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Abstract: Let (M, g) be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas
for Palais-Smale sequences of functional energies corresponding to the equation:

∆g,pu− h(x)

(ρxo(x))
s
|u|p−2 u = f(x) |u|p

∗−2 u,

where ∆g,p is the p−Laplacian operator, p∗ = np
n−p

, 0 < s ≤ p , and ρxo(x) is a distance function to a fixed point xo

in M .

Key words: Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up
analysis, bubbles

1. Introduction
Let (M, g) be a compact n−dimensional Riemannian manifold. Denote by Injg the injectivity radius of (M, g) .
Let xo be a fixed point in M and define on M a distance function as follows:

ρxo(x) =

{
distg(xo, x), x ∈ B(xo, Injg),
Injg, x ∈M \B(xo, Injg).

(1.1)

For a real p such that 1 < p < n , let us consider the Sobolev space Hp
1 (M) defined as the completion of

C∞(M) with respect to the norm:

||u||Hp
1 (M) =

∫
M

(|∇gu|p + |u|p)dvg,

where |∇gu|2 = g(∇gu,∇gu) . Let us also consider the p−Laplacian operator ∆g,p that acts on functions
u ∈ Hp

1 (M) as:

∆g,pu = −div(|∇gu|p−2∇gu).
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Let h and f be two smooth functions on M . For a real s such that 0 < s ≤ p , let us consider the following
singular elliptic quasilinear equation:

∆g,pu− h(x)

(ρxo
(x))s

|u|p−2
u = f(x) |u|p

∗−2
u, (Es)

where p∗ = np
n−p is the critical exponent in the Sobolev inclusion Hp

1 (M) ⊂ LP∗(M) .

Equation (Es), as one can immediately notice, is a generalization to the well-known geometric prescribed scalar
curvature which corresponds to s = 0 and p = 2 and which has been largely studied starting from the middle
of the last century. For a compendium on this equation and the related topic, the reader may refer to the books
in [3] and [13].
For s = 0 , we fall on the generalized prescribed scalar curvature equation which has been studied on compact
manifolds in [9] and on complete noncompact manifolds in [5]. For p = 2 , 0 < s ≤ 2 , and f ≡ 1 , we meet a
singular Yamabe type equation to which existence of weak solutions has been studied in [16].
Now, define on Hp

1 (M) the energy functional:

Jf,h,s(u) =
1

p

(∫
M

(
|∇gu|p −

h

(ρxo
)s

|u|p
)
dvg

)
− 1

p∗

∫
M

f |u|p
∗
dvg. (1.2)

This functional is of class C2 on Hp
1 (M) . Its Gâteau derivative at a point v ∈ Hp

1 (M) is given by:

(DJf,h,su) .v =

∫
M

(
|∇gu|p−2

g(∇gu,∇gv)−
h

(ρxo
)s

|u|p−2
u.v

)
dvg

−
∫
M

f |u|p
∗−2

u.vdvg.

A Palais-Smale sequence (P.S in short) of the functional Jf,h,s at a level βs ∈ R , 0 < s ≤ p , is defined to be
the sequence um ∈ Hp

1 (M) that satisfies Jf,h,s(um) → βs and (DJf,h,sum) .v → 0,∀v ∈ Hp
1 (M) as m → ∞ .

To abbreviate, we denote βp by β . A weak solution of (Es), 0 < s ≤ p , is a function u ∈ Hp
1 (M) that satisfies

(DJf,h,su) .v = 0,∀v ∈ Hp
1 (M) .

In this work, we aim at proving that a P.S sequence um of the functional Jf,h,s is submitted to the well-known
Struwe decomposition formulas [24]. Note that similar decomposition results, on Riemannian manifolds, are
obtained in [10] in the case s = 0 and p = 2 , in [21] in the case s = 0 and 1 < p < n , and in [18] in the case
s = p = 2 . In the present work, we generalize those results to the case s ∈ (0, p] .
In proving the decomposition result, we distinguish the subcritical case s ∈ (0, p) from the critical case s = p .
More explicitly, we will prove that in case s ∈ (0, p) , a P.S sequence of the functional Jf,h,s decomposes into
the sum of a weak solution of (Es), rescaled weak solutions of the Euclidean equation:

∆ξ,pu = |u|p
∗−2u, (1.3)

where ξ is the Euclidean metric on Rn , and a zero-converging term in Hp
1 (M) . Note that existence and

classification of positive solutions of (1.3) are studied in [7, 22, 27].
However, in case s = p , the singular term enters into the decomposition and leads to another term to be added.
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This term is a rescaled solution of:

∆ξ,pu− h(xo)

|x|p
|u|p−2u = f(xo)|u|p

∗−2u, (1.4)

whose existence of solutions is studied in [1]. Let δ > 0 be a constant and denote by ηδ a smooth cut-off
function in Rn such that 0 ≤ ηδ ≤ 1 , ηδ(x) = 1 for x ∈ B(δ) and ηδ(x) = 0 for x ∈ Rn \B(2δ) , B(r) denotes

the ball of center 0 and radius r . Let y ∈M and 0 < δ <
Injg
2 , we define the cut-off function ηδ,y by

ηδ,y(x) = ηδ(exp
−1
y (x)),

where expy : B(δ) ⊂ Rn → B(y, δ) ⊂M is the exponential map at point y ∈M which defines a diffeomorphism
from B(δ) ⊂ Rn to B(y, δ) .
Let D1,p(Rn) denote the Sobolev space defined as the completion of C∞

o (Rn) , the space of smooth functions
with compact support in Rn , with respect to the norm:

||u||pD1,p(Rn) =

∫
Rn

|∇u|pdx.

Define on D1,p(Rn) the following functionals:

E(u) =
1

p

∫
Rn

|∇u|pdx− 1

p∗

∫
Rn

|u|p
∗
dx,

Ef,h(u) =
1

p

∫
Rn

|∇u|pdx− h(xo)

p

∫
Rn

|u|p

|x|p
dx− f(xo)

p∗

∫
Rn

|u|p
∗
dx.

According to whether the exponent s is critical or subcritical, we state the following two main results

Theorem 1.1 : Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Let f and h be two
smooth functions on M . Let xo be a point of M as defined in (1.1). Suppose that f satisfies f(xo) =

supM f(x), f(x) > 0, x ∈M .
Let um be a Palais-Smale sequence of the functional Jf,h,s at level βs , 0 < s < p . Then, there exist k ∈ N ,
sequences Ri

m ≥ 0 , Ri
m →

m→∞
0 , k ∈ N , converging sequences of points in M , xim →

m→∞
xio , a solution

u ∈ Hp
1 (M) of (Es), 0 < s < p , nontrivial weak solutions vi ∈ D1,p(Rn) of (1.3) such that up to subsequence,

for 0 < s < p , we have

um = u+

k∑
i=1

(Ri
m)

p−n
p ηδ(exp

−1
xi
m
(x))f(xio)

p−n

p2 vi((R
i
m)−1 exp−1

xi
m
(x)) +Wm,

with Wm → 0 in Hp
1 (M),

and

Jf,h,s(um) = Jf,h,s(u) +

k∑
i=1

f(xio)
p−n
p E(vi) + o(1).

1193



GHOMARI and MALIKI/Turk J Math

Theorem 1.2 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Let f and h be two smooth
functions on M . Let xo be a point of M as defined in (1.1). Suppose that f and h satisfy the following
conditions

1. f(xo) = supM f(x), f(x) > 0, x ∈M ,

2. h(xo) = supM h(x) and 0 < h(xo) < (n−p
p )p .

Let um be a Palais-Smale sequence of the functional Jf,h,p at level β . Then, there exist k ∈ N , sequences
T i
m ≥ 0 , T i

m →
m→∞

0 , l ∈ N sequences τ jm ≥ 0 , τ jm →
m→∞

0 , l ∈ N , converging sequences of points in M ,

yjm →
m→∞

yjo 6= xo , a weak solution u ∈ Hp
1 (M) of (Es), s = p , nontrivial weak solutions vi ∈ D1,p(Rn) of

(1.4) and weak solutions νj ∈ D1,p(Rn) of (1.3) such that up to subsequence, we have:

um = u+

k∑
i=1

(T i
m)

p−n
p ηδ(exp

−1
xo

(x))vi((T i
m)−1 exp−1

xo
(x))

+

l∑
j=1

(τ jm)
p−n
p f(yjo)

p−n

p2 ηδ(exp
−1

yj
m
(x))νj((τ

j
m)−1 exp−1

yj
m
(x)) +Wm

with Wm → 0 in Hp
1 (M)

and

Jf,h,p(um) = Jf,h,p(u) +

k∑
i=1

Ef,h(vi) +

l∑
j=1

f(yjo)
p−n
p E(νj) + o(1).

2. Preliminary results
In this section, we recall some known results that we need to achieve the proof of our main theorems.

2.1. Sobolev inequality

Denote by K(n, p) the best constant in the Euclidean Sobolev inequality, that is for u ∈ D1,p(Rn) , there holds:

∫
Rn

|u|p
∗
dx ≤ K(n, p)p

∗
(∫

Rn

|∇u|pdx
) p∗

p

,

The value of K(n, p) is calculated in Aubin [2] and Talenti [25] and is given by:

K(n, p) =
p− 1

n− p

(
n− p

n(p− 1)

) 1
p

(
Γ(n+ 1)

Γ(np )Γ(n+ 1− n
p )wn−1

) 1
n

.

On compact Riemannian manifold (M, g) , in [2] the following Sobolev inequality is proven: for every ε > 0 ,
there exists a positive constant Aε > 0 such that for every u ∈ Hp

1 (M) ,

∫
M

|u|p
∗
dvg ≤ (K(n, p)p

∗
+ ε)

(∫
M

|∇gu|pdvg
) p∗

p

+Aε

(∫
M

|u|pdvg
) p∗

p

. (2.1)
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It is commonly known (see for example [13, 14]) that the inclusion Hp
1 (M) ⊂ Lq(M) is compact for q < p∗ and

continuous for q = p∗ .

2.2. Hardy inequality

Let ρxo be the distance function defined by (1.1). Denote by Lp(M, (ρxo)
s) the space of functions u such that

|u|p
(ρxo )

s is integrable. This space, endowed with the norm
∫
M

|u|p
(ρxo )

s dvg , is a Banach space.

Now, for u ∈ D1,p(Rn) , the following Hardy inequality holds:∫
Rn

|u|p

|x|p
dx ≤

(
p

n− p

)p ∫
Rn

|∇u|pdx. (2.2)

This inequality has been extended to compact Riemannian manifolds in [16] as follows: for every ε > 0 , there
exists a positive constant Bε > 0 such that for every u ∈ Hp

1 (M) ,∫
M

|u|p

(ρxo
)p
dvg ≤

(
(

p

n− p
)p + ε

)∫
M

|∇gu|pdvg +Bε

∫
M

|u|pdvg. (2.3)

For a function u ∈ Hp
1 (M) with support included in B(xo, δ) , where δ < Injg , there holds:∫

M

|u|p

(ρxo)
p
dvg ≤ (Kδ(n, p,−p))p

∫
M

|∇gu|pdvg, (2.4)

with Kδ(n, p,−p) → p
n−p as δ → 0 .

In [16], it has been proven that the inclusion Hp
1 (M) ⊂ Lp(M, (ρxo

)p) is continuous and the inclusion Hp
1 (M) ⊂

Lp(M, (ρxo
)s) , with 0 < s < p , is compact.

3. Proof of the main theorems
In this section, we prove theorems 1.1 and 1.2. The proof goes through a series of lemmas:

Lemma 3.1 Let um be a P.S sequence for Jf,h,s , 0 < s ≤ p , at level βs . Suppose that the sequence um

converges to a function u weakly in Hp
1 (M) and Lp(M,ρpxo

) , strongly in Lq(M), 1 ≤ q < p∗ and almost
everywhere in M . Then, the function u is a weak solution of (Es) and the sequence vm = um − u is a P.S
sequence of Jf,h,s such that Jf,h,s(vm) = βs − Jf,h,s(u) + o(1) .

Proof Let um be a P.S. sequence for Jf,h,s at a level βs . As a first step in the proof of the lemma, we prove
that the sequence um is bounded in Hp

1 (M) .
First, on the one hand, we have:

Jf,h,s(um)− 1

p∗
DJs,f,h(um)um = βs + o(1) + o(||um||Hp

1 (M)).

On the other hand, we have:

Jf,h,s(um)− 1

p∗
DJf,h,s(um)um =

1

n

∫
M

(
|∇gum|p − h

(ρxo)
s
|um|p

)
dvg

=
1

n

(
Jf,h,s(um) +

1

p∗

∫
M

f |um|p
∗
dvg

)
,
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then
1

np∗

∫
M

f |um|p
∗
dvg =

(
1− 1

n

)
βs + o(1) + o(||um||Hp

1 (M)).

Since f is supposed strictly positive on the compact manifold, we deduce that um is bounded in Lp∗(M) and
so in Lp(M) .
Moreover, we have:∫

M

|∇gum|p dvg = nJf,h,s(um) +

∫
M

h

(ρxo
)s

|um|p dvg + o(‖um‖Hp
1 (M))

= nβs +

∫
M

h

(ρxo
)s

|um|p dvg + o(1) + o(‖um‖Hp
1 (M)).

Let δ > 0 be a small constant. Then we have:∫
M

|∇gum|p dvg = nβs +

∫
B(xo,δ)

(ρxo
)p−s h

(ρxo)
p
|um|p dvg

+

∫
M\B(xo,δ)

h(x)

(ρxo
)s

|um|p dvg + o(1) + o(‖um‖Hp
1 (M)),

Since p ≥ s , we get:∫
M

|∇gum|p dvg ≤ nβs + δp−s max
x∈B(xo,δ)

|h(x)|
∫
B(xo,δ)

|um|p

(ρxo
)p
dvg

+ δ−s max
x∈M

|h(x)|
∫
M\B(xo,δ)

|um|p dvg + o(1) + o(‖um‖Hp
1 (M)).

By Hardy inequality (2.4), since um is bounded in Lp(M) , we get that there is a positive constant C such that(
1− δp−s max

x∈B(xo,δ)
|h(x)|Kδ(n, p,−p)p

)∫
M

|∇gum|p dvg ≤ nβs + C

+ o(1) + o(‖um‖Hp
1 (M)).

Now, for p > s , by choosing δ as small as

1− δp−s max
x∈B(xo,δ)

|h(x)|Kδ(n, p,−p)p > 0,

we get that
∫
M

|∇gum|p dvg is bounded.
For p = s , since maxB(xo,δ) |h(x)|Kδ(n, p,−p) tends to h(xo)(

p
n−p )

p as δ → 0 and since by assumption

1− h(xo)(
p

n−p )
p > 0 , then there exists δo > 0 such that for all δ < δo , we have:

1− max
x∈B(xo,δ)

|h(x)|Kδ(n, p,−p)p > 0,

and hence
∫
M

|∇gum|p dvg is bounded which ends the proof of the fact that um is bounded in Hp
1 (M) .

Now, suppose that the sequence um converges to a function u weakly in Hp
1 (M) . We prove that for φ ∈ Hp

1 (M) ,
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(DJf,h,s(um)).φ converges to (DJf,h,s(u).φ) , that is, u is a weak solution of (Es). First, since the sequence
um converges to u almost everywhere in M , by basic integration theory (see for example [15] Lemma 4.8), we
can conclude that the sequence f |um|p∗−2um converges to f |u|p∗−2u weakly in L p∗

p∗−1
(M) and the sequence

h|um|p−2um converges weakly to h|u|p−2u in L p
p−1

(M, (ρxo)
s) .

On the other hand, the same arguments as in the proof of Step 1.2 in [21] give that ∇gum converges almost
everywhere to ∇u in M and then

∫
M

|∇gum|p−2g(∇gum,∇gφ)dvg converges to
∫
M

|∇gu|p−2g(∇gu,∇gφ)dvg .
We conclude that u is a weak solution of (Es).
Now, we prove that the sequence vm = um − u is a P.S sequence for Jf,h,s at level βs − Jf,h,s(u) . For
φ ∈ Hp

1 (M) , we write

D(Js,f,h(vm)).φ = D(Js,f,h(um)).φ−D(Js,f,h(u)).φ (3.1)

+

∫
M

g(|∇gvm|p−2∇gvm − |∇gvm +∇gu|p−2(∇gvm +∇gu) +∇gu|p−2∇gu,∇gφ)dvg

−
∫
M

h

(ρxo
)s
(|vm|p−2vm − |vm + u|p−2(vm + u) + |u|p−2u)φdvg

−
∫
M

f(|vm|p
∗−2vm − |vm + u|p

∗−2(vm + u) + |u|p
∗−2u)φdvg

We should recall the following inequality: for any vectors x and y in normed vector space and p > 1

‖‖x+ y‖p−2(x+ y)− ‖x‖p−2x− ‖y‖p−2y‖ ≤ C(||x||p−1−θ||y||θ + ||y||p−1−θ||x||θ), (3.2)

where θ is a small constant that depends on p . We deduce from this inequality that:∫
M

g(|∇gvm|p−2∇gvm − |∇gvm +∇gu|p−2(∇gvm +∇gu) +∇gu|p−2∇gu,∇gφ)dvg

≤ C

∫
M

(
|∇gvm|p−1−θ|∇gu|θ + |∇gvm|θ|∇gu|p−1−θ

)
|∇gφ|dvg

≤ C‖∇gφ‖Lp(M)

[(∫
M

|∇gvm|
p(p−1−θ)

p−1 |∇gu|
pθ

p−1 dvg

) p−1
p

+

(∫
M

|∇gvm|
pθ

p−1 |∇gu|
p(p−1−θ)

p−1 dvg

) p−1
p

] .

Now, the sequence |∇gvm|p
p−1−θ
p−1 is bounded in L p−1

p−1−θ
(M) and converges almost everywhere to 0 in M . Then,

it converges weakly to 0 in L p−1
p−1−θ

(M) , that is
∫
M

|∇gvm|p
p−1−θ
p−1 φdvg → 0, ∀φ ∈ L p−1

θ
(M) . Since |∇gu|p

θ
p−1

belongs to L p−1
θ
(M) , we get: ∫

M

|∇gvm|
p(p−1−θ)

p−1 |∇gu|
pθ

p−1 dvg → 0.

By similar arguments, we get also: ∫
M

|∇gvm|
pθ

p−1 |∇gu|
p(p−1−θ)

p−1 dvg → 0,
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together with the second and the third integral in (3.1) tend to zero. Hence, (DJf,h,s(vm)).φ→ 0,∀φ ∈ Hp
1 (M) .

Finally, to prove that Jf,h,s(vm) tends to βs − Jf,h,s(u) , we just apply the Brezis-Lieb lemma (see for example
[15], lemma 4.6) to the sequences um and ∇gum . In fact, since um converges to u a.e and ∇gum converges
to ∇gu a.e. in M , and since ∇g is bounded in Lp(M) , um is bounded in Lp∗(M) , we get by the Brezis-Lieb
lemma that: ∫

M

|∇gu|pdvg = lim
m→∞

(∫
M

|∇gum|pdvg −
∫
M

|∇g(um − u)|pdvg
)
,

and ∫
M

f |u|p
∗
dvg = lim

m→∞

(∫
M

f |um|p
∗
dvg −

∫
M

f |um − u|p
∗
dvg

)
On the other hand, by Hardy inequality (2.3), we have:

∫
M

|um|p

(ρxo)
s
dvg ≤ Diam(M)p−s

∫
M

|um|p

(ρxo)
p
dvg ≤ C‖um‖Hp

1 (M),

which means that the sequence um is also bounded in Lp(M, (ρxo
)s) and then we get by the Brezis-Lieb lemma

that: ∫
M

h

(ρxo)
s
|u|pdvg = lim

m→∞

(∫
M

h

(ρxo)
s
|um|pdvg −

∫
M

h

(ρxo)
s
|um − u|pdvg

)
which gives that:

Jf,h,s(vm) = βs − Jf,h,s(u) + o(1).

2

Lemma 3.2 Suppose that supM f > 0 and 1− h(xo)(
p

n−p )
p > 0 . Let vm be a P.S sequence of Jf,h,s at level

βs , 0 < s ≤ p , that converges weakly to 0 in Hp
1 (M) . If

βs < β∗ =


1

n(supM f)
n−p
p K(n, p)n

, if s < p

(1− h(xo)(
p

n−p )
p)

n
p

n(supM f)
n−p
p K(n, p)n

, if s = p,

then vm converges strongly to 0 in Hp
1 (M) .

Proof First, we write:

DJf,h,s(vm).vm = o(‖vm‖Hp
1 (M))

=

∫
M

(|∇gvm|p − h

(ρxo
)s

|vm|p)dvg −
∫
M

f |vm|p
∗
dvg,

then

βs =
1

n

∫
M

(
|∇gvm|p − h

(ρxo)
s
|vm|p

)
dvg + o(1) =

1

n

∫
M

f |vm|p
∗
dvg + o(1) (3.3)
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This implies that βs ≥ 0 . Moreover, let δ > 0 be a small constant, we have:∫
M

(|∇gvm|p − h

(ρxo)
s
|vm|p)dvg =

∫
M

|∇gvm|p dvg −
∫
B(xo,δ)

h

(ρxo)
s
|vm|p dvg

−
∫
M\B(xo,δ)

h

(ρxo)
s
|vm|p dvg

≥
∫
M

|∇gvm|p dvg − max
x∈B(xo,δ)

|h(x)|δp−s

∫
B(xo,δ)

|vm|p

(ρxo
)p
dvg

− δ−s max
x∈M

|h(x)|
∫
M\B(xo,δ)

|vm|p dvg

Now, the sequence vm is bounded in Lp(M) and Lp(M, (ρxo)
p) , we have then:

For 0 < s < p , by letting δ go to 0 , we get from (3.3):∫
M

|∇gvm|p dvg ≤ nβs + o(1). (3.4)

For s = p , by letting δ go to 0 , we get from (3.3) together with Hardy inequality (2.4):∫
M

|∇gvm|p dvg ≤ nβs
1− h(xo)(

p
n−p )

p
+ o(1), (3.5)

On the other hand, by Sobolev inequality, we get also by (3.3) that for 0 < s ≤ p ,∫
M

|∇gvm|p dvg ≥
( nβs
supM f(K(n, p) + ε)p∗

) p
p∗

+ o(1) (3.6)

Now, suppose by contradiction that βs > 0 . Then, after letting m go to ∞ , inequalities (3.4), (3.5), and (3.6)
give:

βs ≥
1

n(supM f)
n−p
p (K(n, p) + ε)n

, for 0 < s < p,

and

βs ≥
(1− (h(xo)K

p(n, p,−p))
n
p

n(supM f)
n−p
p (K(n, p))n

, for s = p.

Both cases present a patent contradiction with the hypothesis of the lemma. Hence, under the assumption of
the lemma, βs = 0 and thus vm → 0 in Hp

1 (M) . 2

Now, we divide the proof of the main theorems into two parts according to whether 0 < s < p or s = p .

3.1. The subcritical Hardy potential
Lemma 3.3 Let vm be a P.S sequence of Jf,h,s , with 0 < s < p , at level βs that converges weakly and not
strongly to 0 in Hp

1 (M) . Then, there exists a converging sequence of points xm → xo in M , a sequence of
positive reals Rm → 0 as m→ ∞ and nontrivial weak solution v ∈ D1,p(Rn) of

∆ξ,pv = f(xo)|v|p
∗−2v, (3.7)
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such that the subsequence

wm(x) = vm(x)−R
p−n
p

m ηδ(exp
−1
xm

(x))v(R−1
m exp−1

xm
(x)),

where 0 < δ <
Injg
2 , admits a subsequence wm that is a P-S sequence of Jf,h,s , with 0 < s < p , at level

Jf,h,s(wm) = βs−(f(xo))
p−n
p E(u) , with u is a nontrivial weak solution of (1.3), and that converges to 0 weakly

in Hp
1 (M) .

Proof Let vm be a P.S sequence of Jf,h,s at level βs that converges to 0 weakly and not strongly in Hp
1 (M) .

Then, up to a subsequence, we can assume that vm converges strongly to 0 in Lp(M) . For t > 0 , we let

Fm(t) = max
x∈M

∫
B(x,t)

|∇gvm|dvg

For to small, by (3.6), there exists zo ∈M and γo > 0 such that∫
B(zo,to)

|∇gvm|dvg ≥ γo.

Since Fm is continuous in t , we get that for each γ ∈ (0, γo) and for each m > 0 , we can find a point xm and
a constant rm ∈ (0, to) such that ∫

B(xm,rm)

|∇gvm|p dvg = γ (3.8)

Let 0 < ro <
Injg
2 be such that there exists a positive constant Co ∈ [1, 2] such that for all x ∈ M and

y, z ∈ B(ro) ⊂ Rn the following inequality holds

distg(expx(y), expx(z)) ≤ Co|y − z|. (3.9)

Let 0 < Rm < 1 and x ∈ B(R−1
m δg) . Define

v̂m(x) = R
n−p
p

m vm(expxm
(Rmx)), x ∈ Rn

ĝm(x) = exp∗xm
g(Rmx)

Then, we have
|∇ĝm v̂m|p(x) = Rn

m|∇gvm|p(expxm
(Rmx)). (3.10)

Thus, it follows that if z ∈ Rn is such that |z|+ r < InjgR
−1
m , then we have:∫

B(z,r)

|∇ĝm v̂|pdvĝm =

∫
expxm

(RmB(z,r))

|∇gvm|pdvg. (3.11)

Moreover, for |z|+ r < roR
−1
m , by using (3.9) we have:

expxm
(RmB(z, r)) ⊂ Bexpxm

(Rmz)(rCoRm). (3.12)
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Since for y ∈ B(rCoRm) ⊂ B(Injg) , we have distg(xm, expxm
(Rmy)) = Rm|y| , and thus

expxm
(B(rCoRm)) = B(xm, rCoRm). (3.13)

Now, for r ∈ (0, ro) take Rm = rm
rCo

, where rm is as defined above. By (3.10), (3.11), and (3.12), we get:

∫
B(z,r)

|∇ĝm v̂|pdvĝm ≤ γ, (3.14)

and ∫
B(rCo)

|∇ĝm v̂|pdvĝm = γ, (3.15)

Let δ ∈ (0, Injg) and u ∈ D1,p(Rn) with support included in B(δR−1) , where 0 < R ≤ 1 is a constant. There
exists a constant C1 such that if ĝ(x) = exp∗y(g(Rx)) , then

1

C1

∫
Rn

|∇u|p dx ≤
∫
Rn

|∇ĝu|p dvĝ ≤ C1

∫
Rn

|∇u|p dx. (3.16)

Without loss of generality, we can also assume that for all u ∈ Lp(Rn) with support included in B(δR−1) , we
have:

1

C1

∫
Rn

|u|p dx ≤
∫
Rn

|u|p dvĝ ≤ C1

∫
Rn

|u|p dx. (3.17)

Now, consider a cut-off function η ∈ Co(Rn) such that

0 ≤ η ≤ 1, η(x) = 1, x ∈ B(
1

4
) and η(x) = 0, x ∈ Rn \B(

3

4
). (3.18)

Put η̂m(x) = η(δ−1Rmx) , where δ ∈ (0, Ing) . We get that there exists a positive constant C such that

∫
Rn

|∇ĝm(η̂mv̂m)|p dvĝm =

∫
B(

3δR
−1
m

4 )

|∇ĝm(η̂mv̂m)|p dvĝm

≤ 2p−1

∫
B(

3δR
−1
m

4 ))

(
|η(δ−1Rmx)|p |∇ĝm v̂m|p + δ−pRp

m|(∇ĝmη)(δ
−1Rmx)|p |v̂m|p

)
dvĝm

= 2p−1

∫
B(xm, 3δ4 )

(
|η(δ−1 exp−1

xm
(x))|p |∇gvm|p + |(∇gη)(δ

−1 exp−1
xm

(x))|p |vm|p
)
dvg

≤ C

∫
B(xm, 3δ4 )

(|∇gvm|p + |vm|p) dvg,

since the sequence is bounded in Hp
1 (M) , this implies by (3.16) that the sequence η̂mv̂m is bounded in D1,p(Rn)

and thus, it converges weakly in D1,p(Rn) and almost everywhere in Rn to some function v ∈ D1,p(Rn) .
Now, we divide the remaining of proof of the lemma into several steps.
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Step 1

For γ small and s ∈ (0, p) , the sequence η̂mv̂m converges strongly to v in Hp
1 (B(Cor)) .

Proof Let a ∈ Rn and µ ∈ [r, 2r] . Set A = B(a, 3r) \B(a, µ) . In [21] (see also [10]), it has been proven that
there exists a sequence zm ∈ Hp

1 (A) that converges strongly to 0 in Hp
1 (A) and that zm is solution of

{
∆ξ,pzm = 0 in A,
zm − φm − φo

m ∈ D1,p(A),
(3.19)

where φm = η̂mv̂m − v in B(a, µ+ ε) , φm = 0 in Rn \B(a, 3µ− ε) and φo
m is such that ‖φm + φo

m‖Hp
1 (A) ≤

C‖φm‖Hp
p−1
p

(∂A) . We let ψ̂m ∈ D1,p(Rn) be the sequence


ψ̂m = η̂mv̂m − v in B(a, µ),

ψ̂m = zm in B(a, 3r) \B(a, µ),

ψ̂m = 0 in Rn \B(a, 3r).

For r < δ
24 , consider the rescaling sequence ψm of ψ̂m

{
ψm(x) = R

p−n
p

m ψ̂m(R−1
m exp−1

xm
(x)), if x < dg(xm, 6r),

ψm(x) = 0, otherwise.

Let η be the cut-off function considered above. Then, η(δ−1 exp−1
xm

(x)) = 1 for x such that dg(xm, x) < 6r .
Put η̂(x) = η(δ−1 exp−1

xm
(x)) = 1 , then if |a| < 3r , we have:

DJf,h,s(vm).ψm = DJf,h,s(η(δ
−1 exp−1

xm
(x))vm).ψm

=

∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝm ψ̂m

)
dvĝm

− Rp−s
m

∫
B(a,3r)

h(expxm
(Rm(x))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

−
∫
B(a,3r)

f(expxm
(Rm(x))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm .

It is clear that the sequence ψ̂m is bounded in D1,p(Rn) and we have that ||ψm||Hp
1 (M) ≤ C||ψ̂m||D1,p(Rn) .

Then, the sequence ψm is bounded in Hp
1 (M) and since vm is a P-S sequence of Jf,h,s , we get:

o(1) =

∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝm ψ̂m

)
dvĝm (3.20)

− Rp−s
m

∫
B(a,3r)

h(expxm
(Rm(x))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

−
∫
B(a,3r)

f(expxm
(Rm(x))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm .
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By the same arguments as in [21], we can have:

∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝm ψ̂m

)
dvĝm =

∫
Rn

|∇ĝm ψ̂m|pdvĝm + o(1),

and ∫
B(a,3r)

f(expxm
(Rmx))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm

=

∫
Rn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1).

Rather, we prove that:

∫
B(a,3r)

h(expxm
(Rm(x)))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm (3.21)

=

∫
Rn

h(expxm
(Rm(x)))

|x|sξ
|ψ̂m|pdvĝm + o(1)

We distinguish two cases, 0 ∈ B(a, µ) and 0 /∈ B(a, µ) . If 0 /∈ B(a, µ) , then there exists ϱ > such that
B(ϱ) ∩B(a, µ) = ∅ . Then, by using convexity, Hölder inequality and inequality (3.2), we get:

|
∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m + v|p−2(ψ̂m + v)− |ψ̂m|p−2ψ̂m − |v|p−2v

]
ψ̂mdvĝm |

≤ Cϱ−s sup |h|‖ψ̂m‖Lp(Rn)(∫
B(a,µ)

[
| |ψ̂m + v|p−2(ψ̂m + v)− |ψ̂m|p−2ψ̂m − |v|p−2v |

] p
p−1

dx

) p−1
p

≤ C ′‖ψ̂m‖Lp(Rn)

(∫
B(a,µ)

[
| |ψ̂m|p−1−θ|v|θ − ψ̂m|θ|v|p−1−θ |

] p
p−1

dx

) p−1
p

≤ C ′′‖ψ̂m‖Lp(Rn) [

(∫
B(a,µ)

|ψ̂m|
p(p−1−θ)

p−1 |v|
pθ

p−1 dx

) p−1
p

+

(∫
B(a,µ)

|ψ̂m|
pθ

p−1 |v|
p(p−1−θ)

p−1 dx

) p−1
p

]

Since ψ̂m converges to 0 almost everywhere and is bounded in Lp(Rn) , we get that |ψ̂m|
p(p−θ−1)

p−1 and |ψ̂m|
pθ

p−1

converge almost everywhere to 0 and are bounded respectively in L p−1
p−1−θ

(Rn) and L p−1
θ
(Rn) . We get then

(∫
B(a,µ)

|ψ̂m|
p(p−1−θ)

p−1 |v|
pθ

p−1 dx

) p−1
p

+

(∫
B(a,µ)

|ψ̂m|
pθ

p−1 |v|
p(p−1−θ)

p−1 dx

) p−1
p

= o(1).
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Hence, we get:

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).

Now, if 0 ∈ B(a, µ) , let ϱ′ > 0 be such that B(ϱ′) ⊂ B(a, µ) . Then, as above, we have:

∫
B(a,µ)\B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)\B(ϱ′)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).

Moreover, by Hölder inequality, we have:

∫
B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

≤ C sup |h|

(∫
B(ϱ′)

|η̂mv̂m|p

|x|sξ
dx

) 1
p
(∫

B(ϱ′)

|ψ̂m|p

|x|sξ
dx

)1− 1
p

≤ C sup |h|ϱ′
p−s
p

(∫
B(ϱ′)

|η̂mv̂m|p

|x|pξ
dx

) 1
p
(∫

B(ϱ′)

|ψ̂m|p

|x|sξ
dx

)1− 1
p

.

Now, by Hardy inequality (2.2),
(∫

B(ϱ′)
|η̂mv̂m|p

|x|pξ
dx
) 1

p is bounded. Since ψ̂m converges to 0 strongly in

Lp(B(ϱ′), |x|s) , 0 < s < p , then

∫
B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm = o(1).

Thus, in both cases, we have:

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).
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Now, using the fact that ψ̂m converges to 0 strongly in D1,p(A) and weakly to 0 in D1,p(Rn) , we get:∫
B(a,3r)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1)

=

∫
Rn

h(expxm
(Rmx))

|x|sξ
|ψ̂m|pdvĝm + o(1).

We deduce that: ∫
Rn

|∇ĝm ψ̂m|pdvĝm −Rp−s
m

∫
Rn

h(expxm
(Rmx))

|x|sξ
|ψ̂m|pdvĝm

=

∫
Rn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1).

Since the sequence ψ̂m converges strongly to 0 in Lp(B(a, 3µ), |x|s), s < p and since Rm ≤ 1 , we get that:

Rp−s
m |

∫
Rn

h(expxm
(Rm(x)))

|x|sξ
|ψ̂m|pdvĝm | ≤ suphC

∫
Rn

|ψ̂m|p

|x|sξ
dx = o(1).

We get then: ∫
Rn

|∇ĝm ψ̂m|pdvĝm =

∫
Rn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1). (3.22)

By the same way as in [21], we can prove that for |a|+ 3r < ro :∫
Rn

|∇ĝm ψ̂m|pdvĝm ≤ Nγ + o(1), (3.23)

where N ∈ N is such that B(a, µ) ⊂ B(a, 2r) ⊂
⋃

1≤i≤N

B(xi, r) , with xi ∈ B(a, 2r) . We get then by the Sobolev

inequality that:∫
Rn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm ≤ sup

M
fC1

∫
Rn

|ψ̂m|p
∗
dx

≤ sup
M

fC
p∗
p +1

1 K(n, p)p
∗
(∫

Rn

|∇ĝm ψ̂m|pdvĝm
) p∗

p

.

Then, by (3.22) and (3.23), we get:∫
Rn

|∇ĝm ψ̂m|pdvĝm ≤ sup
M

fC1

∫
Rn

|ψ̂m|p
∗
dx

≤ sup
M

fC
p∗
p +1

1 K(n, p)p
∗
(Nγ + o(1))

p∗
p −1

∫
Rn

|∇ĝm ψ̂m|pdvĝm .

1205



GHOMARI and MALIKI/Turk J Math

By taking γ such that

sup
M

fC
p∗
p +1

1 K(n, p)p
∗
(Nγ)

p∗
p −1 < 1, (3.24)

we get: ∫
Rn

|∇ĝm ψ̂m|pdvĝm = o(1),

which means that ψ̂m converges strongly in D1,p(Rn) . Thus, since r ≤ µ , we get that η̂mv̂m converges
strongly to v in Hp

1 (B(a, r)) . This strong convergence holds as soon as µ and r are small enough, |a| < 3r and
|a|+3r < min(ro, δ) . Then, let µ be small enough such that condition (3.24), then η̂mv̂m converges strongly to
v in Hp

1 (B(a, r)) for all |a| < 2r . Since Co ≤ 2 , B(Cor) can be covered by N balls B(a, r) , with a ∈ B(2r)

and thus η̂mv̂m converges strongly to v in Hp
1 (B(Cor)) . 2

Step 2

For any R > 0 and s ∈ (0, p) , the sequence v̂m converges strongly to v in Hp
1 (B(R)) and v is a nontrivial

solution of (3.7).

Proof First, to prove that v 6= 0 , we use step 1 above. Take r small enough so that η̂m = 1 on B(Cor) , we
then obtain

γ =

∫
B(Cor)

|∇ĝm(η̂mv̂m)|pdvĝm

≤
∫
B(Cor)

|∇v|pdx+ o(1).

Hence, v 6= 0 . As consequence, we get that Rm → 0 . In fact, if Rm → R > 0 . Since vm converges weakly to
0 , we get that v̂m converges weakly to 0 in Hp

1 (B(Cor)) since v 6= 0 and (η̂mv̂m) converges strongly to v in
Hp

1 (B(Cor)) , we get a contradiction. Thus, Rm → 0 .
Now, let R > 1 . For m is large, R < R−1

m and (3.14) and (3.15) are satisfied for z + r < Rro . Thus, as one
can easily check from the proof of Step 1, η̂mv̂m converges strongly to v in Hp

1 (B(a, r)) for |a|+ 3r < rR and
|a| ≤ 3r(2R − 1) . In particular, η̂mv̂m converges strongly to v in Hp

1 (B(a, r)) for |a| < 2rR . Hence, η̂mv̂m
converges strongly to v in Hp

1 (B(2rR)) . Since for m is large, η̂m = 1 and R is arbitrary chosen, we get that
v̂m converges strongly to v in Hp

1 (B(R)) .
Now, let φ ∈ C∞

0 (Rn) with compact support included in a ball B(R), R > 0 . For m is large, define on M the
sequence φm as:

φm(x) = R
p−n
p

m φ(R−1
m (exp−1

xm
(x))).

Then, we have:∫
M

|∇gvm|p−2g(∇gvm,∇gφm)dvg =

∫
Rn

|∇ĝm(η̂mv̂m)|p−2ĝ(∇ĝm(η̂mv̂m),∇ĝmφ)dvĝm . (3.25)

Knowing that dg(y, expy(Rmx)) = Rm|x| , we have:

dg(xo, xm)−Rm|x| ≤ dg(xo, expxm
(Rmx)) ≤ dg(xo, xm) +Rm|x|. (3.26)
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Suppose that xm → xo as m → ∞ . Then, either Rm

dg(xo,xm) → 0 as m → ∞ , then dg(xo,expxm
(Rmx))

dg(xo,xm) → 1 as

m→ ∞ and consequently,
Rm

dg
(
xo, expxm

(Rmx)
) → 0 as m→ ∞,

or Rm

dg(xo,xm) → A > 0 as m→ ∞ . Then, always by (3.26), we get:

1
1
A + |x|

≤ lim
m→∞

Rm

dg
(
xo, expxm

(Rmx)
) ≤ 1

1
A − |x|

.

Hence, by writing∫
M

h

ρsxo

|vm|p−2vmφmdvg = Rp−s
m

∫
Rn

Rs
m

dg(xo, expxm
(Rmx))s

h(expxo
(Rmx))|(η̂mv̂m)|p−2(η̂mv̂m)φdvĝm ,

and ∫
M

f |vm|p
∗−2vmφmdvg =

∫
Rn

f(expxm
(Rmx))|(η̂mv̂m)|p

∗−2(η̂mv̂m)φdvĝm . (3.27)

Since ĝm → ξ in C1(B(R)) for any R > 0 , the sequence φm is bounded in Hp
1 (M) , the sequence vm is a P-S

sequence of Jf,h,s and the sequence η̂mv̂m converges strongly to v 6= 0 in D1,p(Rn) , by passing to the limit,
we get that v is a weak solution of

∆ξ,pv = f(xo)|v|p
∗−2v.

2

Step 3
Let wm = vm − Bm , with

Bm(x) = R
p−n
p

m ηδ,xm
(x)v(R−1

m exp−1
xm

(x)), (3.28)

where ηδ,xm
(x) = ηδ(exp

−1
xm

(x)) . Then, the following statements hold:

Bm converges weakly to 0 in Hp
1 (M), (3.29)

DJf,h,s(Bm) → 0, DJf,h,s(wm) → 0 strongly, (3.30)

and
Jf,h,s(wm) = Jf,h,s(vm)− (f(xo))

p−n
p E(u), (3.31)

with u is a nontrivial weak solution of (1.3).

Proof The proof of (3.29) is identical to that of statement (14) of Step 2.4 in [21] and thus we omit it. We prove

(3.30). Let φ ∈ Hp
1 (M) . For x ∈ B(δR−1

m ) put φm(x) = R
n−p
p

m φ(expxm
(Rmx)) and φ̄m = ηδ(Rmx)φm(x) . Let

R > 0 be a constant, we have:∫
M

|∇gBm|p−2g(∇gBm,∇gφ)dvg =

∫
B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg

+

∫
B(xm,2δ)\B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg.
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Direct computations give:∫
B(xm,2δ)\B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg = O(||φ||Hp
1 (M))ε(R),

where ε(R) → 0 as R→ ∞ .
For m is large, we have:∫

B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg =

∫
B(R)

|∇ĝmv|p−2ĝ(∇ĝmv,∇ĝmφm)dvĝm

knowing that ∫
B(xm,RmR)

|∇gφ|pdvg =

∫
B(R)

|∇ĝmφm|pdvĝm ,

and that the sequence of metrics ĝm converges in C1(B(R′)), R′ > R , we get that:∫
B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg

=

∫
B(R)

|∇ĝmv|p−2ĝ(∇ĝmv,∇ĝmφm)dx+ o(||φ||Hp
1 (M)).

=

∫
Rn

|∇v|p−2
ξ ∇v.∇φmdx+ o(||φ||Hp

1 (M)) +O(||φ||Hp
1 (M))ε(R),

where ε(R) → 0 as R→ ∞ .Thus,∫
M

|∇gBm|p−2g(∇gBm,∇gφ)dvg (3.32)

=

∫
Rn

|∇v|p−2
ξ ∇v.∇φmdx+ o(||φ||Hp

1 (M)) +O(||φ||Hp
1 (M))ε(R),

By the same way, we get that:∫
M

f(x)|Bm|p
∗−2Bmφdvg (3.33)

= f(xo)

∫
Rn

|v|p
∗−2vφmdx+ o(||φ||Hp

1 (M)) +O(||φ||Hp
1 (M))ε(R).

Since the sequence Bm converges to 0 weakly in Hp
1 (M) and the inclusion Hp

1 (M) ⊂ Lp(M, (ρxo
)s) is compact

for s ∈ (0, p) , we can assume that Bm → 0 in Lp(M, (ρxo
)s) . Then, using the fact that v is a weak solution of

∆ξ,pv = f(xo)|v|p∗−2v , we get

DJf,h,s(Bm).φ = o(||φ||Hp
1 (M)) +O(||φ||Hp

1 (M))ε(R).

Since R is arbitrary, we get that DJf,h,s(Bm) → 0 . This proves the first part of (3.30). For the proof of the
second part of (3.30), we write:
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DJf,h,s(wm) = DJf,h,s(vm)−DJf,h,s(Bm) +Am.φ+ Cmφ+Dmφ,

where

Am.φ =

∫
M

g(|∇gwm|p−2∇gwm − |∇gvm|p−2∇gvm + |∇gBm|p−2∇gBm,∇gφ)dvg,

Cmφ =

∫
M

h

(ρxo)
s

(
|wm|p−2wm + |vm|p−2vm − |Bm|p−2Bm

)
.φdvg,

and

Dmφ =

∫
M

f
(
|wm|p

∗−2wm + |vm|p
∗−2vm − |Bm|p

∗−2Bm

)
.φdvg.

We repeat the same arguments as in (3.1), we get that Am.φ → 0, Cm.φ → 0 and Dm.φ → 0 which ends the
proof of (3.30). Now, we prove (3.31). First, we repeat the same calculation in [21], we get:∫

M

|∇gwm|pgdvg =

∫
M

|∇gvm|pdvg −
∫
Rn

|∇v|pdx+Bm(R) + o(1), (3.34)

and ∫
M

f |wm|p
∗
dvg =

∫
M

f |vm|p
∗
dvg − f(xo)

∫
Rn

|v|p
∗
dx+Bm(R) + o(1), (3.35)

with lim
R→∞

lim sup
m→∞

Bm(R) = 0 .

Since wm → 0 weakly in Hp
1 (M) which is compactly embedded in Lp(M, (ρxo

)s) for s ∈ (0, p) , we may assume
that wm → 0 strongly in Lp(M, (ρxo

)s) . Therefore, since R is arbitrarily chosen, by combining (3.34), (3.35),
we get:

Jf,h,s(wm) = Jf,h,s(vm)− (f(xo))
p−n
p E(u) + o(1),

with u is a weak solution of (1.3). 2

2

3.2. The critical Hardy potential
Lemma 3.4 Let vm be a P.S sequence of Jf,h,p at a level β that converges weakly and not strongly to 0 in
Hp

1 (M) . Then, there exists a sequence of positive reals Tm → 0 as m→ ∞ such that the sequence η̃mṽm with

ṽm(x) = T
n−p
p

m vm(expxo
(Tmx)),

and η̃m(x) = η(δ−1Tmx) , 0 < δ ≤ Injg
2 and η is defined by (3.18), converges up to subsequence to a weak

solution v ∈ D1,p(Rn) of

∆ξ,pv +
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

Moreover, the sequence

wm(x) = vm(x)− T
p−n
p

m ηδ(exp
−1
xo

(x))v(T −1
m exp−1

xo
(x)),
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where 0 < δ <
Injg
2 , admits a subsequence wm that is a P-S sequence of Jf,h,p , at level β − Ef,h(v) that

converges to 0 weakly in Hp
1 (M) .

Proof Let vm be a P.S sequence of Jf,h,p at level β that converges to 0 weakly and not strongly in Hp
1 (M) .

Then, up to a subsequence, we can assume that vm converges strongly to 0 in Lp(M) and that, by (3.6) there
exists a small positive constant γ̃ , such that

lim sup
m→∞

∫
M

|∇gvm|p dvg > γ̃ > 0.

Up to a subsequence, for each m > 0 , there exists a constant r̃m > 0 such that∫
B(xo,r̃m)

|∇gvm|p dvg = γ̃ (3.36)

For 0 < ro <
Injg
2 and Co as in (3.9). For 0 < r < ro , put Tm = r̃m

rCo
and for x ∈ B(T −1

m δg) and define

ṽm(x) = T
n−p
p

m vm(expxo
(Tmx)), x ∈ Rn

g̃m(x) = exp∗xo
g(Tmx)

We let the sequence η̃mṽm such that η̃m = η(δ−1Tmx), δ ∈ (0,
Injg
2 ) and η ∈ Co(Rn) is the cut-off function

such that 0 ≤ η ≤ 1 , η(x) = 1, x ∈ B( 14 ) and η(x) = 0, x ∈ Rn \ B( 34 ) . Going through the same way in the
proof of Lemma 3.3, we get then that the sequence η̃mṽm is bounded in D1,p(Rn) and then it converges weakly
in D1,p(Rn) to a function v ∈ D1,p(Rn) .
Suppose that v 6= 0 , we get then that Tm → 0 . To prove that v solves (1.4), we let φ ∈ C∞

0 (Rn) with compact
support included in a ball B(R), R > 0 . For m is large, define on M the sequence φm as

φm(x) = T
p−n
p

m φ(T −1
m (exp−1

xo
(x)))

Identities (3.25) and (3.27) still hold and we have:

∫
M

h

ρpxo

|vm|p−2vmφmdvg =

∫
Rn

h(expxo
(Tmx))

|x|p
|(η̃mṽm)|p−2(η̃mṽm)φdvg̃m .

Since Tm → 0 , g̃m → ξ in C1(B(R)) and thus we can write dvg̃m = εmdx , with ε→ 1 uniformly in B(R) . In
addition, we can prove, as in [21] (proof of step 2.1), that ∇(η̃mṽm) → ∇v a.e. Since we have also η̃mṽm → v

a.e, and the sequence η̃mṽm is bounded in Lp(Rn, |x|p) we get by basic integration theory together with the
fact that the sequence φm is bounded in Hp

1 (M) and the sequence vm is a P-S sequence of Jf,h,p , that v is a
weak solution of

∆ξ,pv −
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

Now, that the sequence wn converges weakly to 0 in Hp
1 (M) follows in the same manner as in the proof of Step

3 above. To prove that DJf,h,p(wm) → 0 , we consider the sequence Bm defined by (3.28). Let φ ∈ Hp
1 (M) .
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For x ∈ B(δT −1
m ) , put φm(x) = T

n−p
p

m φ(expxo
(Tmx)) and φ̄m = ηδ(Tmx)φm(x) . Then, identities (3.32) and

(3.33) still hold. Let R > 0 be a constant, we have:

∫
M

h

(ρxo
)p
|Bm|p−2Bmφdvg =

∫
B(xo,TmR)

h

(ρxo
)p
|Bm|p−2Bmφdvg +

∫
B(xo,δ)\B(xo,TmR)

h

(ρxo
)p
|Bm|p−2Bmφdvg.

By Hölder and Hardy inequalities, we have:

∫
B(xo,δ)\B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg ≤ sup

M
|h|‖φ‖Hp

1 (M)

∫
B(xo,δ)\B(xo,TmR)

|∇gBm|pdvg + o(1)

= sup
M

|h|‖φ‖Hp
1 (M)

∫
B(δT −1

m ))\B(R)

|∇v|pdx+ o(1)

= O(‖φ‖Hp
1 (M))ε(R) + o(1),

with ε→ 0 as R→ ∞ .
Put

φ(x) = T
n−p
p

m φ(expxo
(Tmx)).

Then, for m is large

∫
B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg =

∫
B(R)

h(expxo
(Tmx))

|x|p
|v|p−2vφmdvg̃m

Since g̃ → ξ in C1(B(R′)), R′ > R , we get

∫
B(R)

h(expxo
(Tmx))

|x|p
|v|p−2vφmdvg̃m = h(xo)

∫
B(R)

1

|x|p
|v|p−2vφmdx+ o(‖φ‖Hp

1 (M))

= h(xo)

∫
Rn

1

|x|p
|v|p−2vφmdx+ o(‖φ‖Hp

1 (M)) +O(‖φ‖Hp
1 (M))ε(R).

Therefore,

∫
M

h

(ρxo
)p
|Bm|p−2Bmφdvg = h(xo)

∫
Rn

1

|x|p
|v|p−2vφmdx+ o(‖φ‖Hp

1 (M)) +O(‖φ‖Hp
1 (M))ε(R) + o(1). (3.37)

Since v is a weak solution of (1.4), we get by (3.32), (3.33), and (3.37) that DJf,h,p(Bm) → 0 . This implies, as
in the proof of (3.30) of Step 3, that DJf,h,p(wm) → 0 .
Now, we prove the last statement of the lemma. Put

ŵm(x) = T
n−p
p

m wm(expxo
(Tmx)) = ṽm − ηδ(Tmx)v(x)

1211



GHOMARI and MALIKI/Turk J Math

By convexity, we have:∫
Rn

|∇(v(ηδ(Tmx)− 1))|pdx

=

∫
Rn\B(δT −1

m )

|∇v|pdx+

∫
B(2δT −1

m )\B(δT −1
m )

|∇(v(ηδ(Tmx)− 1))|pdx

≤ 2p−1

(∫
B(2δT −1

m )\B(δT −1
m )

|ηδ(Tmx)− 1)|p|∇v|pdx+ T p
m

∫
B(2δT −1

m )\B(δT −1
m )

|v|p|(∇ηδ)(Tmx)|pdx

)

+

∫
Rn\B(δT −1

m )

|∇v|pdx

≤ 2p−1

(∫
B(2δT −1

m )\B(δT −1
m )

|∇v|pdx+ CT p
m

∫
B(2δT −1

m )\B(δT −1
m )

|v|pdx

)
+

∫
Rn\B(δT −1

m )

|∇v|pdx

= o(1).

Similarly, we get that η̃mv = v + o(1) . Thus, we obtain:

η̃mŵm = η̃mṽm − v + o(1).

Since η̃mṽm → v a.e in Rn and ∇(η̃mṽm) → ∇v a.e in Rn , we get, as in the proof of Lemma 3.1, that

Ef,h(η̃mŵm) = Ef,h(η̃mṽm)− Eh,f (v) + o(1).

By using rescaling invariance and the fact that g̃m → ξ in C1(B(R)) for any R > 0 , we get that:

Jf,h,p(wm) = Jf,h,p(vm)− Eh,f (v) + o(1).

2

Lemma 3.5 Suppose that the weak limit v in D1,p(Rn) of the sequence η̃mṽm of the above lemma is null.
Then, there exists a sequence of positive numbers τm → 0 and a sequence of points yi ∈M \{xo} , yi → yo 6= xo

such that up to a subsequence, the sequence

νm = τ
n−p
p

m vm(expyi
(τmx))

converges weakly to a nontrivial weak solution ν of the Euclidean equation

∆ξ,pν = f(yo)|ν|p
⋆−2ν

and the sequence

Wm = vm − τ
p−n
p

m ηδ(exp
−1
yi

(x))ν(τ−1
m exp−1

yi
(x))

is a Palais-Smale sequence for Jf,h,p that converges weakly to 0 in Hp
1 (M) and

Jf,h,p(Wm) = Jf,h,p(vm)− f(yo)
p−n
p E(u),

with u is a solution of (1.3).
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Proof Take a function φ ∈ C∞
0 (B(Cor)) and put φm(x) = φ(T −1

m exp−1
xo

(x)) . We have:

∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m =

∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m

+

∫
Rn

p|φ|p−1|ṽm||∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m |φ|)dvg̃m .

Since the sequence η̃mṽm is bounded in D1,p(Rn) and it converges strongly to 0 in Lp,loc(Rn) , we have:

∣∣∣∣∫
Rn

p|φ|p−1|ṽm||∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m |φ|)dvg̃m
∣∣∣∣

≤ C

∫
B(Cor)

|ṽm||∇g̃m ṽm|p−1dvg̃m

≤ C

(∫
B(Cor)

|ṽm|pdvg̃m

) 1
p
(∫

B(Cor)

|∇g̃m ṽm|pg̃mdvg̃m

)1− 1
p

= o(1).

Then ∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m =

∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m + o(1).

Now, by lemma A.4 in [4], the following inequalities hold

1. If 1 < p < 2 , for a given γ ∈ (1, p) , there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα+ Ctγ ,

for t ≥ 0 uniformly in α .

2. If 2 ≤ p ≤ 3 , for a given γ ∈ [p− 1, 2] , there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα+ Ctγ ,

for t ≥ 0 uniformly in α .

3. If p ≥ 3 , there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα+ C(t2 + tp−1),

for t ≥ 0 uniformly in α .

Using these inequalities together with Hölder inequality and the strong convergence of η̃mṽm in Lp,loc(Rn) , we
get: ∫

Rn

|∇g̃m(ṽmφ)|pdvg̃m ≤
∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m + o(1),
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in such a way that ∫
Rn

|∇g̃m(ṽmφ)|pdvg̃m

≤
∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m + o(1),

=

∫
M

|∇vm|p−2
g(∇gvm,∇g(vm|φm|p))dvg + o(1)

Moving to and from rescaling, using Hölder, Hardy, and Sobolev inequalities and the fact that vm is P-S
sequence and that vm|φm|p is bounded in Hp

1 (M) , we get:∫
Rn

|∇g̃m(ṽmφ)|pdvg̃m

≤
∫
M

|∇gvm|p−2
g(∇gvm,∇g(vm|φm|p))dvg + o(1)

= (DJf,h,p(vm)).(vm|φm|p) +
∫
M

h

ρpxo

|vmφm|p dvg +
∫
M

f |vm|p
∗−p |vmφm|p dvg + o(1)

≤ (h(xo) + ε)

((
p

n− p

)p

+ ε

)∫
Rn

|∇g̃m(ṽmφ)|p dvg̃m

+ (Kp⋆

(n, p) + ε) sup f
(∫

B(Cor)

|∇g̃m(ṽm)|p dvg̃m
) p

n−p

∫
Rn

|∇g̃m(ṽmφ)|p dvg̃m

+ o(1).

Thus, since 1− h(xo)(
p

n−p )
p > 0 , for γ̃ in (3.36) chosen small enough, we get that for each t , 0 < t < Cor∫
B(xo,tTm)

|∇gvm|p dvg =

∫
B(t)

|∇g̃m ṽm|p dvg̃m → 0,m→ ∞ (3.38)

Now, the sequence vm is a P.S sequence that converges to 0 weakly and not strongly in Hp
1 (M) , we get as in

lemma 3.2 that ∫
M

|∇gvm|p dvg ≥
(

nβ∗

supM f(K(n, p) + ε)p∗

) p
p∗

+ o(1). (3.39)

Consider for t > 0 the function

t 7→ Fm(t) = max
y∈M

∫
B(y,t)

|∇gvm|p dvg

Given that to is small, it follows from (3.39) that there exists y ∈M and λo > 0 such that up to a subsequence∫
B(y,to)

|∇gvm|p dvg ≥ λo (3.40)

Since Fm is continuous, it follows that for any λ ∈ (0, λo) , there exist tm ∈ (0, to) and ym ∈M such that

Fm(tm) =

∫
B(ym,tm)

|∇gvm|p dvg = λ. (3.41)
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Since M is compact, up to a subsequence, we may assume that ym converges to some point yo ∈M .
Note first that for all m ≥ 0 , tm < r̃m = CorTm , otherwise if there exists mo ≥ 0 such that tmo

≥ r̃mo
, we

get:

λ =

∫
B(ymo ,tmo )

|∇gvmo
|p dvg ≥

∫
B(xo,tmo )

|∇gvmo
|p dvg ≥

∫
B(xo,r̃mo )

|∇vmo
|p dvg = γ.

Hence, if we choose λ small enough such that 0 < λ < γ , we get a contradiction.
Now, suppose that for all ε > 0 , there exists mε > 0 such that for all m ≥ mε distg(ym, xo) ≤ ε . Choose r′m

such that, tm < r′m < r̃m and take ε′ = r′m − tm , we get that for some mε′ > 0 and m ≥ mε′

B(ym, tm) ⊂ B(xo, r
′
m)

which gives, by virtue of (3.38) and (3.41), a contradiction. We deduce then that yo 6= xo .
Now, take 0 < τm < 1 such that Corτm = tm , where r ∈ (0, ro) and Co and ro are as in (3.9). Then, for
x ∈ B(τ−1

m δg) ⊂ Rn consider the sequences

ν̌m(x) = τ
n−p
p

m vm(expym
(τmx)),

ǧm(x) = exp∗ym
g(τmx)

Put η̌m(x) = η(δ−1τmx) , where δ ∈ (0, Injg) and x ∈ Rn . As in the proof of lemma 3.3, we can easily check
that there is a subsequence of η̃mν̃m that converges weakly in D1,p(Rn) to some function ν . We prove that
actually the strong convergence holds in Hp

1 (B(R)), R > 0 . In fact, we go through the same proof of Step 1
above by just replacing xm by ym and Rm by τm . We let then a ∈ Rn and µ ∈ [r, 2r] and consider the
sequence 

ψ̌m = η̌mν̌m − ν in B(a, µ),

ψ̌m = zm in B(a, 3r) \B(a, µ),

ψ̌m = 0 in Rn \B(a, 3r).

where zm are solutions of (3.19). For r < δ
24 , consider the rescaling sequence ψm of ψ̌m{

ψm(x) = τ
p−n
p

m ψ̌m(τ−1
m exp−1

ym
(x)), if x < dg(ym, 6r),

ψm(x) = 0, otherwise.

As in (3.20), we have:

o(1) =

∫
B(a,3r)

|∇ǧm(η̌mν̌m)|p−2ǧ
(
∇ǧm(η̌mν̌m),∇ǧm ψ̌m

)
dvǧm (3.42)

− τpm

∫
B(a,3r)

h(expym
(τmx))(

ρxo
(expym

(τmx))
)p |η̌mν̌m|p−2(η̌mν̌m)ψ̌mdvǧm

−
∫
B(a,3r)

f(expym
(τmx))|η̌mν̌m|p

∗−2(η̌mν̌m)ψ̌mdvǧm .

As above, we have:∫
B(a,3r)

|∇ǧm(η̌mν̌m)|p−2ǧ
(
∇ǧm(η̌mν̌m),∇ǧm ψ̌m

)
dvǧm =

∫
Rn

|∇ǧm ψ̌m|pdvǧm + o(1),
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and ∫
B(a,3r)

f(expym
(τmx))|η̌mν̌m|p

∗−2(η̌mν̌m)ψ̌mdvǧm

=

∫
Rn

f(expym
(τmx))|ψ̌m|p

∗
dvǧm + o(1).

Since τm → 0 , we get that for all ε > 0 , there exists mo such that for all m ≥ mo , we have:

ρxo
(expym

(τmx)) = distg(xo, expym
(τmx)) ≥ distg(xo, yo)− ε = ϱ > 0.

Then, as in the proof of step 1, we get:

∫
B(a,3r)

h(expym
(τmx))(

ρxo
(expym

(τmx))
)p |η̌mν̌m|p−2(η̌mν̌m)ψ̌mdvǧm (3.43)

=

∫
Rn

h(expym
(τmx))(

ρxo(expym
(τmx))

)p |ψ̌m|pdvǧm + o(1).

Since the sequence ψ̌m converges strongly to 0 in Lp,loc(Rn) , we get:

∫
Rn

h(expym
(τmx))(

ρxo(expym
(τmx))

)p |ψ̌m|pdvǧm ≤ C

∫
Rn

|ψ̌m|pdvǧm = o(1).

We deduce that: ∫
Rn

|∇ǧm ψ̌m|pdvǧm =

∫
Rn

f(expym
(τmx))|ψ̌m|p

∗
dvǧm + o(1).

The remaining of the proof goes in the same way as in the proof of step 1 and step 2. Thus, we get that ν 6= 0

and ν is a weak solution of
∆p,ξν = f(yo)|ν|p

∗−2ν.

2

Now, we are in position to prove Theorems 1.1 and 1.2

Proof [Proof of Theorem 1.1] Let us first note that if u ∈ D1,p(Rn) is a nontrivial weak solution of (1.4), then

Ef,h(u) ≥
(1− h(xo)(

p
n−p )

p)
n
p

n(supM f)
n−p
p Kn(n, p)

. (3.44)

In fact, by Hardy and Sobolev inequalities, we have:

(
1− h(xo)

(
p

n− p

)p)∫
Rn

|∇u|pdx ≤
∫
Rn

|∇u|pdx− h(xo)

∫
Rn

|u|p

|x|p
dx = f(xo)

∫
Rn

|u|p
∗
dx

≤ f(xo)K
p∗
(n, p)

(∫
Rn

|∇u|pdx
) p∗

p
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Since u cannot be a constant, we get:

∫
Rn

|∇u|pdx ≥
(1− h(xo)(

p
n−p )

p)
n−p
p

(f(xo))
n−p
p Kn(n, p)

.

Hence,

Ef,h(u) =
1

n

(∫
Rn

|∇u|pdx− h(xo)

∫
Rn

|u|p

|x|p
dx

)
≥

(1− h(xo)(
p

n−p )
p)(1− h(xo)(

p
n−p )

p)
n−p
p

n(supM f)
n−p
p Kn(n, p)

≥
(1− h(xo)(

p
n−p )

p)
n
p

n(f(xo))
n−p
p Kn(n, p)

.

By the same way, we can also have that for a nontrivial solution u ∈ D1,p(Rn) of (1.3),

E(u) ≥ 1

nKn(n, p))
. (3.45)

Now, let um be a P-S sequence for Jf,h,s at level βu
s , 0 < s < p . Then, um is bounded in Hp

1 (M) and it
converges, up to a subsequence, to a function u weakly in Hp

1 (M) and almost everywhere to u in M . Thus,
by Lemma 3.1, the function u is a weak solution of (Es), 0 < s < p and the sequence vm = um − u is a
Palais-Smale sequence for Jf,h,s at level βs = βu

s − Jf,h,s(u) .
If vm converges strongly to 0 in Hp

1 (M) , then the theorem is proved with k = 0 . If not, by Lemma 3.2,
βs ≥ β∗ = 1

n(supM f)
n−p
p Kn(n,p))

. Then, by Lemma 3.3 and its proof, there exists a nontrivial weak solution

v1 ∈ D1,p(Rn) of ∆p,ξv = f(xo1)|v|p
∗−2v , a converging sequence of points x1m → xo1 and a sequence of reals

R1
m → 0 such that, the sequence

wm(x) = vm − (R1
m)

p−n
p ηδ(exp

−1
x1
m
(x))v1((R

1
m)−1 exp−1

x1
m
(x)), x ∈M

admits a subsequence that is P-S sequence of Jf,h,s , 0 < s < p , at level β1 = βs − (f(xo1))
p−n
p E(u1) , with u1

is a nontrivial weak solution of (1.3). By (3.45), β1 ≤ βs − β∗ . Then, if βs < 2β∗ , we get β1 < β∗ and the
sequence wm converges strongly to 0 in Hp

1 (M) . Hence, the theorem is proved with k = 1 . If not, we repeat
the procedure until we obtain a P-S sequence at level βk ≤ βs − kβ∗ < β∗ and Theorem 1.1 is proved.

2

Proof [Proof of theorem 1.2] In the same way as above, we prove theorem 1.2. We let um be a P-S sequence
for Jf,h,p at a level βu . Then, um is bounded in Hp

1 (M) and it converges, up to a subsequence, to a function
u weakly in Hp

1 (M) and almost everywhere to u in M . Thus, by Lemma 3.1, the function u is a weak solution
of (Es), s = p , and the sequence vm = um−u is a Palais-Smale sequence for Jf,h,p at level β = βu−Jf,h,p(u) .
If vm converges strongly to 0 in Hp

1 (M) , then the theorem is proved with k = 0 , l = 0 . If not, by Lemma 3.2,

β ≥ β∗ =
(1−h(xo)(

n−p
p )p)

n
p

n(supM f)
n−p
p Kn(n,p)

. By Lemma 3.4, there exist a sequence of positive reals T 1
m → 0 such that the

sequence η̃mṽm with

ṽm(x) = T
n−p
p vm(expxo

(T 1
mx)),
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and η̃m(x) = η(δ−1T 1
mx) , 0 < δ ≤ Injg

2 and η is defined by (3.18), converges, up to subsequence, weakly to
some function v1 ∈ D1,p(Rn) such that if v1 6= 0 , then v1 is solution of

∆ξ,pv +
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

and the sequence

wm(x) = vm(x)− (T 1
m)

p−n
p ηδ(exp

−1
xo

(x))v1((T 1
m)−1 exp−1

xo
(x)),

where 0 < δ <
Injg
2 , admits a subsequence wm that is a P-S sequence of Jf,h,p , at level β1 = β−Ef,h(v1) that

converges to 0 weakly in Hp
1 (M) . By (3.44), β1 ≤ β−β∗ . Then, if β < 2β∗ , we get β1 < β∗ and the sequence

wm converges strongly to 0 in Hp
1 (M) . If not, we repeat the procedure until we obtain a Palais-Smale sequence

at level βk ≤ β − kβ∗ < β∗ .
Now, if the weak limit v of the sequence ṽ is the zero function by lemma 3.5, there exists a nontrivial weak
solution ν1 of ∆p,ξν = f(y1o)|ν|p

∗−2ν , a sequence of positive reals τ1m → 0 and a sequence y1i → y1o 6= xo such
that the sequence

Wm(x) = vm − (τ1m)
p−n
p ηδ(exp

−1
y1
i
(x))ν1((τ

1
m)−1 exp−1

y1
i
(x)), x ∈M

admits a subsequence which is a P-S sequence of Jf,h,p at level β1 = β − (f(y1o))
p−n
p E(u1) ≤ β − β∗ , with u1

is a nontrivial weak solution of (1.3). If β < 2β∗ , then β1 < β∗ and the sequence Wm converges strongly to 0

in Hp
1 (M) . The theorem is then proved with k = 0 and l = 1 . If not, we repeat the procedure until we obtain

a P-S sequence at level βk ≤ β − kβ∗ < β∗ . 2
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