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Abstract: In this paper, we give a necessary and sufficient condition for a generalized real Bott manifold to have a
spin structure in terms of column vectors of the associated matrix. We also give an interpretation of this result to the
associated acyclic ω -weighted digraphs. Using this, we obtain a family of real Bott manifolds that does not admit spin
structure.
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1. Introduction
A generalized real Bott tower of height k is a sequence of real projective bundles

Bk −−−−→ Bk−1 −−−−→ · · · −−−−→ B1 −−−−→ {pt} (1.1)

where Bi is the projectivization of the Whitney sum of ni + 1 real line bundles over Bi−1 . This notion is
introduced by Choi et al. [3] as a generalization of the notion of a Bott tower given in [8]. The manifold Bk

is called a real Bott manifold when ni = 1 for each i and a generalized real Bott manifold, otherwise. The
manifold Bk can be realized as a small cover over

∏k
i=1 ∆

ni where ∆ni is the ni -simplex [10, Corollary 4.6]. It
is also known that every small cover over a product of simplices is a generalized real Bott manifold [3, Remark
6.5].

Let P be a simple convex polytope of dimension n with the facet set F(P ) = {F1, · · · , Fm} . For every
small cover M over P , there is an associated (n× (m− n)) matrix A = [aij ] with entries in Z2 which can be
used to reconstruct M (see Section 2). Moreover, the mod 2 cohomology ring structure of M depends only
on the face poset of P and the matrix A . More precisely, let Z2[P ] be the Stanley-Reisner ring of P , that is,
the quotient of the polynomial ring Z2[x1, · · · , xm] with the ideal I generated by the square free monomials
xi1 · · ·xir for which Fi1 ∩ · · · ∩ Fir is empty. There is a graded ring isomorphism between H∗(M,Z2) and

Z2[P ]/J where J is the homogeneous ideal generated by the monomials xi +

m−n∑
j=1

aijxn+j , [4, Theorem 4.14].

Here the degree of xi is 1 . In [4, Corollary 6.8], Davis and Januskiewicz show that the total Stiefel-Whitney
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class of P is given by

w(M) =
(m−n∏

i=1

(1 + xn+i)
)
·
( n∏

i=1

(
1 +

m−n∑
j=1

aijxn+j

))
mod I. (1.2)

Therefore, the coefficient of xi in the first Stiefel-Whitney class of M is one more than the sum of the entries
of the (i− n) -th column of A when i > n and zero, otherwise. Hence, the small cover M is orientable if and
only if the sum of the entries of the i -th column of the matrix A is congruent to 1 modulo 2 for each i ≥ 1

[12, Theorem, 1.7]. Since A is a matrix over Z2 , the sum of the entries of the j -th column of A is equivalent
to the dot product of the column vector with itself. Therefore, the small cover M is orientable if and only if
Aj ·Aj ≡ 1 modulo 2 , where Aj denote the j -th column vector of A .

In Section 2, we observe that a small cover M has a spin structure when Ai · Ai ≡ 3 (mod 4) and
Ai · Aj ≡ 0 (mod 2) for all 1 ≤ i < j ≤ m − n (Corollary 2.4). It turns out that when P is a product of
simplices of dimensions greater than 1 , the converse is also true (Corollay 3.2). In other words, when each Bi

is a projectivization of the Whitney sum of 3 or more line bundles, the generalized Bott manifold Bk has a spin
structure if and only if Ai · Ai ≡ 3 (mod 4) and Ai · Aj ≡ 0 (mod 2) for all 1 ≤ i < j ≤ m − n . In Theorem
3.1, we give a criterion for an arbitrary generalized Bott manifold Bk to have a spin structure. It is equivalent
to the criterion given in [6].

In [7, Lemma 2.1], Gasior gives a formula for the second Stiefel-Whitney class of M(A) in terms of the
second Stiefel-Whitney classes of M(Aij), where Aij is an n× n matrix whose k -th column is Ak if k = i, j

and 0 otherwise, called an elementary component. After reducing the problem to elementary components, the
author gives a necessary and sufficient condition on existence of a spin structure on them in [7, Theorem 1.2]
which can also be obtained as a corollary of Theorem 3.1. Moreover, Proposition 3.7 is a generalization of this
result to the generalized real Bott manifolds.

It is well-known that real Bott manifolds can be classified by acyclic digraphs [3]. In [5, Theorem 4.5],
Dsouza gives a necessary and sufficient condition on the associated digraph for a given real Bott manifold to
have a spin structure. In [9], Güçlükan İlhan and Gürbüzer show that for every generalized Bott manifold Bk ,
there is an associated acyclic digraph DBk

on labeled vertices {v1, · · · , vk} where each edge from a vertex vi

has a vector weight in Zni
2 . In Section 4, we generalize the condition given by Dsouza and Uma to a condition

on DBk
for the associated generalized Bott tower Bk to have a spin structure (Theorem 4.2).

The Wu formula implies that w3(M) = 0 whenever w1(M) and w2(M) are zero. Therefore, the result
of Section 3 gives us sufficient conditions for w3(M) to be zero. In Section 5, we obtain a formula for w3(M)

when M is a small cover over a product of simplices of dimensions greater than or equal to 3 . As a corollary, we
give necessary conditions for the vanishing of the third Stiefel-Whitney class of M . We obtain similar results
for w4 and we classify small covers over a product of simplices of dimensions greater than or equal to 4 whose
first four Stiefel-Whitney classes are zero.

2. Small covers
Let P be an n -dimensional simple convex polytope and F(P ) = {F1, F2, . . . , Fm} be the set of facets of
P . A small cover over P is an n -dimensional smooth closed manifold M with a locally standard Zn

2 -action
whose orbit space is P . Two small covers M1 and M2 over P are said to be Davis-Jansukiewicz equivalent
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if there is a weakly Zn
2 -equivariant homeomorphism between M1 and M2 covering the identity on P . The

Davis-Januskiewicz classes of small covers over P are given by the characteristic functions.
A characteristic function λ : F(P ) → Zn

2 over P is a Zn
2 -coloring function satisfying the following

nonsingularity condition:
Fi1 ∩ · · · ∩ Fin ̸= ∅ ⇒ ⟨λ(Fi1), . . . , λ(Fin)⟩ = Zn

2 .

In [3], Davis and Janueskiewicz construct a small cover M(λ) associated to a given characteristic function λ

as the quotient space of the space (P × Zn
2 ) and the equivalence relation defined by

(p, g) ∼ (q, h) if p = q and g−1h ∈ ⟨λ(Fi1), . . . , λ(Fik)⟩

where the intersection
k∩

j=1

Fij is the minimal face containing p in its relative interior.

Theorem 2.1 [3, Proposition 1.8] For every small cover M over P , there is a characteristic function λ with
Zn
2 -homeomorphism M(λ) → M covering the identity on P .

The group GL(n,Z2) acts freely on the set of characteristic functions over P by composition. Moreover,
the orbit space of this action is in one-to-one correspondence with the Davis-Januskiewicz equivalence classes

of small covers over P . Fix a basis e1, · · · , en for Zn
2 and reorder facets of P in such a way that

n∩
i=1

Fi ̸= ∅ .

By the above theorem, for a given small cover M over P , there is an (n× (m−n)) -matrix A = [aij ] such that
M and M(λ) are Davis-Januszkiewicz equivalent where

λ(Fi) =

ei, i ≤ n∑
j

ajiej i > n.

Theorem 2.2 (Theorem 4.14, [3]) The mod 2 cohomology ring of M is Z[P ]/J , where J is the homoge-

neous ideal generated by the monomials xi +

m−n∑
j=1

aijxn+j .

Let wi(M) and w(M) denote the i -th and the total Stiefel-Whitney classes of M , respectively. By
Corollary 6.8 in [3], the total-Stiefel Whitney class of a small cover over M is given by the equation (1.2). Let
Aj denote the j -th column vector of A . Then the first Stiefel-Whitney class of M is given by the following
formula

w1(M) =

m−n∑
i=1

(1 +
∑
j

aji) · xi+n =

m−n∑
i=1

(1 +Ai ·Ai) · xi+n

since a2ji = aji . Hence, M is orientable if and only if Ai · Ai ≡ 1 (mod 2) for all 1 ≤ i ≤ m − n . By
comparing the degree 2 -terms in each side of the equation (1.2), one obtains a similar formula for the second
Stiefel-Whitney class of M .
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Proposition 2.3 The second Stiefel-Whitney class of M is

w2(M) =

m−n∑
i=1

αi · x2
i+n +

∑
1≤i<j≤m−n

βij · xi+n · xj+n (mod I) (2.1)

where αi =

(
1 +Ai ·Ai

2

)
and βij = (1 +Ai ·Ai)(1 +Aj ·Aj) +Ai ·Aj .

Proof The coefficient of x2
i+n in the equation (1.2) equals the coefficient of y2 in (1 + y)

(∏
j

(1 + ajiy)
)

,

which is the (ki + 1) -th power of 1 + y , where ki is the number of 1s in Ai . Since the entries of Ai are either
0 or 1 , the number of 1 ’s in Ai is equal to Ai ·Ai . Hence, the coefficient of x2

i+n in (1.2) is
(
1+Ai·Ai

2

)
.

To find βij , first note that |{t| ati = atj = 1}| = Ai ·Aj . Therefore, βij is equal to the coefficient of yiyj

in the product
(1 + yi)

(Ai·Ai−Ai·Aj+1)(1 + yj)
(Aj ·Aj−Ai·Aj+1)(1 + yi + yj)

Aij .

Hence, we have

βij = (Ai ·Ai −Ai ·Aj + 1)(Aj ·Aj + 1) +Aij(Aj ·Aj)

= (1 +Ai ·Ai)(1 +Aj ·Aj)−Ai ·Aj .

Since we work with F2 coefficients, the result follows. 2

Corollary 2.4 Let M be a small cover over P with an associated reduced matrix A . If Ai · Ai ≡ 3 (mod 4)

and Ai ·Aj ≡ 0 (mod 2) for all possible i < j then M has a spin structure.

3. Existence of spin structure
In this section, we give a necessary and sufficient condition for the existence of spin structure for generalized
Bott manifolds. Let Bk be a generalized real Bott manifold given in (1.1). One can realize Bk as a small cover

over P =
k∏

i=1

∆ni , where
k∑

i=1

ni = n . The facets of P is given by the following set

F = {F i
j = ∆n1 × · · · ×∆ni−1 × f i

j ×∆ni+1 × · · · ×∆nk | 1 ≤ i ≤ k, 0 ≤ j ≤ ni},

where {f i
0, . . . , f

i
ni
} is the set of facets of the simplex ∆ni . Note that P has (n+k) -facets and the intersection∩

j ̸=0

F i
j is nonempty. Hence, Bk can be represented by a (n × k) matrix A = [aij ] by choosing Fl = F i

j for

l = n1 + · · ·+ ni−1 + j and 1 ≤ j ≤ ni and Fl = F i
0 for l = n+ i . Following [2, 3], one can see A as a (k × k)

vector matrix A = [vij ] where vij ∈ Zni
2 . Here vij is the column vector whose l -th entry is an1+···+ni−1+l,j .

Note that facets in F\{F 1
j1
, · · · , F k

jk
} intersect at a vertex for every 0 ≤ ji ≤ ni and 1 ≤ i ≤ k . Moreover,

a family of facets containing the set {F i
0, · · · , F i

ni
} has an empty intersection for any 1 ≤ i ≤ k . Let Al1···lk

be a (k × k) matrix whose j -th row is the lj -th row of A for 1 ≤ li ≤ ni and 1 ≤ i ≤ k . In [3], using these
facts, it is shown that the characteristic function corresponding to A satisfies the nonsingularity condition if
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and only if every principal minor of Al1···lk is 1 for all 1 ≤ li ≤ ni and 1 ≤ i ≤ k . This forces (vii)t = 1 for
all 1 ≤ i ≤ k and 1 ≤ t ≤ ni .

Note that the Stanley-Reisner ring of P is

Z2[x10, · · · , x1n1
, · · · , xk0, · · · , xknk

]/I

where I is the homogeneous ideal generated by monomial products xi0 · · ·xini , 1 ≤ i ≤ k. In this notation,
xij corresponds to xn1+···+ni−1+j when 1 ≤ j ≤ ni and to xn+i when j = 0 in the equation (1.2). Therefore,
the second Stiefel-Whitney class of Bk is equal to

w2(M) =

k∑
i=1

αi · x2
i0 +

∑
1≤i<j≤k

βij · xi0 · xj0

modulo I where αi and βij are as given in Proposition 2.3. From now on, we assume that ni = 1 for 1 ≤ i ≤ l

and ni > 1 , otherwise. This means that the only relations involving the monomials of degree 2 are

x2
i0 =

∑
j ̸=i

vij · xi0 · xj0

for 1 ≤ i ≤ l (here, the vector vij ∈ Z2 is considered a scalar). Therefore, we have

w2(M) =

k∑
i=l+1

αi · x2
i0 +

∑
l≤i<j≤k

βij · xi0 · xj0 (3.1)

+
∑

i<j≤l

(βij + vij · αi + vji · αj) · xi0 · xj0

+
∑

i<l+1≤j≤k

(βij + vij · αi) · xi0 · xj0

Theorem 3.1 The generalized real Bott manifold Bk has a spin structure if and only if the following conditions
are satisfied:

i) Ai ·Ai ≡ 1 (mod 2) when i ≤ l and Ai ·Ai ≡ 3 (mod 4) ; otherwise,

ii) Ai ·Aj ≡ 0 (mod 2) for all l ≤ i < j ≤ k ,

iii) Ai ·Aj and vij · (Ai ·Ai + 1) + vji · (Aj ·Aj + 1)

2
have the same parity when 1 ≤ i < j ≤ l.

iv) Ai ·Aj and vij · (Ai ·Ai + 1)

2
have the same parity when 1 ≤ i < l + 1 ≤ j ≤ k.

Proof The manifold Bk has a spin structure if and only if it is orientable and w2 vanishes. Recall that the
manifold Bk is orientable if and only if Ai ·Ai is congruent to 1 modulo 2 . In this case, βij ≡ Ai ·Aj modulo
2 . Then the theorem follows from the equation (3.1) and the fact that

(
1+Aj ·Aj

2

)
have the same parity with

Ai·Aj+1
2 . 2
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It is well-known that the vector matrix A is equivalent to an upper triangular one in which the entries of the
diagonal vectors are all 1 via conjugation by a permutation matrix [3, Lemma 5.1]. Under this assumption, the
above theorem is equivalent to the [6, Theorem 4.7]. In [6, Theorem 4.7], the ordering in the product is chosen
so that the last k−l of the simplices have dimension 1 . Moreover, Ts and Trs in [6, Theorem 4.7] are equivalent
to
(
As·As

2

)
and Ar ·As , respectively and the orientability condition is equivalent to As ·As ≡ 1 (mod 2) .

By Theorem 3.1, it follows that the converse of Corollary 2.4 is also true when l = 0 .

Corollary 3.2 The generalized real Bott manifold with l = 0 has a spin structure if and only if Ai · Ai ≡
3 (mod 4) and Ai ·Aj ≡ 0 (mod 2) for all 1 ≤ i < j ≤ k , where A is the reduced matrix.

Example 3.3 Let P = ∆2×∆3×∆5 and B be a 3-step generalized Bott manifold corresponding to the reduced
matrix

A =



1 0 0
1 0 0
0 1 1
1 1 1
1 1 0
1 0 1
1 0 1
1 0 1
0 0 1
0 0 1


.

Then B has a spin structure by the above Corollary.

The following corollary also follows from the Proposition 5.1 of [13].

Corollary 3.4 If a generalized real Bott manifold over P =
k∏

t=1
∆nt with l = 0 admits a spin structure, then

nj ≡ 3 (mod 4) for some j .

Proof Let P =
k∏

t=1
∆nt and M be a small cover over P with an associated vector matrix A . If B is

a vector matrix obtained by conjugating A via permutation matrix Pσ then Ai · Ai = Bσ(i) · Bσ(i) and
Ai · Aj = Bσ(i) · Bσ(j) . Therefore, we can assume that A is an upper triangular vector matrix in which the
entries of the diagonal vectors are all 1. Then we have A1 · A1 = n1 . So if M has a spin structure, n1 ≡ 3

(mod 4). 2

When l = k , we have the following result.

Corollary 3.5 The real Bott manifold Bk has a spin structure if and only if

i) Ai ·Ai ≡ 1 (mod 2) , 1 ≤ i ≤ k ,

ii) Ai ·Aj and vij · (Ai ·Ai + 1) + vji · (Aj ·Aj + 1)

2
have the same parity when 1 ≤ i < j ≤ l.
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The above corollary is equivalent to Theorem 3.2 in [5] where A is assumed to be upper-triangular. In
particular, Theorem 1.2 in [7] directly follows from the corollary.

Example 3.6 Let P = I ×∆2 ×∆2 . Then a small cover B3 over P corresponds to a vector matrix

A =


1 a12 a13
a21 1 a23
a31 1 a33
a41 a42 1
a51 a52 1

 .

If B3 has a spin structure, then a12 + a42 + a52 = 1 and a13 + a23 + a33 = 1 by part i of Theorem 3.1 and
a12a13 + a23 + a33 + a42 + a52 ≡ 0 (mod 2) by part ii of Theorem 3.1. By substituting the first two equations
to the last one, we get a12 = a13 = 0 and hence a42 + a52 = a23 + a33 = 1 . On the other hand, at least one

of the vectors
(
a42
a52

)
and

(
a23
a33

)
must be zero by the nonsingularity condition. Hence, there is no small cover

over I ×∆2 ×∆2 with a spin structure when n ≥ 2 .

It is well-known that when ni ’s are all even, there is no orientable small cover over P [1]. Hence, small
covers over P have no spin structures when all the ni ’s are even. In the next section, we generalize the above
example to have a nonexistence result for every small cover over P = I ×∆2n1 × · · · ×∆2nk for k ≥ 2 . When
k = 1 , a small cover over I ×∆4t does not have a spin structure since A2 ·A2 is either 4t or 4t+ 1 . However,
the small cover over P = I ×∆4t+2 corresponding to a characteristic function λ which sends F 1

0 to e1 and F 2
0

to e1 + e2 + · · ·+ e4t+3 has a spin structure.
Given a dimension function ω : {1, 2, . . . , n} → N , let Iω be the identity vector matrix associated to ω ,

i.e. the (i, j) -entry of Iω is 1 when ω(1) + · · · + ω(j − 1) + 1 ≤ i ≤ ω(1) + · · · + ω(j) , and 0 , otherwise. To
generalize Theorem 1.2 in [7] to our case, we denote the matrix A− Iω , where ω(i) = ni by B .

Proposition 3.7 The generalized real Bott manifold with an associated matrix B has a spin structure if and
only if for all 1 ≤ i < j ≤ k , the generalized Bott manifold corresponding to Bij has a spin structure, where
Bij is the vector matrix whose l -th column is Bl if l = i, j and 0 , otherwise.

4. ω -weighted digraph interpretation

In [2], Choi shows that there is a bijection between the set of real Bott manifolds and acyclic digraphs with
n -labeled vertices which sends Bk to a graph whose adjacency matrix is A− Ik . In [5, Theorem 4.5], Dsouza
and Uma give an interpretation of existence of a spin structure for real Bott manifolds in terms of associated
digraphs. In this section, we generalize [5, Theorem 4.5] to small covers over a product of simplices.

Definition 4.1 Given a dimension function ω : V → N , a digraph with vertex set V is called ω -vector weighted

if every edge (u, v) is assigned a nonzero vector w(u,v) in Zω(u)
2 .

Let G be a ω -vector weighted digraph. For convenience, we take the weight of (u, v) to be the zero

vector in Zω(u)
2 when there is no edge from u to v . If (u, v) is an edge of G , then u is called an in-neighbor of
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v and v is called an out-neighbor of u . Let N−
G (v) and N+

G (v) denote the set of in-neighbors and out-neighbors
of v in G . We define in-degree deg−(v) and out degree deg+(v) of v as follows:

deg−(v) =
∑

u∈N−
G (v)

w(u,v) ·w(u,v)

deg+(v) =
∑

z∈N+
G (v)

w(v, z) ·w(v, z).

We can consider a digraph as an ω -weighted digraph with ω(i) = 1 for each i . In this case, the notion
of in-degree and out-degree of a vertex of a ω -weighted digraph agrees with those of digraphs. An adjacency
matrix Aω(G) of an ω -weighted digraph G with labeled vertices v1, · · · , vn is defined to be an (n×n) ω -vector
matrix whose (i, j) -th entry is w(vi,vj) . An ω -vector weighted digraph is called acyclic if it does not contain
any directed cycle.

As shown in [9], there is a one-to-one correspondence between the set of small covers over the product
P = ∆n1 × · · ·∆nk and the set of acylic ω -weighted digraphs where ω : {v1, · · · , vk} → N is defined by
ω(vi) = ni . The correspondence is obtained by sending a small cover with an associated matrix A to a ω -
weighted digraph whose adjacency matrix is A−Iω. For a given small cover B over P , we denote the associated
acyclic ω -weighted digraph by DB . Recall that the dot product of a vector v over Z2 with itself is equal to
the number of nonzero coordinates of v . Therefore, Ai ·Aj is equal to Aω(DB)i ·Aω(DB)i + ω(i) when i = j

and Aω(DB)i · (AωDB)j +w(vi,vj) ·w(vi,vj)+w(vj,vi) ·w(vj,vi), otherwise. Moreover, Aω(DB)i ·Aω(DB)i

is equal to deg−(vi) . Let Mij be the sum of ω(u, vi) · ω(u, vj) where u runs in the set of in-neighbor of both
vi and vj . Then Aω(DB)i ·Aω(DB)j = Mij .

Theorem 4.2 The generalized real Bott manifold B with associated w -weighted digraph DB has a spin
structure if and only if the following conditions are satisfied:

i) Indegree of a vertex v of DB is even if ω(v) = 1 and is congruent to −ω(v) + 3 modulo 4 , otherwise,

ii) Mij is even if vi is neither in-neighbor nor out-neighbor vj with i ̸= j ,

iii) Mij and w(vi,vj) · deg−(vi)
2

have the same parity when vi is an in-neighbor of vj with ω(vi) = 1 ,

iv) Mij and w(vi,vj) ·w(vi,vj) have the same parity when vi is an in-neighbor of vj with ω(vi) > 1 .

Proof If vi is neither in-neighbor nor out-neighbor vj , conditions iii and iv of Theorem 3.1 is equivalent to
the statement that Ai · Aj is even for i ̸= j . In this case, we also have Mij = Ai · Aj . Otherwise, either vi

or vj is an in-neighbor of the other one. Since Mij = Mji , without loss of generality, we can assume that vi

is. Then Ai · Aj = Mij +w(vi,vj) ·w(vi,vj) . Therefore, when ω(vi) = 1 , combining conditions iii and iv of
Theorem 3.1, one obtains condition iii above. When ω(vi) > 1 , iv can be obtained by combining parts ii and
iv of Theorem 3.1.

2
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Example 4.3 Let P = ∆2 ×∆3 ×∆3 ×∆3 , and B be a 4-step generalized Bott manifold corresponding to the
reduced matrix

A =



1 1 0 1
1 0 0 1
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 1 1 1
0 1 0 1
0 1 1 1


.

Then ω : {1, 2, 3, 4} → N with ω(1) = 2 , ω(2) = ω(3) = ω(4) = 3 and an ω -weighted digraph corresponding to
B is as given below. Since deg−(v3) = 2 , B has no spin structure by part i of the above theorem.

v1

v2 v3

v4

G

(
1
0

) (
1
0
1

)
(
1
1

)

(
1
1
1

)

Corollary 4.4 A small cover over P = I ×∆2n1 · · · ×∆2nk does not have a spin structure when k ≥ 2 .

Proof Let M be a small cover over P , and G be the associated acyclic ω -weighted digraph. Assume for a
contradiction that M has a spin structure. The underlying digraph of G has a source, say vi . Since indegree
of vi is zero, the weight of vi must be 1 . Let vj be a source of the digraph obtained by removing vi from the
underlying digraph and, vk be a source of the digraph obtained by removing vi and vj . Then the in-degrees
of vertices vj and vk are w(vi,vj) and w(vi,vk) +w(vj,vk) ·w(vj,vk) , respectively. By part i of the above
theorem, both of them must be odd. In particular w(vi,vj) = 1 and, w(vi,vk) and w(vj,vk) · w(vj,vk)

have different parities. On the other hand, Mjk = w(vi,vk) as a dot product of j -th and k -th column of the
adjacency matrix. Since Mjk and w(vj,vk) ·w(vj,vk) have different parities, vj cannot be an in-neighbor of
vk , by part iv of the above theorem. This means that w(vj,vk) is the zero vector. Hence, by part ii, Mjk must
be even and hence w(vi,vk) = 0 . Contradiction. 2

5. Higher Stiefel-Whitney classes

It is well-known that the Stiefel-Whitney classes wi of a smooth manifold satisfy the Wu formula [11]

Sqi(wj) =

i∑
t=0

(
j + t− i− 1

t

)
wi−twj+t
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where Sqi denotes the Steenrod squares. Therefore, for any i ≤ j with i+ j = m , one has(
j − 1

i

)
wm = Sqi(wm) +

i−1∑
t=0

(
j + t− i− 1

t

)
wi−twj+t.

Substituting m = 3 and i = 1 gives w3 = Sq1(w2) + w1w2 . This means that whenever w1 and w2 are both
zero, so is w3 . Therefore, the following result directly follows from Corollary 3.2.

Proposition 5.1 The first three Stiefel-Whitney classes of a small cover over a product of simplices of
dimensions greater than or equal to 2 are zero if and only if Ai · Ai ≡ 3 (mod 4) and Ai · Aj ≡ 0 (mod
2) for all i ̸= j where A is the associated reduced matrix.

Now we show that the conditions of the above proposition are not necessary for w3(M) to be zero. For
this, let kS(A) denote the size of the set {t| ats = 1 for all s ∈ S} for any S ⊆ {1, 2, · · · , k} . We write kS

instead of kS(A) when it is clear from the context. Note that k{i} = Ai ·Ai and k{i,j} = Ai ·Aj .

Theorem 5.2 The third Stiefel-Whitney class of a small cover M over P =
k∏

i=1

∆ni modulo I is equal to

w3(M) =
∑

1≤i≤k

(
k{i} + 1

3

)
x3
i0 +

∑
i ̸=j

P (i, j)x2
i0xj0 +

∑
i1<i2<i3

Q(i1, i2, i3)xi10xi20xi30

where

P (i, j) =

(
k{i} + 1

2

)
·
(
k{j} + 1

)
− k{i} · k{i,j}, (5.1)

Q(i2, i2, i3) =
( 3∏

p=1

(
k{ip} + 1

))
+

3∑
p=1

(k{ip} + 1) · k{i1,i2,i3}−{ip}. (5.2)

Proof One can easily find the coefficient of x3
i0 as in the Stiefel-Whitney classes of smaller dimensions. The

coefficient of x2
i0xj0 is equal to the coefficient of y21y2 in the polynomial

(1 + y1)
k{i}−k{i,j}+1(1 + y2)

k{j}−k{i,j}+1(1 + y1 + y2)
k{i,j}

as before. We can pick y2 either from the factor (1 + y2)
k{j}−k{i,j}+1 or from the factor (1 + y1 + y2)

k{i,j} . If
we chose it from the second one, we have to choose y21 from (1+ y1)

k{i}−k{i,j}+1(1+ y1+y2)
k{i,j}−1 . Therefore,

we have

P (i, j) = (k{j} − k{i,j} + 1)

(
k{i} + 1

2

)
+ k{i,j}

(
k{i}
2

)
=

(
k{i} + 1

2

)
(k{j} + 1)− k{i,j}.

The coefficient of the monomial xi10xi20xi30 in w3(M) is equal to the coefficient of y1y2y3 in the product(
3∏

j=1

(1 + yj)
k{ij}−

∑
p ̸=j

k{ip,ij}+k{i1,i2,i3}+1
)

·

(∏
p ̸=q

(1 + yp + yq)
k{ip,iq}−k{i1,i2,i3}

)
·
(
1 + y1 + y2 + y3

)k{i1,i2,i3}
(5.3)
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Now we can choose y3 from either of the factors (1+y3)
k{i3}−

∑
p̸=3

k{ip,i3}+k{i1,i2,i3}+1

, (1+y1+y3)
k{i1,i3}−k{i1,i2,i3} ,

(1 + y2 + y3)
k{i2,i3}−k{i1,i2,i3} or (1 + y1 + y2 + y3

)k{i1,i2,i3}
. Therefore, we have

Q(i1, i2, i3) =
(
k{i3} + k{i1,i2,i3} + 1−

∑
p ̸=3

k{ip,i3}

)
·
((

1 + k{i1}
)(
1 + k{i2}

)
+ k{i1,i2}

)

+
( 2∑

p=1

(
k{ip,i3} − k{i1,i2,i3}

)
·
(
k{ip}

(
1 + k{i1,i2}−{ip}

)
+ k{i1,i2}

))
+k{i1,i2,i3} ·

(
ki1ki2 + k{i1,i2} − 1

)
.

By algebraically manipulating terms, one can easily obtain the desired formula for Q(i1, i2, i3) . 2

Note that the above theorem is also true for small covers over an arbitrary simple convex polytope when
the cohomology classes are represented appropriately. Moreover, one can easily find a formula for the third
Stiefel-Whitney class of a small cover over a product of simplices as in the equation (3.1) by taking the relations
coming from I into account. Here, we focus on the case where the dimension of simplies are all greater than
equal to 3 in which I does not contain any relation of dimension 3 to obtain a simple formula.

Corollary 5.3 Let M be a small cover over P =
k∏

i=1

∆ni with ni ≥ 3 . Then w3(M) = 0 if and only if the

following conditions hold:

i) k{i} ̸≡ 2 (mod 4),

ii) If k{i} or k{j} is odd then k{i,j} ≡ 1 (mod 2) if and only if either k{i} ≡ 0 (mod 4) and k{j} ≡ 1 (mod
4) or vice a versa,

iii) If k{i1} ≡ k{i2} ≡ k{i3} ≡ 0 (mod 4) for i1 < i2 < i3 then k{i1,i2} + k{i1,i3} + k{i2,i3} ≡ 1 (mod 2).

Proof Since I does not contain a monomial of degree less than or equal to 3 when P =
k∏

i=1

∆ni with

ni ≥ 3 , w3(M) is zero if and only if
(
k{i} + 1

3

)
≡ 0 (mod 2) for all i , P (i, j) ≡ 0 (mod 2) for all i ̸= j and

Q(i1, i2, i3) ≡ 0 (mod 2) for all i1 < i2 < i3 . Here the first condition is equivalent to condition i . If neither
k{i} nor k{j} is divisible by 4 then P (i, j) ≡ P (j, i) ≡ 0 (mod 2) if and only if k{i,j} ≡ 0 (mod 2). Let

k{i} ≡ 0 (mod 4). Then P (i, j) ≡ 0 (mod 2) for all j ̸= i . Moreover, P (j, i) ≡
(k{j}+1

2

)
− k{j}k{i,j} is even if

and only if either k{j} ≡ 0 (mod 4) or k{j} ≡ 1 (mod 4) and k{i,j} ≡ 1 (mod 2), or k{j} ≡ 3 (mod 4) and
k{i,j} ≡ 0 (mod 2). Therefore, when condition i holds, P (i, j) ≡ P (j, i) ≡ 0 (mod 2) if and only if M satisfies
condition ii .

Now suppose that conditions i and ii hold. If k{i1}, k{i2} and k{i3} are all divisible by 4 , then we have

Q(i1, i2, i3) ≡ 1 + k{i2,i3} + k{i1,i3} + k{i1,i2} (mod 2 )

and hence, Q(i1, i2, i3) ≡ 0 (mod 2) if and only if iii holds for the triple (i1, i2, i3) . Now suppose that at least
one of them is not divisible by 4 . WLOG, assume that k{i1} ̸≡ 0 (mod 4). Then (1 + k{p})k{i1,p} ≡ 1 (mod
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2) if and only if k{p} ≡ 0 (mod 4) and k{i1} ≡ 1 (mod 4). Therefore, we have

Q(i1, i2, i3) ≡ (1 + k{i2})k{i1,i3} + (1 + k{i3})k{i1,i2} ≡ 0 (mod 2 ).

This proves the theorem. 2

Since ki = deg−(vi) + ω(i) and kij = Mij + w(vi,vj) · w(vi,vj) + w(vj,vi) · w(vj,vi) , we have the
following.

Corollary 5.4 Let DM be an ω -weighted acyclic digraph associated to a small cover M over P =
k∏

i=1

∆ni with

ni ≥ 3 . Then w3(M) = 0 if and only if the following conditions hold for vertices of DM :

i) deg−(vi) + ω(i) ̸≡ 2 (mod 4),

ii) If deg−(vi) + ω(i) or deg−(vj) + ω(j) is odd then Mij +w(vi,vj) ·w(vi,vj) +w(vj,vi) ·w(vj,vi) ≡ 1

(mod 2) if and only if either deg−(vi) + ω(i) ≡ 0 (mod 4) and deg−(vj) + ω(j) ≡ 1 (mod 4) or vice
versa,

iii) If deg−(vi1) + ω(i1) ≡ deg−(vi2) + ω(i2) ≡ deg−(vi3) + ω(i3) ≡ 0 (mod 4), then

∑
p ̸=q

(
Mipiq +w(vip ,viq) ·w(vip ,viq) +w(viq ,vip) ·w(viq ,vip)

)
≡ 1 (mod 2).

As shown above, when M is a generalized Bott manifold, the Stiefel-Whitney classes of M of dimensions
less than or equal to 3 can be written in terms of the dot products of columns of the associated reduced vector
matrix A . It is natural to ask whether this is true for all dimensions. The following theorem gives an affirmative
answer to this question.

Theorem 5.5 The fourth Stiefel-Whitney class of a small cover M over P =
k∏

i=1

∆ni modulo I is equal to

w4(M) =
∑(

k{i} + 1

4

)
x4
i0 +

∑
P1(i, j)x

3
i0xj0 +

∑
P2(i, j)x

2
i0x

2
j0

+
∑

Q(i1, i2, i3))x
2
i10xi20xi30 +

∑
R(i1, i2, i3, i4)xi10xi20xi30xi40

where
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P1(i, j) =

(
k{i} + 1

3

)
·
(
k{j} + 1

)
−
(
k{i}
2

)
· k{i,j},

P2(i, j) =

(
k{i} + 1

2

)
·
(
k{j} + 1

2

)
− k{i}k{j}k{i,j} +

(
k{i,j}
2

)
,

Q(i1, i2, i3) =

(
k{i1} + 1

2

)((
k{i2} + 1

)(
k{i3} + 1

)
− k{i2,i3}

)
− k{i1}

(∑
p ̸=1

k{i1,ip}
(
k{i2,i3}−{ip} + 1

))
+k{i1,i2}k{i1,i3} − k{i1,i2,i3},

R(i1, i2, i3, i4) =
( 4∏

p=1

(
k{ip} + 1

))
−
∑
p ̸=q

((
k{ip} + 1

)(
k{iq} + 1

)
−

k{ip,iq}

2

)
· k{i1,i2,i3,i4}−{ip,iq}.

Proof Since the rest can be found similarly, we only provide a proof for the formula for Q(i1, i2, i3) .
Here Q(i1, i2, i3) is equal to the coefficient of y1y2y3 in (5.3). One can choose y3 from either of the factors

(1 + y3)
k{i3}−

∑
p̸=3

k{ip,i3}+k{i1,i2,i3}+1

, (1 + y1 + y3)
k{i1,i3}−k{i1,i2,i3} , (1 + y2 + y3)

k{i2,i3}−k{i1,i2,i3} , or (1 + y1 +

y2 + y3

)k{i1,i2,i3}
. Therefore, we have

Q(i1, i2, i3) =
(
k{i3} + k{i1,i2,i3} + 1−

∑
p ̸=3

k{ip,i3}

)
·
[(k{i1} + 1

2

)
·
(
k{i2} + 1

)
− k{i1}k{i1,i2}

]

+
(
k{i1,i3} − k{i1,i2,i3}

)
·

[(
k{i1}
2

)
·
(
k{i2} + 1

)
−
(
k{i1} − 1

)
k{i1,i2}

]

+
(
k{i2,i3} − k{i1,i2,i3}

)
·

[(
k{i1} + 1

2

)
· k{i2} − k{i1}k{i1,i2}

]

+k{i1,i2,i3} ·

[(
k{i1}
2

)
· k{i2} −

(
k{i1} − 1

)(
k{i1,i2} − 1

)]
.

Since the sum of the first factors of each term in the RHS of the equation is k{i3} + 1 , the result easily follows.
2

Corollary 5.6 Let M be a small cover over P =
k∏

i=1

∆ni with ni ≥ 4 . Then w4(M) = 0 if and only if the

following conditions hold:

i) k{i} ≡ 0, 1, 2 or 7 (mod 8),

ii) k{i,j} must satisfy the following table:
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k{i} (mod 8) k{j} (mod 8) k{i,j} (mod 4)
0 0 1
0 1 0 or 1
0 2 1
1 1 2
1 2 2
2 2 3
- 7 0

iii) k{i,j,l} must satisfy the following table

k{i} (mod 8) k{j} (mod 8) k{l} (mod 8) k{i,j,l} (mod 2)
0 0 0 1
0 0 1 k{0,1}
0 0 2 1
0 1 1 k{0,1}
0 1 2 k{0,1}
0 2 2 1
1 1 1 0
1 1 2 0
1 2 2 0
2 2 2 1

Proof Note that
(
k{i} + 1

4

)
≡ 0 (mod 2) if and only if k{i} satisfies the condition i . Here k{i,j} and k{i,j,l}

depend on the values of k{i}, k{j} up to modulo 8 , and k{i}, k{j} and k{l} up to modulo 8 , respectively. Let
θi denote the integer between 0 and 7 that is congruent to k{i} modulo 8 .

Suppose that w4(M) = 0 . Therefore, P1(i, j), P2(i, j), Q(i1, i2, i3) and R(i1, i2, i3, i4) are zero modulo
2 for all possible combinations. When θi = 7 , P1(i, j) ≡ k{i,j} and P2(i, j) ≡ k{i,j} +

(k{i,j}
2

)
. This gives

that k{i,j} ≡ 0 (mod 4) when θi = 7 . When θi = 2 , P1(i, j) ≡ k{i} + 1 + k{i,j} (mod 2) and hence we have
k{i,j} ≡ 0 (mod 2) when θj = 1, 7 and k{i,j} ≡ 1 (mod 2) when θj = 0, 2 . Since when (θi, θj) = (2, 2) ,

P2(i, j) ≡ 1 +
(k{i,j}

2

)
(mod 2), k{i,j} ≡ 3 (mod 4). When θi = 0 , P2(i, j) ≡ 0 (mod 2) yields k{i,j} ≡ 0 or 1

(mod 4). In particular, we have k{i,j} ≡ 1 (mod 4) when (θi, θj) = (0, 2) . Similarly, when θi = 1 , P2(i, j) ≡ 0

(mod 2) gives k{i,j} ≡ 1 or 2 (mod 4) and hence we have k{i,j} ≡ 2 (mod 4) when (θi, θj) = (1, 2) .
When θi = 0 for all i ∈ {i1, i2, i3, i4} , R(i1, i2, i3, i4) ≡ 1+k{i1,i2} (mod 2) and hence it is zero modulo 2

if and only if k{i1,i2} ≡ 1 (mod 2). Since k{i1,i2} ≡ 0 or 1 (mod 4) whenever θi = 0 , we have k{i1,i2} ≡ 1 (mod
4) in this case. Similarly, when θi = 1 for all i ∈ {i1, i2, i3, i4} , R(i1, i2, i3, i4) ≡ 0 (mod 2) yields k{i1,i2} ≡ 2

(mod 4) since it is either 1 or 2 modulo 4 .
Under these assumptions, when θi = 7 for one of the i1, i2 or i3 , Q(i1, i2, i3) ≡ k{i1,i2,i3} ≡ 0 (mod 2).

When (θi1 , θi2 , θi3) = (2, 0, 0) , Q(i1, i2, i3) ≡ 1 + k{i1,i2,i3} ≡ 0 (mod 2). Similarly, Q(i1, i2, i3) ≡ 0 (mod 2)
for (θi1 , θi2 , θi3) = (2, p1, p2) and (θi1 , θi2 , θi3) = (0, q1, q2) where 0 ≤ pt ≤ 2 and 0 ≤ qt ≤ 1 give the all the
remaining restrictions on k{i1,i2,i3} and proves the only if part of the theorem. One can easily check that under
these restrictions, w4(M) = 0 . 2

Whenever m is not a power of 2 , the Wu formula can be used to express wm in terms of lower Stiefel-
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Whitney classes and their Steenrod squares. Hence, one can conclude that whenever the lower dimensional
Stiefel-Whitney classes are zero then so is wm for m ̸= 2p for any p . Hence, we have the following result.

Corollary 5.7 Let M be a small cover over P =
k∏

i=1

∆ni with ni ≥ 4 with an associated matrix A . Then the

first seven Stiefel-Whitney classes of M are zero if and only if Ai ·Ai ≡ 7 (mod 8), Ai ·Aj ≡ 0 (mod 4) and
k{i,j,l} = |{t|ait = ajt = alt = 1}| ≡ 0 (mod 2) for all i < j < l .

Proof By Proposition 5.1 and the above argument, it suffices to show that if Ai ·Ai ≡ 7 (mod 8), Ai ·Aj ≡ 0

(mod 4) and k{i,j,l} = |{t|ait = ajt = alt = 1}| ≡ 0 (mod 2) for all i < j < l then w4(M) = 0 . This directly
follows from Theorem 5.5. 2

When m is a power of 2 , for all i + j = m ,
(
j−1
i

)
is always even and hence one can not use the Wu

formula to find wm . Considering the results of the paper, we believe that for each m = 2t , k{S} ’s where S is
a subset of size t of {1, 2, · · · , k} will appear as a coefficient of wm(M) and we conjecture the following.

Conjecture 5.8 Let M be a small cover over P =
k∏

i=1

∆ni with ni ≥ 2t with an associated matrix A . Then

the first 2t+1 − 1 Stiefel-Whitney classes of M are zero if and only if for any S ⊆ {1, 2, · · · , k} of size less
than or equal to t+ 1 , kS = |{i| asi = 1 for any s ∈ S}| is congruent to −1 modulo 2t+1 when |S| = 1 and is
congruent to 0 modulo 2t+1−|S| , otherwise.
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