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Abstract: We introduce the class of (M,k) -quasi-∗ -paranormal operators on a Hilbert space H . This class extends
the classes of ∗ -paranormal and k -quasi-∗ -paranormal operators. An operator T on a complex Hilbert space is called
(M,k) -quasi-∗ -paranormal if there exists M > 0 such that

√
M

∥∥∥T k+2x
∥∥∥ ∥∥∥T kx

∥∥∥ ≥
∥∥∥T ∗T kx

∥∥∥2

for all x ∈ H. In the present article, we give operator matrix representation of a (M,k) -quasi-∗ -paranormal operator.
The compactness, the invariant subspace, and some topological properties of this class of operators are studied. Several
properties of this class of operators are also presented.
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1. Introduction
In what follows H will be an infinite dimensional separable complex Hilbert space. By an operator on H ,
we mean a bounded linear transformation from H to H . Let B(H) be the Banach algebra of operators on
H . Denote by N(T ) and R(T ) respectively, for the null space and the range of an operator T in B(H) .
As an extension of normal operators, P. Halmos introduced the class of hyponormal operators (defined by
TT ∗ ≤ T ∗T )[8]. Although there are still many interesting problems for hyponormal operators yet to solve
(e.g., the invariant subspace problem), one of the recent hot topics in operator theory is to study of natural
extensions of hyponormal operators. Below are some of these nonhyponormal operators. Recall that an operator
T ∈ B(H) is said to be quasi-hyponormal if T ∗2T 2 ≥ (T ∗T )2 ; paranormal if ||T 2x|||x|| ≥ ||Tx||2 for all unit
vector x ∈ H ; k -paranormal if ||T kx||||x|| ≥ ||Tx||k for all x ∈ H . An operator T is called ∗− paranormal
if ||T ∗x||2 ≤ ||T 2x||||x|| and T is called k∗ -paranormal if ||T ∗ x||k ≤ ||T kx|| for all unit vector x in H

where k is a natural number with k ≥ 2 . The class of ∗ -paranormal operators and more generally the class
of k∗ -paranormal operators was originally introduced in [15] and [16] with different names as k -hyponormal
or operators of class (H ; k ). For more results for such operators, one can refer [2], [3], [5], and [20]. As a
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generalization of ∗ -class A operators and ∗ -paranormal operators, the author in [10, 11] introduced the class
of k -quasi-∗ -paranormal operators ( ||T ∗T kx||2 ≤ ||T k+2x|||T kx||) for all unit vector x ∈ H where k is a
natural number and the class of k -quasi-∗ -class A operators (T k(|T 2| − |T ∗|2)T k ≥ 0 ; where k is a natural
number). For more details for such operators, one can refer [12], [2], [3], [5], and [20]. We introduce the class of
(M,k) -quasi-*-paranormal operators generalizing the class of k -quasi-*-paranormal operators.

Definition 1.1 An operator T ∈ B(H) is said to be M -*-paranormal if there exists M > 0 such that

MT ∗2T 2 − 2λTT ∗ + λ2 ≥ 0

for all λ > 0.

Definition 1.2 An operator T ∈ B(H) is said to be (M,k)-quasi-*-paranormal if there exists M > 0 and a
positive integer k such that

T ∗k(MT ∗2T 2 − 2λTT ∗ + λ2)T k ≥ 0

for all λ > 0.

This definition is equivalent to
√
M

∥∥T k+2x
∥∥∥∥T kx

∥∥ ≥
∥∥T ∗T kx

∥∥2
for all x ∈ H . An (M, 1) -quasi-*-paranormal is M -quasi-*-paranormal. Obviously,

M -*-paranormal ⊂ M -quasi-*-paranormal ⊂ (M,k)-quasi-*-paranormal

and
(M,k)-quasi-*-paranormal ⊂ (M,k + 1)-quasi-*-paranormal

By a direct calculation, the operator

A =

(
0 1
0 0

)
acting on the Hilbert space C2 is a (M, 2) -quasi-*-paranormal operator that is not M -quasi-*-paranormal.
This shows that the classes above do not coincide.

Example On the usual Hilbert space ℓ2 equipped with its standard basis (en)n , let Sr be the right
weighted shift defined by

Sren = αnen+1

where (αn)n is a decreasing complex sequence. Then, Sr is (M,k) -quasi-*-paranormal if and only if

|αn−1|2 <
√
M |αn| |αn+1|

for all n. Indeed, we have

(S∗2
r S2

r − 2λSrS
∗
r + λ2)en = (|αn|2 |αn+1|2 − 2λ |αn−1|2 + λ2)en

Sk
r en = αnαn+1...αn+k−1en+k

S∗k
r en = αn−1αn−2...αn−ken−k
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Thus, for all λ > 0 and all n,

〈
S∗k
r (MS∗2

r S2
r − 2λSrS

∗
r + λ2)Sk

r en, en
〉
≥ 0

⇔ (M |αn|2 |αn+1|2 − 2λ |αn−1|2 + λ2)αnαn+1...αn+k−1αn−1αn−2...αn−k ≥ 0

⇔ (M |αn|2 |αn+1|2 − 2λ |αn−1|2 + λ2) |αn|2 |αn+1|2 ... |αn+k−1|2 ≥ 0

⇔ M |αn|2 |αn+1|2 − 2λ |αn−1|2 + λ2 ≥ 0

Since λ > 0 is arbitrary,

|αn−1|2 −
√
M |αn| |αn+1| < 0.

In the present article, we give operator matrix representation of a (M,k) -quasi-∗ -paranormal operator. The
compactness, the invariant subspace, and some topological properties of this class of operators are studied.
Several properties of this class of operators are also presented.

2. Main results

We start with the following useful theorem

Theorem 2.1 Let T ∈ B(H) be a (M,k)-quasi-*-paranormal operator. If R(T k) is dense in H, then T is
M -*-paranormal.

Proof Let x ∈ H. Since R(T k) is dense in H, there exists a sequence (xn)n in H such that x = lim
n→∞

T kxn.

Since T is (M,k) -quasi-*-paranormal,

√
M

∥∥T k+2x
∥∥∥∥T kx

∥∥ ≥
∥∥T ∗T kx

∥∥2
Hence, by the continuity of the inner product,

√
M

∥∥T 2x
∥∥ ∥x∥ =

√
M

∥∥∥ lim
n→∞

T k+2xn

∥∥∥∥∥∥ lim
n→∞

T kxn

∥∥∥
=

√
M lim

n→∞

∥∥T k+2xn

∥∥∥∥T kxn

∥∥
≥ lim

n→∞

∥∥T ∗T kxn

∥∥2 =
∥∥∥ lim
n→∞

T ∗T kxn

∥∥∥2
= ∥T ∗x∥2

Thus, T is M -*-paranormal. 2

Corollary 2.2 Let T be a nonzero (M,k)-quasi-*-paranormal operator but not M -*-paranormal. Then, T

has a nontrivial closed invariant subspace.
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Proof Suppose that T has no nontrivial closed invariant subspace. Since T ̸= 0, N(T ) ̸= H and R(T ) ̸= {0}

are nontrivial closed invariant subspaces for T. Thus, we must have N(T ) = {0} and R(T ) = H. By Theorem
2.1, T is M -*-paranormal, which contradicts the hypothesis. 2

Theorem 2.3 Let T ∈ B(H) be a (M,k)-quasi-*-paranormal operator. If R(T k) ̸= H, then T admits the
matrix representation

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k). Furthermore, T1 is M -*-paranormal, T k

3 = 0 and σ(T ) = σ(T1) ∪ {0} .

Proof Since T is (M,k) -quasi-*-paranormal,

〈
T ∗k(MT ∗2T 2 − 2λTT ∗ + λ2)T ky, y

〉
≥ 0

for all y ∈ H. Hence, 〈
(MT ∗2T 2 − 2λTT ∗ + λ2)T ky, T ky

〉
≥ 0

Thus, for all x ∈ R(T k),

〈
(MT ∗2T 2 − 2λTT ∗ + λ2)x, x

〉
=

〈
(MT ∗2

1 T 2
1 − 2λT1T

∗
1 + λ2)x, x

〉
≥ 0

Consequently, T1 is M -*-paranormal. Let now P be the orthogonal projection on R(T k). For all x =

x1 + x2, y = y1 + y2 ∈ H, we have

〈
T k
3 x2, y2

〉
=

〈
T k(I − P )x, (I − P )y

〉
=

〈
(I − P )x, T ∗k(I − P )y

〉
= 0

Thus, T k
3 = 0. Furthermore, σ(T1) ∪ σ(T3) = σ(T ) ∪ Ω, where Ω is the union of holes in σ(T ) which happen

to be a subset of σ(T1)∩ σ(T3) by [6, Corollary 7], with the interior of σ(T1)∩ σ(T3) = ∅, and T3 is nilpotent.
Thus, σ(T ) = σ(T1) ∪ {0} . 2

Corollary 2.4 Let T ∈ B(H) be (M,k)-quasi-*-paranormal. If the restriction T1 = T
∣∣∣R(T k) is invertible,

then T is similar to the sum of an M -*-paranormal operator and a nilpotent operator.

Proof Let

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k)

Then, A1 is M -*-paranormal by Theorem 2.3. Since T1 is invertible, 0 /∈ σ(T ). Hence, σ(T1)∩ σ(T3) = ∅. By
Rosenblum’s Corollary [17], [18], there exists X ∈ B(H) for which T1X −XT3 = T2. Thus,

T =

(
I −X
0 I

)(
T1 0
0 T3

)(
I X
0 I

)
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=

(
I X
0 I

)−1 (
T1 0
0 T3

)(
I X
0 I

)
2

In the following, we give a similar result of [7, Proposition 2.6] for our class of operators.

Theorem 2.5 Let T ∈ B(H) be a (M,k)-quasi-*-paranormal operator. If there exists an integer n, n ≥ k + 2

for which Tn is compact, then T k is compact for k ≥ 2, and T is compact for k = 0 or k = 1.

Proof It sufficies to show that Tn−1 is compact. For n ≥ k + 2, and since T is (M,k) -quasi-*-paranormal,

√
M

∥∥∥∥T k+2 Tn−k−2x

∥Tn−k−2x∥

∥∥∥∥∥∥∥∥T k Tn−k−2x

∥Tn−k−2x∥

∥∥∥∥ ≥
∥∥∥∥T ∗T k Tn−k−2x

∥Tn−k−2x∥

∥∥∥∥2
for all x in H. Hence,

√
M ∥Tnx∥

∥∥Tn−2x
∥∥ ≥

∥∥T ∗Tn−2x
∥∥2 (2.1)

Let (xp)p be a bounded sequence which converges weakly to 0 as p → ∞. Thus, by (1) and the compactness
of Tn, ∥∥T ∗Tn−2xp

∥∥ → 0 (2.2)

as p → ∞. If n = 2, then T ∗ is compact by (2). Therefore, T so is. For n ≥ 3, we have by (2),

T ∗(n−1)T (n−1) = T ∗(n−1)T ∗T (n−1)T

is compact. Thus, Tn−1 is compact. 2

Theorem 2.6 Let T ∈ B(H) be a (M,k)-quasi-*-paranormal operator. If M ⊂ H is a closed invariant
subspace of T , then the restriction T |M is (M,k)-quasi-*-paranormal.

Proof With respect to the decomposition H = M ⊕M⊥, T can be written

T =

(
A B
0 C

)
Hence, for all integer k, k ≥ 2, we get

T k =

 Ak
k−1∑
p=0

Ak−1−pBCp

0 Ck


Since T is (M,k) -quasi-*-paranormal, there exists M > 0 such that for all λ ∈ C

T ∗k(MT ∗2T 2 − 2λTT ∗ + λ2)T k ≥ 0

Hence, we obtain

T ∗k(MT ∗2T 2 − 2λTT ∗ + λ2)T k =

(
X Y
Y ∗ Z

)
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where

X = A∗k(MA∗2A2 − 2λAA∗ − 2λBB∗ + λ2)Ak

Y = A∗k(MA∗2A2 − 2λAA∗ − 2λBB∗ + λ2)

k−1∑
p=0

Ak−1−pBCp +

+A∗k(MA∗2(AB +BC)− 2λBC∗)Ck

and some operator Z ∈ B(H).

By [4, Theorem 6],
(

X Y
Y ∗ Z

)
≥ 0 if and only if X,Z ≥ 0 and Y = X

1
2WZ

1
2 for some contraction

W. Thus,
A∗k(MA∗2A2 − 2λAA∗ − 2λBB∗ + λ2)Ak ≥ 0

Since λBB∗ ≥ 0,

A∗k(MA∗2A2 − 2λAA∗ + λ2)Ak ≥ 0

Consequently, the restriction A = T |M is (M,k) -quasi-*-paranormal. 2

Theorem 2.7 If B ∈ B(H) is unitarily equivalent to an (M,k)-quasi-*-paranormal operator T on H , then
B is also (M,k)-quasi-*-paranormal.

Proof There exists a unitary operator U on H for which B = U∗TU. Since A is (M,k) -quasi-*-paranormal,

B∗k(MB∗2B2 − 2λBB∗ + λ2)Bk =

= (U∗TU)
∗k

[
M (U∗TU)

∗2
(U∗TU)

2 − 2λU∗TU (U∗TU)
∗
+ λ2

]
(U∗TU)

k

= U∗T ∗kU
[
MU∗T ∗2UU∗A2U − 2λU∗T 2U + λ2

]
U∗T kU

= U∗T ∗k(MT ∗2T 2 − 2λTT ∗ + λ2)T kU ≥ 0

Thus, B is (M,k) -quasi-*-paranormal. 2

Theorem 2.8 Let T ∈ B(H) be an (M,k)-quasi-*-paranormal operator, and let S ∈ B(H) be an isometric
operator. Then TS is (M,k)-quasi-*-paranormal whenever T commutes with S .

Proof Since T is (M,k) -quasi-*-paranormal,

(TS)∗k(M(TS)∗2(TS)2 − 2λTS(TS)∗ + λ2)(TS)k =

= S∗kT ∗k [MS∗T ∗S∗T ∗TSTS − 2λTSS∗T ∗ + λ2
]
SkT k

= T ∗kS∗k [MT ∗2T 2 − 2λTSS∗T ∗ + λ2
]
SkT k

= T ∗kS∗k−1
[
MS∗T ∗2T 2S − 2λS∗TSS∗T ∗S + λ2S∗S

]
Sk−1T k

= T ∗kS∗k−1
[
MT ∗2T 2 − 2λTT ∗ + λ2

]
Sk−1T k

= S∗k−1T ∗k [MT ∗2T 2 − 2λTT ∗ + λ2
]
T kSk−1 ≥ 0
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which achieves the proof. 2

Definition 2.9 [1] An operator T in B(H) is said to have the Single Valued Extension Property, briefly SVEP,
at a complex number α, if for each open neighborhood V of α, the unique analytic function f : V → H satisfying

(T − λ)f(λ) = 0

for all λ ∈ V is f ≡ 0.

Furthermore, T is said to have SVEP [13, 14] if T has SVEP at every complex number.

Definition 2.10 [1] For T ∈ B(H), the smallest integer m such that N(Tm) = N(Tm+1) is said to be the
ascent of T, and is denoted by α(T ). If no such integer exists, we shall write α(T ) = ∞.

Definition 2.11 [1] The smallest integer m such that R(Tm) = R(Tm+1) is said to be the descent of T, and
is denoted by δ(T ). If no such integer exists, we set δ(T ) = ∞ .

According to [1], α(T ) = δ(T ) whenever α(T ) and δ(T ) are both finite. Now, we give the value of the ascent

for an (M,k) -quasi-*-paranormal operator.

Theorem 2.12 α(T ) = k for an (M,k)-quasi-*-paranormal operator T ∈ B(H) , i.e. N(T k) = N(T k+1).

Proof Let x ∈ N(T k+1). Hence, T k+1x = 0 = T k+2x. Since T is (M,k) -quasi-*-paranormal operator,
there exists M > 0 such that

0 =
∥∥∥√MT k+2x

∥∥∥ ∥∥T kx
∥∥ ≥

∥∥T ∗T kx
∥∥2

Hence, T ∗T kx = 0. Thus, for all z ∈ H 〈
T ∗T kx, z

〉
= 0

i.e. 〈
T kx, Tz

〉
= 0

for all z ∈ H . Therefore, T kx ∈ R (T )
⊥
. Since R

(
T k

)
⊂ R (T ) ,

T kx ∈ R
(
T k

)⊥ ∩R
(
T k

)
= {0}

which implies that x ∈ N(T k). This achieves the proof because clearly N(T k) ⊂ N(T k+1). 2

Corollary 2.13 An operator (M,k) -quasi-*-paranormal operator has SVEP.

Proof Immediately follows from Theorem 2.12 and [1, Theorem 3.8]. 2

Theorem 2.14 The class of (M,k)-quasi-*-paranormal operators is arcwise connected.
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Proof It suffices to show that the class is closed for the multiplication by scalars, i.e. if T is (M,k) -quasi-*-
paranormal, then λT so is. Let then T be an (M,k) -quasi-*-paranormal operator, and let α be any complex
scalar. For all x ∈ H we have

∥(αT )⋆(αT )kx∥2 = |α|2k+2∥T ⋆T kx∥2 ≤
√
M |α|2k+2∥T k+2x∥∥T kx∥

=
√
M∥(αT )k+2x∥∥(αT )kx∥

2

Remarks 1. It is clear that the class of (M,k) -quasi-*-paranormal operators is nested with respect to M , i.e.

(M,k) -quasi-*-paranormal ⊂ (M ′, k) -quasi-*-paranormal

whenever M ≤ M ′.

The class of (M,k) -quasi-*-paranormal operators is not convex. In fact, operators T =
(

1 0
1 1

)
and S=

(
−1 0
0 −1

)
are (4, k) -quasi-*-paranormal. However, the operator 1

2 (T + S) is not (4, k) -quasi-

*-paranormal.

Also, the operator T − I is not (4, k) -quasi-*-paranormal. This shows that the above class is not
translation invariant.

2. Theorem 2.7 is in general false if the operator U is invertible and not unitary. Indeed, the bilateral
weighted shift S defined on the Hilbert space ℓ2(Z) by

Sen =

{
en+1, n ≤ 1 or n ≥ 3√
2e3 n = 2

is in particular (3, k) -quasi-*-paranormal, and the operator

Uen =

{
en+1, n ≤ 1 or n ≥ 3
1
3e3 n = 2

is invertible. But the operator U−1SU is not (3, k) -quasi-*-paranormal.

3. The adjoint of an (M,k) -quasi-*-paranormal operator may not be (M,k) -quasi-*-paranormal. As an
example, the operator

Ten =

{
en+1, n ≤ 1 or n ≥ 3√
2e3 n = 2

is (
√
2, k) -quasi-*-paranormal. Nonetheless, its adjoint is not (

√
2, k) -quasi-*-paranormal.
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