show: (1) If char(F) =0,
then R is prime < R is (pr-)nilary < G is prime (Proposition 4.3). (2) If G is finite, then R is local <
char(F) = p and G is a p-group < J(R) = A(G) < R is strongly pr-nilary < G is nilpotent and F[G]
is nilary (Theorem 4.5). In the remainder of the section, we consider R where char(F) =p and G is a finite
solvable group. We apply our results to show that Z3[Ss], Z2[A4], and Zs[S4] are nilary group rings which are

not rings with a nilpotent prime ideal, hence neither prime nor local.

Proposition 4.1 Let F be a field with char(F) =2 and G be a finite simple nonabelian group. If F[G] is
nilary, then G is either Moy or Moay.
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Proof
Since any nilary ring is indecomposable as a ring, then it is free of central idempotents. Hence, for any

group algebra F[G], the principal block is the unique block of G over F. So if the group algebra F[G] has more
than one block, then it is not nilary. By using [6, Theorem 4], we find that G is either Mas or Moy.
O

Proposition 4.2 Let F be a field, char(F) = 0; and let G be a group. Then the following conditions are
equivalent:

(i) G is a prime group;

(i) F[G| is a (pr-)nilary ring;

(iii) F[G] is a prime ring.

Proof (iii)= (ii) Clear. (ii)= (i) Since char(F) =0, F[G] is semiprime. By [2, Proposition 1.3(i)], F[G] is
prime. From Lemma 3.7, G is prime. (i)=- (iii) Use Lemma 3.7. O

Proposition 4.3 Let G be a finite group, F a field and R = F[G].

(i) R is a prime ring if and only if |G| =1.

(it) Assume |G| > 1. If R is nilary then char(F) = p, a prime integer, and p divides |G|. Also, Oy (G) = 1.
(iii) If R is indecomposable and |G| > 1, then Soc(Rg) <°°* J(R) <°° A(G) <°* Rp and Soc(rR) <°**
J(R) <% A(G) <* pR.

Proof (i) This part follows from [5, p.675].

(i) This part is a consequence of Theorem 3.10.

iii) Since R = x5 = F, is a maximal left and right ideal. Hence, - . From [10, Example
iii) Since R AFLG) F, A(G) i imal left and right ideal. H J(R) C A(G). F 10, E 1

16.56], R is a Frobenius algebra (hence a QF-ring). Now the result follows from [1, Lemma 1.6].

Theorem 4.4 Let F be a field.

(i) Assume that F[G] is (pr-)nilary and G is a nilpotent torsion group. Then char(F) =p (a prime) and G
18 a p-group.

(it) Assume that char(F) = p (a prime), and G is a locally normal p-group. Then F[G] is a pr-nilary local

7ing.

Proof (i) This part follows from Theorem 3.21.
(ii) By Theorem 3.24, F[G] is a pr-nilary ring. From Lemma 3.1, /Opiq = P(F[G]) = A(G). Since
% >~ F, A(G) is a maximal left and right ideal of F[G]. Then P(F[G]) C J(F[G]) C A(G) C P(F[G]), so
J(F|[G]) = A(G). By [9, Theorem 19.1], F[G] is a local ring.
O
From [4], a ring is called an idempotent fine ring (denoted IF-ring) if each of its nonzero idempotents is a

sum of a nilpotent element and a unit (e.g., any ring with trivial idempotents such as local rings and domains).

Theorem 4.5 Let R = F[G] where F is a field and G is a finite group such that |G| > 1. The following

statements are equivalent.
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(i) R is a local ring.

(i) R is indecomposable.

(iii) % is a simple ring.

(iv) char(F) =p and G is a p-group, where p is a prime.
(v) J(R) = A(G).

(vi) R is an IF-ring.

(vii) R is strongly pr-nilary.

(viii) R has a nilpotent prime ideal.

(iz) G is nilpotent and R is nilary.

(x) G is nilpotent and R is right primary.

Proof (i) & (it) < (ii) < (iv) These equivalences are in [9, p. 294, Excercise 19.4].

(1) = (v) From Proposition 4.3(iii), J(R) C A(G) Since R is local, J(R) C A(G).

(v) = (4) Assume J(R) = A(G). Then ﬁ ﬁ >~ F. By [9, Theorem 19.1], R is local.

(1) = (vi) Clear.

(vi) = (vii) From [4, Proposition 7], every IF-ring is idempotent simple (i.e. R = ReR foreach 0 #e=¢?>€ R
). The concept of an idempotent-simple ring has been previously defined in [1, Definition 2.4] as a full ring.
Since R is a QF-ring [10, Example 16.56], [1, Theorem 2.10] yields that R is strongly pr-nilary.

(vii) = (viii) Assume that R is strongly pr-nilary. Since R is right Artinian, +/Og is nilpotent. From
Proposition 2.5(ii), R has a nilpotent prime ideal.

(viit) = (vii) This implication follows from Proposition 2.8(i).

(vii) = (4i7) Since R is strongly pr-nilary, \/Og is a prime ideal. Because R is right Artinian, J(R) is nilpotent.
So v/0g C P(R) C J(R) C \/Og; hence, J(R) is a prime ideal. Therefore, % is simple.

(iv) = (iz) This implication follows from Theorem 4.4(ii), since G is a finite p-group.
(iz) = (4v) This implication follows from Theorem 3.21(ii).

(vii) = (x) This implication follows from [2, Lemma 3.13].

(

x) = (ix) This implication is clear from the definitions of right primary and nilary rings.

Note that in Theorem 4.5 if R is local, then W = F, since J(R) = A(G).
Corollary 4.6 Let F be a field, G be a group and H a nontrivial locally finite subgroup of Z(G). If F[G] or
F[Z(@)] is (pr-)nilary, then H is a p-group, char(F)=p (a prime) and F[H] is a (pr-)nilary local ring.

Proof
From Corollary 3.7, F[H] is (pr-)nilary. Let 1 # « € H, and X be the subgroup generated by z. From

Theorem 4.5, char(F) =p and X is a p-group. Since z was arbitrary, H is a p-group. By Theorem 4.4, F[H]

is local. O

Proposition 4.7 Let G be a group, H be a finite normal p-subgroup of G, K be a group such that % 2K
and F be a field such that char(F) = p, where p is a prime. If F[K] is (pr-)nilary, then F|[G] is (pr-)nilary.

Proof This proof is a consequence of Proposition 3.6(ii). O
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Corollary 4.8 Let G = H x K where H is a finite normal p-subgroup of G and F is a field such that
char(F) = p, where p is a prime. If F|K], is (pr-)nilary, then F[G] is (pr-)nilary.

Example 4.9 Let G = Csm x S3 where m € N, and F = Z3. From [1, Ezample 2.13], F[Ss] is nilary.
Therefore, F|G] is nilary by Corollary 4.8.

Proposition 4.10 Let G be a finite supersolvable group such that q is the smallest prime dividing |G|, and F
is a field with char(F) = q. Then F|G] is nilary if and only if G is a ¢-group.

Proof This result is a corollary of Theorem 3.31. O

Theorem 4.11 Let R = F[G], where F is a field; and G is a group. Assume H is a finite subnormal subgroup
of G such that F[H] is nilary.

(i) If H # {1}, then J(F[H])R C J(R) and J(F[H|)R is left and right essential in R.

(i) If I is a nonnilpotent ideal of F[H]|, then IR is right essential in R. In particular, ReR is left and right
essential in R for all 0 # e = e € F[H].

(iii) If {e;|]l < i < m} C F[H] is an orthogonal set of idempotents such that e1R,--- e, R represents a

complete set of isomorphism classes of the principal indecomposable modules of R, then R is nilary.

Proof Note that F[H] is a Frobenius algebra (hence a QF-ring) [10, pp. 442-443, Example 16.56].
(i) Using the subnormality of H, Proposition 4.3(iii) and an induction argument with [9, p.137, Excercise 8.5]
and [12, p.467, Excercise 27|, we obtain the result.
(ii) Since F[H] is a QF-ring, [1, Theorem 2.2] yields that each nonnilpotent ideal I of F[H] is left and right
essential in F[H]. Now the result follows from the subnormality of H and [12, p 467, Excercise 27]
(iii) This part is a consequence of part (ii) and [1, Theorem 2.2].
O
For the ring R = F[G] where F is a field and G is a finite solvable group, our next result provides a

method for determining nilary subrings of R of the form F[H] where H is a subnormal subgroup of G. The
three examples following this result illustrate this method. Moreover, the examples are nilary group algebras

which are not rings with a nilpotent prime ideal, hence neither prime nor local.

Theorem 4.12 Let G be a finite solvable group which is not a p-group, p a prime, Hy be a nontrivial subnormal

p-subgroup of G, F be a field such that char(F) =p and R = F[G]. Then there exists a composition series,
{1} d---<dHy<d---<4H,d---dH, 4---dH, =G

such that R; = F[H;] and:
(i) Ho,--- ,Hg_1 are p-groups;
(i) R; is a nilary local ring for all i =0,1,--- [k —1;

(iii) ‘Hfill = q, where q is a prime and q # p;

(iv) A(;}%}j—l) = F[Hlﬁl] = F[Cy] = @'_F(j) where each F(j) is a cyclotomic extension of F';

(v) there exists a complete set, {e1,--- ,e:}, of orthogonal primitive idempotents of F[Hy|, so, u.dim(Ry) =t;
(vi) J(Rg) = A(Hy, Hi—1), and Ry is a basic ring.
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(vii) If Rye;Ry is right essential in Ry for each e; and each e; is primitive in R, for j =1,---,t where

m >k, then R,, is nilary.

Proof It is well known that the indicated composition series exists, see [14, p.80], and that it satisfies condi-
tion(i).

(ii) This part follows from Theorem 4.5.

(iii) This part is a property of the composition series [14, p.75].

(iv) The first isomorphism is due to [11, Corollary 3.3.5]. The second isomorphism follows from part (iii). For
the third, see [11, p.144-145].

(v) From Proposition 3.6, A(H, Hx—1) is nilpotent. Hence, the complete set of orthogonal primitive idempo-
tents from the decomposition of F[Cy] lift to F[Hg], see [9, pp.319-321]. From [10, pp.442-443, Example 16.56],
Ry, is a symmetric algebra, hence a QF-ring. So each e¢Ry is the injective hull of a minimal right ideal and
Soc(Ryg,) is right essential in Rj,. Therefore, u.dim(Ry) = t.

(vi) Since A(Hy, Hi—1) is nilpotent and J(ﬁ) = 0 by part(iv), then A(Hy, Hy—1) = J(Rg), see [9,

p.51,Proposition 4.6]. From [9, Proposition 25.10], Ry is a basic ring.
(vii) This part follows from Theorem 4.11(iii).

O
The following three examples of nilary nonlocal group algebras are applications of Theorem 4.12.

Throughout these examples, we use the notation of Theorem 4.12, and o denotes the permutation (123).
Recall from [1, Definition 2.4], R is antifull, if R has a nontrivial idempotent and for each 1 # ¢ = €? € R,
ReR # R.

Example 4.13 Let R = Z3[Ss]. Then R is a nilary nonlocal basic antifull group algebra. To see this, observe
that Hy =< o >= {1,0, 02} , and Ro = Zs3[C3)] is a nilary local ring by Theorem 4.5. Next, we have

Z3[Ss]
A(Ss, Hyp)

Z3[x] Z3[x]
(z+1) " (z—-1)

Then {e, 1 —e} is a complete set of orthogonal primitive idempotents of R, where e = o + 02; and
u.dim(R) = 2. J(R) = A(Ss, Hy), and R is basic by [9, Proposition 25.10]. Since ReR = eR® (1—e)RNReR
and (1 —e)RN ReR # 0, ReR <°** Rp. Similarly, R(1 —e)R <°** Rg. So R is nilary. Alternatively, one
can show that e is not central, so 1 — e is not central; hence, R is indecomposable. By [1, Corollary 2.3], R

is nilary. R is antifull from [1, Proposition 2.5].

Example 4.14 Let R = Zs[A4]. Then R is a nilary nonlocal basic antifull group algebra. To see this, observe
that Hy = {1,(12)(34), (13)(24), (14)(23)} = K4, and R = Zs[K4] is a nilary local ring by Theorem 4.5. Neat,

Z2[A4)
A(Ay, Ho)

ZQ [.7,‘] ZQ [Jﬁ]

=00 = T E et D)

1%

Then {e,1 — e} is a complete set of orthogonal primitive idempotents of R where e = o+0?; and u.dim(R) = 2.
J(R) = A(Aqg, Hy), and R is basic by [9, Proposition 25.10]. Again neither e nor 1 — e is central in R. By
[1, Corrolary 2.3], R is nilary, and R is antifull from [1, Proposition 2.5].
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Example 4.15 Let R = Z3[S4]. Then, R is a nilary non-local group algebra. To see this, observe

{1} 9{1,(12)(34)} < Hy < H; < Hy = S

is a composition series where Hy is as in Example /.14, Hy = Ay and Hy = Sy. Then,

Z2[S4]
A(Sy, Hyp)

Sy

= ZQ[FO

| & Z>[ 5]

It can be shown by computer or hand calculations that {e,1 — e} is a complete set of orthogonal primitive
idempotents of Z[S3], where e = o + o2. Since A(Sy, Hy) is nilpotent by Proposition 3.6, {e,1—e} is a
complete set of orthogonal primitive idempotents of Z3[S4). From Example 3.14, Ry = Z2[A4] is nilary, so
RieRy <°*®* Rip, and Ri(1—e)Ry <°° Ryg,, from [1, Theorem 2.2]. By Theorem 4.12(vii), Ry = R is nilary

and nonlocal.

Corollary 4.16 Let F' be a field with char(F) = p, and G be a finite group such that G = Cy x G, where G,
is a p-group and Cy is not normal in G. Then R = F[G] is a nilary ring.

Proof If p=2 then G is a p-group. By Theorem 4.5, R is a nilary ring. Assume p > 2. Then G is solvable.
By using the notation of Theorem 4.12, O,(G) = Hy = Hy—1 = Gp, Hy = Hi, = G, ¢ = 2. Then,

FlH)  _ FlG]
A(Hk,Hk_l) A(G,Gp)

I

F[Cy).

Hence, u.dim(F(Cs)) < dim(F[Cs]) = 2. So F[G] has a complete set {e,1—e}, of orthogonal primitive
idempotents, by Theorem 4.12. Now, we claim that F[G] is indecomposable. Indeed, since G has order 2p™
and G has a normal p-Sylow subgroup, then G is p-constrained and it is clear that O,/ (G) = 1. Therefore, by
using [8, p.112, Proposition 1.12], we have that F[G] is indecomposable. Since F[G] is QF-ring, by our claim
and by using [1, Corollary 2.3], we get that F[G] is nilary. O

Note that for p # 2, R is neither local nor prime.

Corollary 4.17 Let F be a field with char(F) = p, and G be the dihedral group G = Dyn for a positive
integer n and a prime p. Then F|[G] is a nilary ring. In particular, the ring F[Ss] is nilary, for any field F
with char(F) = 3.

Open Problem:

Characterize the nilary group algebras, F[G], where char(F) = p (a prime) in terms of properties of G and F'.
Note that the case for char(F) =0 is included in Proposition 4.2.
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