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1. Introduction
Let M = (M, g) be an m -dimensional Riemannian manifold. We consider a symmetric (0,2)-tensor field R on
M defined by

R(X,Y ) =

m∑
i,j,k=1

R(ei, ej , ek, X)R(ei, ej , ek, Y )

forX , Y ∈ X(M) and a local orthonormal frame field {ei} , where X(M) denotes the Lie algebra of all smooth
vector fields on M . Here, the (0, 4) -type curvature tensor R is defined by R(X,Y, Z,W ) = g(R(X,Y )Z),W )

for X , Y , Z , W ∈ X(M) , where R(X,Y )Z = [∇X ,∇Y ]Z−∇[X,Y ]Z with respect to the Levi-Civita connection
∇ of g .

In [9], Euh, Park, and Sekigawa defined a weakly Einstein manifold which is an m -dimensional Rieman-
nian manifold (M, g) satisfying the following condition:

R(X,Y ) =
||R||2

m
g(X,Y ). (1.1)

They showed that a 4-dimensional Einstein manifold necessarily satisfies (1.1), but the converse does not hold.
They provided interesting examples of 4-dimensional weakly Einstein not Einstein manifolds [10]. A weakly
Einstein manifold can be regarded as a generalization of an Einstein manifold in dimension 4. Weakly Einstein
manifolds have been studied by many authors [1, 2, 5, 8, 14]. In particular, Arias-Marco and Kowalski [1]
classified 4-dimensional homogeneous weakly Einstein manifolds and showed that there are just two spaces
illustrated in [10]. On the other hand, the η -Einstein structure is one of the most important geometric structures
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in almost contact geometry, that is, the Ricci tensor ρ is of the form ρ(X,Y ) = αg(X,Y ) + βη(X)η(Y ) with
α and β being smooth functions. Cho, Chun, and Euh [6] defined a weakly η -Einstein structure as analogues
of a weakly Einstein structure on almost contact metric manifolds. An almost contact metric manifold M with
dimension m = 2n+ 1 is said to be weakly η -Einstein if the symmetric (0, 2) -tensor R satisfied

R(X,Y ) = αg(X,Y ) + βη(X)η(Y )

for smooth functions α and β on M . They showed that a 3-dimensional η -Einstein almost contact metric
manifold is necessarily weakly η -Einstein. In this paper, we shall classify a 3-dimensional weakly η -Einstein
almost contact metric manifold. In section 2, we prepare for some preliminaries on almost contact metric
manifolds. In section 3, we determine the geometric structures of weakly η -Einstein almost contact metric
manifolds with dimension 3. In section 4, we recall Perrone’s classification [13] of 3-dimensional simply connected
homogeneous contact metric manifolds and classify such homogeneous spaces with weakly η -Einstein structures
based on his classification.

2. Preliminaries
All manifolds in this paper are assumed to be connected and of class C∞ . We refer to [3] for some preliminaries
on contact metric manifolds. Let M be a (2n+ 1) -dimensional differentiable manifold. Let φ , ξ , and η be a
tensor field of type (1, 1) , a vector field and a 1-form on M , respectively. If φ , ξ , and η satisfy the conditions

φ2(X) = −X + η(X)ξ, η(ξ) = 1

for any vector field X ∈ X(M) , then it is said that M has an almost contact structure (η, φ, ξ) and M =

(M,η, φ, ξ) is called an almost contact manifold. If an almost contact manifold (M,η, φ, ξ) admits a Riemannian
metric g such that

g(φX,φY ) = g(X,Y )− η(X)η(Y )

for any X and Y ∈ X(M) , then M = (M,η, φ, ξ, g) is said to be an almost contact metric manifold. We
define the fundamental 2-form Φ on M by Φ(X̄, Ȳ ) = ḡ(X̄, ϕȲ ) . An almost contact metric manifold M̄ with
Φ = dη is called a contact metric manifold, where d is the exterior differential operator. Given a contact metric
manifold M = (M,η, φ, ξ, g) , we define the tensor fields h and τ by h = 1

2 (Lξφ) and τ = Lξg , where Lξ is
the Lie derivative in the direction of ξ . It is easily checked that h and τ are symmetric operators and satisfy
the following conditions:

hξ = 0, hφ = −φh, (2.1)

∇Xξ = −φX − φhX, ∇ξφ = 0, (2.2)

τ(ξ,X) = 0, τ(X,Y ) = 2g(φX, hY ).

If the vector field ξ on a contact metric manifold (M,η, φ, ξ, g) is a Killing vector field (i.e. τ = 0), then
M is called a K-contact manifold. This is the case if and only if h = 0 . For an almost contact manifold
(M2n+1, η, φ, ξ) , we consider the manifold M2n+1 × R . We define a vector field on M2n+1 × R by (X, f d

dt ) ,
where X is tangent to M2n+1 , t the coordinate on R and f a smooth function on M2n+1 × R . Define an
almost complex structure J on M2n+1 ×R by J(X, f d

dt ) = (φX − fξ, η(X) d
dt ) . If J is integrable, we say that
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an almost contact structure (η, φ, ξ) is normal. A normal contact metric manifold is called a Sasakian manifold.
It is well-known that a Sasakian manifold is necessarily a K-contact manifold. In dimension 3, the converse is
true.

3. Three-dimensional almost contact metric manifolds
Let (M, g) be a 3-dimensional almost contact metric manifold. Then we see that the following equation is
satisfied on M :

R(X,Y, Z,W ) =ρ(Y, Z)g(X,W )− ρ(X,Z)g(Y,W )

+ g(Y, Z)ρ(X,W )− g(X,Z)ρ(Y,W )

− r

2
(g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

(3.1)

for X , Y , Z , W ∈ X(M) , where ρ is the Ricci tensor on M and r is the scalar curvature of M . From (3.1),
we have the symmetric (0,2)-tensor R as follows:

R(X,Y ) =

3∑
i,j,k=1

R(ei, ej , ek, X)R(ei, ej , ek, Y )

= (2||ρ||2 − r2)g(X,Y ) + 2rρ(X,Y )− 2

3∑
i=1

ρ(X, ei)ρ(Y, ei)

for any orthonormal frame field {ei} on M . Now, we suppose that M is weakly η -Einstein. We define the Ricci
operator Q of M by g(QX,Y ) = ρ(X,Y ) and consider the orthonormal frame field {ei} = {e1, e2, e3 = ξ} as
eigenvectors of Q , that is, Qei = λiei (i = 1, 2) and Qξ = λ3ξ . Then we have

2||ρ||2 − r2 + 2λ1(r − λ1) = α, (3.2)

2||ρ||2 − r2 + 2λ2(r − λ2) = α, (3.3)

2||ρ||2 − r2 + 2λ3(r − λ3) = α+ β. (3.4)

From (3.2) and (3.3), we have
(λ1 − λ2)(r − (λ1 + λ2)) = 0. (3.5)

From (3.2) and (3.4), we have

(λ3 − λ1)(r − (λ1 + λ3)) =
β

2
. (3.6)

From (3.3) and (3.4), we have

(λ3 − λ2)(r − (λ2 + λ3)) =
β

2
. (3.7)

Then from (3.5) we obtain λ1 = λ2 or λ3 = 0 . (Similarly, from (3.6) and (3.7), we have the same result.) If
λ1 = λ2 , the Ricci operator Q of M has two eigenvalues of multiplicities (2, 1) . Then, we see that M has an
η -Einstein structure [7]. If λ3 = 0 , M satisfies Qξ = 0 and hence R is given by R = (λ2

1 + λ2
2)g− 2λ1λ2η⊗ η .

Therefore, we have the following theorem.
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Theorem 3.1 Let M be a 3-dimensional almost contact metric manifold. If M is weakly η -Einstein then
either it is η -Einstein or it satisfies Qξ = 0 .

Remark 1 ([6]) A 3-dimensional contact (0,2)-space satisfies Qξ = 0 and it is an example which is weakly
η -Einstein but not η -Einstein.

Let M = (M,φ, ξ, η, g) be a 3-dimensional contact metric manifold. Now, let U be the open subset
of M on which h ̸= 0 , and V be the open subset of M on which h is identically zero. Then U ∪ V is
open and dense in M . If U is not empty for any point p ∈ U we can choose a local orthonormal frame field
{e1, e2 = φe1, e3 = ξ} on a neighborhood of p in such a way that

he1 = µe1, he2 = −µe2, (3.8)

where µ is a smooth positive function on U . We note that if V is not empty, then V is a Sasakian manifold.
Now, we assume that U is not empty. Then by making use of (2.1), (2.2), (3.1), and (3.8), we have the Ricci
operator Q on U as following formulas [13]:

Qe1 =
(r
2
− 1 + µ2 + 2µν

)
e1 + ξ(µ)e2 + ρ13ξ,

Qe2 = ξ(µ)e1 +
(r
2
− 1 + µ2 − 2µν

)
e2 + ρ23ξ,

Qξ = ρ13e1 + ρ23e2 + 2(1− µ2)ξ,

(3.9)

where ν = −g(∇ξe1, e2) . We suppose that a 3-dimensional contact metric manifold (M,φ, ξ, η, g) has a weakly
η -Einstein structure. From Theorem 3.1, taking account of (3.9), we get ν = 0 if it is η -Einstein or we have
the positive smooth function µ = 1 if Qξ = 0 . Then, we have

Corollary 3.2 Let (M,φ, ξ, η, g) be a 3-dimensional contact metric manifold. If M is weakly η -Einstein, then
either ν = 0 or h has eigenvalues 1 , −1 , and 0 .

4. Three-dimensional weakly η -Einstein homogeneous contact metric manifolds
In this section, we consider the weakly η -Einstein structure on 3-dimensional homogeneous contact metric
manifolds. A contact manifold is said to be homogeneous if there exists a connected Lie group G acting
transitively as a group of diffeomorphisms on it which preserves the contact form η . If g is a metric associated
to η and G is a group acting transitively as isometries which leave η invariant, then (η, g) is said to be
a homogeneous contact metric structure on M . Perrone [13] showed that 3-dimensional simply connected
homogeneous contact metric manifolds are Lie groups with left invariant contact metric structure. Furthermore,
he classified such homogeneous spaces using the result of Milnor [12] and taking account of the Webster scalar
curvature W and torsion invariant ||τ || introduced by Chern and Hamilton (see [4], p. 284). Here, the Webster
scalar curvature W is given by

W =
1

8
(r − ρ(ξ, ξ) + 4) =

1

8

(
r + 2 +

||τ ||2

4

)
.

Proposition 4.1 [13] Let (M,η, φ, ξ, g) be a 3-dimensional simply connected homogeneous contact metric
manifold. Then M is a Lie group G together with a left invariant contact metric structure (η, φ, ξ, g) .
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(1) If G is unimodular, then G is one of the following:

(1.a) the Heisenberg group H3 when W = ||τ || = 0 ;

(1.b) the 3-sphere group SU(2) when 4
√
2W > ||τ || ;

(1.c) the group Ẽ(2) , universal covering of the group of rigid motions of Euclidean 2-space, when 4
√
2W =

||τ || > 0 ;

(1.d) the group S̃L(2,R) when −||τ || ̸= 4
√
2W < ||τ || ;

(1.e) the group E(1, 1) of rigid motions of Minkowski 2-space when 4
√
2W = −||τ || < 0 .

The Lie algebra g of G is generated by an orthonormal basis {e1, e2 = φe1, e3 = ξ} with commutation
relation:

[e1, e2] = 2e3, [e2, e3] = ae1, [e3, e1] = be2. (4.1)

(2) If G is nonunimodular, then the Lie algebra g of G is given by

[e1, e2] = ce2 + 2e3, [e2, e3] = 0, [e3, e1] = de2, (4.2)

where c ̸= 0 , e1, e2 = φe1 ∈ ker η and 4
√
2W < ||τ || . If d = 0 , then the structure is Sasakian and

W = −c2

4
.

First, we consider the weakly η -Einstein unimodular Lie group G with a left invariant contact metric
structure. Then by Proposition 4.1, we can choose an orthonormal basis {e1, e2 = φe1, e3 = ξ} which satisfies
(4.1).

We set ∇eiej =

3∑
k=1

Γijkek 1 ≦ i, j ≦ 3 . Then we get Γijk = −Γikj and further from (4.1) we obtain the

coefficients {Γijk} as follows:

Γ123 =
1

2
(2− a+ b), Γ213 =

1

2
(−2− a+ b), Γ312 =

1

2
(−2 + a+ b) (4.3)

and otherwise being zero up to sign. From (4.3), by direct calculations, we have

R(e1, e2)e1 = −Ae2, R(e1, e2)e2 = Ae1, R(e1, e2)e3 = 0,

R(e1, e3)e1 = Be3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −Be1, (4.4)

R(e2, e3)e1 = 0, R(e2, e3)e2 = Ce3, R(e2, e3)e3 = −Ce2,

where the coefficients are as follows:

A =
1

4
(a− b)2 + (a+ b)− 3,

B =
1

4
(a− b)2 − 1

2
(a2 − b2) + (a− b)− 1,

C =
1

4
(a− b)2 +

1

2
(a2 − b2)− (a− b)− 1.
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By using (4.4), we have the following Ricci operators:

Qe1 =
(
− 1

2
(b2 − a2)− 2 + 2b

)
e1,

Qe2 =
(1
2
(b2 − a2)− 2 + 2a

)
e2,

Qe3 =
(
− 1

2
(b− a)2 + 2

)
e3.

(4.5)

From (4.1) and by the definition of the tensor field h , we have

he1 = −1

2
(a− b)e1, he2 =

1

2
(a− b)e2, he3 = hξ = 0. (4.6)

On the other hand, a (0,2)-tensor R of G is given by

R(X,Y )

=

3∑
i,j,k=1

R(ei, ej , ek, X)R(ei, ej , ek, Y )

=2

3∑
c=1

R(e1, e2, ec, X)R(e1, e2, ec, Y )

+R(e1, e3, ec, X)R(e1, e3, ec, Y )

+R(e2, e3, ec, X)R(e2, e3, ec, Y )

=2
{
R(e1, e2, e1, X)R(e1, e2, e1, Y ) +R(e1, e2, e2, X)R(e1, e2, e2, Y )

+R(e1, e3, e1, X)R(e1, e3, e1, Y ) +R(e1, e3, e3, X)R(e1, e3, e3, Y )

+R(e2, e3, e2, X)R(e2, e3, e2, Y ) +R(e2, e3, e3, X)R(e2, e3, e3, Y )
}

=2
{
A2g(e2, X)g(e2, Y ) +A2g(e1, X)g(e1, Y )

+B2g(e3, X)g(e3, Y ) +B2g(e1, X)g(e1, Y )

+ C2g(e3, X)g(e3, Y ) + C2g(e2, X)g(e2, Y )
}

=2
{
A2

(
g(X,Y )− η(X)η(Y )

)
+B2g(X,Y )

+ C2η(X)η(Y ) + (C2 −B2)g(e2, X)g(e2, Y )
}

=2
{
(A2 +B2)g(X,Y ) + (C2 −A2)η(X)η(Y )

− (B2 − C2)g(e2, X)g(e2, Y )
}

If G is weakly η -Einstein, then B2 − C2 = 0 . Therefore in the case of B = C we have a = b or a + b = 2

or in the case of B = −C we have b = a ± 2 . Here, we note that if a = b , by (4.6), we get h = 0 and hence
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we see that G is Sasakian. In addition, from (4.5), G has an η -Einstein structure. If a + b = 2 (a ̸= b) , G

is non-Sasakian η -Einstein from (4.5). By Milnor’s classification of 3-dimensional homogeneous spaces [12], we
see that the following structures are admissible.

(1) If a = b , M is isometric to one of

{
H3 with an η-Einstein Sasakian structure
SU(2) with an η-Einstein Sasakian structure

(2) If a+ b = 2 (a ̸= b) , M is isometric to one of


SU(2) with a non-Sasakian η-Einstein structure
S̃L(2,R) with a non-Sasakian η-Einstein structure
Ẽ(2) with a non-Sasakian η-Einstein structure

(3) If a− b = ±2 , M is isometric to one of


SU(2) with a contact metric structure
S̃L(2,R) with a contact metric structure
E(1, 1) with a contact metric structure
Ẽ(2) with a contact metric structure

Now, if we consider the weakly η -Einstein nonunimodular Lie group G with contact left invariant metric
structure, from Proposition 4.1, then there exists an orthonormal basis {e1, e2 = φe1, e3 = ξ} satisfying (4.2).
By using the Koszul formula we have

Γ123 =
d+ 2

2
, Γ212 = −c, Γ213 =

d− 2

2
, Γ312 =

d− 2

2
(4.7)

all others are zero. Then, using (4.7), by a direct calculation we get

R(e1, e2)e1 = −Ae2 −De3, R(e1, e2)e2 = Ae1, R(e1, e2)e3 = De1,

R(e1, e3)e1 = −De2 −Be3, R(e1, e3)e2 = De1, R(e1, e3)e3 = Be1, (4.8)

R(e2, e3)e1 = 0, R(e2, e3)e2 = −Ce3, R(e2, e3)e3 = Ce2,

where the coefficients are as follows:

A =
d2 + 4d− 12

4
− c2, B =

−3d2 + 4d+ 4

4
,

C =
(d− 2)2

4
, D = cd.
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From (4.8), we obtain the Ricci operator as follows:

Qe1 =

(
−c2 − 2 + 2d− d2

2

)
e1,

Qe2 =

(
−c2 − 2 +

d2

2

)
e2 + cde3,

Qe3 = cde2 +

(
2− d2

2

)
e3.

(4.9)

From (4.2) and by the definition of h we have

he1 =
1

2
de1, he2 = −1

2
de2, he3 = 0.

We see that G is Sasakian if and only if d = 0 (i.e. h = 0). If the nonunimodular group (G,φ, η, ξ, g) is weakly
η -Einstein, then we have the following:

R(X,Y )

=

3∑
a,b,c=1

R(ea, eb, ec, X)R(ea, eb, ec, Y )

=2
{
R(e1, e2, e1, X)R(e1, e2, e1, Y ) +R(e1, e2, e2, X)R(e1, e2, e2, Y ) +R(e1, e2, e3, X)R(e1, e2, e3, Y )

+R(e1, e3, e1, X)R(e1, e3, e1, Y )R(e1, e3, e2, X)R(e1, e3, e2, Y ) +R(e1, e3, e3, X)R(e1, e3, e3, Y )

+R(e2, e3, e2, X)R(e2, e3, e2, Y ) +R(e2, e3, e3, X)R(e2, e3, e3, Y )
}

=2
{
A

2
g(e2, X)g(e2, Y ) +A Dg(e2, X)g(e3, Y ) +A Dg(e3, X)g(e2, Y )

+D
2
g(e3, X)g(e3, Y ) +A

2
g(e1, X)g(e1, Y ) +D

2
g(e1, X)g(e1, Y )

+D
2
g(e2, X)g(e2, Y ) +B Dg(e2, X)g(e3, Y ) +B Dg(e3, X)g(e2, Y )

+B
2
g(e3, X)g(e3, Y ) +D

2
g(e1, X)g(e1, Y ) +B

2
g(e1, X)g(e1, Y )

+ C
2
g(e3, X)g(e3, Y ) + C

2
g(e2, X)g(e2, Y )

}
=2

{
A

2(
g(X,Y )− η(X)η(Y )

)
+D

2(
g(X,Y ) + g(e1, X)g(e1, Y )

+B
2(
g(X,Y )− g(e2, X)g(e2, Y )

)
+ C

2(
g(X,Y )− g(e1, X)g(e1, Y )

)
+ (A+B) D

(
g(e2, X)g(e3, Y ) + g(e3, X)g(e2, Y )

)
=αg(X,Y ) + βη(X)η(Y ).

(4.10)

From (4.10), we have the following equations:

R(e1, e1) = 3(A
2
+B

2
+ 2D

2
) = α, R(e2, e2) = 2(A

2
+ C

2
+D

2
) = α

R(e3, e3) = 2(B
2
+ C

2
+D

2
) = α+ β, R(e2, e3) = 2((A+B)D) = 0.
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Then, we have the relations:

(A+B)D = 0, B
2
+D

2
= C

2
. (4.11)

Therefore, from (4.11) we can consider the two cases:

Case I) A+B = 0 and B
2
+D

2
= C

2 .

Since A+B = −1

2
(d− 2)2 − c2 = 0 , we have c = 0 and d = 2 . It is a contradiction for the condition

c ̸= 0 .

Case II) D = 0 and B
2
+D

2
= C

2 .

(II-1) B = C and D = 0 .
From B = C we obtain d = 0 (Sasakian) or d = 2 . Since D = cd = 0 and c ̸= 0 by assumption, we
have d = 0 .

(II-2) B = −C and D = 0 .
From B = −C we get d = ±2 . It is a contradiction for D = 0 and c ̸= 0 .

Then, from (4.8), we have the curvatures R1331 = R2332 = 1 , R1212 = c2 + 3 and otherwise being zero
up to sign. Furthermore, since d is identically zero, we easily check that G has an η -Einstein structure
from (4.9).

Finally, we have the following theorem.

Theorem 4.2 Let (M,η, φ, ξ, g) be a 3-dimensional simply connected homogeneous contact metric manifold.
Then M is a Lie group G together with a left invariant contact metric structure (η, φ, ξ, g) . Suppose that G

is weakly η -Einstein.

(1) If G is unimodular, then M is isometric to one of the following Lie groups:

(1.1) Heisenberg group H3 with an η -Einstein Sasakian structure;

(1.2) SU(2) with either an η -Einstein Sasakian structure, a non-Sasakian η -Einstein structure, or a
contact metric structure;

(1.3) Ẽ(2) with either a non-Sasakian η -Einstein structure or a contact metric structure;

(1.4) S̃L(2,R) with either a non-Sasakian η -Einstein structure or a contact metric structure;

(1.5) E(1, 1) with a contact metric structure

(2) If G is nonunimodular, then M is an η -Einstein Sasakian manifold whose sectional curvatures containing
the direction ξ are the same as one.

Remark 2 We summarize the above characterization as the table. Let (M,η, φ, ξ, g) be a 3-dimensional simply
connected homogeneous contact metric manifold with a weakly η -Einstein structure. Then M is isometric to
one of Lie groups which can admit the following structures:
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Geometric structures Sasakian non-Sasakian
η -Einstein H3, SU(2), nonunimodular SU(2), Ẽ(2) S̃L(2,R)
not η-Einstein none SU(2), Ẽ(2) S̃L(2,R), E(1, 1)

Consequently, we see that SU(2) , Ẽ(2) S̃L(2,R) , or E(1, 1) with only a contact metric structure can be weakly
η -Einstein not η -Einstein.
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