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Abstract: Let M and N be Archimedean vector lattices. We introduce orthogonally additive band operators and
orthogonally additive inverse band operators from M to N and examine their properties. We investigate the relationship
between orthogonally additive band operators and orthogonally additive disjointness preserving operators and show that
under some assumptions on vector lattices M or N , these two classes are the same. By using this relation, we show
that if µ is a bijective orthogonally additive band operator (resp. orthogonally additive disjointness preserving operator)
from M into N then µ−1 :N →M is an orthogonally additive band operator (resp. orthogonally additive disjointness
preserving operator).

Key words: Vector lattice, orthogonally additive band operator, orthogonally additive inverse band operator, orthogo-
nally additive disjointness preserving operator

1. Introduction
Let M be a vector lattice. The order closed ideals of M are called bands. The smallest band including a given
nonempty subset D of M is called the band generated by D and is denoted by BD. If D consists of only one
element, say m, the band generated by m is denoted by Bm . The elements m and k of a vector lattice M

are called disjoint if |m| ∧ |k| = 0 and denoted by m ⊥ k . If D is a nonempty subset of a vector lattice M , the
set of all elements disjoint to each element of D is called the disjoint complement of D , and denoted by Dd .
If M is an Archimedean vector lattice then BA = Add for each nonempty subset A of M [13, Theorem 22.3] .
Let k be an element of a vector lattice M . An element m ∈ M is said to be a component (or fragment) of k

whenever m ⊥ k −m and is written m ⊑ k . The set of all fragments of an element k ∈ M is denoted by Fk .
Let M and N be a vector lattice and a real linear space, respectively. A function µ : M → N is said to

be an orthogonally additive operator ( oa -operator in short) if µ(m+ k) = µ(m) + µ(k) for all m, k ∈ M with
m ⊥ k. From the definition one can easily show that if µ is an oa -operator, then µ(0) = 0 holds. For any
function µ from R to R to be an oa -operator, a necessary and sufficient condition is that µ(0) = 0 . Let M

and N be vector lattices. A function µ : M → N is called a disjointness preserving function if µ(m) ⊥ µ(k) for
all m, k ∈ M satisfying m ⊥ k . If a disjointness preserving function is also orthogonally additive, it is called
an orthogonally additive disjointness preserving operator ( oadp -operator in short).

In the problem section of [6] , Abramovich and Kitover gave the following open problem: if M and N
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are vector lattices, and µ : M → N is (linear) invertible and disjointness preserving operator, is µ−1 : N → M

disjointness preserving operator as well? In [5,6] , Abramovich and Kitover constructed an example and show
that the answer to this question is negative for invertible disjointness preserving operators that are defined
between arbitrary vector lattices. Under some conditions on vector lattices M or N, the positive answers of
the above question were given in [5,6,10,12,17,18,19,20] . Then, the same question have been raised for other
operators. A similar question was tried to be answered for band preserving operators in [11] . Turan and Özcan
researched the answer to the following question: Let µ : M → N be a (linear) bijective band operator between
vector lattices. Is µ−1 : N → M also a band operator? It was shown that this question has an affirmative
answer under some conditions on vector lattices M or N [18] . In recent years, effective studies have been
done on orthogonally additive and in general on nonlinear operators [1,2,3,4,8,9,14,15] . Orthogonally additive
disjointness preserving operators between vector lattices were introduced and studied in [2,8,14] . In this study,
we introduce the definitions of orthogonally additive band operator and orthogonally additive inverse band
operator then we study their properties. Then, we obtain the relationship of an orthogonally additive band
operator with an orthogonally additive disjointness preserving operator. Additionally, we investigate that the
inverse of an invertible orthogonally additive disjointness preserving operator (resp. orthogonally additive band
operator) is also an orthogonally additive disjointness preserving operator (resp. orthogonally additive band
operator).

We refer to [7,13] for unexplained concepts and terminologies of vector lattices and operators which are
not explained here. We assume that all vector lattices in this paper are Archimedean.

2. Orthogonally additive band operators and orthogonally additive disjointness preserving
operators

The band operator and inverse band operator (linear cases) were studied in [16,18] . Now, we will give the
definitions of the orthogonally additive band operator and orthogonally additive inverse band operator and we
will search their properties.

Definition 2.1 Let M and N be vector lattices and let µ : M → N be an oa-operator .
(i) µ is called an orthogonally additive band operator (oab-operator in short) whenever µ(B) is a band in N

for each band B in M .
(ii) µ is called an orthogonally additive inverse band operator (oaib-operator in short) whenever µ−1(D) is a
band in M for each band D in N .

The following two lemmas are easily obtained from the definitions of oab -operator and oaib -operator.

Lemma 2.2 Let µ be an oa-operator between vector lattices M and N. Then the following assertions hold:
(i) µ is an oab -operator iff Bµ(A) ⊆ µ(BA) for every set A ⊆ M.

(ii) µ is an oaib -operator iff µ(BA) ⊆ Bµ(A) for every set A ⊆ M.

Lemma 2.3 Let µ be an oa-operator between vector lattices M and N. If µ−1 is an oa-operator, then the
following assertions hold:
(i) µ is an oab -operator iff µ−1 is an oaib -operator.
(ii) µ is an oaib -operator iff µ−1 is an oab -operator.
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Definition 2.4 Let µ be an oa-operator between vector lattices M and N.

(i) If Bµ(m) ⊆ µ(Bm) for each m ∈ M, then µ is called an orthogonally additive principal band operator
(oapb -operator in short) .
(ii) If µ(Bm) ⊆ Bµ(m) for each m ∈ M , then µ is called an orthogonally additive inverse principal band
operator (oaipb -operator in short).

If A = {m} is taken in the Lemma 2.2 , the following result can be obtained.

Corollary 2.5 Let µ be an oa-operator between vector lattices M and N.Then the following assertions hold:
(i) If µ is an oab -operator, then µ is an oapb -operator.
(ii) If µ is an oaib -operator, then µ is an oaipb -operator.

In general, orthogonally additive band operators and orthogonally additive disjointness preserving oper-
ators are two distinct classes of operators.

Example 2.6 Let µ : R2 → R2 be defined by µ(x, y) = (0, x3 + y3) . Then, µ is an oab-operator. But µ is
not an oadp-operator as µ(1, 0) ⊥ µ(0, 1) is not true whenever (1, 0) ⊥ (0, 1).

Example 2.7 Let M be a vector lattice. The function µ : M → M defined by m → |m| is an oadp-operator.
However, µ is not an oab-operator.

Since Bm = B|m| and B|m| ∩B|k| = B|m|∧|k| for arbitrary elements m and k in a vector lattice M , we
have the following Lemma.

Lemma 2.8 Let M be a vector lattice and m, k ∈ M. Then, m ⊥ k if and only if Bm ∩Bk = {0} .

Proposition 2.9 Let M , N be vector lattices and µ : M → N be an oa-operator. It follows that
(i) if µ is an injective oapb -operator, then µ is an oadp -operator,
(ii) if µ is a bijective oaipb -operator, then µ−1 is an oadp -operator.

Proof (i) Let m ⊥ k in M. Then, Bm∩Bk = {0} and Bµ(m) ⊆ µ(Bm), Bµ(k) ⊆ µ(Bk) as µ is an orthogonally
additive principal band operator. Hence, Bµ(m) ∩ Bµ(k) ⊆ µ(Bm) ∩ µ(Bk) = µ(Bm ∩ Bk) = {0} which yields
µ(m) ⊥ µ(k). (ii) Since µ−1 is a principal band operator, similar to the proof of (i), it is obtained that µ−1 is
disjointness preserving function. Since µ is orthogonally additive and µ−1 is disjointness preserving, for every
m, k ∈ N satisfying m ⊥ k , we get µ[µ−1(m)+µ−1(k)] = m+k and so µ−1(m+k) = µ−1(m)+µ−1(k) . Thus,
µ−1 is an oadp -operator. 2

Let us now recall some definitions that we will use later. A vector lattice has a cofinal family of projection
bands if for each nonzero band B there is a nonzero projection band D ⊆ B. The following implications hold
in any vector lattice M :

Dedekind complete ⇒ projection property ⇒ principal projection property
⇒ cofinal family of projection bands.

Let µ be a function defined between vector lattices M and N. It is said that µ satisfies the condition ⊢
if for each band B in M and each m in M with µ(m) ⊥ µ(B) implying that m ⊥ B [5] .
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Proposition 2.10 Let M be a vector lattice with a cofinal family of projection bands, and N be an arbitrary
vector lattice. If µ : M → N is an injective oadp-operator, then µ satisfies the condition ⊢ .

Proof Let µ(m) ⊥ µ(B) for some m ∈ M and some band B in M. Assume that m is not disjoint to B. In
this case, there exists an element b in B+ such that |m| ∧ b > 0 . Let k = |m| ∧ b > 0. From the hypothesis,
there is a projection band D in M such that D ⊆ Bk and D ̸= {0} . Let QD(m) = n , with the band projection
QD defined by D . From the definition of n, clearly m = n+ (m− n) , n ⊥ (m− n), and n ̸= 0. If n = 0, we
have

n = 0 ⇒ QD(m) = 0

⇒ m ∈ Dd

⇒ Bm ⊆ Dd

⇒ D ⊆ Bk ⊆ Bm ⊆ Dd

⇒ D = {0} .

Since this is a contradiction, n ̸= 0. Also, µ(n) ∈ µ(B) because n ∈ D ⊆ Bk ⊆ Bb ⊆ B. On the other hand,
considering that µ is an oadp -operator, we see that

n ⊥ (m− n) ⇒ µ(n) ⊥ µ(m− n)

⇒ µ(n) ⊥ µ(m)− µ(n)

⇒ |µ(m)| = |µ(n) + µ(m)− µ(n)| = |µ(n)|+ |µ(m)− µ(n)|

⇒ |µ(n)| ≤ |µ(m)|

⇒ µ(n) ⊥ µ(B)

⇒ µ(n) ∈ µ(B)d,

and so µ(n) = 0. Since µ is injective and µ(0) = 0, we get n = 0, which is a contradiction. 2

Proposition 2.11 Let µ : M → N is a surjective oadp-operator from a vector lattice M to a vector lattice N

and µ satisfies the condition ⊢ . Then µ is an oab -operator.

Proof It is enough to show that µ(B)dd = µ(B) for every B band in M . Since µ is a disjointness preserving
function, it is easy to see that µ(Bd) ⊆ µ(B)d. On the other hand, if n ∈ µ(B)d holds, by the surjectivity of
µ, there exists some u ∈ M with µ(u) = n. It follows that u ⊥ B because µ satisfies the condition ⊢ . Then
µ(u) = n ∈ µ(Bd), which proves that µ(B)d ⊆ µ(Bd) . Thus, we get µ(Bd) = µ(B)d implying that

µ(B)dd = µ(Bd)d = µ(Bdd) = µ(B).

2

Considering Proposition 2.10 and Proposition 2.11, the following result is obtained.

Corollary 2.12 Let M be a vector lattice with a cofinal family of projection bands and let N be an arbitrary
vector lattice. If µ : M → N is a bijective oadp-operator, then µ is an oab -operator.
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Corollary 2.13 Let M and N be vector lattices and µ : M → N be a bijective function. Then, µ and µ−1

are oadp-operators if and only if µ and µ−1 are oab-operators.

Proof Let µ and µ−1 be oadp -operators. Since µ−1 is disjointness preserving, it can be easily seen that µ

satisfies the condition ⊢ . From Proposition 2.11, we get µ is an oab -operator. Similarly, it can be shown that
µ−1 is an oab -operator. If µ and µ−1 are oab -operator, then µ and µ−1 are oadp -operators from Proposition
2.9. 2

By using Theorem 4.9 in [14] , we get the following corollary.

Corollary 2.14 Let µ be a bijective oa-operator between vector lattices M and N, and M has cofinal family
of projection bands. Then the following statements are equivalent:
(i) µ is an oab -operator.
(ii) µ is an oapb -operator.
(iii) µ is an oadp -operator.
(iv) For every m ∈ M there exists an n ∈ N such that µ(Fm) ⊆ Fn (that is, µ is laterally bounded).
(v) µ(Fm) ⊆ Fµ(m) for every m ∈ M.

(vi) If m ⊑ n then µ(m) ⊑ µ(n) for every m,n ∈ M (that is, µ is lateral order preserving).

Proof (i) ⇒(ii) ⇒(iii) ⇒(i) The implications are obtained from Corollary 2.5 and Proposition 2.9 and
Corollary 2.12.

(iii) ⇒(iv) ⇒(v) ⇒(vi)⇒(iii) follow from Theorem 4.9 in [14] . This completes the proof. 2

Let M be a vector lattice and Lr(M) be the vector lattice of the regular operators defined on M . The
ideal generated by the identity operator I in Lr(M) is called the ideal center of M and denoted by Z(M)

(i.e. Z(M) = {π ∈ Lr(M) : ∃λ ∈ R+, |π| ≤ λI}) . The Boolean algebra of order projections of M is denoted
by ℘(M) . By definition, ℘(M) ⊆ Z(M). Let T : M → N be a linear operator. If there exists a (linear)
lattice homomorphism (or disjointness preserving operator) ρ : Z(M) → Z(N) which satisfies ρ(γ)T = Tγ

for each γ ∈ Z(M) , with the help of this operator, under some conditions on M , Turan obtained that T

and T−1 are disjointness preserving operators in [17, Proposition 3.7, Proposition 3.8] . Let µ : M → N be a
function . Abasov and Pliev said that µ is a ρ -operator whenever there exists a Boolean algebra homomorphism
ρ : ℘(M) → ℘(N) which satisfies ρ(Q)µ = µQ for each Q ∈ ℘(M). If µ is a ρ -operator, then they obtained
some properties of µ with the help of the Boolean algebra homomorphism ρ [1] . Let B be a Boolean algebra.
It is known that it is possible to define in B an addition and a multiplication such that with respect to
these operations, B becomes a commutative ring (in the ordinary algebraic sense) [13, p.8]. Therefore, the
orthogonally additive function between two Boolean algebras can be defined as between vector lattices. It can
be easily shown that the Boolean algebra homomorphism between two Boolean algebras is an orthogonally
additive function. We will consider the case where the function ρ is only an orthogonally additive function.
If there exists an orthogonally additive function ρ : ℘(M) → ℘(N) which satisfies ρ(Q)µ = µQ for each
Q ∈ ℘(M), then we will obtain the properties of µ with the help of orthogonally additive function ρ. Next, for
the bijective case of µ , we will investigate the necessary conditions for the existence of an orthogonally additive
function ρ . Using this, we will show that µ−1 satisfies the same properties with µ .

Proposition 2.15 Let M be a vector lattice with the principal projection property, let N be a vector lattice,
and µ : M → N be a function. If there exists an orthogonally additive function ρ : ℘(M) → ℘(N) which
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satisfies ρ(Q)µ = µQ for each Q ∈ ℘(M) , then µ is an oadp-operator.

Proof Take m, k ∈ M, with m ⊥ k . Let Qm and Qk be the band projections on Bm and Bk , respectively.
From m ⊥ k we see that Qm ⊥ Qk in ℘(M). Also, since ρ is an orthogonally additive function, we have

µ(m+ k) = µ[(Qm +Qk)(m+ k)]

= [µ(Qm +Qk)](m+ k)

= [ρ(Qm +Qk)µ](m+ k)

= [ρ(Qm) + ρ(Qk)]µ(m+ k)

= ρ(Qm)µ(m+ k) + ρ(Qk)µ(m+ k)

= µQm(m+ k) + µQk(m+ k)

= µ(m) + µ(k).

Let us show that µ is a disjointness preserving function. For this, from Theorem 4.9 in [14] , it will be sufficient
to prove that m ⊑ k implies µ(m) ⊑ µ(k) for every m, k ∈ M . Considering Lemma 3.12 in [14] , we have

m ⊑ k ⇒ ∃Q ∈ ℘(M), Q(k) = m

⇒ ∃Q ∈ ℘(M), µ(Q(k)) = µ(m)

⇒ ∃Q ∈ ℘(M), ρ(Q)(µ(k)) = µ(m),

this shows that µ(m) ⊑ µ(k) . 2

From Corollary 2.14 and Proposition 2.15, we get the following result.

Corollary 2.16 Let M be a vector lattice with the principal projection property, N be a vector lattice, and
µ : M → N be a bijective function. If there exists an orthogonally additive function ρ : ℘(M) → ℘(N) which
satisfies ρ(Q)µ = µQ for each Q ∈ ℘(M) , then µ is an oab -operator.

Now, we will obtain the converse direction of Proposition 2.15.

Proposition 2.17 Let M be a vector lattice with a cofinal family of projection bands, let N be a vector lattice
with the projection property, and µ : M → N be a bijective oab-operator. Then there exists a Boolean algebra
homomorphism ρ : ℘(M) → ℘(N) satisfying ρ(Q)µ = µQ for every Q ∈ ℘(M).

Proof For an arbitrary element Q from ℘(M), since Q(M) = B is a projection band, we can take Q = QB .

Since µ is oabp -operator and N is a vector lattice with the projection property, µ(B) is a projection band in
N. Thus, we can define the function ρ : ℘(M) → ℘(N) as QB → ρ(QB) = Qµ(B) . If D and B are projection
bands, then D + B is a projection band and the equations D + B = (D ∩ Bd) + B , QD ∨ QB = QD+B and
QD ∧QB = QD∩B are hold. Also, from Proposition 2.9 µ is disjointness preserving, and from Proposition 2.10
µ satisfies the condition ⊢ . Thus, we have µ(Bd) = µ(B)d . From all these, we see that
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µ(D +B) = µ[(D ∩Bd) +B]

= µ(D ∩Bd) + µ(B)

= [µ(D) ∩ µ(Bd)] + µ(B)

= [µ(D) ∩ µ(B)d] + µ(B)

= µ(D) + µ(B).

It follows that

ρ(QD ∨QB) = ρ(QD+B)

= Qµ(D+B)

= Qµ(D)+µ(B)

= Qµ(D) ∨Qµ(B)

= ρ(QD) ∨ ρ(QB)

and

ρ(QD ∧QB) = ρ(QD∩B)

= Qµ(D∩B)

= Qµ(D)∩µ(B)

= Qµ(D) ∧Qµ(B)

= ρ(QD) ∧ ρ(QB).

Clearly, ρ(θM ) = θN and ρ(IM ) = IN , and so ρ is a Boolean algebra homomorphism. It is easy to see that
ρ(Q)µ = µQ for every Q ∈ ℘(M), and the proof is completed. 2

Since every Boolean algebra homomorphism is orthogonally additive, we get the following result.

Corollary 2.18 Let M be a vector lattice with a cofinal family of projection bands, N be a vector lattice with
the projection property, and µ : M → N be a bijective oab-operator. Then there exists an orthogonally additive
function ρ : ℘(M) → ℘(N) satisfying ρ(Q)µ = µQ for every Q ∈ ℘(M).

From Corollary 2.12, the following result is obtained.

Corollary 2.19 Let M be a vector lattice with a cofinal family of projection bands, N be a vector lattice with
the projection property, and µ : M → N be a bijective oadp-operator. Then there exists an orthogonally additive
function ρ : ℘(M) → ℘(N) satisfying ρ(Q)µ = µQ for every Q ∈ ℘(M).

Corollary 2.20 Let M be a vector lattice with the principal projection property, N be a vector lattice with the
projection property and µ : M → N be a bijective function. Then, µ is an oadp-operator (or oab-operator) if
and only if there exists an orthogonally additive function ρ : ℘(M) → ℘(N) satisfying ρ(Q)µ = µQ for every
Q ∈ ℘(M).
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Corollary 2.21 Let M and N be vector lattices with the projection property and µ : M → N be a bijective
oadp-operator(resp. oab-operator). Then, the Boolean algebra homomorphism ρ : ℘(M) → ℘(N) given in
Proposition 2.17 is surjective if and only if µ−1 : N → M is an oadp-operator (resp. oab-operator).

Proof Let ρ be surjective. It is easy to see that ρ is injective. Since the inverse of every bijective Boolean
algebra homomorphism is also a Boolean algebra homomorphism, ρ−1 : ℘(N) → ℘(M) is a Boolean algebra
homomorphism, and so ρ−1 is orthogonally additive. Moreover, ρ−1(P )µ−1 = µ−1P holds for each P ∈ ℘(N).

By Proposition 2.15, µ−1 is an oadp -operator. Now, let µ−1 be an oadp -operator. For every S ∈ ℘(N) there
is a band D in N with S = SD. By Corollary 2.12, µ−1(D) is a band in M. Since M has projection property,
then Qµ−1(D) is an element of ℘(M) , and ρ(Qµ−1(D)) = S holds. 2

Remark 2.22 Let M and N be vector lattices with the projection property and µ : M → N be a bijective
oa-operator. If µ satisfies one of the six conditions in Corollary 2.14 then, from Proposition 2.17, there exists
an orthogonally additive function ρ : ℘(M) → ℘(N) satisfying ρ(Q)µ = µQ for every Q ∈ ℘(M). Hence, we
obtain that the ρ : ℘(M) → ℘(N) is surjective if and only if µ−1 : N → M satisfies the same condition with µ .

A function µ from a vector lattice M into itself is called band preserving if µ(B) ⊆ B holds for each
band B of M . The properties of linear band preserving operators are well known. In [3] , orthogonally additive
band preserving operators are defined and their properties are examined. It has been shown that if M is a
vector lattice with the projection property, and µ : M → M is a function, then µ is an orthogonally additive
band preserving operator iff µ commutes with projections (i.e. µQ = Qµ for all Q ∈ ℘(M)) [3, Proposition 2] .
In general, orthogonally additive band operators and orthogonally additive band preserving operators are two
distinct classes of functions.

Example 2.23 The function µ given in Example 2.6 is an oab-operator, but µ is not an orthogonally additive
band preserving operator.

Example 2.24 The function µ given in Example 2.7 is an orthogonally additive band preserving operator.
However, µ is not an oab-operator.

Corollary 2.25 Let M be a vector lattice with a cofinal family of projection bands and µ : M → M be a
bijective orthogonally additive band preserving operator. Then, µ is an oab-operator.

Proof Since each band preserving operator is the disjointness preserving operator, µ is a disjointness preserving
operator. The proof is completed by using Corollary 2.14. 2

Corollary 2.26 Let M be a vector lattice with the projection property, and µ : M → M be a bijective
orthogonally additive band preserving operator. Then, µ−1 : M → M is an orthogonally additive band preserving
operator.

Proof If we take ρ as the unit function from ℘(M) to ℘(M) , then ρ is an orthogonally additive function,
and Qµ−1 = µ−1Q holds for each Q ∈ ℘(M). By Proposition 2.15 µ−1 is an orthogonally additive, and it is
band preserving operator from Proposition 2 in [3].

2
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