

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2023) 47: 1191 – 1219 © TÜBİTAK doi:10.55730/1300-0098.3421

Research Article

Struwe compactness results for a critical p-Laplacian equation involving critical and subcritical Hardy potential on compact Riemannian manifolds

Tewfik GHOMARI^{*}^(D), Youssef MALIKI^(D)

Dynamic Systems and Applications Laboratory, Department of Mathematics, Faculty of Sciences, University Aboubekr Belkaïd of Tlemcen, Tlemcen, Algeria

Received: 26.09.2021	•	Accepted/Published Online: 21.03.2023	•	Final Version: 16.05.2023

Abstract: Let (M, g) be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas for Palais-Smale sequences of functional energies corresponding to the equation:

$$\Delta_{g,p} u - \frac{h(x)}{(\rho_{x_o}(x))^s} |u|^{p-2} u = f(x) |u|^{p^*-2} u_s$$

where $\Delta_{g,p}$ is the *p*-Laplacian operator, $p^* = \frac{np}{n-p}$, $0 < s \le p$, and $\rho_{x_o}(x)$ is a distance function to a fixed point x_o in M.

Key words: Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up analysis, bubbles

1. Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold. Denote by Inj_g the injectivity radius of (M, g). Let x_o be a fixed point in M and define on M a distance function as follows:

$$\rho_{x_o}(x) = \begin{cases} \operatorname{dist}_{g}(x_o, x), & x \in B(x_o, \operatorname{Inj}_{g}), \\ \operatorname{Inj}_{g}, & x \in M \setminus B(x_o, \operatorname{Inj}_{g}). \end{cases}$$
(1.1)

For a real p such that $1 , let us consider the Sobolev space <math>H_1^p(M)$ defined as the completion of $C^{\infty}(M)$ with respect to the norm:

$$||u||_{H_1^p(M)} = \int_M (|\nabla_g u|^p + |u|^p) dv_g,$$

where $|\nabla_g u|^2 = g(\nabla_g u, \nabla_g u)$. Let us also consider the *p*-Laplacian operator $\Delta_{g,p}$ that acts on functions $u \in H_1^p(M)$ as:

$$\Delta_{g,p}u = -\operatorname{div}(|\nabla_g u|^{p-2}\nabla_g u).$$

²⁰¹⁰ AMS Mathematics Subject Classification 58J05: 23584

^{*}Correspondence: malyouc@yahoo.fr

GHOMARI and MALIKI/Turk J Math

Let h and f be two smooth functions on M. For a real s such that $0 < s \le p$, let us consider the following singular elliptic quasilinear equation:

$$\Delta_{g,p}u - \frac{h(x)}{(\rho_{x_o}(x))^s} |u|^{p-2} u = f(x) |u|^{p^*-2} u, \qquad (E_s)$$

where $p^* = \frac{np}{n-p}$ is the critical exponent in the Sobolev inclusion $H_1^p(M) \subset L_{P^*}(M)$.

Equation (E_s) , as one can immediately notice, is a generalization to the well-known geometric prescribed scalar curvature which corresponds to s = 0 and p = 2 and which has been largely studied starting from the middle of the last century. For a compendium on this equation and the related topic, the reader may refer to the books in [3] and [13].

For s = 0, we fall on the generalized prescribed scalar curvature equation which has been studied on compact manifolds in [9] and on complete noncompact manifolds in [5]. For p = 2, $0 < s \leq 2$, and $f \equiv 1$, we meet a singular Yamabe type equation to which existence of weak solutions has been studied in [16]. Now, define on $H_1^p(M)$ the energy functional:

$$J_{f,h,s}(u) = \frac{1}{p} \left(\int_M \left(|\nabla_g u|^p - \frac{h}{(\rho_{x_o})^s} |u|^p \right) dv_g \right) - \frac{1}{p^*} \int_M f |u|^{p^*} dv_g.$$
(1.2)

This functional is of class C^2 on $H_1^p(M)$. Its Gâteau derivative at a point $v \in H_1^p(M)$ is given by:

$$(DJ_{f,h,s}u) \cdot v = \int_{M} \left(|\nabla_{g}u|^{p-2} g(\nabla_{g}u, \nabla_{g}v) - \frac{h}{(\rho_{x_{o}})^{s}} |u|^{p-2} u \cdot v \right) dv_{g}$$
$$- \int_{M} f |u|^{p^{*}-2} u \cdot v dv_{g}.$$

A Palais-Smale sequence (P.S in short) of the functional $J_{f,h,s}$ at a level $\beta_s \in \mathbb{R}$, $0 < s \leq p$, is defined to be the sequence $u_m \in H_1^p(M)$ that satisfies $J_{f,h,s}(u_m) \to \beta_s$ and $(DJ_{f,h,s}u_m) \cdot v \to 0, \forall v \in H_1^p(M)$ as $m \to \infty$. To abbreviate, we denote β_p by β . A weak solution of (E_s) , $0 < s \leq p$, is a function $u \in H_1^p(M)$ that satisfies $(DJ_{f,h,s}u) \cdot v = 0, \forall v \in H_1^p(M)$.

In this work, we aim at proving that a P.S sequence u_m of the functional $J_{f,h,s}$ is submitted to the well-known Struwe decomposition formulas [24]. Note that similar decomposition results, on Riemannian manifolds, are obtained in [10] in the case s = 0 and p = 2, in [21] in the case s = 0 and 1 , and in [18] in the case<math>s = p = 2. In the present work, we generalize those results to the case $s \in (0, p]$.

In proving the decomposition result, we distinguish the subcritical case $s \in (0, p)$ from the critical case s = p. More explicitly, we will prove that in case $s \in (0, p)$, a P.S sequence of the functional $J_{f,h,s}$ decomposes into the sum of a weak solution of (E_s) , rescaled weak solutions of the Euclidean equation:

$$\Delta_{\xi,p} u = |u|^{p^* - 2} u, \tag{1.3}$$

where ξ is the Euclidean metric on \mathbb{R}^n , and a zero-converging term in $H_1^p(M)$. Note that existence and classification of positive solutions of (1.3) are studied in [7, 22, 27].

However, in case s = p, the singular term enters into the decomposition and leads to another term to be added.

This term is a rescaled solution of:

$$\Delta_{\xi,p}u - \frac{h(x_o)}{|x|^p}|u|^{p-2}u = f(x_o)|u|^{p^*-2}u, \qquad (1.4)$$

whose existence of solutions is studied in [1]. Let $\delta > 0$ be a constant and denote by η_{δ} a smooth cut-off function in \mathbb{R}^n such that $0 \leq \eta_{\delta} \leq 1$, $\eta_{\delta}(x) = 1$ for $x \in B(\delta)$ and $\eta_{\delta}(x) = 0$ for $x \in \mathbb{R}^n \setminus B(2\delta)$, B(r) denotes the ball of center 0 and radius r. Let $y \in M$ and $0 < \delta < \frac{\ln j_g}{2}$, we define the cut-off function $\eta_{\delta,y}$ by

$$\eta_{\delta,y}(x) = \eta_{\delta}(\exp_y^{-1}(x)),$$

where $\exp_y : B(\delta) \subset \mathbb{R}^n \to B(y, \delta) \subset M$ is the exponential map at point $y \in M$ which defines a diffeomorphism from $B(\delta) \subset \mathbb{R}^n$ to $B(y, \delta)$.

Let $D^{1,p}(\mathbb{R}^n)$ denote the Sobolev space defined as the completion of $C_o^{\infty}(\mathbb{R}^n)$, the space of smooth functions with compact support in \mathbb{R}^n , with respect to the norm:

$$||u||_{D^{1,p}(\mathbb{R}^n)}^p = \int_{\mathbb{R}^n} |\nabla u|^p dx.$$

Define on $D^{1,p}(\mathbb{R}^n)$ the following functionals:

$$E(u) = \frac{1}{p} \int_{\mathbb{R}^n} |\nabla u|^p dx - \frac{1}{p^*} \int_{\mathbb{R}^n} |u|^{p^*} dx,$$

$$E_{f,h}(u) = \frac{1}{p} \int_{\mathbb{R}^n} |\nabla u|^p dx - \frac{h(x_o)}{p} \int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p} dx - \frac{f(x_o)}{p^*} \int_{\mathbb{R}^n} |u|^{p^*} dx.$$

According to whether the exponent s is critical or subcritical, we state the following two main results

Theorem 1.1 : Let (M,g) be a compact Riemannian manifold of dimension $n \ge 3$. Let f and h be two smooth functions on M. Let x_o be a point of M as defined in (1.1). Suppose that f satisfies $f(x_o) = \sup_M f(x), f(x) > 0, x \in M$.

Let u_m be a Palais-Smale sequence of the functional $J_{f,h,s}$ at level β_s , 0 < s < p. Then, there exist $k \in \mathbb{N}$, sequences $R_m^i \ge 0$, $R_m^i \xrightarrow[m \to \infty]{} 0$, $k \in \mathbb{N}$, converging sequences of points in M, $x_m^i \xrightarrow[m \to \infty]{} x_o^i$, a solution $u \in H_1^p(M)$ of (E_s) , 0 < s < p, nontrivial weak solutions $v_i \in D^{1,p}(\mathbb{R}^n)$ of (1.3) such that up to subsequence, for 0 < s < p, we have

$$u_m = u + \sum_{i=1}^k (R_m^i)^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_m^i}^{-1}(x)) f(x_o^i)^{\frac{p-n}{p^2}} v_i((R_m^i)^{-1} \exp_{x_m^i}^{-1}(x)) + \mathcal{W}_m,$$

with $\mathcal{W}_m \to 0$ in $H_1^p(M)$,

and

$$J_{f,h,s}(u_m) = J_{f,h,s}(u) + \sum_{i=1}^k f(x_o^i)^{\frac{p-n}{p}} E(v_i) + o(1).$$

Theorem 1.2 Let (M,g) be a compact Riemannian manifold of dimension $n \ge 3$. Let f and h be two smooth functions on M. Let x_o be a point of M as defined in (1.1). Suppose that f and h satisfy the following conditions

1.
$$f(x_o) = \sup_M f(x), f(x) > 0, x \in M$$
,

2.
$$h(x_o) = \sup_M h(x)$$
 and $0 < h(x_o) < (\frac{n-p}{n})^p$.

Let u_m be a Palais-Smale sequence of the functional $J_{f,h,p}$ at level β . Then, there exist $k \in \mathbb{N}$, sequences $\mathcal{T}_m^i \geq 0$, $\mathcal{T}_m^i \xrightarrow[m \to \infty]{} 0$, $l \in \mathbb{N}$ sequences $\tau_m^j \geq 0$, $\tau_m^j \xrightarrow[m \to \infty]{} 0$, $l \in \mathbb{N}$, converging sequences of points in M, $y_m^j \xrightarrow[m \to \infty]{} y_o^j \neq x_o$, a weak solution $u \in H_1^p(M)$ of (E_s) , s = p, nontrivial weak solutions $v_i \in D^{1,p}(\mathbb{R}^n)$ of (1.4) and weak solutions $\nu_j \in D^{1,p}(\mathbb{R}^n)$ of (1.3) such that up to subsequence, we have:

$$u_{m} = u + \sum_{i=1}^{k} (\mathcal{T}_{m}^{i})^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_{o}}^{-1}(x)) v_{i}((\mathcal{T}_{m}^{i})^{-1} \exp_{x_{o}}^{-1}(x))$$

$$+ \sum_{j=1}^{l} (\tau_{m}^{j})^{\frac{p-n}{p}} f(y_{o}^{j})^{\frac{p-n}{p^{2}}} \eta_{\delta}(\exp_{y_{m}^{j}}^{-1}(x)) \nu_{j}((\tau_{m}^{j})^{-1} \exp_{y_{m}^{j}}^{-1}(x)) + \mathcal{W}_{m}$$
with $\mathcal{W}_{m} \to 0$ in $H_{1}^{p}(M)$

and

$$J_{f,h,p}(u_m) = J_{f,h,p}(u) + \sum_{i=1}^k E_{f,h}(v_i) + \sum_{j=1}^l f(y_o^j)^{\frac{p-n}{p}} E(\nu_j) + o(1).$$

2. Preliminary results

In this section, we recall some known results that we need to achieve the proof of our main theorems.

2.1. Sobolev inequality

Denote by K(n,p) the best constant in the Euclidean Sobolev inequality, that is for $u \in D^{1,p}(\mathbb{R}^n)$, there holds:

$$\int_{\mathbb{R}^n} |u|^{p^*} dx \le K(n,p)^{p^*} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{p^*}{p}},$$

The value of K(n, p) is calculated in Aubin [2] and Talenti [25] and is given by:

$$K(n,p) = \frac{p-1}{n-p} \left(\frac{n-p}{n(p-1)}\right)^{\frac{1}{p}} \left(\frac{\Gamma(n+1)}{\Gamma(\frac{n}{p})\Gamma(n+1-\frac{n}{p})w_{n-1}}\right)^{\frac{1}{n}}.$$

On compact Riemannian manifold (M, g), in [2] the following Sobolev inequality is proven: for every $\varepsilon > 0$, there exists a positive constant $A_{\varepsilon} > 0$ such that for every $u \in H_1^p(M)$,

$$\int_{M} |u|^{p^*} dv_g \le (K(n,p)^{p^*} + \varepsilon) \left(\int_{M} |\nabla_g u|^p dv_g \right)^{\frac{p^*}{p}} + A_{\varepsilon} \left(\int_{M} |u|^p dv_g \right)^{\frac{p^*}{p}}.$$
(2.1)

It is commonly known (see for example [13, 14]) that the inclusion $H_1^p(M) \subset L_q(M)$ is compact for $q < p^*$ and continuous for $q = p^*$.

2.2. Hardy inequality

Let ρ_{x_o} be the distance function defined by (1.1). Denote by $L_p(M, (\rho_{x_o})^s)$ the space of functions u such that $\frac{|u|^p}{(\rho_{x_o})^s}$ is integrable. This space, endowed with the norm $\int_M \frac{|u|^p}{(\rho_{x_o})^s} dv_g$, is a Banach space.

Now, for $u \in D^{1,p}(\mathbb{R}^n)$, the following Hardy inequality holds:

$$\int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p} dx \le \left(\frac{p}{n-p}\right)^p \int_{\mathbb{R}^n} |\nabla u|^p dx.$$
(2.2)

This inequality has been extended to compact Riemannian manifolds in [16] as follows: for every $\varepsilon > 0$, there exists a positive constant $B_{\varepsilon} > 0$ such that for every $u \in H_1^p(M)$,

$$\int_{M} \frac{|u|^{p}}{(\rho_{x_{o}})^{p}} dv_{g} \leq \left(\left(\frac{p}{n-p}\right)^{p} + \varepsilon \right) \int_{M} |\nabla_{g}u|^{p} dv_{g} + B_{\varepsilon} \int_{M} |u|^{p} dv_{g}.$$
(2.3)

For a function $u \in H_1^p(M)$ with support included in $B(x_o, \delta)$, where $\delta < \text{Inj}_g$, there holds:

$$\int_{M} \frac{|u|^p}{(\rho_{x_o})^p} dv_g \le \left(K_{\delta}(n, p, -p)\right)^p \int_{M} |\nabla_g u|^p dv_g, \tag{2.4}$$

with $K_{\delta}(n, p, -p) \to \frac{p}{n-p}$ as $\delta \to 0$.

In [16], it has been proven that the inclusion $H_1^p(M) \subset L_p(M, (\rho_{x_o})^p)$ is continuous and the inclusion $H_1^p(M) \subset L_p(M, (\rho_{x_o})^s)$, with 0 < s < p, is compact.

3. Proof of the main theorems

In this section, we prove theorems 1.1 and 1.2. The proof goes through a series of lemmas:

Lemma 3.1 Let u_m be a P.S sequence for $J_{f,h,s}$, $0 < s \leq p$, at level β_s . Suppose that the sequence u_m converges to a function u weakly in $H_1^p(M)$ and $L_p(M, \rho_{x_o}^p)$, strongly in $L_q(M), 1 \leq q < p^*$ and almost everywhere in M. Then, the function u is a weak solution of (E_s) and the sequence $v_m = u_m - u$ is a P.S sequence of $J_{f,h,s}$ such that $J_{f,h,s}(v_m) = \beta_s - J_{f,h,s}(u) + o(1)$.

Proof Let u_m be a P.S. sequence for $J_{f,h,s}$ at a level β_s . As a first step in the proof of the lemma, we prove that the sequence u_m is bounded in $H_1^p(M)$.

First, on the one hand, we have:

$$J_{f,h,s}(u_m) - \frac{1}{p^*} D J_{s,f,h}(u_m) u_m = \beta_s + o(1) + o(||u_m||_{H_1^p(M)}).$$

On the other hand, we have:

$$J_{f,h,s}(u_m) - \frac{1}{p^*} D J_{f,h,s}(u_m) u_m = \frac{1}{n} \int_M \left(|\nabla_g u_m|^p - \frac{h}{(\rho_{x_o})^s} |u_m|^p \right) dv_g$$
$$= \frac{1}{n} \left(J_{f,h,s}(u_m) + \frac{1}{p^*} \int_M f |u_m|^{p^*} dv_g \right),$$

then

$$\frac{1}{np^*} \int_M f |u_m|^{p^*} dv_g = \left(1 - \frac{1}{n}\right) \beta_s + o(1) + o(||u_m||_{H^p_1(M)})$$

Since f is supposed strictly positive on the compact manifold, we deduce that u_m is bounded in $L_{p^*}(M)$ and so in $L_p(M)$.

Moreover, we have:

$$\int_{M} |\nabla_{g} u_{m}|^{p} dv_{g} = nJ_{f,h,s}(u_{m}) + \int_{M} \frac{h}{(\rho_{x_{o}})^{s}} |u_{m}|^{p} dv_{g} + o(||u_{m}||_{H_{1}^{p}(M)})$$
$$= n\beta_{s} + \int_{M} \frac{h}{(\rho_{x_{o}})^{s}} |u_{m}|^{p} dv_{g} + o(1) + o(||u_{m}||_{H_{1}^{p}(M)}).$$

Let $\delta > 0$ be a small constant. Then we have:

$$\int_{M} |\nabla_{g} u_{m}|^{p} dv_{g} = n\beta_{s} + \int_{B(x_{o},\delta)} (\rho_{x_{o}})^{p-s} \frac{h}{(\rho_{x_{o}})^{p}} |u_{m}|^{p} dv_{g}$$
$$+ \int_{M \setminus B(x_{o},\delta)} \frac{h(x)}{(\rho_{x_{o}})^{s}} |u_{m}|^{p} dv_{g} + o(1) + o(||u_{m}||_{H_{1}^{p}(M)}).$$

Since $p \ge s$, we get:

$$\begin{split} \int_{M} \left| \nabla_{g} u_{m} \right|^{p} dv_{g} &\leq n\beta_{s} + \delta^{p-s} \max_{x \in B(x_{o},\delta)} \left| h(x) \right| \int_{B(x_{o},\delta)} \frac{\left| u_{m} \right|^{p}}{(\rho_{x_{o}})^{p}} dv_{g} \\ &+ \delta^{-s} \max_{x \in M} \left| h(x) \right| \int_{M \setminus B(x_{o},\delta)} \left| u_{m} \right|^{p} dv_{g} + o(1) + o(\left\| u_{m} \right\|_{H^{p}_{1}(M)}). \end{split}$$

By Hardy inequality (2.4), since u_m is bounded in $L_p(M)$, we get that there is a positive constant C such that

$$\left(1 - \delta^{p-s} \max_{x \in B(x_o,\delta)} |h(x)| K_{\delta}(n,p,-p)^p \right) \int_M |\nabla_g u_m|^p \, dv_g \le n\beta_s + C$$

+ $o(1) + o(||u_m||_{H^p_1(M)}).$

Now, for p > s, by choosing δ as small as

$$1 - \delta^{p-s} \max_{x \in B(x_o,\delta)} |h(x)| K_{\delta}(n, p, -p)^p > 0,$$

we get that $\int_M |\nabla_g u_m|^p dv_g$ is bounded.

For p = s, since $\max_{B(x_o,\delta)} |h(x)| K_{\delta}(n,p,-p)$ tends to $h(x_o)(\frac{p}{n-p})^p$ as $\delta \to 0$ and since by assumption $1 - h(x_o)(\frac{p}{n-p})^p > 0$, then there exists $\delta_o > 0$ such that for all $\delta < \delta_o$, we have:

$$1 - \max_{x \in B(x_o, \delta)} |h(x)| K_{\delta}(n, p, -p)^p > 0,$$

and hence $\int_M |\nabla_g u_m|^p dv_g$ is bounded which ends the proof of the fact that u_m is bounded in $H_1^p(M)$. Now, suppose that the sequence u_m converges to a function u weakly in $H_1^p(M)$. We prove that for $\varphi \in H_1^p(M)$, $(DJ_{f,h,s}(u_m)).\varphi$ converges to $(DJ_{f,h,s}(u).\varphi)$, that is, u is a weak solution of (E_s) . First, since the sequence u_m converges to u almost everywhere in M, by basic integration theory (see for example [15] Lemma 4.8), we can conclude that the sequence $f|u_m|^{p^*-2}u_m$ converges to $f|u|^{p^*-2}u$ weakly in $L_{\frac{p^*}{p^*-1}}(M)$ and the sequence $h|u_m|^{p-2}u_m$ converges to $h|u|^{p-2}u$ in $L_{\frac{p}{p-1}}(M,(\rho_{x_o})^s)$.

On the other hand, the same arguments as in the proof of Step 1.2 in [21] give that $\nabla_g u_m$ converges almost everywhere to ∇u in M and then $\int_M |\nabla_g u_m|^{p-2} g(\nabla_g u_m, \nabla_g \varphi) dv_g$ converges to $\int_M |\nabla_g u|^{p-2} g(\nabla_g u, \nabla_g \varphi) dv_g$. We conclude that u is a weak solution of (E_s) .

Now, we prove that the sequence $v_m = u_m - u$ is a P.S sequence for $J_{f,h,s}$ at level $\beta_s - J_{f,h,s}(u)$. For $\varphi \in H_1^p(M)$, we write

$$D(J_{s,f,h}(v_m)).\varphi = D(J_{s,f,h}(u_m)).\varphi - D(J_{s,f,h}(u)).\varphi$$

$$+ \int_M g(|\nabla_g v_m|^{p-2} \nabla_g v_m - |\nabla_g v_m + \nabla_g u|^{p-2} (\nabla_g v_m + \nabla_g u) + \nabla_g u|^{p-2} \nabla_g u, \nabla_g \varphi) dv_g$$

$$- \int_M \frac{h}{(\rho_{x_o})^s} (|v_m|^{p-2} v_m - |v_m + u|^{p-2} (v_m + u) + |u|^{p-2} u)\varphi dv_g$$

$$- \int_M f(|v_m|^{p^*-2} v_m - |v_m + u|^{p^*-2} (v_m + u) + |u|^{p^*-2} u)\varphi dv_g$$
(3.1)

We should recall the following inequality: for any vectors x and y in normed vector space and p > 1

$$|||x+y||^{p-2}(x+y) - ||x||^{p-2}x - ||y||^{p-2}y|| \le C(||x||^{p-1-\theta}||y||^{\theta} + ||y||^{p-1-\theta}||x||^{\theta}),$$
(3.2)

where θ is a small constant that depends on p. We deduce from this inequality that:

$$\begin{split} &\int_{M} g(|\nabla_{g} v_{m}|^{p-2} \nabla_{g} v_{m} - |\nabla_{g} v_{m} + \nabla_{g} u|^{p-2} (\nabla_{g} v_{m} + \nabla_{g} u) + \nabla_{g} u|^{p-2} \nabla_{g} u, \nabla_{g} \varphi) dv_{g} \\ &\leq C \int_{M} \left(|\nabla_{g} v_{m}|^{p-1-\theta} |\nabla_{g} u|^{\theta} + |\nabla_{g} v_{m}|^{\theta} |\nabla_{g} u|^{p-1-\theta} \right) |\nabla_{g} \varphi| dv_{g} \\ &\leq C \|\nabla_{g} \varphi\|_{L_{p}(M)} \left[\left(\int_{M} |\nabla_{g} v_{m}|^{\frac{p(p-1-\theta)}{p-1}} |\nabla_{g} u|^{\frac{p\theta}{p-1}} dv_{g} \right)^{\frac{p-1}{p}} \\ &+ \left(\int_{M} |\nabla_{g} v_{m}|^{\frac{p\theta}{p-1}} |\nabla_{g} u|^{\frac{p(p-1-\theta)}{p-1}} dv_{g} \right)^{\frac{p-1}{p}} \right]. \end{split}$$

Now, the sequence $|\nabla_g v_m|^{p\frac{p-1-\theta}{p-1}}$ is bounded in $L_{\frac{p-1}{p-1-\theta}}(M)$ and converges almost everywhere to 0 in M. Then, it converges weakly to 0 in $L_{\frac{p-1}{p-1-\theta}}(M)$, that is $\int_M |\nabla_g v_m|^{p\frac{p-1-\theta}{p-1}} \varphi dv_g \to 0, \forall \varphi \in L_{\frac{p-1}{\theta}}(M)$. Since $|\nabla_g u|^{p\frac{\theta}{p-1}}$ belongs to $L_{\frac{p-1}{\theta}}(M)$, we get:

$$\int_M |\nabla_g v_m|^{\frac{p(p-1-\theta)}{p-1}} |\nabla_g u|^{\frac{p\theta}{p-1}} dv_g \to 0.$$

By similar arguments, we get also:

$$\int_{M} |\nabla_g v_m|^{\frac{p\theta}{p-1}} |\nabla_g u|^{\frac{p(p-1-\theta)}{p-1}} dv_g \to 0,$$

together with the second and the third integral in (3.1) tend to zero. Hence, $(DJ_{f,h,s}(v_m)).\varphi \to 0, \forall \varphi \in H_1^p(M)$. Finally, to prove that $J_{f,h,s}(v_m)$ tends to $\beta_s - J_{f,h,s}(u)$, we just apply the Brezis-Lieb lemma (see for example [15], lemma 4.6) to the sequences u_m and $\nabla_g u_m$. In fact, since u_m converges to u a.e and $\nabla_g u_m$ converges to $\nabla_g u$ a.e. in M, and since ∇_g is bounded in $L_p(M)$, u_m is bounded in $L_{p^*}(M)$, we get by the Brezis-Lieb lemma that:

$$\int_{M} |\nabla_g u|^p dv_g = \lim_{m \to \infty} \left(\int_{M} |\nabla_g u_m|^p dv_g - \int_{M} |\nabla_g (u_m - u)|^p dv_g \right),$$

and

$$\int_{M} f|u|^{p^{*}} dv_{g} = \lim_{m \to \infty} \left(\int_{M} f|u_{m}|^{p^{*}} dv_{g} - \int_{M} f|u_{m} - u|^{p^{*}} dv_{g} \right)$$

On the other hand, by Hardy inequality (2.3), we have:

$$\int_{M} \frac{|u_m|^p}{(\rho_{x_o})^s} dv_g \le Diam(M)^{p-s} \int_{M} \frac{|u_m|^p}{(\rho_{x_o})^p} dv_g \le C ||u_m||_{H_1^p(M)},$$

which means that the sequence u_m is also bounded in $L_p(M, (\rho_{x_o})^s)$ and then we get by the Brezis-Lieb lemma that:

$$\int_M \frac{h}{(\rho_{x_o})^s} |u|^p dv_g = \lim_{m \to \infty} \left(\int_M \frac{h}{(\rho_{x_o})^s} |u_m|^p dv_g - \int_M \frac{h}{(\rho_{x_o})^s} |u_m - u|^p dv_g \right)$$

which gives that:

$$J_{f,h,s}(v_m) = \beta_s - J_{f,h,s}(u) + o(1).$$

Lemma 3.2 Suppose that $\sup_M f > 0$ and $1 - h(x_o)(\frac{p}{n-p})^p > 0$. Let v_m be a P.S sequence of $J_{f,h,s}$ at level β_s , $0 < s \le p$, that converges weakly to 0 in $H_1^p(M)$. If

$$\beta_s < \beta^* = \begin{cases} \frac{1}{n(\sup_M f)^{\frac{n-p}{p}} K(n,p)^n}, & \text{if } s < p\\ \frac{(1-h(x_o)(\frac{p}{n-p})^p)^{\frac{n}{p}}}{n(\sup_M f)^{\frac{n-p}{p}} K(n,p)^n}, & \text{if } s = p, \end{cases}$$

then v_m converges strongly to 0 in $H_1^p(M)$.

Proof First, we write:

$$DJ_{f,h,s}(v_m).v_m = o(||v_m||_{H_1^p(M)})$$

= $\int_M (|\nabla_g v_m|^p - \frac{h}{(\rho_{x_o})^s} |v_m|^p) dv_g - \int_M f |v_m|^{p^*} dv_g,$

then

$$\beta_s = \frac{1}{n} \int_M \left(|\nabla_g v_m|^p - \frac{h}{(\rho_{x_o})^s} |v_m|^p \right) dv_g + o(1) = \frac{1}{n} \int_M f |v_m|^{p^*} dv_g + o(1)$$
(3.3)

This implies that $\beta_s \ge 0$. Moreover, let $\delta > 0$ be a small constant, we have:

$$\begin{split} &\int_{M} (\left|\nabla_{g} v_{m}\right|^{p} - \frac{h}{(\rho_{x_{o}})^{s}} \left|v_{m}\right|^{p}) dv_{g} = \int_{M} \left|\nabla_{g} v_{m}\right|^{p} dv_{g} - \int_{B(x_{o},\delta)} \frac{h}{(\rho_{x_{o}})^{s}} \left|v_{m}\right|^{p} dv_{g} \\ &- \int_{M \setminus B(x_{o},\delta)} \frac{h}{(\rho_{x_{o}})^{s}} \left|v_{m}\right|^{p} dv_{g} \\ &\geq \int_{M} \left|\nabla_{g} v_{m}\right|^{p} dv_{g} - \max_{x \in B(x_{o},\delta)} \left|h(x)\right| \delta^{p-s} \int_{B(x_{o},\delta)} \frac{\left|v_{m}\right|^{p}}{(\rho_{x_{o}})^{p}} dv_{g} \\ &- \delta^{-s} \max_{x \in M} \left|h(x)\right| \int_{M \setminus B(x_{o},\delta)} \left|v_{m}\right|^{p} dv_{g} \end{split}$$

Now, the sequence v_m is bounded in $L_p(M)$ and $L_p(M, (\rho_{x_o})^p)$, we have then: For 0 < s < p, by letting δ go to 0, we get from (3.3):

$$\int_{M} \left| \nabla_{g} v_{m} \right|^{p} dv_{g} \le n\beta_{s} + o(1).$$
(3.4)

For s = p, by letting δ go to 0, we get from (3.3) together with Hardy inequality (2.4):

$$\int_{M} |\nabla_{g} v_{m}|^{p} dv_{g} \leq \frac{n\beta_{s}}{1 - h(x_{o})(\frac{p}{n-p})^{p}} + o(1),$$
(3.5)

On the other hand, by Sobolev inequality, we get also by (3.3) that for $0 < s \le p$,

$$\int_{M} \left| \nabla_{g} v_{m} \right|^{p} dv_{g} \ge \left(\frac{n\beta_{s}}{\sup_{M} f(K(n,p) + \varepsilon)^{p^{*}}} \right)^{\frac{p}{p^{*}}} + o(1)$$
(3.6)

Now, suppose by contradiction that $\beta_s > 0$. Then, after letting m go to ∞ , inequalities (3.4), (3.5), and (3.6) give:

$$\beta_s \ge \frac{1}{n(\sup_M f)^{\frac{n-p}{p}} (K(n,p) + \varepsilon)^n}, \text{ for } 0 < s < p,$$

and

$$\beta_s \ge \frac{(1 - (h(x_o)K^p(n, p, -p))^{\frac{n}{p}}}{n(\sup_M f)^{\frac{n-p}{p}}(K(n, p))^n}, \text{ for } s = p.$$

Both cases present a patent contradiction with the hypothesis of the lemma. Hence, under the assumption of the lemma, $\beta_s = 0$ and thus $v_m \to 0$ in $H_1^p(M)$.

Now, we divide the proof of the main theorems into two parts according to whether 0 < s < p or s = p.

3.1. The subcritical Hardy potential

Lemma 3.3 Let v_m be a P.S sequence of $J_{f,h,s}$, with 0 < s < p, at level β_s that converges weakly and not strongly to 0 in $H_1^p(M)$. Then, there exists a converging sequence of points $x_m \to x^o$ in M, a sequence of positive reals $R_m \to 0$ as $m \to \infty$ and nontrivial weak solution $v \in D^{1,p}(\mathbb{R}^n)$ of

$$\Delta_{\xi,p}v = f(x^{o})|v|^{p^{*}-2}v, \qquad (3.7)$$

such that the subsequence

$$w_m(x) = v_m(x) - R_m^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_m}^{-1}(x)) v(R_m^{-1} \exp_{x_m}^{-1}(x)),$$

where $0 < \delta < \frac{\ln j_g}{2}$, admits a subsequence w_m that is a P-S sequence of $J_{f,h,s}$, with 0 < s < p, at level $J_{f,h,s}(w_m) = \beta_s - (f(x^o))^{\frac{p-n}{p}} E(u)$, with u is a nontrivial weak solution of (1.3), and that converges to 0 weakly in $H_1^p(M)$.

Proof Let v_m be a P.S sequence of $J_{f,h,s}$ at level β_s that converges to 0 weakly and not strongly in $H_1^p(M)$. Then, up to a subsequence, we can assume that v_m converges strongly to 0 in $L_p(M)$. For t > 0, we let

$$F_m(t) = \max_{x \in M} \int_{B(x,t)} |\nabla_g v_m| dv_g$$

For t_o small, by (3.6), there exists $z_o \in M$ and $\gamma_o > 0$ such that

$$\int_{B(z_o,t_o)} |\nabla_g v_m| dv_g \ge \gamma_o.$$

Since F_m is continuous in t, we get that for each $\gamma \in (0, \gamma_o)$ and for each m > 0, we can find a point x_m and a constant $r_m \in (0, t_o)$ such that

$$\int_{B(x_m, r_m)} \left| \nabla_g v_m \right|^p dv_g = \gamma \tag{3.8}$$

Let $0 < r_o < \frac{Inj_g}{2}$ be such that there exists a positive constant $C_o \in [1, 2]$ such that for all $x \in M$ and $y, z \in B(r_o) \subset \mathbb{R}^n$ the following inequality holds

$$dist_g(\exp_x(y), \exp_x(z)) \le C_o|y - z|.$$
(3.9)

Let $0 < R_m < 1$ and $x \in B(R_m^{-1}\delta_g)$. Define

$$\hat{v}_m(x) = R_m^{\frac{n-p}{p}} v_m(\exp_{x_m}(R_m x)), \ x \in \mathbb{R}^n$$
$$\hat{g}_m(x) = \exp_{x_m}^* g(R_m x)$$

Then, we have

$$|\nabla_{\hat{g}_m} \hat{v}_m|^p(x) = R_m^n |\nabla_g v_m|^p(\exp_{x_m}(R_m x)).$$
(3.10)

Thus, it follows that if $z \in \mathbb{R}^n$ is such that $|z| + r < \text{Inj}_{g}R_m^{-1}$, then we have:

$$\int_{B(z,r)} |\nabla_{\hat{g}_m} \hat{v}|^p dv_{\hat{g}_m} = \int_{\exp_{x_m}(R_m B(z,r))} |\nabla_g v_m|^p dv_g.$$
(3.11)

Moreover, for $|z| + r < r_o R_m^{-1}$, by using (3.9) we have:

$$\exp_{x_m}(R_m B(z, r)) \subset B_{\exp_{x_m}(R_m z)}(rC_o R_m).$$
(3.12)

Since for $y \in B(rC_oR_m) \subset B(\text{Inj}_g)$, we have $dist_g(x_m, \exp_{x_m}(R_my)) = R_m|y|$, and thus

$$\exp_{x_m}(B(rC_oR_m)) = B(x_m, rC_oR_m).$$
(3.13)

Now, for $r \in (0, r_o)$ take $R_m = \frac{r_m}{rC_o}$, where r_m is as defined above. By (3.10), (3.11), and (3.12), we get:

$$\int_{B(z,r)} |\nabla_{\hat{g}_m} \hat{v}|^p dv_{\hat{g}_m} \le \gamma, \tag{3.14}$$

and

$$\int_{B(rC_o)} |\nabla_{\hat{g}_m} \hat{v}|^p dv_{\hat{g}_m} = \gamma, \qquad (3.15)$$

Let $\delta \in (0, \operatorname{Inj}_g)$ and $u \in D^{1,p}(\mathbb{R}^n)$ with support included in $B(\delta R^{-1})$, where $0 < R \leq 1$ is a constant. There exists a constant C_1 such that if $\hat{g}(x) = \exp_u^*(g(Rx))$, then

$$\frac{1}{C_1} \int_{\mathbb{R}^n} \left| \nabla u \right|^p dx \le \int_{\mathbb{R}^n} \left| \nabla_{\hat{g}} u \right|^p dv_{\hat{g}} \le C_1 \int_{\mathbb{R}^n} \left| \nabla u \right|^p dx.$$
(3.16)

Without loss of generality, we can also assume that for all $u \in L_p(\mathbb{R}^n)$ with support included in $B(\delta R^{-1})$, we have:

$$\frac{1}{C_1} \int_{\mathbb{R}^n} |u|^p \, dx \le \int_{\mathbb{R}^n} |u|^p \, dv_{\hat{g}} \le C_1 \int_{\mathbb{R}^n} |u|^p \, dx. \tag{3.17}$$

Now, consider a cut-off function $\eta \in C_o(\mathbb{R}^n)$ such that

$$0 \le \eta \le 1, \eta(x) = 1, x \in B(\frac{1}{4}) \text{ and } \eta(x) = 0, x \in \mathbb{R}^n \setminus B(\frac{3}{4}).$$
 (3.18)

Put $\hat{\eta}_m(x) = \eta(\delta^{-1}R_m x)$, where $\delta \in (0, In_g)$. We get that there exists a positive constant C such that

$$\begin{split} & \int_{\mathbb{R}^n} \left| \nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m) \right|^p dv_{\hat{g}_m} = \int_{B(\frac{3\delta R_m^{-1}}{4})} \left| \nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m) \right|^p dv_{\hat{g}_m} \\ & \leq 2^{p-1} \int_{B(\frac{3\delta R_m^{-1}}{4}))} \left(|\eta(\delta^{-1} R_m x)|^p \left| \nabla_{\hat{g}_m} \hat{v}_m \right|^p + \delta^{-p} R_m^p |(\nabla_{\hat{g}_m} \eta)(\delta^{-1} R_m x)|^p \left| \hat{v}_m \right|^p \right) dv_{\hat{g}_m} \\ & = 2^{p-1} \int_{B(x_m, \frac{3\delta}{4})} \left(|\eta(\delta^{-1} \exp_{x_m}^{-1}(x))|^p \left| \nabla_g v_m \right|^p + |(\nabla_g \eta)(\delta^{-1} \exp_{x_m}^{-1}(x))|^p \left| v_m \right|^p \right) dv_g \\ & \leq C \int_{B(x_m, \frac{3\delta}{4})} \left(|\nabla_g v_m|^p + |v_m|^p \right) dv_g, \end{split}$$

since the sequence is bounded in $H_1^p(M)$, this implies by (3.16) that the sequence $\hat{\eta}_m \hat{v}_m$ is bounded in $D^{1,p}(\mathbb{R}^n)$ and thus, it converges weakly in $D^{1,p}(\mathbb{R}^n)$ and almost everywhere in \mathbb{R}^n to some function $v \in D^{1,p}(\mathbb{R}^n)$. Now, we divide the remaining of proof of the lemma into several steps.

Step 1

For γ small and $s \in (0, p)$, the sequence $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(C_o r))$.

Proof Let $a \in \mathbb{R}^n$ and $\mu \in [r, 2r]$. Set $\mathcal{A} = B(a, 3r) \setminus B(a, \mu)$. In [21] (see also [10]), it has been proven that there exists a sequence $z_m \in H_1^p(\mathcal{A})$ that converges strongly to 0 in $H_1^p(\mathcal{A})$ and that z_m is solution of

$$\begin{cases} \Delta_{\xi,p} z_m = 0 \text{ in } \mathcal{A}, \\ z_m - \varphi_m - \varphi_m^o \in D^{1,p}(\mathcal{A}), \end{cases}$$
(3.19)

where $\varphi_m = \hat{\eta}_m \hat{v}_m - v$ in $B(a, \mu + \varepsilon)$, $\varphi_m = 0$ in $\mathbb{R}^n \setminus B(a, 3\mu - \varepsilon)$ and φ_m^o is such that $\|\varphi_m + \varphi_m^o\|_{H^p_1(\mathcal{A})} \leq C \|\varphi_m\|_{H^p_{\frac{p-1}{2}}(\partial \mathcal{A})}$. We let $\hat{\psi}_m \in D^{1,p}(\mathbb{R}^n)$ be the sequence

$$\begin{cases} \hat{\psi}_m = \hat{\eta}_m \hat{v}_m - v & \text{in } \overline{B}(a, \mu), \\ \hat{\psi}_m = z_m & \text{in } \overline{B}(a, 3r) \setminus B(a, \mu), \\ \hat{\psi}_m = 0 & \text{in } \mathbb{R}^n \setminus B(a, 3r). \end{cases}$$

For $r < \frac{\delta}{24}$, consider the rescaling sequence ψ_m of $\hat{\psi}_m$

$$\begin{cases} \psi_m(x) = R_m^{\frac{p-n}{p}} \hat{\psi}_m(R_m^{-1} \exp_{x_m}^{-1}(x)), & \text{if } x < d_g(x_m, 6r), \\ \psi_m(x) = 0, & \text{otherwise.} \end{cases}$$

Let η be the cut-off function considered above. Then, $\eta(\delta^{-1} \exp_{x_m}^{-1}(x)) = 1$ for x such that $d_g(x_m, x) < 6r$. Put $\hat{\eta}(x) = \eta(\delta^{-1} \exp_{x_m}^{-1}(x)) = 1$, then if |a| < 3r, we have:

$$DJ_{f,h,s}(v_m).\psi_m = DJ_{f,h,s}(\eta(\delta^{-1}\exp_{x_m}^{-1}(x))v_m).\psi_m$$

= $\int_{B(a,3r)} |\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m)|^{p-2} \hat{g} \left(\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m), \nabla_{\hat{g}_m} \hat{\psi}_m \right) dv_{\hat{g}_m}$
- $R_m^{p-s} \int_{B(a,3r)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2}(\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}$
- $\int_{B(a,3r)} f(\exp_{x_m}(R_m(x))) |\hat{\eta}_m \hat{v}_m|^{p^*-2}(\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}.$

It is clear that the sequence $\hat{\psi}_m$ is bounded in $D^{1,p}(\mathbb{R}^n)$ and we have that $||\psi_m||_{H^p_1(M)} \leq C||\hat{\psi}_m||_{D^{1,p}(\mathbb{R}^n)}$. Then, the sequence ψ_m is bounded in $H^p_1(M)$ and since v_m is a P-S sequence of $J_{f,h,s}$, we get:

$$o(1) = \int_{B(a,3r)} |\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m)|^{p-2} \hat{g} \left(\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m), \nabla_{\hat{g}_m} \hat{\psi}_m \right) dv_{\hat{g}_m}$$
(3.20)
$$- R_m^{p-s} \int_{B(a,3r)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}$$
(3.20)
$$- \int_{B(a,3r)} f(\exp_{x_m}(R_m(x))) |\hat{\eta}_m \hat{v}_m|^{p^*-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}.$$

By the same arguments as in [21], we can have:

$$\int_{B(a,3r)} |\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m)|^{p-2} \hat{g} \left(\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m), \nabla_{\hat{g}_m} \hat{\psi}_m \right) dv_{\hat{g}_m} = \int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} + o(1),$$

and

$$\int_{B(a,3r)} f(\exp_{x_m}(R_m x)) |\hat{\eta}_m \hat{v}_m|^{p^*-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}$$
$$= \int_{\mathbb{R}^n} f(\exp_{x_m}(R_m x)) |\hat{\psi}_m|^{p^*} dv_{\hat{g}_m} + o(1).$$

Rather, we prove that:

$$\int_{B(a,3r)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}$$
(3.21)
$$= \int_{\mathbb{R}^n} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} |\hat{\psi}_m|^p dv_{\hat{g}_m} + o(1)$$

We distinguish two cases, $0 \in B(a,\mu)$ and $0 \notin B(a,\mu)$. If $0 \notin B(a,\mu)$, then there exists $\rho >$ such that $B(\rho) \cap B(a,\mu) = \emptyset$. Then, by using convexity, Hölder inequality and inequality (3.2), we get:

$$\begin{split} &|\int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} \left[|\hat{\psi}_m + v|^{p-2}(\hat{\psi}_m + v) - |\hat{\psi}_m|^{p-2}\hat{\psi}_m - |v|^{p-2}v \right] \hat{\psi}_m dv_{\hat{g}_m} |\\ &\leq C \varrho^{-s} \sup |h| \|\hat{\psi}_m\|_{L_p(\mathbb{R}^n)} \\ &\left(\int_{B(a,\mu)} \left[||\hat{\psi}_m + v|^{p-2}(\hat{\psi}_m + v) - |\hat{\psi}_m|^{p-2}\hat{\psi}_m - |v|^{p-2}v |\right]^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} \\ &\leq C' \|\hat{\psi}_m\|_{L_p(\mathbb{R}^n)} \left(\int_{B(a,\mu)} \left[||\hat{\psi}_m|^{p-1-\theta}|v|^{\theta} - \hat{\psi}_m|^{\theta}|v|^{p-1-\theta} |\right]^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} \\ &\leq C'' \|\hat{\psi}_m\|_{L_p(\mathbb{R}^n)} \left[\left(\int_{B(a,\mu)} |\hat{\psi}_m|^{\frac{p(p-1-\theta)}{p-1}} |v|^{\frac{p\theta}{p-1}} dx \right)^{\frac{p-1}{p}} \\ &+ \left(\int_{B(a,\mu)} |\hat{\psi}_m|^{\frac{p\theta}{p-1}} |v|^{\frac{p(p-1-\theta)}{p-1}} dx \right)^{\frac{p-1}{p}}] \end{split}$$

Since $\hat{\psi}_m$ converges to 0 almost everywhere and is bounded in $L_p(\mathbb{R}^n)$, we get that $|\hat{\psi}_m|^{\frac{p(p-\theta-1)}{p-1}}$ and $|\hat{\psi}_m|^{\frac{p\theta}{p-1}}$ converge almost everywhere to 0 and are bounded respectively in $L_{\frac{p-1}{p-1-\theta}}(\mathbb{R}^n)$ and $L_{\frac{p-1}{\theta}}(\mathbb{R}^n)$. We get then

$$\left(\int_{B(a,\mu)} |\hat{\psi}_m|^{\frac{p(p-1-\theta)}{p-1}} |v|^{\frac{p\theta}{p-1}} dx\right)^{\frac{p-1}{p}} + \left(\int_{B(a,\mu)} |\hat{\psi}_m|^{\frac{p\theta}{p-1}} |v|^{\frac{p(p-1-\theta)}{p-1}} dx\right)^{\frac{p-1}{p}} = o(1).$$

Hence, we get:

$$\begin{split} &\int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} \\ &= \int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} \left[|\hat{\psi}_m|^p + |v|^{p-2} v \hat{\psi}_m \right] dv_{\hat{g}_m} + o(1). \end{split}$$

Now, if $0 \in B(a, \mu)$, let $\varrho' > 0$ be such that $B(\varrho') \subset B(a, \mu)$. Then, as above, we have:

$$\begin{split} & \int_{B(a,\mu)\setminus B(\varrho')} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} \\ &= \int_{B(a,\mu)\setminus B(\varrho')} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} \left[|\hat{\psi}_m|^p + |v|^{p-2} v \hat{\psi}_m \right] dv_{\hat{g}_m} + o(1) \end{split}$$

Moreover, by Hölder inequality, we have:

$$\begin{split} & \int_{B(\varrho')} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} \\ & \leq C \sup |h| \left(\int_{B(\varrho')} \frac{|\hat{\eta}_m \hat{v}_m|^p}{|x|_{\xi}^s} dx \right)^{\frac{1}{p}} \left(\int_{B(\varrho')} \frac{|\hat{\psi}_m|^p}{|x|_{\xi}^s} dx \right)^{1-\frac{1}{p}} \\ & \leq C \sup |h| {\varrho'}^{\frac{p-s}{p}} \left(\int_{B(\varrho')} \frac{|\hat{\eta}_m \hat{v}_m|^p}{|x|_{\xi}^p} dx \right)^{\frac{1}{p}} \left(\int_{B(\varrho')} \frac{|\hat{\psi}_m|^p}{|x|_{\xi}^s} dx \right)^{1-\frac{1}{p}}. \end{split}$$

Now, by Hardy inequality (2.2), $\left(\int_{B(\varrho')} \frac{|\hat{\eta}_m \hat{v}_m|^p}{|x|_{\xi}^p} dx\right)^{\frac{1}{p}}$ is bounded. Since $\hat{\psi}_m$ converges to 0 strongly in $L_p(B(\varrho'), |x|^s)$, 0 < s < p, then

$$\int_{B(\varrho')} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} = o(1).$$

Thus, in both cases, we have:

$$\int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m}$$

$$= \int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} \left[|\hat{\psi}_m|^p + |v|^{p-2} v \hat{\psi}_m \right] dv_{\hat{g}_m} + o(1).$$

Now, using the fact that $\hat{\psi}_m$ converges to 0 strongly in $D^{1,p}(\mathcal{A})$ and weakly to 0 in $D^{1,p}(\mathbb{R}^n)$, we get:

$$\begin{split} &\int_{B(a,3r)} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} \\ &= \int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\eta}_m \hat{v}_m|^{p-2} (\hat{\eta}_m \hat{v}_m) \hat{\psi}_m dv_{\hat{g}_m} \\ &= \int_{B(a,\mu)} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} \left[|\hat{\psi}_m|^p + |v|^{p-2} v \hat{\psi}_m \right] dv_{\hat{g}_m} + o(1) \\ &= \int_{\mathbb{R}^n} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\psi}_m|^p dv_{\hat{g}_m} + o(1). \end{split}$$

We deduce that:

$$\int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} - R_m^{p-s} \int_{\mathbb{R}^n} \frac{h(\exp_{x_m}(R_m x))}{|x|_{\xi}^s} |\hat{\psi}_m|^p dv_{\hat{g}_m}$$
$$= \int_{\mathbb{R}^n} f(\exp_{x_m}(R_m x)) |\hat{\psi}_m|^{p^*} dv_{\hat{g}_m} + o(1).$$

Since the sequence $\hat{\psi}_m$ converges strongly to 0 in $L_p(B(a, 3\mu), |x|^s)$, s < p and since $R_m \leq 1$, we get that:

$$R_m^{p-s} |\int_{\mathbb{R}^n} \frac{h(\exp_{x_m}(R_m(x)))}{|x|_{\xi}^s} |\hat{\psi}_m|^p dv_{\hat{g}_m}| \le \sup hC \int_{\mathbb{R}^n} \frac{|\hat{\psi}_m|^p}{|x|_{\xi}^s} dx = o(1).$$

We get then:

$$\int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} = \int_{\mathbb{R}^n} f(\exp_{x_m}(R_m x)) |\hat{\psi}_m|^{p^*} dv_{\hat{g}_m} + o(1).$$
(3.22)

By the same way as in [21], we can prove that for $|a| + 3r < r_o$:

$$\int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} \le N\gamma + o(1), \tag{3.23}$$

where $N \in \mathbb{N}$ is such that $B(a, \mu) \subset B(a, 2r) \subset \bigcup_{1 \leq i \leq N} B(x_i, r)$, with $x_i \in B(a, 2r)$. We get then by the Sobolev inequality that:

$$\begin{aligned} \int_{\mathbb{R}^{n}} f(\exp_{x_{m}}(R_{m}x)) |\hat{\psi}_{m}|^{p^{*}} dv_{\hat{g}_{m}} &\leq \sup_{M} fC_{1} \int_{\mathbb{R}^{n}} |\hat{\psi}_{m}|^{p^{*}} dx \\ &\leq \sup_{M} fC_{1}^{\frac{p^{*}}{p}+1} K(n,p)^{p^{*}} \left(\int_{\mathbb{R}^{n}} |\nabla_{\hat{g}_{m}}\hat{\psi}_{m}|^{p} dv_{\hat{g}_{m}} \right)^{\frac{p^{*}}{p}}. \end{aligned}$$

Then, by (3.22) and (3.23), we get:

$$\begin{split} \int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} &\leq \sup_M fC_1 \int_{\mathbb{R}^n} |\hat{\psi}_m|^{p^*} dx \\ &\leq \sup_M fC_1^{\frac{p^*}{p} + 1} K(n, p)^{p^*} (N\gamma + o(1))^{\frac{p^*}{p} - 1} \int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m}. \end{split}$$

By taking γ such that

$$\sup_{M} f C_1^{\frac{p^*}{p}+1} K(n,p)^{p^*} (N\gamma)^{\frac{p^*}{p}-1} < 1,$$
(3.24)

we get:

$$\int_{\mathbb{R}^n} |\nabla_{\hat{g}_m} \hat{\psi}_m|^p dv_{\hat{g}_m} = o(1),$$

which means that $\hat{\psi}_m$ converges strongly in $D^{1,p}(\mathbb{R}^n)$. Thus, since $r \leq \mu$, we get that $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$. This strong convergence holds as soon as μ and r are small enough, |a| < 3r and $|a| + 3r < \min(r_o, \delta)$. Then, let μ be small enough such that condition (3.24), then $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$ for all |a| < 2r. Since $C_o \leq 2$, $B(C_o r)$ can be covered by N balls B(a,r), with $a \in B(2r)$ and thus $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(C_o r))$.

Step 2

For any R > 0 and $s \in (0, p)$, the sequence \hat{v}_m converges strongly to v in $H_1^p(B(R))$ and v is a nontrivial solution of (3.7).

Proof First, to prove that $v \neq 0$, we use step 1 above. Take r small enough so that $\hat{\eta}_m = 1$ on $B(C_o r)$, we then obtain

$$\begin{split} \gamma &= \int_{B(C_o r)} |\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m)|^p dv_{\hat{g}_m} \\ &\leq \int_{B(C_o r)} |\nabla v|^p dx + o(1). \end{split}$$

Hence, $v \neq 0$. As consequence, we get that $R_m \to 0$. In fact, if $R_m \to R > 0$. Since v_m converges weakly to 0, we get that \hat{v}_m converges weakly to 0 in $H_1^p(B(C_o r))$ since $v \neq 0$ and $(\hat{\eta}_m \hat{v}_m)$ converges strongly to v in $H_1^p(B(C_o r))$, we get a contradiction. Thus, $R_m \to 0$.

Now, let R > 1. For m is large, $R < R_m^{-1}$ and (3.14) and (3.15) are satisfied for $z + r < Rr_o$. Thus, as one can easily check from the proof of Step 1, $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$ for |a| + 3r < rR and $|a| \leq 3r(2R-1)$. In particular, $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$ for |a| < 2rR. Hence, $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$ for |a| < 2rR. Hence, $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(a,r))$ for |a| < 2rR. Hence, $\hat{\eta}_m \hat{v}_m$ converges strongly to v in $H_1^p(B(2rR))$. Since for m is large, $\hat{\eta}_m = 1$ and R is arbitrary chosen, we get that \hat{v}_m converges strongly to v in $H_1^p(B(R))$.

Now, let $\varphi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ with compact support included in a ball B(R), R > 0. For m is large, define on M the sequence φ_m as:

$$\varphi_m(x) = R_m^{\frac{p-n}{p}} \varphi(R_m^{-1}(\exp_{x_m}^{-1}(x))).$$

Then, we have:

$$\int_{M} |\nabla_g v_m|^{p-2} g(\nabla_g v_m, \nabla_g \varphi_m) dv_g = \int_{\mathbb{R}^n} |\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m)|^{p-2} \hat{g}(\nabla_{\hat{g}_m}(\hat{\eta}_m \hat{v}_m), \nabla_{\hat{g}_m} \varphi) dv_{\hat{g}_m}.$$
(3.25)

Knowing that $d_g(y, \exp_y(R_m x)) = R_m |x|$, we have:

$$d_g(x_o, x_m) - R_m |x| \le d_g(x_o, \exp_{x_m}(R_m x)) \le d_g(x_o, x_m) + R_m |x|.$$
(3.26)

Suppose that $x_m \to x_o$ as $m \to \infty$. Then, either $\frac{R_m}{d_g(x_o, x_m)} \to 0$ as $m \to \infty$, then $\frac{d_g(x_o, \exp_{x_m}(R_m x))}{d_g(x_o, x_m)} \to 1$ as $m \to \infty$ and consequently,

$$\frac{R_m}{d_g\left(x_o, \exp_{x_m}(R_m x)\right)} \to 0 \text{ as } m \to \infty,$$

or $\frac{R_m}{d_g(x_o, x_m)} \to A > 0$ as $m \to \infty$. Then, always by (3.26), we get:

$$\frac{1}{\frac{1}{A} + |x|} \le \lim_{m \to \infty} \frac{R_m}{d_g \left(x_o, \exp_{x_m}(R_m x)\right)} \le \frac{1}{\frac{1}{A} - |x|}$$

Hence, by writing

$$\int_{M} \frac{h}{\rho_{x_{o}}^{s}} |v_{m}|^{p-2} v_{m} \varphi_{m} dv_{g} = R_{m}^{p-s} \int_{\mathbb{R}^{n}} \frac{R_{m}^{s}}{d_{g}(x_{o}, \exp_{x_{m}}(R_{m}x))^{s}} h(\exp_{x_{o}}(R_{m}x)) |(\hat{\eta}_{m}\hat{v}_{m})|^{p-2} (\hat{\eta}_{m}\hat{v}_{m}) \varphi dv_{\hat{g}_{m}},$$

and

$$\int_{M} f|v_{m}|^{p^{*}-2} v_{m}\varphi_{m} dv_{g} = \int_{\mathbb{R}^{n}} f(\exp_{x_{m}}(R_{m}x))|(\hat{\eta}_{m}\hat{v}_{m})|^{p^{*}-2}(\hat{\eta}_{m}\hat{v}_{m})\varphi dv_{\hat{g}_{m}}.$$
(3.27)

Since $\hat{g}_m \to \xi$ in $C^1(B(R))$ for any R > 0, the sequence φ_m is bounded in $H^p_1(M)$, the sequence v_m is a P-S sequence of $J_{f,h,s}$ and the sequence $\hat{\eta}_m \hat{v}_m$ converges strongly to $v \neq 0$ in $D^{1,p}(\mathbb{R}^n)$, by passing to the limit, we get that v is a weak solution of

$$\Delta_{\xi,p}v = f(x^o)|v|^{p^*-2}v.$$

Step 3

Let $w_m = v_m - \mathcal{B}_m$, with

$$\mathcal{B}_m(x) = R_m^{\frac{p-n}{p}} \eta_{\delta, x_m}(x) v(R_m^{-1} \exp_{x_m}^{-1}(x)),$$
(3.28)

where $\eta_{\delta,x_m}(x) = \eta_{\delta}(\exp_{x_m}^{-1}(x))$. Then, the following statements hold:

$$\mathcal{B}_m$$
 converges weakly to 0 in $H_1^p(M)$, (3.29)

$$DJ_{f,h,s}(\mathcal{B}_m) \to 0, DJ_{f,h,s}(w_m) \to 0 \text{ strongly},$$
(3.30)

and

$$J_{f,h,s}(w_m) = J_{f,h,s}(v_m) - (f(x^o))^{\frac{p-n}{p}} E(u),$$
(3.31)

with u is a nontrivial weak solution of (1.3).

Proof The proof of (3.29) is identical to that of statement (14) of Step 2.4 in [21] and thus we omit it. We prove (3.30). Let $\varphi \in H_1^p(M)$. For $x \in B(\delta R_m^{-1})$ put $\varphi_m(x) = R_m^{\frac{n-p}{p}} \varphi(\exp_{x_m}(R_m x))$ and $\bar{\varphi}_m = \eta_\delta(R_m x)\varphi_m(x)$. Let R > 0 be a constant, we have:

$$\int_{M} |\nabla_{g} \mathcal{B}_{m}|^{p-2} g(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi) dv_{g} = \int_{B(x_{m}, R_{m}R)} |\nabla_{g} \mathcal{B}_{m}|^{p-2} g(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi) dv_{g}$$
$$+ \int_{B(x_{m}, 2\delta) \setminus B(x_{m}, R_{m}R)} |\nabla_{g} \mathcal{B}_{m}|^{p-2} g(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi) dv_{g}.$$

Direct computations give:

$$\int_{B(x_m,2\delta)\setminus B(x_m,R_mR)} |\nabla_g \mathcal{B}_m|^{p-2} g(\nabla_g \mathcal{B}_m,\nabla_g \varphi) dv_g = O(||\varphi||_{H^p_1(M)}) \varepsilon(R),$$

where $\varepsilon(R) \to 0$ as $R \to \infty$. For *m* is large, we have:

$$\int_{B(x_m,R_mR)} |\nabla_g \mathcal{B}_m|^{p-2} g(\nabla_g \mathcal{B}_m, \nabla_g \varphi) dv_g = \int_{B(R)} |\nabla_{\hat{g}_m} v|^{p-2} \hat{g}(\nabla_{\hat{g}_m} v, \nabla_{\hat{g}_m} \overline{\varphi}_m) dv_{\hat{g}_m}$$

knowing that

$$\int_{B(x_m,R_mR)} |\nabla_g \varphi|^p dv_g = \int_{B(R)} |\nabla_{\hat{g}_m} \varphi_m|^p dv_{\hat{g}_m},$$

and that the sequence of metrics \hat{g}_m converges in $C^1(B(R')), R' > R$, we get that:

$$\begin{split} &\int_{B(x_m,R_mR)} |\nabla_g \mathcal{B}_m|^{p-2} g(\nabla_g \mathcal{B}_m,\nabla_g \varphi) dv_g \\ &= \int_{B(R)} |\nabla_{\hat{g}_m} v|^{p-2} \hat{g}(\nabla_{\hat{g}_m} v,\nabla_{\hat{g}_m} \overline{\varphi}_m) dx + o(||\varphi||_{H_1^p(M)}). \\ &= \int_{\mathbb{R}^n} |\nabla v|_{\xi}^{p-2} \nabla v . \nabla \overline{\varphi}_m dx + o(||\varphi||_{H_1^p(M)}) + O(||\varphi||_{H_1^p(M)}) \varepsilon(R), \end{split}$$

where $\varepsilon(R) \to 0$ as $R \to \infty$. Thus,

$$\int_{M} |\nabla_{g} \mathcal{B}_{m}|^{p-2} g(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi) dv_{g}$$

$$= \int_{\mathbb{R}^{n}} |\nabla v|_{\xi}^{p-2} \nabla v . \nabla \overline{\varphi}_{m} dx + o(||\varphi||_{H_{1}^{p}(M)}) + O(||\varphi||_{H_{1}^{p}(M)}) \varepsilon(R),$$
(3.32)

By the same way, we get that:

$$\int_{M} f(x) |\mathcal{B}_{m}|^{p^{*}-2} \mathcal{B}_{m} \varphi dv_{g}$$

$$= f(x^{o}) \int_{\mathbb{R}^{n}} |v|^{p^{*}-2} v \overline{\varphi}_{m} dx + o(||\varphi||_{H_{1}^{p}(M)}) + O(||\varphi||_{H_{1}^{p}(M)}) \varepsilon(R).$$
(3.33)

Since the sequence \mathcal{B}_m converges to 0 weakly in $H_1^p(M)$ and the inclusion $H_1^p(M) \subset L_p(M, (\rho_{x_o})^s)$ is compact for $s \in (0, p)$, we can assume that $\mathcal{B}_m \to 0$ in $L_p(M, (\rho_{x_o})^s)$. Then, using the fact that v is a weak solution of $\Delta_{\xi, p}v = f(x^o)|v|^{p^*-2}v$, we get

$$DJ_{f,h,s}(\mathcal{B}_m).\varphi = o(||\varphi||_{H_1^p(M)}) + O(||\varphi||_{H_1^p(M)})\varepsilon(R).$$

Since R is arbitrary, we get that $DJ_{f,h,s}(\mathcal{B}_m) \to 0$. This proves the first part of (3.30). For the proof of the second part of (3.30), we write:

$$DJ_{f,h,s}(w_m) = DJ_{f,h,s}(v_m) - DJ_{f,h,s}(\mathcal{B}_m) + \mathcal{A}_m \cdot \varphi + \mathcal{C}_m \varphi + \mathcal{D}_m \varphi,$$

where

$$\mathcal{A}_{m} \varphi = \int_{M} g(|\nabla_{g} w_{m}|^{p-2} \nabla_{g} w_{m} - |\nabla_{g} v_{m}|^{p-2} \nabla_{g} v_{m} + |\nabla_{g} \mathcal{B}_{m}|^{p-2} \nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi) dv_{g}$$
$$\mathcal{C}_{m} \varphi = \int_{M} \frac{h}{(\rho_{x_{o}})^{s}} \left(|w_{m}|^{p-2} w_{m} + |v_{m}|^{p-2} v_{m} - |\mathcal{B}_{m}|^{p-2} \mathcal{B}_{m} \right) .\varphi dv_{g},$$

and

$$\mathcal{D}_m\varphi = \int_M f\left(|w_m|^{p^*-2}w_m + |v_m|^{p^*-2}v_m - |\mathcal{B}_m|^{p^*-2}\mathcal{B}_m\right).\varphi dv_g$$

We repeat the same arguments as in (3.1), we get that $\mathcal{A}_m.\varphi \to 0, \mathcal{C}_m.\varphi \to 0$ and $\mathcal{D}_m.\varphi \to 0$ which ends the proof of (3.30). Now, we prove (3.31). First, we repeat the same calculation in [21], we get:

$$\int_{M} |\nabla_g w_m|_g^p dv_g = \int_{M} |\nabla_g v_m|^p dv_g - \int_{\mathbb{R}^n} |\nabla v|^p dx + B_m(R) + o(1), \tag{3.34}$$

and

$$\int_{M} f|w_{m}|^{p^{*}} dv_{g} = \int_{M} f|v_{m}|^{p^{*}} dv_{g} - f(x^{o}) \int_{\mathbb{R}^{n}} |v|^{p^{*}} dx + B_{m}(R) + o(1),$$
(3.35)

with $\lim_{R \to \infty} \limsup_{m \to \infty} B_m(R) = 0.$

Since $w_m \to 0$ weakly in $H_1^p(M)$ which is compactly embedded in $L_p(M, (\rho_{x_o})^s)$ for $s \in (0, p)$, we may assume that $w_m \to 0$ strongly in $L_p(M, (\rho_{x_o})^s)$. Therefore, since R is arbitrarily chosen, by combining (3.34), (3.35), we get:

$$J_{f,h,s}(w_m) = J_{f,h,s}(v_m) - (f(x^o))^{\frac{p-n}{p}} E(u) + o(1),$$

with u is a weak solution of (1.3).

Lemma 3.4 Let v_m be a P.S sequence of $J_{f,h,p}$ at a level β that converges weakly and not strongly to 0 in $H_1^p(M)$. Then, there exists a sequence of positive reals $\mathcal{T}_m \to 0$ as $m \to \infty$ such that the sequence $\tilde{\eta}_m \tilde{v}_m$ with

$$\tilde{v}_m(x) = \mathcal{T}_m^{\frac{n-p}{p}} v_m(\exp_{x_o}(\mathcal{T}_m x)),$$

and $\tilde{\eta}_m(x) = \eta(\delta^{-1}\mathcal{T}_m x)$, $0 < \delta \leq \frac{Inj_g}{2}$ and η is defined by (3.18), converges up to subsequence to a weak solution $v \in D^{1,p}(\mathbb{R}^n)$ of

$$\Delta_{\xi,p}v + \frac{h(x_o)}{|x|^p}|v|^{p-2}v = f(x_o)|v|^{p^*-2}v,$$

Moreover, the sequence

$$w_m(x) = v_m(x) - \mathcal{T}_m^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_o}^{-1}(x)) v(\mathcal{T}_m^{-1} \exp_{x_o}^{-1}(x)),$$

GHOMARI and MALIKI/Turk J Math

where $0 < \delta < \frac{Inj_g}{2}$, admits a subsequence w_m that is a P-S sequence of $J_{f,h,p}$, at level $\beta - E_{f,h}(v)$ that converges to 0 weakly in $H_1^p(M)$.

Proof Let v_m be a P.S sequence of $J_{f,h,p}$ at level β that converges to 0 weakly and not strongly in $H_1^p(M)$. Then, up to a subsequence, we can assume that v_m converges strongly to 0 in $L_p(M)$ and that, by (3.6) there exists a small positive constant $\tilde{\gamma}$, such that

$$\limsup_{m \to \infty} \int_M |\nabla_g v_m|^p \, dv_g > \tilde{\gamma} > 0$$

Up to a subsequence, for each m > 0, there exists a constant $\tilde{r}_m > 0$ such that

$$\int_{B(x_o,\tilde{r}_m)} \left| \nabla_g v_m \right|^p dv_g = \tilde{\gamma} \tag{3.36}$$

For $0 < r_o < \frac{\text{Inj}_g}{2}$ and C_o as in (3.9). For $0 < r < r_o$, put $\mathcal{T}_m = \frac{\tilde{r}_m}{rC_o}$ and for $x \in B(\mathcal{T}_m^{-1}\delta_g)$ and define

$$\tilde{v}_m(x) = \mathcal{T}_m^{\frac{n-p}{p}} v_m(\exp_{x_o}(\mathcal{T}_m x)), \ x \in \mathbb{R}^n$$
$$\tilde{g}_m(x) = \exp_{x_o}^* g(\mathcal{T}_m x)$$

We let the sequence $\tilde{\eta}_m \tilde{v}_m$ such that $\tilde{\eta}_m = \eta(\delta^{-1}\mathcal{T}_m x), \delta \in (0, \frac{\ln j_g}{2})$ and $\eta \in C_o(\mathbb{R}^n)$ is the cut-off function such that $0 \leq \eta \leq 1, \ \eta(x) = 1, \ x \in B(\frac{1}{4})$ and $\eta(x) = 0, \ x \in \mathbb{R}^n \setminus B(\frac{3}{4})$. Going through the same way in the proof of Lemma 3.3, we get then that the sequence $\tilde{\eta}_m \tilde{v}_m$ is bounded in $D^{1,p}(\mathbb{R}^n)$ and then it converges weakly in $D^{1,p}(\mathbb{R}^n)$ to a function $v \in D^{1,p}(\mathbb{R}^n)$.

Suppose that $v \neq 0$, we get then that $\mathcal{T}_m \to 0$. To prove that v solves (1.4), we let $\varphi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ with compact support included in a ball B(R), R > 0. For m is large, define on M the sequence φ_m as

$$\varphi_m(x) = \mathcal{T}_m^{\frac{p-n}{p}} \varphi(\mathcal{T}_m^{-1}(\exp_{x_o}^{-1}(x)))$$

Identities (3.25) and (3.27) still hold and we have:

$$\int_{M} \frac{h}{\rho_{x_o}^p} |v_m|^{p-2} v_m \varphi_m dv_g = \int_{\mathbb{R}^n} \frac{h(\exp_{x_o}(\mathcal{T}_m x))}{|x|^p} |(\tilde{\eta}_m \tilde{v}_m)|^{p-2} (\tilde{\eta}_m \tilde{v}_m) \varphi dv_{\tilde{g}_m}.$$

Since $\mathcal{T}_m \to 0$, $\tilde{g}_m \to \xi$ in $C^1(B(R))$ and thus we can write $dv_{\tilde{g}_m} = \varepsilon_m dx$, with $\varepsilon \to 1$ uniformly in B(R). In addition, we can prove, as in [21] (proof of step 2.1), that $\nabla(\tilde{\eta}_m \tilde{v}_m) \to \nabla v$ a.e. Since we have also $\tilde{\eta}_m \tilde{v}_m \to v$ a.e. and the sequence $\tilde{\eta}_m \tilde{v}_m$ is bounded in $L_p(\mathbb{R}^n, |x|^p)$ we get by basic integration theory together with the fact that the sequence φ_m is bounded in $H_1^p(M)$ and the sequence v_m is a P-S sequence of $J_{f,h,p}$, that v is a weak solution of

$$\Delta_{\xi,p}v - \frac{h(x_o)}{|x|^p} |v|^{p-2}v = f(x_o)|v|^{p^*-2}v,$$

Now, that the sequence w_n converges weakly to 0 in $H_1^p(M)$ follows in the same manner as in the proof of Step 3 above. To prove that $DJ_{f,h,p}(w_m) \to 0$, we consider the sequence \mathcal{B}_m defined by (3.28). Let $\varphi \in H_1^p(M)$.

For $x \in B(\delta \mathcal{T}_m^{-1})$, put $\varphi_m(x) = \mathcal{T}_m^{\frac{n-p}{p}} \varphi(\exp_{x_o}(\mathcal{T}_m x))$ and $\bar{\varphi}_m = \eta_{\delta}(\mathcal{T}_m x)\varphi_m(x)$. Then, identities (3.32) and (3.33) still hold. Let R > 0 be a constant, we have:

$$\int_{M} \frac{h}{(\rho_{x_{o}})^{p}} |\mathcal{B}_{m}|^{p-2} \mathcal{B}_{m} \varphi dv_{g} = \int_{B(x_{o},\mathcal{T}_{m}R)} \frac{h}{(\rho_{x_{o}})^{p}} |\mathcal{B}_{m}|^{p-2} \mathcal{B}_{m} \varphi dv_{g} + \int_{B(x_{o},\delta) \setminus B(x_{o},\mathcal{T}_{m}R)} \frac{h}{(\rho_{x_{o}})^{p}} |\mathcal{B}_{m}|^{p-2} \mathcal{B}_{m} \varphi dv_{g}.$$

By Hölder and Hardy inequalities, we have:

$$\begin{split} \int_{B(x_o,\delta)\setminus B(x_o,\mathcal{T}_mR)} \frac{h}{(\rho_{x_o})^p} |\mathcal{B}_m|^{p-2} \mathcal{B}_m \varphi dv_g &\leq \sup_M |h| \|\varphi\|_{H_1^p(M)} \int_{B(x_o,\delta)\setminus B(x_o,\mathcal{T}_mR)} |\nabla_g \mathcal{B}_m|^p dv_g + o(1) \\ &= \sup_M |h| \|\varphi\|_{H_1^p(M)} \int_{B(\delta \mathcal{T}_m^{-1}))\setminus B(R)} |\nabla v|^p dx + o(1) \\ &= O(\|\varphi\|_{H_1^p(M)}) \varepsilon(R) + o(1), \end{split}$$

with $\varepsilon \to 0$ as $R \to \infty$. Put

$$\overline{\varphi}(x) = \mathcal{T}_m^{\frac{n-p}{p}} \varphi(\exp_{x_o}(\mathcal{T}_m x))$$

Then, for m is large

$$\int_{B(x_o,\mathcal{T}_mR)} \frac{h}{(\rho_{x_o})^p} |\mathcal{B}_m|^{p-2} \mathcal{B}_m \varphi dv_g = \int_{B(R)} \frac{h(\exp_{x_o}(\mathcal{T}_mx))}{|x|^p} |v|^{p-2} v \overline{\varphi}_m dv_{\tilde{g}_m} dv_{\tilde{g}_m$$

Since $\tilde{g} \to \xi$ in $C^1(B(R')), R' > R$, we get

$$\int_{B(R)} \frac{h(\exp_{x_o}(\mathcal{T}_m x))}{|x|^p} |v|^{p-2} v \overline{\varphi}_m dv_{\tilde{g}_m} = h(x_o) \int_{B(R)} \frac{1}{|x|^p} |v|^{p-2} v \overline{\varphi}_m dx + o(\|\varphi\|_{H_1^p(M)})$$
$$= h(x_o) \int_{\mathbb{R}^n} \frac{1}{|x|^p} |v|^{p-2} v \overline{\varphi}_m dx + o(\|\varphi\|_{H_1^p(M)}) + O(\|\varphi\|_{H_1^p(M)}) \varepsilon(R).$$

Therefore,

$$\int_{M} \frac{h}{(\rho_{x_{o}})^{p}} |\mathcal{B}_{m}|^{p-2} \mathcal{B}_{m} \varphi dv_{g} = h(x_{o}) \int_{\mathbb{R}^{n}} \frac{1}{|x|^{p}} |v|^{p-2} v \overline{\varphi}_{m} dx + o(\|\varphi\|_{H_{1}^{p}(M)}) + O(\|\varphi\|_{H_{1}^{p}(M)}) \varepsilon(R) + o(1).$$
(3.37)

Since v is a weak solution of (1.4), we get by (3.32), (3.33), and (3.37) that $DJ_{f,h,p}(\mathcal{B}_m) \to 0$. This implies, as in the proof of (3.30) of Step 3, that $DJ_{f,h,p}(w_m) \to 0$. Now, we prove the last statement of the lemma. Put

$$\hat{w}_m(x) = \mathcal{T}_m^{\frac{n-p}{p}} w_m(\exp_{x_o}(\mathcal{T}_m x)) = \tilde{v}_m - \eta_\delta(\mathcal{T}_m x) v(x)$$

By convexity, we have:

$$\begin{split} &\int_{\mathbb{R}^n} |\nabla(v(\eta_{\delta}(\mathcal{T}_m x) - 1))|^p dx \\ &= \int_{\mathbb{R}^n \setminus B(\delta \mathcal{T}_m^{-1})} |\nabla v|^p dx + \int_{B(2\delta \mathcal{T}_m^{-1}) \setminus B(\delta \mathcal{T}_m^{-1})} |\nabla(v(\eta_{\delta}(\mathcal{T}_m x) - 1))|^p dx \\ &\leq 2^{p-1} \left(\int_{B(2\delta \mathcal{T}_m^{-1}) \setminus B(\delta \mathcal{T}_m^{-1})} |\eta_{\delta}(\mathcal{T}_m x) - 1)|^p |\nabla v|^p dx + \mathcal{T}_m^p \int_{B(2\delta \mathcal{T}_m^{-1}) \setminus B(\delta \mathcal{T}_m^{-1})} |v|^p |(\nabla \eta_{\delta})(\mathcal{T}_m x)|^p dx \right) \\ &+ \int_{\mathbb{R}^n \setminus B(\delta \mathcal{T}_m^{-1})} |\nabla v|^p dx \\ &\leq 2^{p-1} \left(\int_{B(2\delta \mathcal{T}_m^{-1}) \setminus B(\delta \mathcal{T}_m^{-1})} |\nabla v|^p dx + C \mathcal{T}_m^p \int_{B(2\delta \mathcal{T}_m^{-1}) \setminus B(\delta \mathcal{T}_m^{-1})} |v|^p dx \right) + \int_{\mathbb{R}^n \setminus B(\delta \mathcal{T}_m^{-1})} |\nabla v|^p dx \\ &= o(1). \end{split}$$

Similarly, we get that $\tilde{\eta}_m v = v + o(1)$. Thus, we obtain:

$$\tilde{\eta}_m \hat{w}_m = \tilde{\eta}_m \tilde{v}_m - v + o(1)$$

Since $\tilde{\eta}_m \tilde{v}_m \to v$ a.e in \mathbb{R}^n and $\nabla(\tilde{\eta}_m \tilde{v}_m) \to \nabla v$ a.e in \mathbb{R}^n , we get, as in the proof of Lemma 3.1, that

$$E_{f,h}(\tilde{\eta}_m \hat{w}_m) = E_{f,h}(\tilde{\eta}_m \tilde{v}_m) - E_{h,f}(v) + o(1).$$

By using rescaling invariance and the fact that $\tilde{g}_m \to \xi$ in $C^1(B(R))$ for any R > 0, we get that:

$$J_{f,h,p}(w_m) = J_{f,h,p}(v_m) - E_{h,f}(v) + o(1).$$

Lemma 3.5 Suppose that the weak limit v in $D^{1,p}(\mathbb{R}^n)$ of the sequence $\tilde{\eta}_m \tilde{v}_m$ of the above lemma is null. Then, there exists a sequence of positive numbers $\tau_m \to 0$ and a sequence of points $y_i \in M \setminus \{x_o\}, y_i \to y_o \neq x_o$ such that up to a subsequence, the sequence

$$\nu_m = \tau_m^{\frac{n-p}{p}} v_m(\exp_{y_i}(\tau_m x))$$

converges weakly to a nontrivial weak solution ν of the Euclidean equation

$$\Delta_{\xi,p}\nu = f(y_o)|\nu|^{p^*-2}\nu$$

and the sequence

$$\mathcal{W}_m = v_m - \tau_m^{\frac{p-n}{p}} \eta_{\delta}(exp_{y_i}^{-1}(x))\nu(\tau_m^{-1}exp_{y_i}^{-1}(x))$$

is a Palais-Smale sequence for $J_{f,h,p}$ that converges weakly to 0 in $H_1^p(M)$ and

$$J_{f,h,p}(\mathcal{W}_m) = J_{f,h,p}(v_m) - f(y_o)^{\frac{p-n}{p}} E(u),$$

with u is a solution of (1.3).

Proof Take a function $\varphi \in \mathcal{C}_0^{\infty}(B(C_o r))$ and put $\varphi_m(x) = \varphi(\mathcal{T}_m^{-1} \exp_{x_o}^{-1}(x))$. We have:

$$\int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m} \tilde{v}_m|^{p-2} \tilde{g}(\nabla_{\tilde{g}_m} \tilde{v}_m, \nabla_{\tilde{g}_m} (\tilde{v}_m |\varphi|^p)) dv_{\tilde{g}_m} = \int_{\mathbb{R}^n} |\varphi|^p |\nabla_{\tilde{g}_m} \tilde{v}_m|^p dv_{\tilde{g}_m}$$
$$+ \int_{\mathbb{R}^n} p |\varphi|^{p-1} |\tilde{v}_m| |\nabla_{\tilde{g}_m} \tilde{v}_m|^{p-2} \tilde{g}(\nabla_{\tilde{g}_m} \tilde{v}_m, \nabla_{\tilde{g}_m} |\varphi|) dv_{\tilde{g}_m}.$$

Since the sequence $\tilde{\eta}_m \tilde{v}_m$ is bounded in $D^{1,p}(\mathbb{R}^n)$ and it converges strongly to 0 in $L_{p,loc}(\mathbb{R}^n)$, we have:

$$\begin{aligned} \left| \int_{\mathbb{R}^n} p|\varphi|^{p-1} |\tilde{v}_m| |\nabla_{\tilde{g}_m} \tilde{v}_m|^{p-2} \tilde{g}(\nabla_{\tilde{g}_m} \tilde{v}_m, \nabla_{\tilde{g}_m} |\varphi|) dv_{\tilde{g}_m} \right| \\ &\leq C \int_{B(C_o r)} |\tilde{v}_m| |\nabla_{\tilde{g}_m} \tilde{v}_m|^{p-1} dv_{\tilde{g}_m} \\ &\leq C \left(\int_{B(C_o r)} |\tilde{v}_m|^p dv_{\tilde{g}_m} \right)^{\frac{1}{p}} \left(\int_{B(C_o r)} |\nabla_{\tilde{g}_m} \tilde{v}_m|_{\tilde{g}_m}^p dv_{\tilde{g}_m} \right)^{1-\frac{1}{p}} = o(1). \end{aligned}$$

Then

$$\int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m} \tilde{v}_m|^{p-2} \tilde{g}(\nabla_{\tilde{g}_m} \tilde{v}_m, \nabla_{\tilde{g}_m} (\tilde{v}_m |\varphi|^p)) dv_{\tilde{g}_m} = \int_{\mathbb{R}^n} |\varphi|^p |\nabla_{\tilde{g}_m} \tilde{v}_m|^p dv_{\tilde{g}_m} + o(1).$$

Now, by lemma A.4 in [4], the following inequalities hold

1. If $1 , for a given <math>\gamma \in (1, p)$, there exists a constant such that

$$(1 + t^2 + 2t\cos\alpha)^{\frac{p}{2}} \le 1 + t^p + pt\cos\alpha + Ct^{\gamma},$$

for $t \ge 0$ uniformly in α .

2. If $2 \le p \le 3$, for a given $\gamma \in [p-1,2]$, there exists a constant such that

$$(1 + t^2 + 2t\cos\alpha)^{\frac{p}{2}} \le 1 + t^p + pt\cos\alpha + Ct^{\gamma},$$

for $t \ge 0$ uniformly in α .

3. If $p \ge 3$, there exists a constant such that

$$(1 + t^{2} + 2t\cos\alpha)^{\frac{p}{2}} \le 1 + t^{p} + pt\cos\alpha + C(t^{2} + t^{p-1}),$$

for $t \geq 0$ uniformly in α .

Using these inequalities together with Hölder inequality and the strong convergence of $\tilde{\eta}_m \tilde{v}_m$ in $L_{p,loc}(\mathbb{R}^n)$, we get:

$$\int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}(\tilde{v}_m\varphi)|^p dv_{\tilde{g}_m} \le \int_{\mathbb{R}^n} |\varphi|^p |\nabla_{\tilde{g}_m}\tilde{v}_m|^p dv_{\tilde{g}_m} + o(1),$$

in such a way that

$$\begin{split} & \int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}(\tilde{v}_m\varphi)|^p dv_{\tilde{g}_m} \\ & \leq \int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}\tilde{v}_m|^{p-2} \tilde{g}(\nabla_{\tilde{g}_m}\tilde{v}_m, \nabla_{\tilde{g}_m}(\tilde{v}_m|\varphi|^p)) dv_{\tilde{g}_m} + o(1), \\ & = \int_M |\nabla v_m|^{p-2} g(\nabla_g v_m, \nabla_g(v_m|\varphi_m|^p)) dv_g + o(1) \end{split}$$

Moving to and from rescaling, using Hölder, Hardy, and Sobolev inequalities and the fact that v_m is P-S sequence and that $v_m |\varphi_m|^p$ is bounded in $H_1^p(M)$, we get:

$$\begin{split} & \int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}(\tilde{v}_m\varphi)|^p dv_{\tilde{g}_m} \\ & \leq \int_M |\nabla_g v_m|^{p-2} g(\nabla_g v_m, \nabla_g (v_m |\varphi_m|^p)) dv_g + o(1) \\ & = (DJ_{f,h,p}(v_m)) \cdot (v_m |\varphi_m|^p) + \int_M \frac{h}{\rho_{x_o}^p} |v_m \varphi_m|^p dv_g + \int_M f |v_m|^{p^*-p} |v_m \varphi_m|^p dv_g + o(1) \\ & \leq (h(x_o) + \varepsilon) \left(\left(\frac{p}{n-p}\right)^p + \varepsilon \right) \int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}(\tilde{v}_m\varphi)|^p dv_{\tilde{g}_m} \\ & + (K^{p^*}(n,p) + \varepsilon) \sup f \left(\int_{B(C_or)} |\nabla_{\tilde{g}_m}(\tilde{v}_m)|^p dv_{\tilde{g}_m} \right)^{\frac{p}{n-p}} \int_{\mathbb{R}^n} |\nabla_{\tilde{g}_m}(\tilde{v}_m\varphi)|^p dv_{\tilde{g}_m} \\ & + o(1). \end{split}$$

Thus, since $1 - h(x_o)(\frac{p}{n-p})^p > 0$, for $\tilde{\gamma}$ in (3.36) chosen small enough, we get that for each $t, 0 < t < C_o r$

$$\int_{B(x_o, t\mathcal{T}_m)} |\nabla_g v_m|^p \, dv_g = \int_{B(t)} |\nabla_{\tilde{g}_m} \tilde{v}_m|^p \, dv_{\tilde{g}_m} \to 0, m \to \infty$$
(3.38)

Now, the sequence v_m is a P.S sequence that converges to 0 weakly and not strongly in $H_1^p(M)$, we get as in lemma 3.2 that

$$\int_{M} \left| \nabla_{g} v_{m} \right|^{p} dv_{g} \ge \left(\frac{n\beta^{*}}{\sup_{M} f(K(n,p)+\varepsilon)^{p^{*}}} \right)^{\frac{p}{p^{*}}} + o(1).$$
(3.39)

Consider for t > 0 the function

$$t \mapsto \mathcal{F}_m(t) = \max_{y \in M} \int_{B(y,t)} \left| \nabla_g v_m \right|^p dv_g$$

Given that t_o is small, it follows from (3.39) that there exists $y \in M$ and $\lambda_o > 0$ such that up to a subsequence

$$\int_{B(y,t_o)} |\nabla_g v_m|^p \, dv_g \ge \lambda_o \tag{3.40}$$

Since \mathcal{F}_m is continuous, it follows that for any $\lambda \in (0, \lambda_o)$, there exist $t_m \in (0, t_o)$ and $y_m \in M$ such that

$$\mathcal{F}_m(t_m) = \int_{B(y_m, t_m)} \left| \nabla_g v_m \right|^p dv_g = \lambda.$$
(3.41)

Since M is compact, up to a subsequence, we may assume that y_m converges to some point $y_o \in M$. Note first that for all $m \ge 0$, $t_m < \tilde{r}_m = C_o r \mathcal{T}_m$, otherwise if there exists $m_o \ge 0$ such that $t_{m_o} \ge \tilde{r}_{m_o}$, we get:

$$\lambda = \int_{B(y_{m_o}, t_{m_o})} |\nabla_g v_{m_o}|^p \, dv_g \ge \int_{B(x_o, t_{m_o})} |\nabla_g v_{m_o}|^p \, dv_g \ge \int_{B(x_o, \tilde{r}_{m_o})} |\nabla v_{m_o}|^p \, dv_g = \gamma.$$

Hence, if we choose λ small enough such that $0 < \lambda < \gamma$, we get a contradiction.

Now, suppose that for all $\varepsilon > 0$, there exists $m_{\varepsilon} > 0$ such that for all $m \ge m_{\varepsilon} \operatorname{dist}_g(y_m, x_o) \le \varepsilon$. Choose r'_m such that, $t_m < r'_m < \tilde{r}_m$ and take $\varepsilon' = r'_m - t_m$, we get that for some $m_{\varepsilon'} > 0$ and $m \ge m_{\varepsilon'}$

$$B(y_m, t_m) \subset B(x_o, r'_m)$$

which gives, by virtue of (3.38) and (3.41), a contradiction. We deduce then that $y_o \neq x_o$. Now, take $0 < \tau_m < 1$ such that $C_o r \tau_m = t_m$, where $r \in (0, r_o)$ and C_o and r_o are as in (3.9). Then, for $x \in B(\tau_m^{-1}\delta_g) \subset \mathbb{R}^n$ consider the sequences

$$\begin{split} \check{\nu}_m(x) &= \tau_m^{\frac{n-p}{p}} v_m(\exp_{y_m}(\tau_m x)), \\ \check{g}_m(x) &= \exp_{y_m}^* g(\tau_m x) \end{split}$$

Put $\check{\eta}_m(x) = \eta(\delta^{-1}\tau_m x)$, where $\delta \in (0, Inj_g)$ and $x \in \mathbb{R}^n$. As in the proof of lemma 3.3, we can easily check that there is a subsequence of $\tilde{\eta}_m \tilde{\nu}_m$ that converges weakly in $\mathcal{D}^{1,p}(\mathbb{R}^n)$ to some function ν . We prove that actually the strong convergence holds in $H_1^p(B(R)), R > 0$. In fact, we go through the same proof of Step 1 above by just replacing x_m by y_m and R_m by τ_m . We let then $a \in \mathbb{R}^n$ and $\mu \in [r, 2r]$ and consider the sequence

$$\begin{cases} \check{\psi}_m = \check{\eta}_m \check{\nu}_m - \nu & \text{in } \overline{B}(a,\mu), \\ \check{\psi}_m = z_m & \text{in } \overline{B}(a,3r) \setminus B(a,\mu), \\ \check{\psi}_m = 0 & \text{in } \mathbb{R}^n \setminus B(a,3r). \end{cases}$$

where z_m are solutions of (3.19). For $r < \frac{\delta}{24}$, consider the rescaling sequence ψ_m of $\check{\psi}_m$

$$\begin{cases} \psi_m(x) = \tau_m^{\frac{p-n}{p}} \check{\psi}_m(\tau_m^{-1} \exp_{y_m}^{-1}(x)), & \text{if } x < d_g(y_m, 6r), \\ \psi_m(x) = 0, & \text{otherwise.} \end{cases}$$

As in (3.20), we have:

$$o(1) = \int_{B(a,3r)} |\nabla_{\check{g}_m}(\check{\eta}_m\check{\nu}_m)|^{p-2}\check{g}\left(\nabla_{\check{g}_m}(\check{\eta}_m\check{\nu}_m), \nabla_{\check{g}_m}\check{\psi}_m\right) dv_{\check{g}_m}$$

$$- \tau_m^p \int_{B(a,3r)} \frac{h(\exp_{y_m}(\tau_m x))}{\left(\rho_{x_o}(\exp_{y_m}(\tau_m x))\right)^p} |\check{\eta}_m\check{\nu}_m|^{p-2}(\check{\eta}_m\check{\nu}_m)\check{\psi}_m dv_{\check{g}_m}$$

$$- \int_{B(a,3r)} f(\exp_{y_m}(\tau_m x)) |\check{\eta}_m\check{\nu}_m|^{p^*-2}(\check{\eta}_m\check{\nu}_m)\check{\psi}_m dv_{\check{g}_m}.$$

$$(3.42)$$

As above, we have:

$$\int_{B(a,3r)} |\nabla_{\check{g}_m}(\check{\eta}_m\check{\nu}_m)|^{p-2}\check{g}\left(\nabla_{\check{g}_m}(\check{\eta}_m\check{\nu}_m),\nabla_{\check{g}_m}\check{\psi}_m\right) dv_{\check{g}_m} = \int_{\mathbb{R}^n} |\nabla_{\check{g}_m}\check{\psi}_m|^p dv_{\check{g}_m} + o(1),$$

and

$$\int_{B(a,3r)} f(\exp_{y_m}(\tau_m x)) |\check{\eta}_m \check{\nu}_m|^{p^*-2} (\check{\eta}_m \check{\nu}_m) \check{\psi}_m dv_{\check{g}_m}$$
$$= \int_{\mathbb{R}^n} f(\exp_{y_m}(\tau_m x)) |\check{\psi}_m|^{p^*} dv_{\check{g}_m} + o(1).$$

Since $\tau_m \to 0$, we get that for all $\varepsilon > 0$, there exists m_o such that for all $m \ge m_o$, we have:

$$\rho_{x_o}(\exp_{y_m}(\tau_m x)) = dist_g(x_o, \exp_{y_m}(\tau_m x)) \ge dist_g(x_o, y_o) - \varepsilon = \varrho > 0.$$

Then, as in the proof of step 1, we get:

$$\int_{B(a,3r)} \frac{h(\exp_{y_m}(\tau_m x))}{\left(\rho_{x_o}(\exp_{y_m}(\tau_m x))\right)^p} |\check{\eta}_m \check{\nu}_m|^{p-2} (\check{\eta}_m \check{\nu}_m) \check{\psi}_m dv_{\check{g}_m}$$

$$= \int_{\mathbb{R}^n} \frac{h(\exp_{y_m}(\tau_m x))}{\left(\rho_{x_o}(\exp_{y_m}(\tau_m x))\right)^p} |\check{\psi}_m|^p dv_{\check{g}_m} + o(1).$$
(3.43)

Since the sequence $\check{\psi}_m$ converges strongly to 0 in $L_{p,loc}(\mathbb{R}^n)$, we get:

$$\int_{\mathbb{R}^n} \frac{h(\exp_{y_m}(\tau_m x))}{\left(\rho_{x_o}(\exp_{y_m}(\tau_m x))\right)^p} |\check{\psi}_m|^p dv_{\check{g}_m} \le C \int_{\mathbb{R}^n} |\check{\psi}_m|^p dv_{\check{g}_m} = o(1).$$

We deduce that:

$$\int_{\mathbb{R}^n} |\nabla_{\check{g}_m}\check{\psi}_m|^p dv_{\check{g}_m} = \int_{\mathbb{R}^n} f(\exp_{y_m}(\tau_m x)) |\check{\psi}_m|^{p^*} dv_{\check{g}_m} + o(1).$$

The remaining of the proof goes in the same way as in the proof of step 1 and step 2. Thus, we get that $\nu \neq 0$ and ν is a weak solution of

$$\Delta_{p,\xi}\nu = f(y_o)|\nu|^{p^*-2}\nu.$$

Now, we are in position to prove Theorems 1.1 and 1.2

Proof [Proof of Theorem 1.1] Let us first note that if $u \in D^{1,p}(\mathbb{R}^n)$ is a nontrivial weak solution of (1.4), then

$$E_{f,h}(u) \ge \frac{(1 - h(x_o)(\frac{p}{n-p})^p)^{\frac{n}{p}}}{n(\sup_M f)^{\frac{n-p}{p}} K^n(n,p)}.$$
(3.44)

In fact, by Hardy and Sobolev inequalities, we have:

$$\left(1 - h(x_o)\left(\frac{p}{n-p}\right)^p\right) \int_{\mathbb{R}^n} |\nabla u|^p dx \le \int_{\mathbb{R}^n} |\nabla u|^p dx - h(x_o) \int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p} dx = f(x_o) \int_{\mathbb{R}^n} |u|^{p^*} dx$$
$$\le \quad f(x_o) K^{p^*}(n,p) \left(\int_{\mathbb{R}^n} |\nabla u|^p dx\right)^{\frac{p^*}{p}}$$

Since u cannot be a constant, we get:

$$\int_{\mathbb{R}^n} |\nabla u|^p dx \ge \frac{(1 - h(x_o)(\frac{p}{n-p})^p)^{\frac{n-p}{p}}}{(f(x_o))^{\frac{n-p}{p}} K^n(n,p)}$$

Hence,

$$E_{f,h}(u) = \frac{1}{n} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx - h(x_o) \int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p} dx \right) \geq \frac{(1 - h(x_o)(\frac{p}{n-p})^p)(1 - h(x_o)(\frac{p}{n-p})^p)^{\frac{n-p}{p}}}{n(\sup_M f)^{\frac{n-p}{p}} K^n(n,p)}$$
$$\geq \frac{(1 - h(x_o)(\frac{p}{n-p})^p)^{\frac{n}{p}}}{n(f(x_o))^{\frac{n-p}{p}} K^n(n,p)}.$$

By the same way, we can also have that for a nontrivial solution $u \in D^{1,p}(\mathbb{R}^n)$ of (1.3),

$$E(u) \ge \frac{1}{nK^n(n,p))}.\tag{3.45}$$

Now, let u_m be a P-S sequence for $J_{f,h,s}$ at level β_s^u , 0 < s < p. Then, u_m is bounded in $H_1^p(M)$ and it converges, up to a subsequence, to a function u weakly in $H_1^p(M)$ and almost everywhere to u in M. Thus, by Lemma 3.1, the function u is a weak solution of (E_s) , 0 < s < p and the sequence $v_m = u_m - u$ is a Palais-Smale sequence for $J_{f,h,s}$ at level $\beta_s = \beta_s^u - J_{f,h,s}(u)$.

If v_m converges strongly to 0 in $H_1^p(M)$, then the theorem is proved with k = 0. If not, by Lemma 3.2, $\beta_s \geq \beta^* = \frac{1}{n(\sup_M f)^{\frac{n-p}{p}}K^n(n,p)}$. Then, by Lemma 3.3 and its proof, there exists a nontrivial weak solution $v_1 \in D^{1,p}(\mathbb{R}^n)$ of $\Delta_{p,\xi}v = f(x_1^o)|v|^{p^*-2}v$, a converging sequence of points $x_m^1 \to x_1^o$ and a sequence of reals $R_m^1 \to 0$ such that, the sequence

$$w_m(x) = v_m - (R_m^1)^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_m^1}^{-1}(x)) v_1((R_m^1)^{-1} \exp_{x_m^1}^{-1}(x)), x \in M$$

admits a subsequence that is P-S sequence of $J_{f,h,s}$, 0 < s < p, at level $\beta^1 = \beta_s - (f(x_1^o))^{\frac{p-n}{p}} E(u_1)$, with u_1 is a nontrivial weak solution of (1.3). By (3.45), $\beta^1 \leq \beta_s - \beta^*$. Then, if $\beta_s < 2\beta^*$, we get $\beta^1 < \beta^*$ and the sequence w_m converges strongly to 0 in $H_1^p(M)$. Hence, the theorem is proved with k = 1. If not, we repeat the procedure until we obtain a P-S sequence at level $\beta^k \leq \beta_s - k\beta^* < \beta^*$ and Theorem 1.1 is proved.

Proof [Proof of theorem 1.2] In the same way as above, we prove theorem 1.2. We let u_m be a P-S sequence for $J_{f,h,p}$ at a level β^u . Then, u_m is bounded in $H_1^p(M)$ and it converges, up to a subsequence, to a function u weakly in $H_1^p(M)$ and almost everywhere to u in M. Thus, by Lemma 3.1, the function u is a weak solution of (E_s) , s = p, and the sequence $v_m = u_m - u$ is a Palais-Smale sequence for $J_{f,h,p}$ at level $\beta = \beta^u - J_{f,h,p}(u)$. If v_m converges strongly to 0 in $H_1^p(M)$, then the theorem is proved with k = 0, l = 0. If not, by Lemma 3.2,

 $\beta \ge \beta^* = \frac{(1-h(x_o)(\frac{n-p}{p})^p)^{\frac{n}{p}}}{n(\sup_M f)^{\frac{n-p}{p}}K^n(n,p)}.$ By Lemma 3.4, there exist a sequence of positive reals $\mathcal{T}_m^1 \to 0$ such that the

sequence $\tilde{\eta}_m \tilde{v}_m$ with

$$\tilde{v}_m(x) = \mathcal{T}^{\frac{n-p}{p}} v_m(\exp_{x_o}(\mathcal{T}_m^1 x)),$$

and $\tilde{\eta}_m(x) = \eta(\delta^{-1}\mathcal{T}_m^1 x)$, $0 < \delta \leq \frac{\text{Inj}_g}{2}$ and η is defined by (3.18), converges, up to subsequence, weakly to some function $v_1 \in D^{1,p}(\mathbb{R}^n)$ such that if $v_1 \neq 0$, then v_1 is solution of

$$\Delta_{\xi,p}v + \frac{h(x_o)}{|x|^p}|v|^{p-2}v = f(x_o)|v|^{p^*-2}v,$$

and the sequence

$$w_m(x) = v_m(x) - (\mathcal{T}_m^1)^{\frac{p-n}{p}} \eta_{\delta}(\exp_{x_o}^{-1}(x)) v_1((\mathcal{T}_m^1)^{-1} \exp_{x_o}^{-1}(x)),$$

where $0 < \delta < \frac{\text{Inj}_g}{2}$, admits a subsequence w_m that is a P-S sequence of $J_{f,h,p}$, at level $\beta^1 = \beta - E_{f,h}(v_1)$ that converges to 0 weakly in $H_1^p(M)$. By (3.44), $\beta^1 \leq \beta - \beta^*$. Then, if $\beta < 2\beta^*$, we get $\beta^1 < \beta^*$ and the sequence w_m converges strongly to 0 in $H_1^p(M)$. If not, we repeat the procedure until we obtain a Palais-Smale sequence at level $\beta^k \leq \beta - k\beta^* < \beta^*$.

Now, if the weak limit v of the sequence \tilde{v} is the zero function by lemma 3.5, there exists a nontrivial weak solution ν_1 of $\Delta_{p,\xi}\nu = f(y_o^1)|\nu|^{p^*-2}\nu$, a sequence of positive reals $\tau_m^1 \to 0$ and a sequence $y_i^1 \to y_o^1 \neq x_o$ such that the sequence

$$\mathcal{W}_m(x) = v_m - (\tau_m^1)^{\frac{p-n}{p}} \eta_{\delta}(\exp_{y_i^1}^{-1}(x)) \nu_1((\tau_m^1)^{-1} \exp_{y_i^1}^{-1}(x)), \ x \in M$$

admits a subsequence which is a P-S sequence of $J_{f,h,p}$ at level $\beta^1 = \beta - (f(y_o^1))^{\frac{p-n}{p}} E(u_1) \leq \beta - \beta^*$, with u_1 is a nontrivial weak solution of (1.3). If $\beta < 2\beta^*$, then $\beta^1 < \beta^*$ and the sequence \mathcal{W}_m converges strongly to 0 in $H_1^p(M)$. The theorem is then proved with k = 0 and l = 1. If not, we repeat the procedure until we obtain a P-S sequence at level $\beta^k \leq \beta - k\beta^* < \beta^*$.

References

- Abdallaoui B, Felli V, Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell'Unione Matematica Italiana 2006; 9-B (2): 445-484. http://eudml.org/doc/289600
- [2] Aubin T. Problèmes isopérimétriques et espaces de Sobolev. Journal of Differential Geometry 1976; 11 (4): 573-598 (in French). https://doi.org/10.4310/jdg/1214433725
- [3] Aubin T. Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics (1998).
- [4] Azorero JG, Peral I. Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana University Mathematics Journal 1994; 43 (3): 941-957. https://doi.org/10.1512/iumj.1994.43.43041
- [5] Benalili M, Maliki Y. Generalized prescribed scalar curvature type equations on complete Riemannian manifolds. Electronic Journal of Differential Equations 2004; 2004 (147): 1-18.
- [6] Boccardo L, Croce G. Elliptic Partial Differential Equation. DeGruyter, 2013.
- [7] Caffarelli LA, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics 1989; 42 (3): 271-297. https://doi.org/10.1002/cpa.3160420304
- [8] Damascelli L, Merchán S, Montoro L, Sciunzi B. Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in \mathbb{R}^N . Advances in Mathematics 2014; 265: 313-335. https://doi.org/10.1016/j.aim.2014.08.004
- [9] Druet O. Generalized prescribed scalar curvature type equations on compact Riemannian manifolds. Proceedings of the Royal Society of Edinburgh 2000; 130 (6): 767-788. https://doi.org/10.1017/S0308210500000408

- [10] Druet O, Hebbey E, Robert F. Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Princeton University Press, 2004.
- [11] Felli V, Pistoia A. Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth. Communications in Partial Differential Equations 2006; 31 (1): 21-56. https://doi.org/10.1080/03605300500358145
- [12] Guedda M, Veron L. Local, global properties of solutions of quasilinear elliptic equations. Journal of Differential Equations 1988; 76 (1): 159-189. https://doi.org/10.1016/0022-0396(88)90068-X
- [13] Hebey E. Introduction à l'Analyse non Linéaire sur les Variétés. Diderot, 1997 (in French).
- [14] Hebey E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes, 5, 2000.
- [15] Kavian O. Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Springer-Verlag, 1993 (in French).
- [16] Madani F. Le problème de Yamabe avec singularités. Bulletin des Sciences Mathématiques 2008; 132 (7): 575-591 (in French). https://doi.org/10.1016/j.bulsci.2007.09.004
- [17] Madani F. Le problème de Yamabe avec singularités et la conjecture de Hebey-Vaugon. PhD, Université Pierre et Marie Curie, Paris, France, 2009 (in French).
- [18] Maliki Y, Terki FZ. A Struwe type decomposition result for a singular elliptic equation on compact Riemannian manifolds. Analysis in Theory and Applications 2018; 34 (1): 17-35. https://doi.org/10.4208/ata.2018.v34.n1.2
- [19] Obata M. The conjectures on conformal transformations of Riemannian manifolds, Journal of Differential Geometry 1971; 6 (2): 247-258. https://doi.org/10.4310/jdg/1214430407
- [20] Rabinowitz PH. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, 65, 1986.
- [21] Saintier N. Asymptotic estimates and blow up theory for critical equations involving the p-Laplacian. Calculus of Variations and partial Differential equations 2006; 25 (3): 299-331. https://doi.org/10.1007/s00526-005-0344-7
- [22] Sciunzi B. Classification of positive $D^{1,p}(\mathbb{R}^N)$ -solutions to the critical *p*-Laplace equation in \mathbb{R}^n . Advances in Mathematics 2016; 2016 (291): 12-23. https://doi.org/10.1016/j.aim.2015.12.028
- [23] Smets D. Nonlinear Schrödinger equations with Hardy potential and critical nonlinearaties. Transactions of the American Mathematical Society 2005; 357 (7): 2909-2938. https://doi.org/10.1090/S0002-9947-04-03769-9
- [24] Struwe M. A global compactness result for elliptic boudary value problems involving limiting nonlinearities. Mathematische Zeitschrift 1984; 187: 511-518. http://eudml.org/doc/173508
- [25] Talenti G. Best constant in Sobolev inequality. Annali di Matematica Pura ed Applicata; 110 (1): 353-372. https://doi.org/10.1007/BF02418013
- [26] Terracini S. On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Advances in Differential Equations 1996; 1 (2): 241-264. https://doi.org/10.57262/ade/1366896239
- [27] Vétois J. A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. Journal of Differential Equations 2016; 260 (1): 149-161. https://doi.org/10.1016/j.jde.2015.08.041