Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: 1191 - 1219
© TÜBİTAK
doi:10.55730/1300-0098.3421

Struwe compactness results for a critical p-Laplacian equation involving critical and subcritical Hardy potential on compact Riemannian manifolds

Tewfik GHOMARI* ${ }^{*}$, Youssef MALIKI ${ }^{\text {© }}$
Dynamic Systems and Applications Laboratory, Department of Mathematics, Faculty of Sciences, University Aboubekr Belkaïd of Tlemcen, Tlemcen, Algeria

| Received: 26.09 .2021 | Accepted/Published Online: 21.03 .2023 | Final Version: 16.05 .2023 |
| :--- | :--- | :--- | :--- |

Abstract: Let (M, g) be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas for Palais-Smale sequences of functional energies corresponding to the equation:

$$
\Delta_{g, p} u-\frac{h(x)}{\left(\rho_{x_{o}}(x)\right)^{s}}|u|^{p-2} u=f(x)|u|^{p^{*}-2} u
$$

where $\Delta_{g, p}$ is the p-Laplacian operator, $p^{*}=\frac{n p}{n-p}, 0<s \leq p$, and $\rho_{x_{o}}(x)$ is a distance function to a fixed point x_{o} in M.

Key words: Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up analysis, bubbles

1. Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold. Denote by $\operatorname{Inj}_{\mathrm{g}}$ the injectivity radius of (M, g). Let x_{o} be a fixed point in M and define on M a distance function as follows:

$$
\rho_{x_{o}}(x)= \begin{cases}\operatorname{dist}_{\mathrm{g}}\left(x_{o}, x\right), & x \in B\left(x_{o}, \operatorname{Inj}_{\mathrm{g}}\right), \tag{1.1}\\ \operatorname{Inj}_{\mathrm{g}}, & x \in M \backslash B\left(x_{o}, \operatorname{Inj}_{\mathrm{g}}\right)\end{cases}
$$

For a real p such that $1<p<n$, let us consider the Sobolev space $H_{1}^{p}(M)$ defined as the completion of $C^{\infty}(M)$ with respect to the norm:

$$
\|u\|_{H_{1}^{p}(M)}=\int_{M}\left(\left|\nabla_{g} u\right|^{p}+|u|^{p}\right) d v_{g}
$$

where $\left|\nabla_{g} u\right|^{2}=g\left(\nabla_{g} u, \nabla_{g} u\right)$. Let us also consider the p-Laplacian operator $\Delta_{g, p}$ that acts on functions $u \in H_{1}^{p}(M)$ as:

$$
\Delta_{g, p} u=-\operatorname{div}\left(\left|\nabla_{g} u\right|^{p-2} \nabla_{g} u\right)
$$

*Correspondence: malyouc@yahoo.fr
2010 AMS Mathematics Subject Classification 58J05: 23584

Let h and f be two smooth functions on M. For a real s such that $0<s \leq p$, let us consider the following singular elliptic quasilinear equation:

$$
\begin{equation*}
\Delta_{g, p} u-\frac{h(x)}{\left(\rho_{x_{o}}(x)\right)^{s}}|u|^{p-2} u=f(x)|u|^{p^{*}-2} u, \tag{s}
\end{equation*}
$$

where $p^{*}=\frac{n p}{n-p}$ is the critical exponent in the Sobolev inclusion $H_{1}^{p}(M) \subset L_{P^{*}}(M)$.
Equation $\left(E_{s}\right)$, as one can immediately notice, is a generalization to the well-known geometric prescribed scalar curvature which corresponds to $s=0$ and $p=2$ and which has been largely studied starting from the middle of the last century. For a compendium on this equation and the related topic, the reader may refer to the books in [3] and [13].
For $s=0$, we fall on the generalized prescribed scalar curvature equation which has been studied on compact manifolds in [9] and on complete noncompact manifolds in [5]. For $p=2,0<s \leq 2$, and $f \equiv 1$, we meet a singular Yamabe type equation to which existence of weak solutions has been studied in [16].
Now, define on $H_{1}^{p}(M)$ the energy functional:

$$
\begin{equation*}
J_{f, h, s}(u)=\frac{1}{p}\left(\int_{M}\left(\left|\nabla_{g} u\right|^{p}-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}|u|^{p}\right) d v_{g}\right)-\frac{1}{p^{*}} \int_{M} f|u|^{p^{*}} d v_{g} . \tag{1.2}
\end{equation*}
$$

This functional is of class C^{2} on $H_{1}^{p}(M)$. Its Gâteau derivative at a point $v \in H_{1}^{p}(M)$ is given by:

$$
\begin{aligned}
\left(D J_{f, h, s} u\right) \cdot v & =\int_{M}\left(\left|\nabla_{g} u\right|^{p-2} g\left(\nabla_{g} u, \nabla_{g} v\right)-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}|u|^{p-2} u \cdot v\right) d v_{g} \\
& -\int_{M} f|u|^{p^{*}-2} u . v d v_{g} .
\end{aligned}
$$

A Palais-Smale sequence (P.S in short) of the functional $J_{f, h, s}$ at a level $\beta_{s} \in \mathbb{R}, 0<s \leq p$, is defined to be the sequence $u_{m} \in H_{1}^{p}(M)$ that satisfies $J_{f, h, s}\left(u_{m}\right) \rightarrow \beta_{s}$ and $\left(D J_{f, h, s} u_{m}\right) \cdot v \rightarrow 0, \forall v \in H_{1}^{p}(M)$ as $m \rightarrow \infty$. To abbreviate, we denote β_{p} by β. A weak solution of $\left(E_{s}\right), 0<s \leq p$, is a function $u \in H_{1}^{p}(M)$ that satisfies $\left(D J_{f, h, s} u\right) . v=0, \forall v \in H_{1}^{p}(M)$.
In this work, we aim at proving that a P.S sequence u_{m} of the functional $J_{f, h, s}$ is submitted to the well-known Struwe decomposition formulas [24]. Note that similar decomposition results, on Riemannian manifolds, are obtained in [10] in the case $s=0$ and $p=2$, in [21] in the case $s=0$ and $1<p<n$, and in [18] in the case $s=p=2$. In the present work, we generalize those results to the case $s \in(0, p]$.
In proving the decomposition result, we distinguish the subcritical case $s \in(0, p)$ from the critical case $s=p$. More explicitly, we will prove that in case $s \in(0, p)$, a P.S sequence of the functional $J_{f, h, s}$ decomposes into the sum of a weak solution of $\left(E_{s}\right)$, rescaled weak solutions of the Euclidean equation:

$$
\begin{equation*}
\Delta_{\xi, p} u=|u|^{p^{*}-2} u \tag{1.3}
\end{equation*}
$$

where ξ is the Euclidean metric on \mathbb{R}^{n}, and a zero-converging term in $H_{1}^{p}(M)$. Note that existence and classification of positive solutions of (1.3) are studied in [7, 22, 27].
However, in case $s=p$, the singular term enters into the decomposition and leads to another term to be added.

This term is a rescaled solution of:

$$
\begin{equation*}
\Delta_{\xi, p} u-\frac{h\left(x_{o}\right)}{|x|^{p}}|u|^{p-2} u=f\left(x_{o}\right)|u|^{p^{*}-2} u, \tag{1.4}
\end{equation*}
$$

whose existence of solutions is studied in [1]. Let $\delta>0$ be a constant and denote by η_{δ} a smooth cut-off function in \mathbb{R}^{n} such that $0 \leq \eta_{\delta} \leq 1, \eta_{\delta}(x)=1$ for $x \in B(\delta)$ and $\eta_{\delta}(x)=0$ for $x \in \mathbb{R}^{n} \backslash B(2 \delta), B(r)$ denotes the ball of center 0 and radius r. Let $y \in M$ and $0<\delta<\frac{\operatorname{Inj}_{g}}{2}$, we define the cut-off function $\eta_{\delta, y}$ by

$$
\eta_{\delta, y}(x)=\eta_{\delta}\left(\exp _{y}^{-1}(x)\right),
$$

where $\exp _{y}: B(\delta) \subset \mathbb{R}^{n} \rightarrow B(y, \delta) \subset M$ is the exponential map at point $y \in M$ which defines a diffeomorphism from $B(\delta) \subset \mathbb{R}^{n}$ to $B(y, \delta)$.
Let $D^{1, p}\left(\mathbb{R}^{n}\right)$ denote the Sobolev space defined as the completion of $C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$, the space of smooth functions with compact support in \mathbb{R}^{n}, with respect to the norm:

$$
\|u\|_{D^{1, p}\left(\mathbb{R}^{n}\right)}^{p}=\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x .
$$

Define on $D^{1, p}\left(\mathbb{R}^{n}\right)$ the following functionals:

$$
\begin{aligned}
E(u) & =\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}}|u|^{p^{*}} d x, \\
E_{f, h}(u) & =\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{h\left(x_{o}\right)}{p} \int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{p}} d x-\frac{f\left(x_{o}\right)}{p^{*}} \int_{\mathbb{R}^{n}}|u|^{p^{*}} d x .
\end{aligned}
$$

According to whether the exponent s is critical or subcritical, we state the following two main results
Theorem 1.1: Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. Let f and h be two smooth functions on M. Let x_{o} be a point of M as defined in (1.1). Suppose that f satisfies $f\left(x_{o}\right)=$ $\sup _{M} f(x), f(x)>0, x \in M$.
Let u_{m} be a Palais-Smale sequence of the functional $J_{f, h, s}$ at level $\beta_{s}, 0<s<p$. Then, there exist $k \in \mathbb{N}$, sequences $R_{m}^{i} \geq 0, R_{m}^{i} \underset{m \rightarrow \infty}{\rightarrow} 0, k \in \mathbb{N}$, converging sequences of points in $M, x_{m}^{i} \underset{m \rightarrow \infty}{\rightarrow} x_{o}^{i}$, a solution $u \in H_{1}^{p}(M)$ of $\left(E_{s}\right), 0<s<p$, nontrivial weak solutions $v_{i} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of (1.3) such that up to subsequence, for $0<s<p$, we have

$$
\begin{gathered}
u_{m}=u+\sum_{i=1}^{k}\left(R_{m}^{i}\right)^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{m}^{i}}^{-1}(x)\right) f\left(x_{o}^{i}\right)^{\frac{p-n}{p^{2}}} v_{i}\left(\left(R_{m}^{i}\right)^{-1} \exp _{x_{m}^{i}}^{-1}(x)\right)+\mathcal{W}_{m}, \\
\text { with } \mathcal{W}_{m} \rightarrow 0 \text { in } H_{1}^{p}(M),
\end{gathered}
$$

and

$$
J_{f, h, s}\left(u_{m}\right)=J_{f, h, s}(u)+\sum_{i=1}^{k} f\left(x_{o}^{i}\right)^{\frac{p-n}{p}} E\left(v_{i}\right)+o(1) .
$$

Theorem 1.2 Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. Let f and h be two smooth functions on M. Let x_{o} be a point of M as defined in (1.1). Suppose that f and h satisfy the following conditions

1. $f\left(x_{o}\right)=\sup _{M} f(x), f(x)>0, x \in M$,
2. $h\left(x_{o}\right)=\sup _{M} h(x)$ and $0<h\left(x_{o}\right)<\left(\frac{n-p}{p}\right)^{p}$.

Let u_{m} be a Palais-Smale sequence of the functional $J_{f, h, p}$ at level β. Then, there exist $k \in \mathbb{N}$, sequences $\mathcal{T}_{m}^{i} \geq 0, \mathcal{T}_{m}^{i} \underset{m \rightarrow \infty}{\rightarrow} 0, l \in \mathbb{N}$ sequences $\tau_{m}^{j} \geq 0, \tau_{m}^{j} \underset{m \rightarrow \infty}{\rightarrow} 0, l \in \mathbb{N}$, converging sequences of points in M, $y_{m}^{j} \underset{m \rightarrow \infty}{\rightarrow} y_{o}^{j} \neq x_{o}$, a weak solution $u \in H_{1}^{p}(M)$ of $\left(E_{s}\right), s=p$, nontrivial weak solutions $v_{i} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of (1.4) and weak solutions $\nu_{j} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of (1.3) such that up to subsequence, we have:

$$
\begin{gathered}
u_{m}=u+\sum_{i=1}^{k}\left(\mathcal{T}_{m}^{i}\right)^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{o}}^{-1}(x)\right) v_{i}\left(\left(\mathcal{T}_{m}^{i}\right)^{-1} \exp _{x_{o}}^{-1}(x)\right) \\
+\sum_{j=1}^{l}\left(\tau_{m}^{j}\right)^{\frac{p-n}{p}} f\left(y_{o}^{j}\right)^{\frac{p-n}{p^{2}}} \eta_{\delta}\left(\exp _{y_{m}^{j}}^{-1}(x)\right) \nu_{j}\left(\left(\tau_{m}^{j}\right)^{-1} \exp _{y_{m}^{j}}^{-1}(x)\right)+\mathcal{W}_{m} \\
\text { with } \mathcal{W}_{m} \rightarrow 0 \text { in } H_{1}^{p}(M)
\end{gathered}
$$

and

$$
J_{f, h, p}\left(u_{m}\right)=J_{f, h, p}(u)+\sum_{i=1}^{k} E_{f, h}\left(v_{i}\right)+\sum_{j=1}^{l} f\left(y_{o}^{j}\right)^{\frac{p-n}{p}} E\left(\nu_{j}\right)+o(1)
$$

2. Preliminary results

In this section, we recall some known results that we need to achieve the proof of our main theorems.

2.1. Sobolev inequality

Denote by $K(n, p)$ the best constant in the Euclidean Sobolev inequality, that is for $u \in D^{1, p}\left(\mathbb{R}^{n}\right)$, there holds:

$$
\int_{\mathbb{R}^{n}}|u|^{p^{*}} d x \leq K(n, p)^{p^{*}}\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x\right)^{\frac{p^{*}}{p}}
$$

The value of $K(n, p)$ is calculated in Aubin [2] and Talenti [25] and is given by:

$$
K(n, p)=\frac{p-1}{n-p}\left(\frac{n-p}{n(p-1)}\right)^{\frac{1}{p}}\left(\frac{\Gamma(n+1)}{\Gamma\left(\frac{n}{p}\right) \Gamma\left(n+1-\frac{n}{p}\right) w_{n-1}}\right)^{\frac{1}{n}}
$$

On compact Riemannian manifold (M, g), in [2] the following Sobolev inequality is proven: for every $\varepsilon>0$, there exists a positive constant $A_{\varepsilon}>0$ such that for every $u \in H_{1}^{p}(M)$,

$$
\begin{equation*}
\int_{M}|u|^{p^{*}} d v_{g} \leq\left(K(n, p)^{p^{*}}+\varepsilon\right)\left(\int_{M}\left|\nabla_{g} u\right|^{p} d v_{g}\right)^{\frac{p^{*}}{p}}+A_{\varepsilon}\left(\int_{M}|u|^{p} d v_{g}\right)^{\frac{p^{*}}{p}} \tag{2.1}
\end{equation*}
$$

It is commonly known (see for example [13, 14]) that the inclusion $H_{1}^{p}(M) \subset L_{q}(M)$ is compact for $q<p^{*}$ and continuous for $q=p^{*}$.

2.2. Hardy inequality

Let $\rho_{x_{o}}$ be the distance function defined by (1.1). Denote by $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$ the space of functions u such that $\frac{|u|^{p}}{\left(\rho_{x_{o}}\right)^{s}}$ is integrable. This space, endowed with the norm $\int_{M} \frac{|u|^{p}}{\left(\rho_{x_{o}}\right)^{s}} d v_{g}$, is a Banach space. Now, for $u \in D^{1, p}\left(\mathbb{R}^{n}\right)$, the following Hardy inequality holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{p}} d x \leq\left(\frac{p}{n-p}\right)^{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x \tag{2.2}
\end{equation*}
$$

This inequality has been extended to compact Riemannian manifolds in [16] as follows: for every $\varepsilon>0$, there exists a positive constant $B_{\varepsilon}>0$ such that for every $u \in H_{1}^{p}(M)$,

$$
\begin{equation*}
\int_{M} \frac{|u|^{p}}{\left(\rho_{x_{o}}\right)^{p}} d v_{g} \leq\left(\left(\frac{p}{n-p}\right)^{p}+\varepsilon\right) \int_{M}\left|\nabla_{g} u\right|^{p} d v_{g}+B_{\varepsilon} \int_{M}|u|^{p} d v_{g} \tag{2.3}
\end{equation*}
$$

For a function $u \in H_{1}^{p}(M)$ with support included in $B\left(x_{o}, \delta\right)$, where $\delta<\operatorname{Inj}_{\mathrm{g}}$, there holds:

$$
\begin{equation*}
\int_{M} \frac{|u|^{p}}{\left(\rho_{x_{o}}\right)^{p}} d v_{g} \leq\left(K_{\delta}(n, p,-p)\right)^{p} \int_{M}\left|\nabla_{g} u\right|^{p} d v_{g} \tag{2.4}
\end{equation*}
$$

with $K_{\delta}(n, p,-p) \rightarrow \frac{p}{n-p}$ as $\delta \rightarrow 0$.
In [16], it has been proven that the inclusion $H_{1}^{p}(M) \subset L_{p}\left(M,\left(\rho_{x_{o}}\right)^{p}\right)$ is continuous and the inclusion $H_{1}^{p}(M) \subset$ $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$, with $0<s<p$, is compact.

3. Proof of the main theorems

In this section, we prove theorems 1.1 and 1.2. The proof goes through a series of lemmas:
Lemma 3.1 Let u_{m} be a P.S sequence for $J_{f, h, s}, 0<s \leq p$, at level β_{s}. Suppose that the sequence u_{m} converges to a function u weakly in $H_{1}^{p}(M)$ and $L_{p}\left(M, \rho_{x_{o}}^{p}\right)$, strongly in $L_{q}(M), 1 \leq q<p^{*}$ and almost everywhere in M. Then, the function u is a weak solution of $\left(E_{s}\right)$ and the sequence $v_{m}=u_{m}-u$ is a P.S sequence of $J_{f, h, s}$ such that $J_{f, h, s}\left(v_{m}\right)=\beta_{s}-J_{f, h, s}(u)+o(1)$.

Proof Let u_{m} be a P.S. sequence for $J_{f, h, s}$ at a level β_{s}. As a first step in the proof of the lemma, we prove that the sequence u_{m} is bounded in $H_{1}^{p}(M)$.
First, on the one hand, we have:

$$
J_{f, h, s}\left(u_{m}\right)-\frac{1}{p^{*}} D J_{s, f, h}\left(u_{m}\right) u_{m}=\beta_{s}+o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right) .
$$

On the other hand, we have:

$$
\begin{aligned}
J_{f, h, s}\left(u_{m}\right)-\frac{1}{p^{*}} D J_{f, h, s}\left(u_{m}\right) u_{m} & =\frac{1}{n} \int_{M}\left(\left|\nabla_{g} u_{m}\right|^{p}-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}\right|^{p}\right) d v_{g} \\
& =\frac{1}{n}\left(J_{f, h, s}\left(u_{m}\right)+\frac{1}{p^{*}} \int_{M} f\left|u_{m}\right|^{p^{*}} d v_{g}\right)
\end{aligned}
$$

then

$$
\frac{1}{n p^{*}} \int_{M} f\left|u_{m}\right|^{p^{*}} d v_{g}=\left(1-\frac{1}{n}\right) \beta_{s}+o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right)
$$

Since f is supposed strictly positive on the compact manifold, we deduce that u_{m} is bounded in $L_{p^{*}}(M)$ and so in $L_{p}(M)$.
Moreover, we have:

$$
\begin{aligned}
\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g} & =n J_{f, h, s}\left(u_{m}\right)+\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}\right|^{p} d v_{g}+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right) \\
& =n \beta_{s}+\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}\right|^{p} d v_{g}+o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right)
\end{aligned}
$$

Let $\delta>0$ be a small constant. Then we have:

$$
\begin{aligned}
\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g} & =n \beta_{s}+\int_{B\left(x_{o}, \delta\right)}\left(\rho_{x_{o}}\right)^{p-s} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|u_{m}\right|^{p} d v_{g} \\
& +\int_{M \backslash B\left(x_{o}, \delta\right)} \frac{h(x)}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}\right|^{p} d v_{g}+o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right)
\end{aligned}
$$

Since $p \geq s$, we get:

$$
\begin{aligned}
\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g} & \leq n \beta_{s}+\delta^{p-s} \max _{x \in B\left(x_{o}, \delta\right)}|h(x)| \int_{B\left(x_{o}, \delta\right)} \frac{\left|u_{m}\right|^{p}}{\left(\rho_{x_{o}}\right)^{p}} d v_{g} \\
& +\delta^{-s} \max _{x \in M}|h(x)| \int_{M \backslash B\left(x_{o}, \delta\right)}\left|u_{m}\right|^{p} d v_{g}+o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right)
\end{aligned}
$$

By Hardy inequality (2.4), since u_{m} is bounded in $L_{p}(M)$, we get that there is a positive constant C such that

$$
\begin{aligned}
& \left(1-\delta^{p-s} \max _{x \in B\left(x_{o}, \delta\right)}|h(x)| K_{\delta}(n, p,-p)^{p}\right) \int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g} \leq n \beta_{s}+C \\
+ & o(1)+o\left(\left\|u_{m}\right\|_{H_{1}^{p}(M)}\right)
\end{aligned}
$$

Now, for $p>s$, by choosing δ as small as

$$
1-\delta^{p-s} \max _{x \in B\left(x_{o}, \delta\right)}|h(x)| K_{\delta}(n, p,-p)^{p}>0
$$

we get that $\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g}$ is bounded.
For $p=s$, since $\max _{B\left(x_{o}, \delta\right)}|h(x)| K_{\delta}(n, p,-p)$ tends to $h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}$ as $\delta \rightarrow 0$ and since by assumption $1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}>0$, then there exists $\delta_{o}>0$ such that for all $\delta<\delta_{o}$, we have:

$$
1-\max _{x \in B\left(x_{o}, \delta\right)}|h(x)| K_{\delta}(n, p,-p)^{p}>0
$$

and hence $\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g}$ is bounded which ends the proof of the fact that u_{m} is bounded in $H_{1}^{p}(M)$. Now, suppose that the sequence u_{m} converges to a function u weakly in $H_{1}^{p}(M)$. We prove that for $\varphi \in H_{1}^{p}(M)$,
$\left(D J_{f, h, s}\left(u_{m}\right)\right) \cdot \varphi$ converges to $\left(D J_{f, h, s}(u) \cdot \varphi\right)$, that is, u is a weak solution of $\left(E_{s}\right)$. First, since the sequence u_{m} converges to u almost everywhere in M, by basic integration theory (see for example [15] Lemma 4.8), we can conclude that the sequence $f\left|u_{m}\right|^{p^{*}-2} u_{m}$ converges to $f|u|^{p^{*}-2} u$ weakly in $L_{\frac{p^{*}}{p^{*}-1}}(M)$ and the sequence $h\left|u_{m}\right|^{p-2} u_{m}$ converges weakly to $h|u|^{p-2} u$ in $L_{\frac{p}{p-1}}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$.
On the other hand, the same arguments as in the proof of Step 1.2 in [21] give that $\nabla_{g} u_{m}$ converges almost everywhere to ∇u in M and then $\int_{M}\left|\nabla_{g} u_{m}\right|^{p-2} g\left(\nabla_{g} u_{m}, \nabla_{g} \varphi\right) d v_{g}$ converges to $\int_{M}\left|\nabla_{g} u\right|^{p-2} g\left(\nabla_{g} u, \nabla_{g} \varphi\right) d v_{g}$. We conclude that u is a weak solution of $\left(E_{s}\right)$.
Now, we prove that the sequence $v_{m}=u_{m}-u$ is a P.S sequence for $J_{f, h, s}$ at level $\beta_{s}-J_{f, h, s}(u)$. For $\varphi \in H_{1}^{p}(M)$, we write

$$
\begin{align*}
& D\left(J_{s, f, h}\left(v_{m}\right)\right) \cdot \varphi=D\left(J_{s, f, h}\left(u_{m}\right)\right) \cdot \varphi-D\left(J_{s, f, h}(u)\right) \cdot \varphi \tag{3.1}\\
+ & \int_{M} g\left(\left|\nabla_{g} v_{m}\right|^{p-2} \nabla_{g} v_{m}-\left|\nabla_{g} v_{m}+\nabla_{g} u\right|^{p-2}\left(\nabla_{g} v_{m}+\nabla_{g} u\right)+\left.\nabla_{g} u\right|^{p-2} \nabla_{g} u, \nabla_{g} \varphi\right) d v_{g} \\
- & \int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left(\left|v_{m}\right|^{p-2} v_{m}-\left|v_{m}+u\right|^{p-2}\left(v_{m}+u\right)+|u|^{p-2} u\right) \varphi d v_{g} \\
- & \int_{M} f\left(\left|v_{m}\right|^{p^{*}-2} v_{m}-\left|v_{m}+u\right|^{p^{*}-2}\left(v_{m}+u\right)+|u|^{p^{*}-2} u\right) \varphi d v_{g}
\end{align*}
$$

We should recall the following inequality: for any vectors x and y in normed vector space and $p>1$

$$
\begin{equation*}
\left\|\|x+y\|^{p-2}(x+y)-\right\| x\left\|^{p-2} x-\right\| y\left\|^{p-2} y\right\| \leq C\left(\|x\|^{p-1-\theta}\|y\|^{\theta}+\|y\|^{p-1-\theta}\|x\|^{\theta}\right) \tag{3.2}
\end{equation*}
$$

where θ is a small constant that depends on p. We deduce from this inequality that:

$$
\begin{aligned}
& \int_{M} g\left(\left|\nabla_{g} v_{m}\right|^{p-2} \nabla_{g} v_{m}-\left|\nabla_{g} v_{m}+\nabla_{g} u\right|^{p-2}\left(\nabla_{g} v_{m}+\nabla_{g} u\right)+\left.\nabla_{g} u\right|^{p-2} \nabla_{g} u, \nabla_{g} \varphi\right) d v_{g} \\
\leq & C \int_{M}\left(\left|\nabla_{g} v_{m}\right|^{p-1-\theta}\left|\nabla_{g} u\right|^{\theta}+\left|\nabla_{g} v_{m}\right|^{\theta}\left|\nabla_{g} u\right|^{p-1-\theta}\right)\left|\nabla_{g} \varphi\right| d v_{g} \\
\leq & C\left\|\nabla_{g} \varphi\right\|_{L_{p}(M)}\left[\left(\int_{M}\left|\nabla_{g} v_{m}\right|^{\frac{p(p-1-\theta)}{p-1}}\left|\nabla_{g} u\right|^{\frac{p \theta}{p-1}} d v_{g}\right)^{\frac{p-1}{p}}\right. \\
+ & \left.\left(\int_{M}\left|\nabla_{g} v_{m}\right|^{\frac{p \theta}{p-1}}\left|\nabla_{g} u\right|^{\frac{p(p-1-\theta)}{p-1}} d v_{g}\right)^{\frac{p-1}{p}}\right] .
\end{aligned}
$$

Now, the sequence $\left|\nabla_{g} v_{m}\right|^{p \frac{p-1-\theta}{p-1}}$ is bounded in $L_{\frac{p-1}{p-1-\theta}}(M)$ and converges almost everywhere to 0 in M. Then, it converges weakly to 0 in $L_{\frac{p-1}{p-1-\theta}}(M)$, that is $\int_{M}\left|\nabla_{g} v_{m}\right|^{\frac{p-1-\theta}{p-1}} \varphi d v_{g} \rightarrow 0, \forall \varphi \in L_{\frac{p-1}{\theta}}(M)$. Since $\left|\nabla_{g} u\right|^{p \frac{\theta}{p-1}}$ belongs to $L_{\frac{p-1}{\theta}}(M)$, we get:

$$
\int_{M}\left|\nabla_{g} v_{m}\right|^{\frac{p(p-1-\theta)}{p-1}}\left|\nabla_{g} u\right|^{\frac{p \theta}{p-1}} d v_{g} \rightarrow 0
$$

By similar arguments, we get also:

$$
\int_{M}\left|\nabla_{g} v_{m}\right|^{\frac{p \theta}{p-1}}\left|\nabla_{g} u\right|^{\frac{p(p-1-\theta)}{p-1}} d v_{g} \rightarrow 0
$$

together with the second and the third integral in (3.1) tend to zero. Hence, $\left(D J_{f, h, s}\left(v_{m}\right)\right) . \varphi \rightarrow 0, \forall \varphi \in H_{1}^{p}(M)$. Finally, to prove that $J_{f, h, s}\left(v_{m}\right)$ tends to $\beta_{s}-J_{f, h, s}(u)$, we just apply the Brezis-Lieb lemma (see for example [15], lemma 4.6) to the sequences u_{m} and $\nabla_{g} u_{m}$. In fact, since u_{m} converges to u a.e and $\nabla_{g} u_{m}$ converges to $\nabla_{g} u$ a.e. in M, and since ∇_{g} is bounded in $L_{p}(M), u_{m}$ is bounded in $L_{p^{*}}(M)$, we get by the Brezis-Lieb lemma that:

$$
\int_{M}\left|\nabla_{g} u\right|^{p} d v_{g}=\lim _{m \rightarrow \infty}\left(\int_{M}\left|\nabla_{g} u_{m}\right|^{p} d v_{g}-\int_{M}\left|\nabla_{g}\left(u_{m}-u\right)\right|^{p} d v_{g}\right)
$$

and

$$
\int_{M} f|u|^{p^{*}} d v_{g}=\lim _{m \rightarrow \infty}\left(\int_{M} f\left|u_{m}\right|^{p^{*}} d v_{g}-\int_{M} f\left|u_{m}-u\right|^{p^{*}} d v_{g}\right)
$$

On the other hand, by Hardy inequality (2.3), we have:

$$
\int_{M} \frac{\left|u_{m}\right|^{p}}{\left(\rho_{x_{o}}\right)^{s}} d v_{g} \leq \operatorname{Diam}(M)^{p-s} \int_{M} \frac{\left|u_{m}\right|^{p}}{\left(\rho_{x_{o}}\right)^{p}} d v_{g} \leq C\left\|u_{m}\right\|_{H_{1}^{p}(M)}
$$

which means that the sequence u_{m} is also bounded in $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$ and then we get by the Brezis-Lieb lemma that:

$$
\int_{M} \frac{h}{\left(\rho_{\left.x_{o}\right)^{s}}\right.}|u|^{p} d v_{g}=\lim _{m \rightarrow \infty}\left(\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}\right|^{p} d v_{g}-\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|u_{m}-u\right|^{p} d v_{g}\right)
$$

which gives that:

$$
J_{f, h, s}\left(v_{m}\right)=\beta_{s}-J_{f, h, s}(u)+o(1)
$$

Lemma 3.2 Suppose that $\sup _{M} f>0$ and $1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}>0$. Let v_{m} be a P.S sequence of $J_{f, h, s}$ at level $\beta_{s}, 0<s \leq p$, that converges weakly to 0 in $H_{1}^{p}(M)$. If

$$
\beta_{s}<\beta^{*}= \begin{cases}\frac{1}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K(n, p)^{n}}, & \text { if } s<p \\ \frac{\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)^{\frac{n}{p}}}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K(n, p)^{n}}, & \text { if } s=p\end{cases}
$$

then v_{m} converges strongly to 0 in $H_{1}^{p}(M)$.
Proof First, we write:

$$
\begin{aligned}
D J_{f, h, s}\left(v_{m}\right) \cdot v_{m} & =o\left(\left\|v_{m}\right\|_{H_{1}^{p}(M)}\right) \\
& =\int_{M}\left(\left|\nabla_{g} v_{m}\right|^{p}-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|v_{m}\right|^{p}\right) d v_{g}-\int_{M} f\left|v_{m}\right|^{p^{*}} d v_{g},
\end{aligned}
$$

then

$$
\begin{equation*}
\beta_{s}=\frac{1}{n} \int_{M}\left(\left|\nabla_{g} v_{m}\right|^{p}-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|v_{m}\right|^{p}\right) d v_{g}+o(1)=\frac{1}{n} \int_{M} f\left|v_{m}\right|^{p^{*}} d v_{g}+o(1) \tag{3.3}
\end{equation*}
$$

This implies that $\beta_{s} \geq 0$. Moreover, let $\delta>0$ be a small constant, we have:

$$
\begin{aligned}
& \int_{M}\left(\left|\nabla_{g} v_{m}\right|^{p}-\frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|v_{m}\right|^{p}\right) d v_{g}=\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}-\int_{B\left(x_{o}, \delta\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|v_{m}\right|^{p} d v_{g} \\
- & \int_{M \backslash B\left(x_{o}, \delta\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left|v_{m}\right|^{p} d v_{g} \\
\geq & \int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}-\max _{x \in B\left(x_{o}, \delta\right)}|h(x)| \delta^{p-s} \int_{B\left(x_{o}, \delta\right)} \frac{\left|v_{m}\right|^{p}}{\left(\rho_{x_{o}}\right)^{p}} d v_{g} \\
- & \delta^{-s} \max _{x \in M}|h(x)| \int_{M \backslash B\left(x_{o}, \delta\right)}\left|v_{m}\right|^{p} d v_{g}
\end{aligned}
$$

Now, the sequence v_{m} is bounded in $L_{p}(M)$ and $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{p}\right)$, we have then:
For $0<s<p$, by letting δ go to 0 , we get from (3.3):

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \leq n \beta_{s}+o(1) \tag{3.4}
\end{equation*}
$$

For $s=p$, by letting δ go to 0 , we get from (3.3) together with Hardy inequality (2.4):

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \leq \frac{n \beta_{s}}{1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}}+o(1) \tag{3.5}
\end{equation*}
$$

On the other hand, by Sobolev inequality, we get also by (3.3) that for $0<s \leq p$,

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \geq\left(\frac{n \beta_{s}}{\sup _{M} f(K(n, p)+\varepsilon)^{p^{*}}}\right)^{\frac{p}{p^{*}}}+o(1) \tag{3.6}
\end{equation*}
$$

Now, suppose by contradiction that $\beta_{s}>0$. Then, after letting m go to ∞, inequalities (3.4), (3.5), and (3.6) give:

$$
\beta_{s} \geq \frac{1}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}}(K(n, p)+\varepsilon)^{n}}, \text { for } 0<s<p
$$

and

$$
\beta_{s} \geq \frac{\left(1-\left(h\left(x_{o}\right) K^{p}(n, p,-p)\right)^{\frac{n}{p}}\right.}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}}(K(n, p))^{n}}, \text { for } s=p
$$

Both cases present a patent contradiction with the hypothesis of the lemma. Hence, under the assumption of the lemma, $\beta_{s}=0$ and thus $v_{m} \rightarrow 0$ in $H_{1}^{p}(M)$.
Now, we divide the proof of the main theorems into two parts according to whether $0<s<p$ or $s=p$.

3.1. The subcritical Hardy potential

Lemma 3.3 Let v_{m} be a P.S sequence of $J_{f, h, s}$, with $0<s<p$, at level β_{s} that converges weakly and not strongly to 0 in $H_{1}^{p}(M)$. Then, there exists a converging sequence of points $x_{m} \rightarrow x^{o}$ in M, a sequence of positive reals $R_{m} \rightarrow 0$ as $m \rightarrow \infty$ and nontrivial weak solution $v \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of

$$
\begin{equation*}
\Delta_{\xi, p} v=f\left(x^{o}\right)|v|^{p^{*}-2} v \tag{3.7}
\end{equation*}
$$

such that the subsequence

$$
w_{m}(x)=v_{m}(x)-R_{m}^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{m}}^{-1}(x)\right) v\left(R_{m}^{-1} \exp _{x_{m}}^{-1}(x)\right)
$$

where $0<\delta<\frac{\operatorname{Inj}_{g}}{2}$, admits a subsequence w_{m} that is a $P-S$ sequence of $J_{f, h, s}$, with $0<s<p$, at level $J_{f, h, s}\left(w_{m}\right)=\beta_{s}-\left(f\left(x^{o}\right)\right)^{\frac{p-n}{p}} E(u)$, with u is a nontrivial weak solution of (1.3), and that converges to 0 weakly in $H_{1}^{p}(M)$.

Proof Let v_{m} be a P.S sequence of $J_{f, h, s}$ at level β_{s} that converges to 0 weakly and not strongly in $H_{1}^{p}(M)$. Then, up to a subsequence, we can assume that v_{m} converges strongly to 0 in $L_{p}(M)$. For $t>0$, we let

$$
F_{m}(t)=\max _{x \in M} \int_{B(x, t)}\left|\nabla_{g} v_{m}\right| d v_{g}
$$

For t_{o} small, by (3.6), there exists $z_{o} \in M$ and $\gamma_{o}>0$ such that

$$
\int_{B\left(z_{o}, t_{o}\right)}\left|\nabla_{g} v_{m}\right| d v_{g} \geq \gamma_{o}
$$

Since F_{m} is continuous in t, we get that for each $\gamma \in\left(0, \gamma_{o}\right)$ and for each $m>0$, we can find a point x_{m} and a constant $r_{m} \in\left(0, t_{o}\right)$ such that

$$
\begin{equation*}
\int_{B\left(x_{m}, r_{m}\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}=\gamma \tag{3.8}
\end{equation*}
$$

Let $0<r_{o}<\frac{I n j_{g}}{2}$ be such that there exists a positive constant $C_{o} \in[1,2]$ such that for all $x \in M$ and $y, z \in B\left(r_{o}\right) \subset \mathbb{R}^{n}$ the following inequality holds

$$
\begin{equation*}
\operatorname{dist}_{g}\left(\exp _{x}(y), \exp _{x}(z)\right) \leq C_{o}|y-z| \tag{3.9}
\end{equation*}
$$

Let $0<R_{m}<1$ and $x \in B\left(R_{m}^{-1} \delta_{g}\right)$. Define

$$
\begin{aligned}
& \hat{v}_{m}(x)=R_{m}^{\frac{n-p}{p}} v_{m}\left(\exp _{x_{m}}\left(R_{m} x\right)\right), x \in \mathbb{R}^{n} \\
& \hat{g}_{m}(x)=\exp _{x_{m}}^{*} g\left(R_{m} x\right)
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
\left|\nabla_{\hat{g}_{m}} \hat{v}_{m}\right|^{p}(x)=R_{m}^{n}\left|\nabla_{g} v_{m}\right|^{p}\left(\exp _{x_{m}}\left(R_{m} x\right)\right) \tag{3.10}
\end{equation*}
$$

Thus, it follows that if $z \in \mathbb{R}^{n}$ is such that $|z|+r<\operatorname{Inj}_{g} R_{m}^{-1}$, then we have:

$$
\begin{equation*}
\int_{B(z, r)}\left|\nabla_{\hat{g}_{m}} \hat{v}\right|^{p} d v_{\hat{g}_{m}}=\int_{\exp _{x_{m}}\left(R_{m} B(z, r)\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \tag{3.11}
\end{equation*}
$$

Moreover, for $|z|+r<r_{o} R_{m}^{-1}$, by using (3.9) we have:

$$
\begin{equation*}
\exp _{x_{m}}\left(R_{m} B(z, r)\right) \subset B_{\exp _{x_{m}}\left(R_{m} z\right)}\left(r C_{o} R_{m}\right) \tag{3.12}
\end{equation*}
$$

Since for $y \in B\left(r C_{o} R_{m}\right) \subset B\left(\operatorname{Inj}_{\mathrm{g}}\right)$, we have $\operatorname{dist}_{g}\left(x_{m}, \exp _{x_{m}}\left(R_{m} y\right)\right)=R_{m}|y|$, and thus

$$
\begin{equation*}
\exp _{x_{m}}\left(B\left(r C_{o} R_{m}\right)\right)=B\left(x_{m}, r C_{o} R_{m}\right) \tag{3.13}
\end{equation*}
$$

Now, for $r \in\left(0, r_{o}\right)$ take $R_{m}=\frac{r_{m}}{r C_{o}}$, where r_{m} is as defined above. By (3.10), (3.11), and (3.12), we get:

$$
\begin{equation*}
\int_{B(z, r)}\left|\nabla_{\hat{g}_{m}} \hat{v}\right|^{p} d v_{\hat{g}_{m}} \leq \gamma \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B\left(r C_{o}\right)}\left|\nabla_{\hat{g}_{m}} \hat{v}\right|^{p} d v_{\hat{g}_{m}}=\gamma \tag{3.15}
\end{equation*}
$$

Let $\delta \in\left(0, \operatorname{Injg}_{\mathrm{g}}\right)$ and $u \in D^{1, p}\left(\mathbb{R}^{n}\right)$ with support included in $B\left(\delta R^{-1}\right)$, where $0<R \leq 1$ is a constant. There exists a constant C_{1} such that if $\hat{g}(x)=\exp _{y}^{*}(g(R x))$, then

$$
\begin{equation*}
\frac{1}{C_{1}} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x \leq \int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}} u\right|^{p} d v_{\hat{g}} \leq C_{1} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x \tag{3.16}
\end{equation*}
$$

Without loss of generality, we can also assume that for all $u \in L_{p}\left(\mathbb{R}^{n}\right)$ with support included in $B\left(\delta R^{-1}\right)$, we have:

$$
\begin{equation*}
\frac{1}{C_{1}} \int_{\mathbb{R}^{n}}|u|^{p} d x \leq \int_{\mathbb{R}^{n}}|u|^{p} d v_{\hat{g}} \leq C_{1} \int_{\mathbb{R}^{n}}|u|^{p} d x \tag{3.17}
\end{equation*}
$$

Now, consider a cut-off function $\eta \in C_{o}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
0 \leq \eta \leq 1, \eta(x)=1, x \in B\left(\frac{1}{4}\right) \text { and } \eta(x)=0, x \in \mathbb{R}^{n} \backslash B\left(\frac{3}{4}\right) \tag{3.18}
\end{equation*}
$$

Put $\hat{\eta}_{m}(x)=\eta\left(\delta^{-1} R_{m} x\right)$, where $\delta \in\left(0, I n_{g}\right)$. We get that there exists a positive constant C such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p} d v_{\hat{g}_{m}}=\int_{B\left(\frac{3 \delta R_{m}^{-1}}{4}\right)}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p} d v_{\hat{g}_{m}} \\
\leq & 2^{p-1} \int_{\left.B\left(\frac{3 \delta R_{m}^{-1}}{4}\right)\right)}\left(\left|\eta\left(\delta^{-1} R_{m} x\right)\right|^{p}\left|\nabla_{\hat{g}_{m}} \hat{v}_{m}\right|^{p}+\delta^{-p} R_{m}^{p}\left|\left(\nabla_{\hat{g}_{m}} \eta\right)\left(\delta^{-1} R_{m} x\right)\right|^{p}\left|\hat{v}_{m}\right|^{p}\right) d v_{\hat{g}_{m}} \\
= & 2^{p-1} \int_{B\left(x_{m}, \frac{3 \delta}{4}\right)}\left(\left|\eta\left(\delta^{-1} \exp _{x_{m}}^{-1}(x)\right)\right|^{p}\left|\nabla_{g} v_{m}\right|^{p}+\left|\left(\nabla_{g} \eta\right)\left(\delta^{-1} \exp _{x_{m}}^{-1}(x)\right)\right|^{p}\left|v_{m}\right|^{p}\right) d v_{g} \\
\leq & C \int_{B\left(x_{m}, \frac{3 \delta}{4}\right)}\left(\left|\nabla_{g} v_{m}\right|^{p}+\left|v_{m}\right|^{p}\right) d v_{g}
\end{aligned}
$$

since the sequence is bounded in $H_{1}^{p}(M)$, this implies by (3.16) that the sequence $\hat{\eta}_{m} \hat{v}_{m}$ is bounded in $D^{1, p}\left(\mathbb{R}^{n}\right)$ and thus, it converges weakly in $D^{1, p}\left(\mathbb{R}^{n}\right)$ and almost everywhere in \mathbb{R}^{n} to some function $v \in D^{1, p}\left(\mathbb{R}^{n}\right)$. Now, we divide the remaining of proof of the lemma into several steps.

Step 1

For γ small and $s \in(0, p)$, the sequence $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}\left(B\left(C_{o} r\right)\right)$.
Proof Let $a \in \mathbb{R}^{n}$ and $\mu \in[r, 2 r]$. Set $\mathcal{A}=B(a, 3 r) \backslash B(a, \mu)$. In [21] (see also [10]), it has been proven that there exists a sequence $z_{m} \in H_{1}^{p}(\mathcal{A})$ that converges strongly to 0 in $H_{1}^{p}(\mathcal{A})$ and that z_{m} is solution of

$$
\left\{\begin{array}{l}
\Delta_{\xi, p} z_{m}=0 \text { in } \mathcal{A} \tag{3.19}\\
z_{m}-\varphi_{m}-\varphi_{m}^{o} \in D^{1, p}(\mathcal{A})
\end{array}\right.
$$

where $\varphi_{m}=\hat{\eta}_{m} \hat{v}_{m}-v$ in $B(a, \mu+\varepsilon), \varphi_{m}=0$ in $\mathbb{R}^{n} \backslash B(a, 3 \mu-\varepsilon)$ and φ_{m}^{o} is such that $\left\|\varphi_{m}+\varphi_{m}^{o}\right\|_{H_{1}^{p}(\mathcal{A})} \leq$ $C\left\|\varphi_{m}\right\|_{H_{\frac{p-1}{p}}^{p}(\partial \mathcal{A})}$. We let $\hat{\psi}_{m} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ be the sequence

$$
\begin{cases}\hat{\psi}_{m}=\hat{\eta}_{m} \hat{v}_{m}-v & \text { in } \bar{B}(a, \mu) \\ \hat{\psi}_{m}=z_{m} & \text { in } \bar{B}(a, 3 r) \backslash B(a, \mu) \\ \hat{\psi}_{m}=0 & \text { in } \mathbb{R}^{n} \backslash B(a, 3 r)\end{cases}
$$

For $r<\frac{\delta}{24}$, consider the rescaling sequence ψ_{m} of $\hat{\psi}_{m}$

$$
\begin{cases}\psi_{m}(x)=R_{m}^{\frac{p-n}{p}} \hat{\psi}_{m}\left(R_{m}^{-1} \exp _{x_{m}}^{-1}(x)\right), & \text { if } x<d_{g}\left(x_{m}, 6 r\right) \\ \psi_{m}(x)=0, & \text { otherwise }\end{cases}
$$

Let η be the cut-off function considered above. Then, $\eta\left(\delta^{-1} \exp _{x_{m}}^{-1}(x)\right)=1$ for x such that $d_{g}\left(x_{m}, x\right)<6 r$. Put $\hat{\eta}(x)=\eta\left(\delta^{-1} \exp _{x_{m}}^{-1}(x)\right)=1$, then if $|a|<3 r$, we have:

$$
\begin{aligned}
D J_{f, h, s}\left(v_{m}\right) \cdot \psi_{m} & =D J_{f, h, s}\left(\eta\left(\delta^{-1} \exp _{x_{m}}^{-1}(x)\right) v_{m}\right) \cdot \psi_{m} \\
& =\int_{B(a, 3 r)}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right), \nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right) d v_{\hat{g}_{m}} \\
& -R_{m}^{p-s} \int_{B(a, 3 r)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right.}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
& -\int_{B(a, 3 r)} f\left(\exp _{x_{m}}\left(R_{m}(x)\right)\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p^{*}-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}}\right.
\end{aligned}
$$

It is clear that the sequence $\hat{\psi}_{m}$ is bounded in $D^{1, p}\left(\mathbb{R}^{n}\right)$ and we have that $\left\|\psi_{m}\right\|_{H_{1}^{p}(M)} \leq C\left\|\hat{\psi}_{m}\right\|_{D^{1, p}\left(\mathbb{R}^{n}\right)}$. Then, the sequence ψ_{m} is bounded in $H_{1}^{p}(M)$ and since v_{m} is a P-S sequence of $J_{f, h, s}$, we get:

$$
\begin{align*}
& \quad o(1)=\int_{B(a, 3 r)}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right), \nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right) d v_{\hat{g}_{m}} \tag{3.20}\\
& -\quad R_{m}^{p-s} \int_{B(a, 3 r)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right.}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
& -\quad \int_{B(a, 3 r)} f\left(\exp _{x_{m}}\left(R_{m}(x)\right)\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p^{*}-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}}\right.
\end{align*}
$$

By the same arguments as in [21], we can have:

$$
\int_{B(a, 3 r)}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right), \nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right) d v_{\hat{g}_{m}}=\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}+o(1)
$$

and

$$
\begin{aligned}
& \int_{B(a, 3 r)} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p^{*}-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{\mathbb{R}^{n}} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\hat{\psi}_{m}\right|^{p^{*}} d v_{\hat{g}_{m}}+o(1)
\end{aligned}
$$

Rather, we prove that:

$$
\begin{align*}
& \int_{B(a, 3 r)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \tag{3.21}\\
= & \int_{\mathbb{R}^{n}} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}+o(1)
\end{align*}
$$

We distinguish two cases, $0 \in B(a, \mu)$ and $0 \notin B(a, \mu)$. If $0 \notin B(a, \mu)$, then there exists $\varrho>$ such that $B(\varrho) \cap B(a, \mu)=\emptyset$. Then, by using convexity, Hölder inequality and inequality (3.2), we get:

$$
\begin{aligned}
& \left|\int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left[\left|\hat{\psi}_{m}+v\right|^{p-2}\left(\hat{\psi}_{m}+v\right)-\left|\hat{\psi}_{m}\right|^{p-2} \hat{\psi}_{m}-|v|^{p-2} v\right] \hat{\psi}_{m} d v_{\hat{g}_{m}}\right| \\
\leq & C \varrho^{-s} \sup |h|\left\|\hat{\psi}_{m}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \\
& \left(\int_{B(a, \mu)}\left[| | \hat{\psi}_{m}+\left.v\right|^{p-2}\left(\hat{\psi}_{m}+v\right)-\left|\hat{\psi}_{m}\right|^{p-2} \hat{\psi}_{m}-|v|^{p-2} v \mid\right]^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}} \\
\leq & C^{\prime}\left\|\hat{\psi}_{m}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}\left(\int_{B(a, \mu)}\left[\left.| | \hat{\psi}_{m}\right|^{p-1-\theta}|v|^{\theta}-\left.\hat{\psi}_{m}\right|^{\theta}|v|^{p-1-\theta} \mid\right]^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}} \\
\leq & C^{\prime \prime}\left\|\hat{\psi}_{m}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}\left[\left(\int_{B(a, \mu)}\left|\hat{\psi}_{m}\right|^{\frac{p(p-1-\theta)}{p-1}}|v|^{\frac{p \theta}{p-1}} d x\right)^{\frac{p-1}{p}}\right. \\
+ & \left.\left(\int_{B(a, \mu)}\left|\hat{\psi}_{m}\right|^{\frac{p \theta}{p-1}}|v|^{\frac{p(p-1-\theta)}{p-1}} d x\right)^{\frac{p-1}{p}}\right]
\end{aligned}
$$

Since $\hat{\psi}_{m}$ converges to 0 almost everywhere and is bounded in $L_{p}\left(\mathbb{R}^{n}\right)$, we get that $\left|\hat{\psi}_{m}\right|^{\frac{p(p-\theta-1)}{p-1}}$ and $\left|\hat{\psi}_{m}\right|^{\frac{p \theta}{p-1}}$ converge almost everywhere to 0 and are bounded respectively in $L_{\frac{p-1}{p-1-\theta}}\left(\mathbb{R}^{n}\right)$ and $L_{\frac{p-1}{\theta}}\left(\mathbb{R}^{n}\right)$. We get then

$$
\left(\int_{B(a, \mu)}\left|\hat{\psi}_{m}\right|^{\frac{p(p-1-\theta)}{p-1}}|v|^{\frac{p \theta}{p-1}} d x\right)^{\frac{p-1}{p}}+\left(\int_{B(a, \mu)}\left|\hat{\psi}_{m}\right|^{\frac{p \theta}{p-1}}|v|^{\frac{p(p-1-\theta)}{p-1}} d x\right)^{\frac{p-1}{p}}=o(1)
$$

Hence, we get:

$$
\begin{aligned}
& \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left[\left|\hat{\psi}_{m}\right|^{p}+|v|^{p-2} v \hat{\psi}_{m}\right] d v_{\hat{g}_{m}}+o(1)
\end{aligned}
$$

Now, if $0 \in B(a, \mu)$, let $\varrho^{\prime}>0$ be such that $B\left(\varrho^{\prime}\right) \subset B(a, \mu)$. Then, as above, we have:

$$
\begin{aligned}
& \int_{B(a, \mu) \backslash B\left(\varrho^{\prime}\right)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{B(a, \mu) \backslash B\left(\varrho^{\prime}\right)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left[\left|\hat{\psi}_{m}\right|^{p}+|v|^{p-2} v \hat{\psi}_{m}\right] d v_{\hat{g}_{m}}+o(1)
\end{aligned}
$$

Moreover, by Hölder inequality, we have:

$$
\begin{aligned}
& \int_{B\left(\varrho^{\prime}\right)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
\leq & C \sup |h|\left(\int_{B\left(\varrho^{\prime}\right)} \frac{\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p}}{|x|_{\xi}^{s}} d x\right)^{\frac{1}{p}}\left(\int_{B\left(\varrho^{\prime}\right)} \frac{\left|\hat{\psi}_{m}\right|^{p}}{|x|_{\xi}^{s}} d x\right)^{1-\frac{1}{p}} \\
\leq & C \sup |h| \varrho^{\prime \frac{p-s}{p}}\left(\int_{B\left(\varrho^{\prime}\right)} \frac{\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p}}{|x|_{\xi}^{p}} d x\right)^{\frac{1}{p}}\left(\int_{B\left(\varrho^{\prime}\right)} \frac{\left|\hat{\psi}_{m}\right|^{p}}{|x|_{\xi}^{s}} d x\right)^{1-\frac{1}{p}} .
\end{aligned}
$$

Now, by Hardy inequality (2.2), ($\left.\int_{B\left(\varrho^{\prime}\right)} \frac{\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p}}{|x|_{\xi}^{p}} d x\right)^{\frac{1}{p}}$ is bounded. Since $\hat{\psi}_{m}$ converges to 0 strongly in $L_{p}\left(B\left(\varrho^{\prime}\right),|x|^{s}\right), 0<s<p$, then

$$
\int_{B\left(\varrho^{\prime}\right)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}}=o(1)
$$

Thus, in both cases, we have:

$$
\begin{aligned}
& \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\left[\left|\hat{\psi}_{m}\right|^{p}+|v|^{p-2} v \hat{\psi}_{m}\right] d v_{\hat{g}_{m}}+o(1) .
\end{aligned}
$$

GHOMARI and MALIKI/Turk J Math

Now, using the fact that $\hat{\psi}_{m}$ converges to 0 strongly in $D^{1, p}(\mathcal{A})$ and weakly to 0 in $D^{1, p}\left(\mathbb{R}^{n}\right)$, we get:

$$
\begin{aligned}
& \int_{B(a, 3 r)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\eta}_{m} \hat{v}_{m}\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \hat{\psi}_{m} d v_{\hat{g}_{m}} \\
= & \int_{B(a, \mu)} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left[\left|\hat{\psi}_{m}\right|^{p}+|v|^{p-2} v \hat{\psi}_{m}\right] d v_{\hat{g}_{m}}+o(1) \\
= & \int_{\mathbb{R}^{n}} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}+o(1)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}-R_{m}^{p-s} \int_{\mathbb{R}^{n}} \frac{h\left(\exp _{x_{m}}\left(R_{m} x\right)\right)}{|x|_{\xi}^{s}}\left|\hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}} \\
= & \int_{\mathbb{R}^{n}} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\hat{\psi}_{m}\right|^{p^{*}} d v_{\hat{g}_{m}}+o(1)
\end{aligned}
$$

Since the sequence $\hat{\psi}_{m}$ converges strongly to 0 in $L_{p}\left(B(a, 3 \mu),|x|^{s}\right), s<p$ and since $R_{m} \leq 1$, we get that:

$$
\left.\left.R_{m}^{p-s}\left|\int_{\mathbb{R}^{n}} \frac{h\left(\exp _{x_{m}}\left(R_{m}(x)\right)\right)}{|x|_{\xi}^{s}}\right| \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}} \right\rvert\, \leq \sup h C \int_{\mathbb{R}^{n}} \frac{\left|\hat{\psi}_{m}\right|^{p}}{|x|_{\xi}^{s}} d x=o(1)
$$

We get then:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}=\int_{\mathbb{R}^{n}} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\hat{\psi}_{m}\right|^{p^{*}} d v_{\hat{g}_{m}}+o(1) \tag{3.22}
\end{equation*}
$$

By the same way as in [21], we can prove that for $|a|+3 r<r_{o}$:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}} \leq N \gamma+o(1) \tag{3.23}
\end{equation*}
$$

where $N \in \mathbb{N}$ is such that $B(a, \mu) \subset B(a, 2 r) \subset \bigcup_{1 \leq i \leq N} B\left(x_{i}, r\right)$, with $x_{i} \in B(a, 2 r)$. We get then by the Sobolev inequality that:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\hat{\psi}_{m}\right|^{p^{*}} d v_{\hat{g}_{m}} & \leq \sup _{M} f C_{1} \int_{\mathbb{R}^{n}}\left|\hat{\psi}_{m}\right|^{p^{*}} d x \\
& \leq \sup _{M} f C_{1}^{\frac{p^{*}}{p}+1} K(n, p)^{p^{*}}\left(\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}\right)^{\frac{p^{*}}{p}}
\end{aligned}
$$

Then, by (3.22) and (3.23), we get:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}} & \leq \sup _{M} f C_{1} \int_{\mathbb{R}^{n}}\left|\hat{\psi}_{m}\right|^{p^{*}} d x \\
& \leq \sup _{M} f C_{1}^{\frac{p^{*}}{p}+1} K(n, p)^{p^{*}}(N \gamma+o(1))^{\frac{p^{*}}{p}-1} \int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}
\end{aligned}
$$

By taking γ such that

$$
\begin{equation*}
\sup _{M} f C_{1}^{\frac{p^{*}}{p}+1} K(n, p)^{p^{*}}(N \gamma)^{\frac{p^{*}}{p}-1}<1 \tag{3.24}
\end{equation*}
$$

we get:

$$
\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}} \hat{\psi}_{m}\right|^{p} d v_{\hat{g}_{m}}=o(1)
$$

which means that $\hat{\psi}_{m}$ converges strongly in $D^{1, p}\left(\mathbb{R}^{n}\right)$. Thus, since $r \leq \mu$, we get that $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}(B(a, r))$. This strong convergence holds as soon as μ and r are small enough, $|a|<3 r$ and $|a|+3 r<\min \left(r_{o}, \delta\right)$. Then, let μ be small enough such that condition (3.24), then $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}(B(a, r))$ for all $|a|<2 r$. Since $C_{o} \leq 2, B\left(C_{o} r\right)$ can be covered by N balls $B(a, r)$, with $a \in B(2 r)$ and thus $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}\left(B\left(C_{o} r\right)\right)$.

Step 2

For any $R>0$ and $s \in(0, p)$, the sequence \hat{v}_{m} converges strongly to v in $H_{1}^{p}(B(R))$ and v is a nontrivial solution of (3.7).

Proof First, to prove that $v \neq 0$, we use step 1 above. Take r small enough so that $\hat{\eta}_{m}=1$ on $B\left(C_{o} r\right)$, we then obtain

$$
\begin{aligned}
\gamma & =\int_{B\left(C_{o} r\right)}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p} d v_{\hat{g}_{m}} \\
& \leq \int_{B\left(C_{o} r\right)}|\nabla v|^{p} d x+o(1)
\end{aligned}
$$

Hence, $v \neq 0$. As consequence, we get that $R_{m} \rightarrow 0$. In fact, if $R_{m} \rightarrow R>0$. Since v_{m} converges weakly to 0 , we get that \hat{v}_{m} converges weakly to 0 in $H_{1}^{p}\left(B\left(C_{o} r\right)\right)$ since $v \neq 0$ and ($\hat{\eta}_{m} \hat{v}_{m}$) converges strongly to v in $H_{1}^{p}\left(B\left(C_{o} r\right)\right)$, we get a contradiction. Thus, $R_{m} \rightarrow 0$.
Now, let $R>1$. For m is large, $R<R_{m}^{-1}$ and (3.14) and (3.15) are satisfied for $z+r<R r_{o}$. Thus, as one can easily check from the proof of Step $1, \hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}(B(a, r))$ for $|a|+3 r<r R$ and $|a| \leq 3 r(2 R-1)$. In particular, $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}(B(a, r))$ for $|a|<2 r R$. Hence, $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to v in $H_{1}^{p}(B(2 r R))$. Since for m is large, $\hat{\eta}_{m}=1$ and R is arbitrary chosen, we get that \hat{v}_{m} converges strongly to v in $H_{1}^{p}(B(R))$.
Now, let $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with compact support included in a ball $B(R), R>0$. For m is large, define on M the sequence φ_{m} as:

$$
\varphi_{m}(x)=R_{m}^{\frac{p-n}{p}} \varphi\left(R_{m}^{-1}\left(\exp _{x_{m}}^{-1}(x)\right)\right)
$$

Then, we have:

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} v_{m}\right|^{p-2} g\left(\nabla_{g} v_{m}, \nabla_{g} \varphi_{m}\right) d v_{g}=\int_{\mathbb{R}^{n}}\left|\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}}\left(\hat{\eta}_{m} \hat{v}_{m}\right), \nabla_{\hat{g}_{m}} \varphi\right) d v_{\hat{g}_{m}} \tag{3.25}
\end{equation*}
$$

Knowing that $d_{g}\left(y, \exp _{y}\left(R_{m} x\right)\right)=R_{m}|x|$, we have:

$$
\begin{equation*}
d_{g}\left(x_{o}, x_{m}\right)-R_{m}|x| \leq d_{g}\left(x_{o}, \exp _{x_{m}}\left(R_{m} x\right)\right) \leq d_{g}\left(x_{o}, x_{m}\right)+R_{m}|x| \tag{3.26}
\end{equation*}
$$

Suppose that $x_{m} \rightarrow x_{o}$ as $m \rightarrow \infty$. Then, either $\frac{R_{m}}{d_{g}\left(x_{o}, x_{m}\right)} \rightarrow 0$ as $m \rightarrow \infty$, then $\frac{d_{g}\left(x_{o}, \exp _{x_{m}}\left(R_{m} x\right)\right)}{d_{g}\left(x_{o}, x_{m}\right)} \rightarrow 1$ as $m \rightarrow \infty$ and consequently,

$$
\frac{R_{m}}{d_{g}\left(x_{o}, \exp _{x_{m}}\left(R_{m} x\right)\right)} \rightarrow 0 \text { as } m \rightarrow \infty
$$

or $\frac{R_{m}}{d_{g}\left(x_{o}, x_{m}\right)} \rightarrow A>0$ as $m \rightarrow \infty$. Then, always by (3.26), we get:

$$
\frac{1}{\frac{1}{A}+|x|} \leq \lim _{m \rightarrow \infty} \frac{R_{m}}{d_{g}\left(x_{o}, \exp _{x_{m}}\left(R_{m} x\right)\right)} \leq \frac{1}{\frac{1}{A}-|x|}
$$

Hence, by writing

$$
\int_{M} \frac{h}{\rho_{x_{o}}^{s}}\left|v_{m}\right|^{p-2} v_{m} \varphi_{m} d v_{g}=R_{m}^{p-s} \int_{\mathbb{R}^{n}} \frac{R_{m}^{s}}{d_{g}\left(x_{o}, \exp _{x_{m}}\left(R_{m} x\right)\right)^{s}} h\left(\exp _{x_{o}}\left(R_{m} x\right)\right)\left|\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \varphi d v_{\hat{g}_{m}}
$$

and

$$
\begin{equation*}
\int_{M} f\left|v_{m}\right|^{p^{*}-2} v_{m} \varphi_{m} d v_{g}=\int_{\mathbb{R}^{n}} f\left(\exp _{x_{m}}\left(R_{m} x\right)\right)\left|\left(\hat{\eta}_{m} \hat{v}_{m}\right)\right|^{p^{*}-2}\left(\hat{\eta}_{m} \hat{v}_{m}\right) \varphi d v_{\hat{g}_{m}} \tag{3.27}
\end{equation*}
$$

Since $\hat{g}_{m} \rightarrow \xi$ in $C^{1}(B(R))$ for any $R>0$, the sequence φ_{m} is bounded in $H_{1}^{p}(M)$, the sequence v_{m} is a P-S sequence of $J_{f, h, s}$ and the sequence $\hat{\eta}_{m} \hat{v}_{m}$ converges strongly to $v \neq 0$ in $D^{1, p}\left(\mathbb{R}^{n}\right)$, by passing to the limit, we get that v is a weak solution of

$$
\Delta_{\xi, p} v=f\left(x^{o}\right)|v|^{p^{*}-2} v
$$

Step 3

Let $w_{m}=v_{m}-\mathcal{B}_{m}$, with

$$
\begin{equation*}
\mathcal{B}_{m}(x)=R_{m}^{\frac{p-n}{p}} \eta_{\delta, x_{m}}(x) v\left(R_{m}^{-1} \exp _{x_{m}}^{-1}(x)\right), \tag{3.28}
\end{equation*}
$$

where $\eta_{\delta, x_{m}}(x)=\eta_{\delta}\left(\exp _{x_{m}}^{-1}(x)\right)$. Then, the following statements hold:

$$
\begin{gather*}
\mathcal{B}_{m} \text { converges weakly to } 0 \text { in } H_{1}^{p}(M) \tag{3.29}\\
D J_{f, h, s}\left(\mathcal{B}_{m}\right) \rightarrow 0, D J_{f, h, s}\left(w_{m}\right) \rightarrow 0 \text { strongly, } \tag{3.30}
\end{gather*}
$$

and

$$
\begin{equation*}
J_{f, h, s}\left(w_{m}\right)=J_{f, h, s}\left(v_{m}\right)-\left(f\left(x^{o}\right)\right)^{\frac{p-n}{p}} E(u) \tag{3.31}
\end{equation*}
$$

with u is a nontrivial weak solution of (1.3).
Proof The proof of (3.29) is identical to that of statement (14) of Step 2.4 in [21] and thus we omit it. We prove (3.30). Let $\varphi \in H_{1}^{p}(M)$. For $x \in B\left(\delta R_{m}^{-1}\right)$ put $\varphi_{m}(x)=R_{m}^{\frac{n-p}{p}} \varphi\left(\exp _{x_{m}}\left(R_{m} x\right)\right)$ and $\bar{\varphi}_{m}=\eta_{\delta}\left(R_{m} x\right) \varphi_{m}(x)$. Let $R>0$ be a constant, we have:

$$
\begin{aligned}
& \int_{M}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g}=\int_{B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g} \\
+ & \int_{B\left(x_{m}, 2 \delta\right) \backslash B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g}
\end{aligned}
$$

Direct computations give:

$$
\int_{B\left(x_{m}, 2 \delta\right) \backslash B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g}=O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R)
$$

where $\varepsilon(R) \rightarrow 0$ as $R \rightarrow \infty$.
For m is large, we have:

$$
\int_{B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g}=\int_{B(R)}\left|\nabla_{\hat{g}_{m}} v\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}} v, \nabla_{\hat{g}_{m}} \bar{\varphi}_{m}\right) d v_{\hat{g}_{m}}
$$

knowing that

$$
\int_{B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \varphi\right|^{p} d v_{g}=\int_{B(R)}\left|\nabla_{\hat{g}_{m}} \varphi_{m}\right|^{p} d v_{\hat{g}_{m}}
$$

and that the sequence of metrics \hat{g}_{m} converges in $C^{1}\left(B\left(R^{\prime}\right)\right), R^{\prime}>R$, we get that:

$$
\begin{aligned}
& \int_{B\left(x_{m}, R_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g} \\
= & \int_{B(R)}\left|\nabla_{\hat{g}_{m}} v\right|^{p-2} \hat{g}\left(\nabla_{\hat{g}_{m}} v, \nabla_{\hat{g}_{m}} \bar{\varphi}_{m}\right) d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \\
= & \int_{\mathbb{R}^{n}}|\nabla v|_{\xi}^{p-2} \nabla v \cdot \nabla \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R),
\end{aligned}
$$

where $\varepsilon(R) \rightarrow 0$ as $R \rightarrow \infty$.Thus,

$$
\begin{align*}
& \int_{M}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} g\left(\nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g} \tag{3.32}\\
= & \int_{\mathbb{R}^{n}}|\nabla v|_{\xi}^{p-2} \nabla v \cdot \nabla \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R),
\end{align*}
$$

By the same way, we get that:

$$
\begin{align*}
& \int_{M} f(x)\left|\mathcal{B}_{m}\right|^{p^{*}-2} \mathcal{B}_{m} \varphi d v_{g} \tag{3.33}\\
= & f\left(x^{o}\right) \int_{\mathbb{R}^{n}}|v|^{p^{*}-2} v \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R) .
\end{align*}
$$

Since the sequence \mathcal{B}_{m} converges to 0 weakly in $H_{1}^{p}(M)$ and the inclusion $H_{1}^{p}(M) \subset L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$ is compact for $s \in(0, p)$, we can assume that $\mathcal{B}_{m} \rightarrow 0$ in $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$. Then, using the fact that v is a weak solution of $\Delta_{\xi, p} v=f\left(x^{o}\right)|v|^{p^{*}-2} v$, we get

$$
D J_{f, h, s}\left(\mathcal{B}_{m}\right) \cdot \varphi=o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R)
$$

Since R is arbitrary, we get that $D J_{f, h, s}\left(\mathcal{B}_{m}\right) \rightarrow 0$. This proves the first part of (3.30). For the proof of the second part of (3.30), we write:

$$
D J_{f, h, s}\left(w_{m}\right)=D J_{f, h, s}\left(v_{m}\right)-D J_{f, h, s}\left(\mathcal{B}_{m}\right)+\mathcal{A}_{m} \cdot \varphi+\mathcal{C}_{m} \varphi+\mathcal{D}_{m} \varphi
$$

where

$$
\begin{aligned}
\mathcal{A}_{m} \cdot \varphi & =\int_{M} g\left(\left|\nabla_{g} w_{m}\right|^{p-2} \nabla_{g} w_{m}-\left|\nabla_{g} v_{m}\right|^{p-2} \nabla_{g} v_{m}+\left|\nabla_{g} \mathcal{B}_{m}\right|^{p-2} \nabla_{g} \mathcal{B}_{m}, \nabla_{g} \varphi\right) d v_{g} \\
\mathcal{C}_{m} \varphi & =\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{s}}\left(\left|w_{m}\right|^{p-2} w_{m}+\left|v_{m}\right|^{p-2} v_{m}-\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m}\right) \cdot \varphi d v_{g}
\end{aligned}
$$

and

$$
\mathcal{D}_{m} \varphi=\int_{M} f\left(\left|w_{m}\right|^{p^{*}-2} w_{m}+\left|v_{m}\right|^{p^{*}-2} v_{m}-\left|\mathcal{B}_{m}\right|^{p^{*}-2} \mathcal{B}_{m}\right) \cdot \varphi d v_{g}
$$

We repeat the same arguments as in (3.1), we get that $\mathcal{A}_{m} . \varphi \rightarrow 0, \mathcal{C}_{m} . \varphi \rightarrow 0$ and $\mathcal{D}_{m} . \varphi \rightarrow 0$ which ends the proof of (3.30). Now, we prove (3.31). First, we repeat the same calculation in [21], we get:

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} w_{m}\right|_{g}^{p} d v_{g}=\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}-\int_{\mathbb{R}^{n}}|\nabla v|^{p} d x+B_{m}(R)+o(1) \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M} f\left|w_{m}\right|^{p^{*}} d v_{g}=\int_{M} f\left|v_{m}\right|^{p^{*}} d v_{g}-f\left(x^{o}\right) \int_{\mathbb{R}^{n}}|v|^{p^{*}} d x+B_{m}(R)+o(1) \tag{3.35}
\end{equation*}
$$

with $\lim _{R \rightarrow \infty} \limsup _{m \rightarrow \infty} B_{m}(R)=0$.
Since $w_{m} \rightarrow 0$ weakly in $H_{1}^{p}(M)$ which is compactly embedded in $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$ for $s \in(0, p)$, we may assume that $w_{m} \rightarrow 0$ strongly in $L_{p}\left(M,\left(\rho_{x_{o}}\right)^{s}\right)$. Therefore, since R is arbitrarily chosen, by combining (3.34), (3.35), we get:

$$
J_{f, h, s}\left(w_{m}\right)=J_{f, h, s}\left(v_{m}\right)-\left(f\left(x^{o}\right)\right)^{\frac{p-n}{p}} E(u)+o(1)
$$

with u is a weak solution of (1.3).

3.2. The critical Hardy potential

Lemma 3.4 Let v_{m} be a P.S sequence of $J_{f, h, p}$ at a level β that converges weakly and not strongly to 0 in $H_{1}^{p}(M)$. Then, there exists a sequence of positive reals $\mathcal{T}_{m} \rightarrow 0$ as $m \rightarrow \infty$ such that the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ with

$$
\tilde{v}_{m}(x)=\mathcal{T}_{m}^{\frac{n-p}{p}} v_{m}\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)
$$

and $\tilde{\eta}_{m}(x)=\eta\left(\delta^{-1} \mathcal{T}_{m} x\right), 0<\delta \leq \frac{I n j_{g}}{2}$ and η is defined by (3.18), converges up to subsequence to a weak solution $v \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of

$$
\Delta_{\xi, p} v+\frac{h\left(x_{o}\right)}{|x|^{p}}|v|^{p-2} v=f\left(x_{o}\right)|v|^{p^{*}-2} v
$$

Moreover, the sequence

$$
w_{m}(x)=v_{m}(x)-\mathcal{T}_{m}^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{o}}^{-1}(x)\right) v\left(\mathcal{T}_{m}^{-1} \exp _{x_{o}}^{-1}(x)\right),
$$

where $0<\delta<\frac{\text { Inj }}{2}$, admits a subsequence w_{m} that is a $P-S$ sequence of $J_{f, h, p}$, at level $\beta-E_{f, h}(v)$ that converges to 0 weakly in $H_{1}^{p}(M)$.

Proof Let v_{m} be a P.S sequence of $J_{f, h, p}$ at level β that converges to 0 weakly and not strongly in $H_{1}^{p}(M)$. Then, up to a subsequence, we can assume that v_{m} converges strongly to 0 in $L_{p}(M)$ and that, by (3.6) there exists a small positive constant $\tilde{\gamma}$, such that

$$
\limsup _{m \rightarrow \infty} \int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}>\tilde{\gamma}>0
$$

Up to a subsequence, for each $m>0$, there exists a constant $\tilde{r}_{m}>0$ such that

$$
\begin{equation*}
\int_{B\left(x_{o}, \tilde{r}_{m}\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}=\tilde{\gamma} \tag{3.36}
\end{equation*}
$$

For $0<r_{o}<\frac{\operatorname{Inj}_{g}}{2}$ and C_{o} as in (3.9). For $0<r<r_{o}$, put $\mathcal{T}_{m}=\frac{\tilde{r}_{m}}{r C_{o}}$ and for $x \in B\left(\mathcal{T}_{m}^{-1} \delta_{g}\right)$ and define

$$
\begin{aligned}
& \tilde{v}_{m}(x)=\mathcal{T}_{m}^{\frac{n-p}{p}} v_{m}\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right), x \in \mathbb{R}^{n} \\
& \tilde{g}_{m}(x)=\exp _{x_{o}}^{*} g\left(\mathcal{T}_{m} x\right)
\end{aligned}
$$

We let the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ such that $\tilde{\eta}_{m}=\eta\left(\delta^{-1} \mathcal{T}_{m} x\right), \delta \in\left(0, \frac{\operatorname{Injg}}{2}\right)$ and $\eta \in C_{o}\left(\mathbb{R}^{n}\right)$ is the cut-off function such that $0 \leq \eta \leq 1, \eta(x)=1, x \in B\left(\frac{1}{4}\right)$ and $\eta(x)=0, x \in \mathbb{R}^{n} \backslash B\left(\frac{3}{4}\right)$. Going through the same way in the proof of Lemma 3.3, we get then that the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ is bounded in $D^{1, p}\left(\mathbb{R}^{n}\right)$ and then it converges weakly in $D^{1, p}\left(\mathbb{R}^{n}\right)$ to a function $v \in D^{1, p}\left(\mathbb{R}^{n}\right)$.
Suppose that $v \neq 0$, we get then that $\mathcal{T}_{m} \rightarrow 0$. To prove that v solves (1.4), we let $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with compact support included in a ball $B(R), R>0$. For m is large, define on M the sequence φ_{m} as

$$
\varphi_{m}(x)=\mathcal{T}_{m}^{\frac{p-n}{p}} \varphi\left(\mathcal{T}_{m}^{-1}\left(\exp _{x_{o}}^{-1}(x)\right)\right)
$$

Identities (3.25) and (3.27) still hold and we have:

$$
\int_{M} \frac{h}{\rho_{x_{o}}^{p}}\left|v_{m}\right|^{p-2} v_{m} \varphi_{m} d v_{g}=\int_{\mathbb{R}^{n}} \frac{h\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)}{|x|^{p}}\left|\left(\tilde{\eta}_{m} \tilde{v}_{m}\right)\right|^{p-2}\left(\tilde{\eta}_{m} \tilde{v}_{m}\right) \varphi d v_{\tilde{g}_{m}}
$$

Since $\mathcal{T}_{m} \rightarrow 0, \tilde{g}_{m} \rightarrow \xi$ in $C^{1}(B(R))$ and thus we can write $d v_{\tilde{g}_{m}}=\varepsilon_{m} d x$, with $\varepsilon \rightarrow 1$ uniformly in $B(R)$. In addition, we can prove, as in [21] (proof of step 2.1), that $\nabla\left(\tilde{\eta}_{m} \tilde{v}_{m}\right) \rightarrow \nabla v$ a.e. Since we have also $\tilde{\eta}_{m} \tilde{v}_{m} \rightarrow v$ a.e, and the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ is bounded in $L_{p}\left(\mathbb{R}^{n},|x|^{p}\right)$ we get by basic integration theory together with the fact that the sequence φ_{m} is bounded in $H_{1}^{p}(M)$ and the sequence v_{m} is a P-S sequence of $J_{f, h, p}$, that v is a weak solution of

$$
\Delta_{\xi, p} v-\frac{h\left(x_{o}\right)}{|x|^{p}}|v|^{p-2} v=f\left(x_{o}\right)|v|^{p^{*}-2} v
$$

Now, that the sequence w_{n} converges weakly to 0 in $H_{1}^{p}(M)$ follows in the same manner as in the proof of Step 3 above. To prove that $D J_{f, h, p}\left(w_{m}\right) \rightarrow 0$, we consider the sequence \mathcal{B}_{m} defined by (3.28). Let $\varphi \in H_{1}^{p}(M)$.

For $x \in B\left(\delta \mathcal{T}_{m}^{-1}\right)$, put $\varphi_{m}(x)=\mathcal{T}_{m}^{\frac{n-p}{p}} \varphi\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)$ and $\bar{\varphi}_{m}=\eta_{\delta}\left(\mathcal{T}_{m} x\right) \varphi_{m}(x)$. Then, identities (3.32) and (3.33) still hold. Let $R>0$ be a constant, we have:

$$
\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g}=\int_{B\left(x_{o}, \mathcal{T}_{m} R\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g}+\int_{B\left(x_{o}, \delta\right) \backslash B\left(x_{o}, \mathcal{T}_{m} R\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g} .
$$

By Hölder and Hardy inequalities, we have:

$$
\begin{aligned}
\int_{B\left(x_{o}, \delta\right) \backslash B\left(x_{o}, \mathcal{T}_{m} R\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g} & \leq \sup _{M}|h|\|\varphi\|_{H_{1}^{p}(M)} \int_{B\left(x_{o}, \delta\right) \backslash B\left(x_{o}, \mathcal{T}_{m} R\right)}\left|\nabla_{g} \mathcal{B}_{m}\right|^{p} d v_{g}+o(1) \\
& =\sup _{M}|h|\|\varphi\|_{H_{1}^{p}(M)} \int_{\left.B\left(\delta \mathcal{T}_{m}^{-1}\right)\right) \backslash B(R)}|\nabla v|^{p} d x+o(1) \\
& =O\left(\|\varphi\|_{\left.H_{1}^{p}(M)\right)} \varepsilon(R)+o(1),\right.
\end{aligned}
$$

with $\varepsilon \rightarrow 0$ as $R \rightarrow \infty$.
Put

$$
\bar{\varphi}(x)=\mathcal{T}_{m}^{\frac{n-p}{p}} \varphi\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)
$$

Then, for m is large

$$
\int_{B\left(x_{o}, \mathcal{T}_{m} R\right)} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g}=\int_{B(R)} \frac{h\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)}{|x|^{p}}|v|^{p-2} v \bar{\varphi}_{m} d v_{\tilde{g}_{m}}
$$

Since $\tilde{g} \rightarrow \xi$ in $C^{1}\left(B\left(R^{\prime}\right)\right), R^{\prime}>R$, we get

$$
\begin{aligned}
\int_{B(R)} \frac{h\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)}{|x|^{p}}|v|^{p-2} v \bar{\varphi}_{m} d v_{\tilde{g}_{m}} & =h\left(x_{o}\right) \int_{B(R)} \frac{1}{|x|^{p}}|v|^{p-2} v \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \\
& =h\left(x_{o}\right) \int_{\mathbb{R}^{n}} \frac{1}{|x|^{p}}|v|^{p-2} v \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{M} \frac{h}{\left(\rho_{x_{o}}\right)^{p}}\left|\mathcal{B}_{m}\right|^{p-2} \mathcal{B}_{m} \varphi d v_{g}=h\left(x_{o}\right) \int_{\mathbb{R}^{n}} \frac{1}{|x|^{p}}|v|^{p-2} v \bar{\varphi}_{m} d x+o\left(\|\varphi\|_{H_{1}^{p}(M)}\right)+O\left(\|\varphi\|_{H_{1}^{p}(M)}\right) \varepsilon(R)+o(1) . \tag{3.37}
\end{equation*}
$$

Since v is a weak solution of (1.4), we get by (3.32), (3.33), and (3.37) that $D J_{f, h, p}\left(\mathcal{B}_{m}\right) \rightarrow 0$. This implies, as in the proof of (3.30) of Step 3, that $D J_{f, h, p}\left(w_{m}\right) \rightarrow 0$.
Now, we prove the last statement of the lemma. Put

$$
\hat{w}_{m}(x)=\mathcal{T}_{m}^{\frac{n-p}{p}} w_{m}\left(\exp _{x_{o}}\left(\mathcal{T}_{m} x\right)\right)=\tilde{v}_{m}-\eta_{\delta}\left(\mathcal{T}_{m} x\right) v(x)
$$

By convexity, we have:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla\left(v\left(\eta_{\delta}\left(\mathcal{T}_{m} x\right)-1\right)\right)\right|^{p} d x \\
= & \int_{\mathbb{R}^{n} \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|\nabla v|^{p} d x+\int_{B\left(2 \delta \mathcal{T}_{m}^{-1}\right) \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}\left|\nabla\left(v\left(\eta_{\delta}\left(\mathcal{T}_{m} x\right)-1\right)\right)\right|^{p} d x \\
\leq & \left.\left.2^{p-1}\left(\int_{B\left(2 \delta \mathcal{T}_{m}^{-1}\right) \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)} \mid \eta_{\delta}\left(\mathcal{T}_{m} x\right)-1\right)\right|^{p}|\nabla v|^{p} d x+\mathcal{T}_{m}^{p} \int_{B\left(2 \delta \mathcal{T}_{m}^{-1}\right) \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|v|^{p}\left|\left(\nabla \eta_{\delta}\right)\left(\mathcal{T}_{m} x\right)\right|^{p} d x\right) \\
+ & \int_{\mathbb{R}^{n} \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|\nabla v|^{p} d x \\
\leq & 2^{p-1}\left(\int_{B\left(2 \delta \mathcal{T}_{m}^{-1}\right) \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|\nabla v|^{p} d x+C \mathcal{T}_{m}^{p} \int_{B\left(2 \delta \mathcal{T}_{m}^{-1}\right) \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|v|^{p} d x\right)+\int_{\mathbb{R}^{n} \backslash B\left(\delta \mathcal{T}_{m}^{-1}\right)}|\nabla v|^{p} d x \\
= & o(1)
\end{aligned}
$$

Similarly, we get that $\tilde{\eta}_{m} v=v+o(1)$. Thus, we obtain:

$$
\tilde{\eta}_{m} \hat{w}_{m}=\tilde{\eta}_{m} \tilde{v}_{m}-v+o(1)
$$

Since $\tilde{\eta}_{m} \tilde{v}_{m} \rightarrow v$ a.e in \mathbb{R}^{n} and $\nabla\left(\tilde{\eta}_{m} \tilde{v}_{m}\right) \rightarrow \nabla v$ a.e in \mathbb{R}^{n}, we get, as in the proof of Lemma 3.1, that

$$
E_{f, h}\left(\tilde{\eta}_{m} \hat{w}_{m}\right)=E_{f, h}\left(\tilde{\eta}_{m} \tilde{v}_{m}\right)-E_{h, f}(v)+o(1)
$$

By using rescaling invariance and the fact that $\tilde{g}_{m} \rightarrow \xi$ in $C^{1}(B(R))$ for any $R>0$, we get that:

$$
J_{f, h, p}\left(w_{m}\right)=J_{f, h, p}\left(v_{m}\right)-E_{h, f}(v)+o(1)
$$

Lemma 3.5 Suppose that the weak limit v in $D^{1, p}\left(\mathbb{R}^{n}\right)$ of the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ of the above lemma is null. Then, there exists a sequence of positive numbers $\tau_{m} \rightarrow 0$ and a sequence of points $y_{i} \in M \backslash\left\{x_{o}\right\}, y_{i} \rightarrow y_{o} \neq x_{o}$ such that up to a subsequence, the sequence

$$
\nu_{m}=\tau_{m}^{\frac{n-p}{p}} v_{m}\left(\exp _{y_{i}}\left(\tau_{m} x\right)\right)
$$

converges weakly to a nontrivial weak solution ν of the Euclidean equation

$$
\Delta_{\xi, p} \nu=f\left(y_{o}\right)|\nu|^{p^{\star}-2} \nu
$$

and the sequence

$$
\mathcal{W}_{m}=v_{m}-\tau_{m}^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{y_{i}}^{-1}(x)\right) \nu\left(\tau_{m}^{-1} \exp _{y_{i}}^{-1}(x)\right)
$$

is a Palais-Smale sequence for $J_{f, h, p}$ that converges weakly to 0 in $H_{1}^{p}(M)$ and

$$
J_{f, h, p}\left(\mathcal{W}_{m}\right)=J_{f, h, p}\left(v_{m}\right)-f\left(y_{o}\right)^{\frac{p-n}{p}} E(u)
$$

with u is a solution of(1.3).

Proof Take a function $\varphi \in \mathcal{C}_{0}^{\infty}\left(B\left(C_{o} r\right)\right)$ and put $\varphi_{m}(x)=\varphi\left(\mathcal{T}_{m}^{-1} \exp _{x_{o}}^{-1}(x)\right)$. We have:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-2} \tilde{g}\left(\nabla_{\tilde{g}_{m}} \tilde{v}_{m}, \nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m}|\varphi|^{p}\right)\right) d v_{\tilde{g}_{m}}=\int_{\mathbb{R}^{n}}|\varphi|^{p}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p} d v_{\tilde{g}_{m}} \\
+ & \int_{\mathbb{R}^{n}} p|\varphi|^{p-1}\left|\tilde{v}_{m}\right|\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-2} \tilde{g}\left(\nabla_{\tilde{g}_{m}} \tilde{v}_{m}, \nabla_{\tilde{g}_{m}}|\varphi|\right) d v_{\tilde{g}_{m}}
\end{aligned}
$$

Since the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ is bounded in $D^{1, p}\left(\mathbb{R}^{n}\right)$ and it converges strongly to 0 in $L_{p, l o c}\left(\mathbb{R}^{n}\right)$, we have:

$$
\begin{aligned}
& \left.\left|\int_{\mathbb{R}^{n}} p\right| \varphi\right|^{p-1}\left|\tilde{v}_{m}\right|\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-2} \tilde{g}\left(\nabla_{\tilde{g}_{m}} \tilde{v}_{m}, \nabla_{\tilde{g}_{m}}|\varphi|\right) d v_{\tilde{g}_{m}} \mid \\
\leq & C \int_{B\left(C_{o} r\right)}\left|\tilde{v}_{m}\right|\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-1} d v_{\tilde{g}_{m}} \\
\leq & C\left(\int_{B\left(C_{o} r\right)}\left|\tilde{v}_{m}\right|^{p} d v_{\tilde{g}_{m}}\right)^{\frac{1}{p}}\left(\int_{B\left(C_{o} r\right)}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|_{\tilde{g}_{m}}^{p} d v_{\tilde{g}_{m}}\right)^{1-\frac{1}{p}}=o(1)
\end{aligned}
$$

Then

$$
\int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-2} \tilde{g}\left(\nabla_{\tilde{g}_{m}} \tilde{v}_{m}, \nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m}|\varphi|^{p}\right)\right) d v_{\tilde{g}_{m}}=\int_{\mathbb{R}^{n}}|\varphi|^{p}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p} d v_{\tilde{g}_{m}}+o(1)
$$

Now, by lemma A. 4 in [4], the following inequalities hold

1. If $1<p<2$, for a given $\gamma \in(1, p)$, there exists a constant such that

$$
\left(1+t^{2}+2 t \cos \alpha\right)^{\frac{p}{2}} \leq 1+t^{p}+p t \cos \alpha+C t^{\gamma}
$$

for $t \geq 0$ uniformly in α.
2. If $2 \leq p \leq 3$, for a given $\gamma \in[p-1,2]$, there exists a constant such that

$$
\left(1+t^{2}+2 t \cos \alpha\right)^{\frac{p}{2}} \leq 1+t^{p}+p t \cos \alpha+C t^{\gamma}
$$

for $t \geq 0$ uniformly in α.
3. If $p \geq 3$, there exists a constant such that

$$
\left(1+t^{2}+2 t \cos \alpha\right)^{\frac{p}{2}} \leq 1+t^{p}+p t \cos \alpha+C\left(t^{2}+t^{p-1}\right)
$$

for $t \geq 0$ uniformly in α.
Using these inequalities together with Hölder inequality and the strong convergence of $\tilde{\eta}_{m} \tilde{v}_{m}$ in $L_{p, l o c}\left(\mathbb{R}^{n}\right)$, we get:

$$
\int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m} \varphi\right)\right|^{p} d v_{\tilde{g}_{m}} \leq \int_{\mathbb{R}^{n}}|\varphi|^{p}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p} d v_{\tilde{g}_{m}}+o(1)
$$

in such a way that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m} \varphi\right)\right|^{p} d v_{\tilde{g}_{m}} \\
\leq & \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p-2} \tilde{g}\left(\nabla_{\tilde{g}_{m}} \tilde{v}_{m}, \nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m}|\varphi|^{p}\right)\right) d v_{\tilde{g}_{m}}+o(1) \\
= & \int_{M}\left|\nabla v_{m}\right|^{p-2} g\left(\nabla_{g} v_{m}, \nabla_{g}\left(v_{m}\left|\varphi_{m}\right|^{p}\right)\right) d v_{g}+o(1)
\end{aligned}
$$

Moving to and from rescaling, using Hölder, Hardy, and Sobolev inequalities and the fact that v_{m} is P-S sequence and that $v_{m}\left|\varphi_{m}\right|^{p}$ is bounded in $H_{1}^{p}(M)$, we get:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m} \varphi\right)\right|^{p} d v_{\tilde{g}_{m}} \\
\leq & \int_{M}\left|\nabla_{g} v_{m}\right|^{p-2} g\left(\nabla_{g} v_{m}, \nabla_{g}\left(v_{m}\left|\varphi_{m}\right|^{p}\right)\right) d v_{g}+o(1) \\
= & \left(D J_{f, h, p}\left(v_{m}\right)\right) \cdot\left(v_{m}\left|\varphi_{m}\right|^{p}\right)+\int_{M} \frac{h}{\rho_{x_{o}}^{p}}\left|v_{m} \varphi_{m}\right|^{p} d v_{g}+\int_{M} f\left|v_{m}\right|^{p^{*}-p}\left|v_{m} \varphi_{m}\right|^{p} d v_{g}+o(1) \\
\leq & \left(h\left(x_{o}\right)+\varepsilon\right)\left(\left(\frac{p}{n-p}\right)^{p}+\varepsilon\right) \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m} \varphi\right)\right|^{p} d v_{\tilde{g}_{m}} \\
+ & \left(K^{p^{\star}}(n, p)+\varepsilon\right) \sup f\left(\int_{B\left(C_{o} r\right)}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m}\right)\right|^{p} d v_{\tilde{g}_{m}}\right)^{\frac{p}{n-p}} \int_{\mathbb{R}^{n}}\left|\nabla_{\tilde{g}_{m}}\left(\tilde{v}_{m} \varphi\right)\right|^{p} d v_{\tilde{g}_{m}} \\
+ & o(1)
\end{aligned}
$$

Thus, since $1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}>0$, for $\tilde{\gamma}$ in (3.36) chosen small enough, we get that for each $t, 0<t<C_{o} r$

$$
\begin{equation*}
\int_{B\left(x_{o}, t \mathcal{T}_{m}\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}=\int_{B(t)}\left|\nabla_{\tilde{g}_{m}} \tilde{v}_{m}\right|^{p} d v_{\tilde{g}_{m}} \rightarrow 0, m \rightarrow \infty \tag{3.38}
\end{equation*}
$$

Now, the sequence v_{m} is a P.S sequence that converges to 0 weakly and not strongly in $H_{1}^{p}(M)$, we get as in lemma 3.2 that

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \geq\left(\frac{n \beta^{*}}{\sup _{M} f(K(n, p)+\varepsilon)^{p^{*}}}\right)^{\frac{p}{p^{*}}}+o(1) \tag{3.39}
\end{equation*}
$$

Consider for $t>0$ the function

$$
t \mapsto \mathcal{F}_{m}(t)=\max _{y \in M} \int_{B(y, t)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}
$$

Given that t_{o} is small, it follows from (3.39) that there exists $y \in M$ and $\lambda_{o}>0$ such that up to a subsequence

$$
\begin{equation*}
\int_{B\left(y, t_{o}\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g} \geq \lambda_{o} \tag{3.40}
\end{equation*}
$$

Since \mathcal{F}_{m} is continuous, it follows that for any $\lambda \in\left(0, \lambda_{o}\right)$, there exist $t_{m} \in\left(0, t_{o}\right)$ and $y_{m} \in M$ such that

$$
\begin{equation*}
\mathcal{F}_{m}\left(t_{m}\right)=\int_{B\left(y_{m}, t_{m}\right)}\left|\nabla_{g} v_{m}\right|^{p} d v_{g}=\lambda \tag{3.41}
\end{equation*}
$$

Since M is compact, up to a subsequence, we may assume that y_{m} converges to some point $y_{o} \in M$.
Note first that for all $m \geq 0, t_{m}<\tilde{r}_{m}=C_{o} r \mathcal{T}_{m}$, otherwise if there exists $m_{o} \geq 0$ such that $t_{m_{o}} \geq \tilde{r}_{m_{o}}$, we get:

$$
\lambda=\int_{B\left(y_{m_{o}}, t_{m_{o}}\right)}\left|\nabla_{g} v_{m_{o}}\right|^{p} d v_{g} \geq \int_{B\left(x_{o}, t_{m_{o}}\right)}\left|\nabla_{g} v_{m_{o}}\right|^{p} d v_{g} \geq \int_{B\left(x_{o}, \tilde{r}_{m_{o}}\right)}\left|\nabla v_{m_{o}}\right|^{p} d v_{g}=\gamma
$$

Hence, if we choose λ small enough such that $0<\lambda<\gamma$, we get a contradiction.
Now, suppose that for all $\varepsilon>0$, there exists $m_{\varepsilon}>0$ such that for all $m \geq m_{\varepsilon} \operatorname{dist}_{g}\left(y_{m}, x_{o}\right) \leq \varepsilon$. Choose r_{m}^{\prime} such that, $t_{m}<r_{m}^{\prime}<\tilde{r}_{m}$ and take $\varepsilon^{\prime}=r_{m}^{\prime}-t_{m}$, we get that for some $m_{\varepsilon^{\prime}}>0$ and $m \geq m_{\varepsilon^{\prime}}$

$$
B\left(y_{m}, t_{m}\right) \subset B\left(x_{o}, r_{m}^{\prime}\right)
$$

which gives, by virtue of (3.38) and (3.41), a contradiction. We deduce then that $y_{o} \neq x_{o}$.
Now, take $0<\tau_{m}<1$ such that $C_{o} r \tau_{m}=t_{m}$, where $r \in\left(0, r_{o}\right)$ and C_{o} and r_{o} are as in (3.9). Then, for $x \in B\left(\tau_{m}^{-1} \delta_{g}\right) \subset \mathbb{R}^{n}$ consider the sequences

$$
\begin{aligned}
\check{\nu}_{m}(x) & =\tau_{m}^{\frac{n-p}{p}} v_{m}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right) \\
\check{g}_{m}(x) & =\exp _{y_{m}}^{*} g\left(\tau_{m} x\right)
\end{aligned}
$$

Put $\check{\eta}_{m}(x)=\eta\left(\delta^{-1} \tau_{m} x\right)$, where $\delta \in\left(0, I n j_{g}\right)$ and $x \in \mathbb{R}^{n}$. As in the proof of lemma 3.3, we can easily check that there is a subsequence of $\tilde{\eta}_{m} \tilde{\nu}_{m}$ that converges weakly in $\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ to some function ν. We prove that actually the strong convergence holds in $H_{1}^{p}(B(R)), R>0$. In fact, we go through the same proof of Step 1 above by just replacing x_{m} by y_{m} and R_{m} by τ_{m}. We let then $a \in \mathbb{R}^{n}$ and $\mu \in[r, 2 r]$ and consider the sequence

$$
\begin{cases}\check{\psi}_{m}=\check{\eta}_{m} \check{\nu}_{m}-\nu & \text { in } \bar{B}(a, \mu), \\ \check{\psi}_{m}=z_{m} & \text { in } \bar{B}(a, 3 r) \backslash B(a, \mu) \\ \check{\psi}_{m}=0 & \text { in } \mathbb{R}^{n} \backslash B(a, 3 r)\end{cases}
$$

where z_{m} are solutions of (3.19). For $r<\frac{\delta}{24}$, consider the rescaling sequence ψ_{m} of $\check{\psi}_{m}$

$$
\begin{cases}\psi_{m}(x)=\tau_{m}^{\frac{p-n}{p}} \check{\psi}_{m}\left(\tau_{m}^{-1} \exp _{y_{m}}^{-1}(x)\right), & \text { if } x<d_{g}\left(y_{m}, 6 r\right) \\ \psi_{m}(x)=0, & \text { otherwise }\end{cases}
$$

As in (3.20), we have:

$$
\begin{align*}
& o(1)=\int_{B(a, 3 r)}\left|\nabla_{\check{g}_{m}}\left(\check{\eta}_{m} \check{\nu}_{m}\right)\right|^{p-2} \check{g}\left(\nabla_{\check{g}_{m}}\left(\check{\eta}_{m} \check{\nu}_{m}\right), \nabla_{\check{g}_{m}} \check{\psi}_{m}\right) d v_{\check{g}_{m}} \tag{3.42}\\
& -\quad \tau_{m}^{p} \int_{B(a, 3 r)} \frac{h\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)}{\left(\rho_{x_{o}}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\right)^{p}}\left|\check{\eta}_{m} \check{\nu}_{m}\right|^{p-2}\left(\check{\eta}_{m} \check{\nu}_{m}\right) \check{\psi}_{m} d v_{\check{g}_{m}} \\
& -\quad \int_{B(a, 3 r)} f\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\left|\check{\eta}_{m} \check{\nu}_{m}\right|^{p^{*}-2}\left(\check{\eta}_{m} \check{\nu}_{m}\right) \check{\psi}_{m} d v_{\check{g}_{m}}
\end{align*}
$$

As above, we have:

$$
\int_{B(a, 3 r)}\left|\nabla_{\check{g}_{m}}\left(\check{\eta}_{m} \check{\nu}_{m}\right)\right|^{p-2} \check{g}\left(\nabla_{\check{g}_{m}}\left(\check{\eta}_{m} \check{\nu}_{m}\right), \nabla_{\check{g}_{m}} \check{\psi}_{m}\right) d v_{\check{g}_{m}}=\int_{\mathbb{R}^{n}}\left|\nabla_{\check{g}_{m}} \check{\psi}_{m}\right|^{p} d v_{\check{g}_{m}}+o(1)
$$

and

$$
\begin{aligned}
& \int_{B(a, 3 r)} f\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\left|\check{\eta}_{m} \check{\nu}_{m}\right|^{p^{*}-2}\left(\check{\eta}_{m} \check{\nu}_{m}\right) \check{\psi}_{m} d v_{\check{g}_{m}} \\
= & \int_{\mathbb{R}^{n}} f\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\left|\check{\psi}_{m}\right|^{p^{*}} d v_{\check{g}_{m}}+o(1)
\end{aligned}
$$

Since $\tau_{m} \rightarrow 0$, we get that for all $\varepsilon>0$, there exists m_{o} such that for all $m \geq m_{o}$, we have:

$$
\rho_{x_{o}}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)=\operatorname{dist}_{g}\left(x_{o}, \exp _{y_{m}}\left(\tau_{m} x\right)\right) \geq \operatorname{dist}_{g}\left(x_{o}, y_{o}\right)-\varepsilon=\varrho>0
$$

Then, as in the proof of step 1, we get:

$$
\begin{align*}
& \int_{B(a, 3 r)} \frac{h\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)}{\left(\rho_{x_{o}}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\right)^{p}}\left|\check{\eta}_{m} \check{\nu}_{m}\right|^{p-2}\left(\check{\eta}_{m} \check{\nu}_{m}\right) \check{\psi}_{m} d v_{\check{g}_{m}} \tag{3.43}\\
= & \int_{\mathbb{R}^{n}} \frac{h\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)}{\left(\rho_{x_{o}}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\right)^{p}}\left|\check{\psi}_{m}\right|^{p} d v_{\check{g}_{m}}+o(1) .
\end{align*}
$$

Since the sequence $\check{\psi}_{m}$ converges strongly to 0 in $L_{p, l o c}\left(\mathbb{R}^{n}\right)$, we get:

$$
\int_{\mathbb{R}^{n}} \frac{h\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)}{\left(\rho_{x_{o}}\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\right)^{p}}\left|\check{\psi}_{m}\right|^{p} d v_{\check{g}_{m}} \leq C \int_{\mathbb{R}^{n}}\left|\check{\psi}_{m}\right|^{p} d v_{\check{g}_{m}}=o(1)
$$

We deduce that:

$$
\int_{\mathbb{R}^{n}}\left|\nabla_{\check{g}_{m}} \check{\psi}_{m}\right|^{p} d v_{\check{g}_{m}}=\int_{\mathbb{R}^{n}} f\left(\exp _{y_{m}}\left(\tau_{m} x\right)\right)\left|\check{\psi}_{m}\right|^{p^{*}} d v_{\check{g}_{m}}+o(1)
$$

The remaining of the proof goes in the same way as in the proof of step 1 and step 2 . Thus, we get that $\nu \neq 0$ and ν is a weak solution of

$$
\Delta_{p, \xi} \nu=f\left(y_{o}\right)|\nu|^{p^{*}-2} \nu
$$

Now, we are in position to prove Theorems 1.1 and 1.2
Proof [Proof of Theorem 1.1] Let us first note that if $u \in D^{1, p}\left(\mathbb{R}^{n}\right)$ is a nontrivial weak solution of (1.4), then

$$
\begin{equation*}
E_{f, h}(u) \geq \frac{\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)^{\frac{n}{p}}}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K^{n}(n, p)} \tag{3.44}
\end{equation*}
$$

In fact, by Hardy and Sobolev inequalities, we have:

$$
\begin{aligned}
\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right) \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x & \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-h\left(x_{o}\right) \int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{p}} d x=f\left(x_{o}\right) \int_{\mathbb{R}^{n}}|u|^{p^{*}} d x \\
& \leq f\left(x_{o}\right) K^{p^{*}}(n, p)\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x\right)^{\frac{p^{*}}{p}}
\end{aligned}
$$

Since u cannot be a constant, we get:

$$
\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x \geq \frac{\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)^{\frac{n-p}{p}}}{\left(f\left(x_{o}\right)\right)^{\frac{n-p}{p}} K^{n}(n, p)}
$$

Hence,

$$
\begin{aligned}
E_{f, h}(u)=\frac{1}{n}\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-h\left(x_{o}\right) \int_{\mathbb{R}^{n}} \frac{|u|^{p}}{|x|^{p}} d x\right) & \geq \frac{\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)^{\frac{n-p}{p}}}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K^{n}(n, p)} \\
& \geq \frac{\left(1-h\left(x_{o}\right)\left(\frac{p}{n-p}\right)^{p}\right)^{\frac{n}{p}}}{n\left(f\left(x_{o}\right)\right)^{\frac{n-p}{p}} K^{n}(n, p)} .
\end{aligned}
$$

By the same way, we can also have that for a nontrivial solution $u \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of (1.3),

$$
\begin{equation*}
E(u) \geq \frac{1}{\left.n K^{n}(n, p)\right)} \tag{3.45}
\end{equation*}
$$

Now, let u_{m} be a P-S sequence for $J_{f, h, s}$ at level $\beta_{s}^{u}, 0<s<p$. Then, u_{m} is bounded in $H_{1}^{p}(M)$ and it converges, up to a subsequence, to a function u weakly in $H_{1}^{p}(M)$ and almost everywhere to u in M. Thus, by Lemma 3.1, the function u is a weak solution of $\left(E_{s}\right), 0<s<p$ and the sequence $v_{m}=u_{m}-u$ is a Palais-Smale sequence for $J_{f, h, s}$ at level $\beta_{s}=\beta_{s}^{u}-J_{f, h, s}(u)$.
If v_{m} converges strongly to 0 in $H_{1}^{p}(M)$, then the theorem is proved with $k=0$. If not, by Lemma 3.2, $\beta_{s} \geq \beta^{*}=\frac{1}{\left.n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K^{n}(n, p)\right)}$. Then, by Lemma 3.3 and its proof, there exists a nontrivial weak solution $v_{1} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ of $\Delta_{p, \xi} v=f\left(x_{1}^{o}\right)|v|^{p^{*}-2} v$, a converging sequence of points $x_{m}^{1} \rightarrow x_{1}^{o}$ and a sequence of reals $R_{m}^{1} \rightarrow 0$ such that, the sequence

$$
w_{m}(x)=v_{m}-\left(R_{m}^{1}\right)^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{m}^{1}}^{-1}(x)\right) v_{1}\left(\left(R_{m}^{1}\right)^{-1} \exp _{x_{m}^{1}}^{-1}(x)\right), x \in M
$$

admits a subsequence that is P-S sequence of $J_{f, h, s}, 0<s<p$, at level $\beta^{1}=\beta_{s}-\left(f\left(x_{1}^{o}\right)\right)^{\frac{p-n}{p}} E\left(u_{1}\right)$, with u_{1} is a nontrivial weak solution of (1.3). By (3.45), $\beta^{1} \leq \beta_{s}-\beta^{*}$. Then, if $\beta_{s}<2 \beta^{*}$, we get $\beta^{1}<\beta^{*}$ and the sequence w_{m} converges strongly to 0 in $H_{1}^{p}(M)$. Hence, the theorem is proved with $k=1$. If not, we repeat the procedure until we obtain a P-S sequence at level $\beta^{k} \leq \beta_{s}-k \beta^{*}<\beta^{*}$ and Theorem 1.1 is proved.

Proof [Proof of theorem 1.2] In the same way as above, we prove theorem 1.2. We let u_{m} be a P-S sequence for $J_{f, h, p}$ at a level β^{u}. Then, u_{m} is bounded in $H_{1}^{p}(M)$ and it converges, up to a subsequence, to a function u weakly in $H_{1}^{p}(M)$ and almost everywhere to u in M. Thus, by Lemma 3.1, the function u is a weak solution of $\left(E_{s}\right), s=p$, and the sequence $v_{m}=u_{m}-u$ is a Palais-Smale sequence for $J_{f, h, p}$ at level $\beta=\beta^{u}-J_{f, h, p}(u)$. If v_{m} converges strongly to 0 in $H_{1}^{p}(M)$, then the theorem is proved with $k=0, l=0$. If not, by Lemma 3.2, $\beta \geq \beta^{*}=\frac{\left(1-h\left(x_{o}\right)\left(\frac{n-p}{p}\right)^{p}\right)^{\frac{n}{p}}}{n\left(\sup _{M} f\right)^{\frac{n-p}{p}} K^{n}(n, p)}$. By Lemma 3.4, there exist a sequence of positive reals $\mathcal{T}_{m}^{1} \rightarrow 0$ such that the sequence $\tilde{\eta}_{m} \tilde{v}_{m}$ with

$$
\tilde{v}_{m}(x)=\mathcal{T}^{\frac{n-p}{p}} v_{m}\left(\exp _{x_{o}}\left(\mathcal{T}_{m}^{1} x\right)\right)
$$

and $\tilde{\eta}_{m}(x)=\eta\left(\delta^{-1} \mathcal{T}_{m}^{1} x\right), 0<\delta \leq \frac{\operatorname{Inj}_{g}}{2}$ and η is defined by (3.18), converges, up to subsequence, weakly to some function $v_{1} \in D^{1, p}\left(\mathbb{R}^{n}\right)$ such that if $v_{1} \neq 0$, then v_{1} is solution of

$$
\Delta_{\xi, p} v+\frac{h\left(x_{o}\right)}{|x|^{p}}|v|^{p-2} v=f\left(x_{o}\right)|v|^{p^{*}-2} v
$$

and the sequence

$$
w_{m}(x)=v_{m}(x)-\left(\mathcal{T}_{m}^{1}\right)^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{x_{o}}^{-1}(x)\right) v_{1}\left(\left(\mathcal{T}_{m}^{1}\right)^{-1} \exp _{x_{o}}^{-1}(x)\right)
$$

where $0<\delta<\frac{\operatorname{Inj}_{g}}{2}$, admits a subsequence w_{m} that is a P-S sequence of $J_{f, h, p}$, at level $\beta^{1}=\beta-E_{f, h}\left(v_{1}\right)$ that converges to 0 weakly in $H_{1}^{p}(M)$. By (3.44), $\beta^{1} \leq \beta-\beta^{*}$. Then, if $\beta<2 \beta^{*}$, we get $\beta^{1}<\beta^{*}$ and the sequence w_{m} converges strongly to 0 in $H_{1}^{p}(M)$. If not, we repeat the procedure until we obtain a Palais-Smale sequence at level $\beta^{k} \leq \beta-k \beta^{*}<\beta^{*}$.
Now, if the weak limit v of the sequence \tilde{v} is the zero function by lemma 3.5, there exists a nontrivial weak solution ν_{1} of $\Delta_{p, \xi} \nu=f\left(y_{o}^{1}\right)|\nu|^{p^{*}-2} \nu$, a sequence of positive reals $\tau_{m}^{1} \rightarrow 0$ and a sequence $y_{i}^{1} \rightarrow y_{o}^{1} \neq x_{o}$ such that the sequence

$$
\mathcal{W}_{m}(x)=v_{m}-\left(\tau_{m}^{1}\right)^{\frac{p-n}{p}} \eta_{\delta}\left(\exp _{y_{i}^{1}}^{-1}(x)\right) \nu_{1}\left(\left(\tau_{m}^{1}\right)^{-1} \exp _{y_{i}^{1}}^{-1}(x)\right), x \in M
$$

admits a subsequence which is a P-S sequence of $J_{f, h, p}$ at level $\beta^{1}=\beta-\left(f\left(y_{o}^{1}\right)\right)^{\frac{p-n}{p}} E\left(u_{1}\right) \leq \beta-\beta^{*}$, with u_{1} is a nontrivial weak solution of (1.3). If $\beta<2 \beta^{*}$, then $\beta^{1}<\beta^{*}$ and the sequence \mathcal{W}_{m} converges strongly to 0 in $H_{1}^{p}(M)$. The theorem is then proved with $k=0$ and $l=1$. If not, we repeat the procedure until we obtain a P-S sequence at level $\beta^{k} \leq \beta-k \beta^{*}<\beta^{*}$.

References

[1] Abdallaoui B, Felli V, Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell'Unione Matematica Italiana 2006; 9-B (2): 445-484. http://eudml.org/doc/289600
[2] Aubin T. Problèmes isopérimétriques et espaces de Sobolev. Journal of Differential Geometry 1976; 11 (4): 573-598 (in French). https://doi.org/10.4310/jdg/1214433725
[3] Aubin T. Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics (1998).
[4] Azorero JG, Peral I. Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana University Mathematics Journal 1994; 43 (3): 941-957. https://doi.org/10.1512/iumj.1994.43.43041
[5] Benalili M, Maliki Y. Generalized prescribed scalar curvature type equations on complete Riemannian manifolds. Electronic Journal of Differential Equations 2004; 2004 (147): 1-18.
[6] Boccardo L, Croce G. Elliptic Partial Differential Equation. DeGruyter, 2013.
[7] Caffarelli LA, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics 1989; 42 (3): 271-297. https://doi.org/10.1002/cpa. 3160420304
[8] Damascelli L, Merchán S, Montoro L, Sciunzi B. Radial symmetry and applications for a problem involving the $-\Delta_{p}(\cdot)$ operator and critical nonlinearity in \mathbb{R}^{N}. Advances in Mathematics 2014; 265: 313-335. https://doi.org/10.1016/j.aim.2014.08.004
[9] Druet O. Generalized prescribed scalar curvatrure type equations on compact Riemannian manifolds. Proceedings of the Royal Society of Edinburgh 2000; 130 (6): 767-788. https://doi.org/10.1017/S0308210500000408
[10] Druet O, Hebbey E, Robert F. Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Princeton University Press, 2004.
[11] Felli V, Pistoia A. Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth. Communications in Partial Differential Equations 2006; 31 (1): 21-56. https://doi.org/10.1080/03605300500358145
[12] Guedda M, Veron L. Local, global properties of solutions of quasilinear elliptic equations. Journal of Differential Equations 1988; 76 (1): 159-189. https://doi.org/10.1016/0022-0396(88)90068-X
[13] Hebey E. Introduction à l'Analyse non Linéaire sur les Variétés. Diderot, 1997 (in French).
[14] Hebey E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes, 5, 2000.
[15] Kavian O. Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. SpringerVerlag, 1993 (in French).
[16] Madani F. Le problème de Yamabe avec singularités. Bulletin des Sciences Mathématiques 2008; 132 (7): 575-591 (in French). https://doi.org/10.1016/j.bulsci.2007.09.004
[17] Madani F. Le problème de Yamabe avec singularités et la conjecture de Hebey-Vaugon. PhD, Université Pierre et Marie Curie, Paris, France, 2009 (in French).
[18] Maliki Y, Terki FZ. A Struwe type decomposition result for a singular elliptic equation on compact Riemannian manifolds. Analysis in Theory and Applications 2018; 34 (1): 17-35. https://doi.org/10.4208/ata.2018.v34.n1.2
[19] Obata M. The conjectures on conformal transformations of Riemannian manifolds, Journal of Differential Geometry 1971; 6 (2): 247-258. https://doi.org/10.4310/jdg/1214430407
[20] Rabinowitz PH. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, 65, 1986.
[21] Saintier N. Asymptotic estimates and blow up theory for critical equations involving the $p-$ Laplacian. Calculus of Variations and partial Differential equations 2006; 25 (3): 299-331. https://doi.org/10.1007/s00526-005-0344-7
[22] Sciunzi B. Classification of positive $D^{1, p}\left(\mathbb{R}^{N}\right)$-solutions to the critical p-Laplace equation in \mathbb{R}^{n}. Advances in Mathematics 2016; 2016 (291): 12-23. https://doi.org/10.1016/j.aim.2015.12.028
[23] Smets D. Nonlinear Schrödinger equations with Hardy potential and critical nonlinearaties. Transactions of the American Mathematical Society 2005; 357 (7): 2909-2938. https://doi.org/10.1090/S0002-9947-04-03769-9
[24] Struwe M. A global compactness result for elliptic boudary value problems involving limiting nonlinearities. Mathematische Zeitschrift 1984; 187: 511-518. http://eudml.org/doc/173508
[25] Talenti G. Best constant in Sobolev inequality. Annali di Matematica Pura ed Applicata; 110 (1): 353-372. https://doi.org/10.1007/BF02418013
[26] Terracini S. On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Advances in Differential Equations 1996; 1 (2): 241-264. https://doi.org/10.57262/ade/1366896239
[27] Vétois J. A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. Journal of Differential Equations 2016; 260 (1): 149-161. https://doi.org/10.1016/j.jde.2015.08.041

