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Abstract: In this work, we investigate generalized coupled nonlinear Klein-Gordon equations with nonlinear damping
and source terms and initial-boundary value conditions, in a bounded domain. We obtain decay of solutions by use of

Nakao inequality. The blow up of solutions with negative initial energy is also established.
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1. Introduction
In this paper, we study the initial-boundary value problem for the following coupled nonlinear generalized

Klein—Gordon equations with nonlinear damping terms and source terms

uge — div(|Vu|* "' Vau) + miu + |ug P uy = g1(u, ), (z,t) € QA x (0,T), (1.1)
vy — div(|Vo|* " Vo) + m3v + v |9 vy = ga(u,v), (z,t) € Q x (0,T), (1.2)
u(z,0) = up(x), u(z,0) = uy(x), x €8, (1.3)

v(x,0) = vo(x), v(x,0) = vy (), x €, (1.4)

u(z,t) = v(z,t) =0, x € 09, (1.5)

where  is a bounded domain of R"™(n = 1,2,3), with smooth boundary 99, p,q > 1, a > 1 and mqy,ms >0
are real numbers.
There are many results on the Cauchy problem for a class of the system Klein-Gordon equations [10, 11,

13, 17]. For instance, Segal[14] first proposed the following nonlinear system of Klein-Gordon equations

gy — Au + m%u + grulv =0,
(1.6)
Vi — Av + mav + gouv?® =0,
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where m; and my are nonzero constants, which define the movement of charged mesons in an electromagnetic
field. 1. Segal discussed the problem (1.6) of the global existence of the Cauchy problem with g; > 0,92 > 0.
Blow up of solutions of (1.6) with ¢g; < 0, g2 < 0 was first established in [6, 7].

In the case of @ =1, the problem (1.1)-(1.5) becomes to the following form

Ut — Au + m%u + |Ut|p_1ut - 91(“7”)7
(1.7)
v — Av +miv + |vg |9 oy = ga(u,v).

Pigkin [13] proved the uniform decay of solutions by using Nakao’s inequality and blow-up solutions in finite
time with negative initial energy of the system (1.7). In addition, Ye [17] proved the global existence by using
the potential well method and asymptotic stability by use of Komornik’s lemma [5] of the system (1.7) with
p=¢q. Wu [15] also discussed the blow-up of global solutions under some conditions for a system of (1.7).

When p = ¢ =1, Wu[16] studied the global existence, nonexistence, and asymptotic behavior of solutions
for the system (1.7). When m; = ms = 0, Agre and Rammaha [2] proved the global existence and the
nonexistence of solutions for the system (1.7) by applying the same techniques as in [3].

In this paper, the global existence of solution of the problem (1.1)-(1.5) was proved, and decay rates
of energy which decays exponentially for p = ¢ = 1 and polynomially for p,q > 1, were established by the
use of Nakao’s inequality [9]. The blow-up result for solutions with negative initial energy was established for

r > max {p,q} by applying the technique of [3].

2. Preliminaries
In this section, we present some assumptions and lemmas, in the proof of our main result. We shall write ||.||

and |[|.[[, to define the usual L* () norm and L? (Q) norm, respectively. There exists a function G(u,v) such
that ‘g—f = q1(u,v), %—f = ga(u,v).

Concerning the functions ¢;(u,v) and ga(u,v), we take
g1 (u,0) = (- Dafu+ o] (u+ 0) 4 blul T o] )

g2(u,0) = (r+ Dfalu + o[ (u + v) + blu| T [v] = 0],

where a,b > 0 real numbers and r satisfies
1<r, n < 2,

(n+2 (2.1)

l<r< ,
74_(n—2

In accordance with the above equalities, it can easily verify that

ugi(u,v) + vga(u,v) = (r + 1)G(u,v), Y(u,v) € R?, (2.2)

G(u,v) = [a|u+ v["! + 2bjuv| ). (2.3)
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Lemma 2.1 [8] There exist two positive constants ¢y and c¢1 such that
co(jul™ +[o]"") < Glu,v) < er(ful ™ + [0 (2.4)
18 satisfied.

We consider the following functionals

1 2 a+l 2 a+1 2 2
500 = 5 (7 Vel + 2 Tl + mdl? + mol?) — [ vy (25)
Q
and
2 a+l 2 a+l 2 2
1) = 2 IVl + 2 Vel sl + ol - ¢+ ) [ G (26)
Q

We define the total energy functional associated with (1.1)-(1.5) as follows:

1 2 2 2 a+1 2 a-+1 2 2
E(t)2<IUt + ot +mIIVUHaL+mIIWHQLerfIIUH +myloll” ) = [ Glu,v)dz.  (2.7)
Q

We also denote

W= {(u,v) (u,0) € WheTH(Q) x WEHTH(Q), I(u,v) > o} U{0,0}. (2.8)

Lemma 2.2 E(t) is a nonincreasing function for t > 0 and
+1 +1
(1) = = (bt + vl 21 <o. (2.9)

Proof Multiplying equation (1.1) by u; and equation (1.2) by v;, and integrating over {2, using integrating

by parts and summing up the product results, we obtain

t

E(t) - E(0) = —/ (lur 251 + o251 ) dr for ¢ >0, (2.10)
0

O

Lemma 2.3 (Sobolev-Poincare Inequality) [1] Let p be a real number with 2 < p < oo(n = 1,2) and
2<p< %(n > 3), thus there is a constant C, = C, (R, p) such that

lull, < ClIVull,  Vue Hg(9).

Lemma 2.4 (Nakao Inequality) [9] Let o(t) be nonnegative and nonincreasing function defined on [0,T],T > 1

and suppose that there are constants wg > 0 and m > 0 such that

P () Swo(p(t) —p(t+1),  te[0T].
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Thus we obtain for all t € [0,T],

p(t) < p(0)e 1" m =0,
(2.11)
e(t) < (9(0) " +wy'm[t—1]T)™,  m >0,

where [t —1]" = maz {t — 1,0} and w; =In (ﬁ) )

T,Uofl
Now, we specify the local existence theorem that can be established by combination arguments of [2, 3, 12].

Theorem 2.5 (Local Ezxistence) Assume that (2.1) holds. Thus, there exist p,q satisfying

1<p,q, n < 2,

and further (ug,vo) € Wy *TH(Q)NL™H(Q), (ur,v1) € L2(Q) NL*(Q). Thus, problem (1.1)-(1.5) has a unique
local solution
u,v € (C[O, ), WhethQ)n LT“(Q)) :

up € C ([0,7); L*(Q)) N LPTH(Q2 x [0,T)) and v, € C ([0,T); L*(2)) N LI x [0,T)).
Moreover, at least one of the following statements holds true:
(1)) T =o0,

. 2 2 1 1 2 2 _
(it) Nluell* + lloel|* + 227 IVullais + 235 [Vollady + milull® +m3llo|* — oo as t — T~
3. Global existence and decay of solutions

Lemma 3.1 Assume that (2.1) holds and o > 1 and r > « satisfy

n(a+1)
1<— 1 . 1
r+ S a+l<n (3.1)
Let  (ug,vo) € W and (u1,v1) € L*(Q) x L*(Q) such that
r41 ;;ﬁ
5= aCrti(r —;— D(a+1)[(r +:)£01+ 1)E(0) <1, (3.2)

then (u,v) € W, for all t > 0.

Proof Suppose not. Then for some T,, > 0, (u(Tyn),v (1)) ¢ W. Since (u(0),v(0)) € W and I(0) > 0,
then by continuity of u(t) and v(¢) that
I(t) >0, (3.3)

for some interval near ¢t = 0. Let T,,, > 0 be a maximal time, when (3.3) holds on [0,T,,]. So, for V¢ € [0, T},],

I(Tp) =0
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and

According to (2.5) and (2.6), we obtain

1 r—1 2 a+l 2 at1 2 2
0 = A0+ 50 (g IV + o Il mal® + ol
r—1 2 +1 2 +1 2 2
5T g IV + o Il il + ol ) (3.4

By using (3.4), (2.9) and definition of E(t), we have

2wt + vt < 200 0 < 20 Dy <20 D g )
Hence,
9+ 190 < (O ) ™ (3.0
According to Sobolev embedding inequality, we have
lull; Ty < CoF[VullLth = Crt IVl S I Valia (3.7)
and
ol ) < o Vol = Crt Vol S Ivellsts (3.8)

o . . . s r+1 r+1 r 1 1 ﬁ a+1 a+1
Combining (3.7) and (3.8) with (3.6) implies [ul[}1+oll} ] < Cr+ (S B(0)) ™ (I1Valsl) + Vol

Applying (3.2) to above inequality with (2.4), we get I(T},) >0

(T+1)/G(u7v)dx < a(r+1) (|\u||:j}+||v||:ﬁ)
Q
< b (IVult + 1velzt?)
= Pa+1 atl at+1
2 a+1 a+1
< == (IVulgs + 1v0llit) (3.9)

Consequently, by using (2.6), we deduce that I(t) > 0 for all ¢ € [0,T,], which contradicts I(t) = 0.

The lemma’s proof is complete. O

Lemma 3.2 Let the assumptions of Lemma 3.1 hold. Thus, there exists 11 =1 — 3 so that

2 a+1 2 a+1 2 2
) [ Glunde < 0-m) (3 IValath + 2 Vol + mill? + md?).
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Proof From (3.9), we obtain

2 a+1 2 a+1
(r+ 1)/G(u,v)daz < B <a 1 [Vullori + ol Voll, 11
Q
2 v a+1 2 v a+1 2 2 2 2
B arl [Vullory + a1 [Volloi1 +millull™ +mallvl|” ) .
Let 8 =1— 1, then we have the result. O

Remark 3.3 Hence, we can deduce from Lemma 3.2

2 a+1 2 a+1 2 2 2 2 1
a1 1Vullads + o7 1Vollagy +millul”™+mallvll” < EI(t)' (3.10)
Theorem 3.4 Assume that (2.1) holds. Let (ug,vg) € W satisfying (2.8). Thus, the solution of problem

(1.1)-(1.5) is global.

Proof It suffices to show that [|ju||® + [|ve||* + reat V|| 2 + reat |Vv||gﬁ + m2||ul|® + m2|v||* is bounded

independently of ¢. To indicate this, using (2.6) and (2.7) we have

1 2 2 1 2 a+l
) = B0 = (lul® + lod?) + 3 (S 19z

2 atl 2 2
+to 1 IVollaty +milull” +m3lloll” ) = | G(u,v)da
Q

(el + el + (2

DN = DN

1
(el ® + flonl1?) + =10

+

r—1 2 1 2 1 2 2
sy (o Vel + g IRl + il + el

1
5 (el + loell?)

r—1 2 a+1 a+1 201 12 200112
b (g (17Ul + 190l2E) + il + o]

Y

becauseI(t) > 0. Therefore,

2 2 2 atl 2 at1 21 112 21 112
ol ol 2 9l 2 V0l + el + 3ol < CE(O)

where C = 2(Terll).Thus by Theorem 2.5, we get the result of global existence. O

r
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Theorem 3.5 Assume that (2.1) and (2.8) hold, and further (ug,vo) € W. Then, we obtain the following

decay estimates:

BO)e 1T p—g=1
E(t) < ;)

m

(E(O)_m + Cy tmlt — 1]+) , p,g>1

where w1, m, and Cy are positive constants.
Now, we shall derive the decay estimate of the solution in Theorem 3.5 by using Nakao inequality.

Proof By integration of (2.9) over [t,t+ 1],¢ > 0, we obtain

t+1
1
B® - B+ 1) = [ (lurm)E + ler(r)IE1) dr = D 6) + D0 (3.11)
[
where
41
1
D) / (e ()13 dr (3.12)
t
and
t+1
gty = [ (e ()it (3.13
t
Holder inequality and by virtue of (3.12), we observe that
t+1 t4+1
p—1 p—1
/ / g [2dvdt < / Q55 |2, dt = 957 D2(t) = CD2(1). (3.14)
t Q t
Similarly, Holder inequality and due to (3.13), we obtain
t+1
g=1
/|vt|2dscdt <|Q|+F Di(t) = CD3(t). (3.15)
i Q

Hence, from (3.14) and (3.15), there exist ¢ € [t,t + 1] and t5 € [t + 2, ¢+ 1] such that
lue (8)[| < CDi (1), i=1,2 (3.16)

and

”Ut (t'L)H < CD?(t)v =12 (317)
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By multiplying (1.1) and (1.2) by w and v, respectively, and integrating it over € x [t1, t], we have

to
7//[uutt+vvtt]dxdt
// (e P wgud) daedt — // [[og] ™ wpv) dasdt. (3.18)

t1 Q

To estimate of the first term of the right-hand side of (3.18), by using (1.1)-(1.5), integrating by parts and

Cauchy—Schwarz inequality, we get

—
~
—
N
S
~
IN

e () [ w0+ llue(E2)| ult2)]]

+ o) o@D+ [lve(E2) [ o(E2) |

to to
_ / / (e [P~ Vg devdt — / / (v |7 ool dadt. (3.19)
t1 Q t1 Q

Now, our purpose is to estimate the right hand side of the inequality. First, we will estimate the last two terms

in the right-hand side of inequality (3.19). By applying Hoélder inequality, we get

and

to to

[ [t et < [ [uste) 1 ol ] (3:20
t1 Q t1
// oy oy dmdt</2[||vt() ¢ @)l ] dt. (3.21)

According to (3.5) and Sobolev—Poincare inequality, we obtain for p > 1
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to to
1Ol 1 1Ol ] e < / (e @)1z, 1]
t1
2r+1)\? [
r+ 2 1
< (M) [ g, o] a
t1
2(r+1)\2 7
r -+ 2 1
< - 3 P
- C*< r—1 > tliligt2E (S)/[”m”pﬂ} a
ty

IN

Similarly, we obtain for ¢ > 1

2(r+1)
(oMY u E2 t).
r—1 t1<sgt2 ()
to 1
2(r+
v ()24 [lo(t dt<C’ sup E? t).
J Dl oot < €0/ s BP0

t1

Now, from (3.5), (3.16), and Sobolev—Poincare inequality, we get

lue(t) lu(ta)ll < C1DL(t) sup B3 (s),

t1<s<to

where C; = 2C, %C. Similary, from (3.5), (3.17), and Sobolev—Poincare inequality, we obtain

o) lo ()| < C2Ds(t) sup  E3(s),

t1<s<ta

where Cy = 2C, 2(%31)0. Substitute (3.20)-(3.25) into (3.19) by (3.14) and (3.15), we obtain

1w < cf s B 0i0)+ Date) + D30 + DO

R OO D‘;(t»} ,

where C5 = max {C1,Cy,C,1}. Morever, from definition of E(t), I(t) and Remark 3.3, we get

1
B(t) < 5 (Iuel® + lloel) + CaI (0,

where Cy = + T+1 By integrating (3.27) over [t1,ts], we get

771 2(T+1)

ta to t2
1
/E(t)dtg 5/(||ut||2+Hvt||2>dt+C4/I(t)dt.

ty ty t1
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Hence, by (3.14), (3.15), and (3.26), we have

[Ewa < o 00+ Do)

ty

0y { sup B} (s) (Dy(t) + Da(t)) + D3(t) + D3(t)

t1<s<ta

+Ci

r—1 t1<s<tsy

200D G Bh(s) (D) +D3<t>>}.

Now, by integrating < E(t) over [t, 5], we have

to

B(0) = Bta) + [ (eI + o) dr.

t
Therefore, since to —t; > %, we deduce that

E(t)dt > (ts — t1)E(ts) > %E(tg).

ty

That is,
ta
Ets) < 2 / E(t)dt.
ty

Therefore, exploiting (3.11), (3.29), (3.30) and because t1,t2 € [t,t + 1], we obtain

to t+1
B0 < 2 [0t [ (@l + ool o
t1 t

ta
. / E(t)dt + D' (0)+DIH (1),
ty

Then, from (3.28), we obtain

E(t) < (C +2C4Cy) (D2(t) + D3(t)) + DP*(t) + DI (¢)

+C5E3 (t) (D1 (t) + Da(t) + DY (t) + D3(t)),

where C5 = 2C4C3 max (LC* \/@) :

Hence, by arithmetic-geometric mean inequality, we deduce that

E(t) < Cs | D¥(t) + D3(t) + DI (1) + D§™ (1) + D (1) + D3(¢)] |

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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where Cg = maz(2C + 4C4C3 + C2,2,C2). Now we distinguish two cases.
Case 1: When p =g =1, we get from (3.33)

E(t) < 3Cg [Di(t) + D3(t)] = 3Cs [E(t) — E(t +1)]. (3.34)

By Lemma 2.4, we have

E(t) < BE(0)e~rlt=1" (3.35)

where [t — 1] = maz {t — 1,0} and w; :1n< 3Cs )

Case 2: When p,q > 1, we get from (3.33)

E(t)

IN

CeD3(t) [1+ DY (1) + DY V()] + CeD3(1) [1+ D§~ (1) + D3V (8)]

IN

Co [14+DP71(0) + D"V (0) + DI (1) + D" V()] (D3(®) + D3 (1)) (3.36)
Thus since E(t) < E(0) for V¢t > 0, we obtain from (3.11)

E(t)

IN

Cs [1 + DV () + DYV () + DI (1) + Di(q’”(t)] (D3 (t) + D3(1))

2(p—1) 2(g—1)

Co [1+ E57(0) + B (0) + B (0) + B (0)] (DR() + D3 ()

IN

IA

C7 (Di(t) + D3(t)) , t >0, (3.37)

2(p—1) 2(g—1)

where C7 = C [1 + E%(O) + Eg%(o) + E» (0) + E a1 (O)} . When we take m = max{%, q;Ql}; then

we get

E(t)1+m

IA

[C2(D2(t) + D3()] "
— P (DEP () + DITPT(L))

= Cs (DY™(t) + D3T2"(1)) (3.38)
where Cg = C+T™. Consequently, (3.38) is equal to

B < Gy (DY DT (@) + DI (DI (1)
(
(

= Gy (E(t) - E(t+1)), (3.39)

2m—q+1

(0) + D§F (B (0))

2m—p+1
p+1

< Cg (DPM')E

< G (DY) + D5 )

2m—p+1 2m—q+1
where Cy = Cg max {E 1 (0), B ot (0)} .
Thus, from Lemma 2.4 ve (3.39), we have for t € [0,7]and m > 0

—1

E(t) < (E(0) " +Cy''mlt —1]") ™.

This completes the proof of Theorem 12. O
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4. Blow up of solutions

Theorem 4.1 Suppose that r + 1 > max{p+ 1,q+ 1},the initial energy E(0) < 0 and a < r. If so, the
solution for this system blows up in finite time T* where T* < 511;1177%0(0)' Y(t) and o are given (4.1) and
(4.2), respectively.

Proof We assume that the solution exists for all the time, we arrive at a contradiction. Define H(t) = —E(¢),
E(0) < 0 and (2.9) gives 0 < H(0) < H(t). Denote

Y(t)=H"(t) +¢ /uutda:—k/vvtdx , (4.1)
Q

Q

where € is a positive and small constant to be determined, and

— — —1
0<a<min{ i 4 —4q ! }

(r+1p (r+1)q 2(r+1)

Our aim is to show that 1 (t) satisfies a differential inequality of the following form
W) = Ept),  ¢>1.

This will result in a blow up in finite time. By differentiation of (4.1), we have

() = (1— o) H™" (1) H'(1

+e /ututder/vtvtdx +e /uuttdz:+/vvttdx . (4.3)
Q

Q Q Q

By multiplying (1.1) by u and (1.2) by v, respectively, and integrating it over Q x [t1,12], by (2.2) and (4.3),

we obtain

W) = A= H OB+ e (lul + o) e (IVallzd] + 1Vellid)

—e (m%||uH2+m§||v||2) —c /uut\ut\p_lda:—&-/vvt\vt|q_1dx

Q Q
+e(r+ 1)/G(u7v)d:c. (4.4)
Q
From definition of H(t), we obtain
—e (IValgZ + Vo) = la+ DHE@ -2+ ) [ Gluo)is
Q

atl 2 2 a+1 ) )
v (O ) (il + bout®) + (S52) (bl +mdl?) . 09
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Substitute (4.5) into (4.4) to get

() = (1—o)H O ()H'(t) +¢ <a2+3> (el + lwel?) + < (o + 1) H(2)

+e(r — a)/G(u,v)dw +e (a;l) (m%HuH2 + m§||vH2)

—€ /uut|ut|p_1dx+/vvt|vt|q_1dx . (4.6)
Q Q

Now, we use of the following Young’s inequality to estimate the last term in (4.6)

&I qd 5_kyk
ry < ——+ 3
J

where z,y > 0, § > 0, 5,k € R™ such that % + % = 1.Therefore, applying the previous inequality and from

H'(t) = ||Ut||p+1 + ||vt||q'H we have

p+1 q+1>
_p+1
b < A I+ 2 Bl
Ut | Ut r < p_+_1 p+1 ‘ t‘p+l
Q
p+1
5p+1 p(;_T
< 1 p+1 1 HI t
< Ll S )
and
1 _Q+1
q—ld < 5q+ q+1 q+1
vulvg|T N de < 7 Il +1+ 7 lvellga
Q
,ﬁ
< o +1 qH%w
~ g+ 10t +1 ’

where 07 and dy are real numbers depending on the time ¢. Consequently, we obtain from (4.6)

Vo = (- Or O+ () (Il + o) + e+ ) ()

a—1

rer—a) [ G(u,v>dx+e( ) (3l + m3 ]2

pt1 g+1

5{)4_1 p+1 q+1 p5 "’ ‘15 !
— — H'(t). 4.7
e<p+1|| 17 ol el R0 (@7)
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_p+1 g+l

Therefore, by taking §; and d2 so that 6; * =n;H 7(¢),d, * =mnoH 7(t), where ny,ny > 0 are specified

later, we have

+1 - - +1 +1,°P
ST =y PHOP(1) < my e P ([ulll L+ oll7 ) (48)

and

I = " THTI(E) < myp~9ey (||| EL + o)

r+1 r+1 (49)

7

because H(t) = —E(t) < [ G(u,v)dz < ¢y (||u||:ﬁ + ||v||:ﬁ) Substituting (4.8) and (4.9) into (4.7), we get
Q

’ Epni eqna . / Oé+3 2 2
vz (1-a= TS oo e (“50) (Jul? + )

a—1

+e(a+1)H(t) +e(r —a) /G(u,v)ders ( ) (m2||ull* + m2||v||?)

ny P %P +1 +1,0P 41
e () (all2 + ol fuf2*

p+1
ng~ 979 1 199 | g+l
—e (P20 ) el + 1ol )™ ol (4.10)
Since L™1(Q) — LPTL(Q), L™1(Q) — LIT1(Q), we have
1 1 1 1
llpfy < CllulPiy,  IllE < Cllolliy -
Thus
r+1 r+1,0P +1 r+1 r1,0P+ 5
(||u||r+1 + ||U||r+1) ||u||§+1 < CIO(H“HT+1 + ||UHr+1) o (4.11)
and
r+1 r+1,99 +1 r+1 r1y0a+ S
(Nl + vl Ivllgi < Cullullr + o) 7 (4.12)
Using (4.2) and the following inequality[4]:
P <z+1< (1+%)(z+w), Vz>0,0<v<1,w>0, we obtain, for t > 0,
r+1 r+1 ap-ﬁ-% < d r+1 r+1 H 0
lull 1 + ol < ull,y + vl + H(0)
r+1 r+1
< d (Il + ol + H) (4.13)
and
r+1 r+1 T+ <d r+1 LRy < 4.14
l[ullyy + vl <d (|ull,i1 + vl +H(®) (4.14)
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for w=H(0) and d =1+ ﬁ. Substituting (4.11)-(4.14) into (4.10), by (2.4) we have

v =z (1-a= 2 o e (250 ) (Jul? + ul?)

- p+1 qg+1

n1 Pe17PChod ny 2¢179C11d a—1 2 2 2 2
1-— — H(t _
+e <a+ | | (t)+e¢ 5 (milu|l” + m3||v||")
n1 7 Pc1?PCrod  n2 ™91 79C11d ( 41 7‘+1)
— — - . 4.15
2 (- - A D) (i + ol (4.15)

We choose nj,nslarge enough so that

nl_pcl‘”’Clod B ng_qclanud Co(’l" — Oé)

clr—a) - =5 g1 - 2

and

ny1 Pe17PChod _ ny~2¢179C11d > a—+1

a+1-—
p+1 qg+1 - 2

3 €
Choose ¢ small enough so that 1 — o — % — qqff > 0. Then we get

a+3 a+1
v = e (552) (lul? + ) + (S5m0
a—1 201,112 201,112 co(r — o) r+1 r+1
ve (O mal? + m3ol?) += (2T i+ ol
2 2 2 2 r+1 r+1
> (el o+ )+ ol m3l + 12 + ol 23) (4.16)

where 1 = min {E(Q;S) , e(o‘;l) , e(a;) , €C°(r2_a)} . Consequently, we have

Y(t) > (0) = H7(0) + ¢ /uouldx + /vovldx >0, Vvt > 0. (4.17)
Q Q

Next we estimate wﬁ(t).We have

YTe (t) = Hl_”(t)—f—g /uutdx—f—/vvtdx

Q Q

1—0o

H(t) +eTe /uutd:v + /vvtdx . (4.18)
Q Q

IN
[N}
-
|
q

1302



CELIK et al./Turk J Math

By Holder’s inequality, the Sobolev embedding theorem L™+1(2) < L?(Q), and Young’s inequality, we have

1

1—0o
1 _1
Juwaas [onde] <€ (Bl ™ 4 ol o )
Q Q
_1 1 _1 _1
< c@w;ﬂml°+hwgmmW”)
K A K ..
< c@wgimt“ﬂwwgﬁmW“), (4.19)

20-9) < 41 by (4.2). Hence, (4.19) comes

where i+§:1. We get A =2(1 —0), to obtain y = 575> <

1—-0

2 2 _2 2
|/wm%/ﬁwx SCOMIHMHHMﬁT+Mﬁ?> (4.20)
Q

From (4.2), since 2%~ < r + 1, furthermore, we have

2 2
ey +1\ (=20)(r+1) +1
lll5F = (Ilal;) <d(Jlullifi+HD).

2 2
i 55 +1\ (1-20)(r+1) +1
el 57 = (I3 <d (it +H)
and

2 2
Juvdot [ondz| <0 (4ol + el o+ ol + H)
Q Q

2 2 2 2 r+1 r+1
< O (Il + ool + H @)+ mllal” +m3llell” + [l ]+ o711 - (421)

Thus we obtain

o 2 2
pe(t) < 2% [HE) + e 0 (| + lull” + H()
=+ 2 2 r+1 r+1
o7 C (m3lull” + m3llel” + Jul 1+ ol 1)
2 2 2 2 r+1 r+1
< C. (IIUtII el + H(t) +m3llull +m3lloll” + Jull; 3 + IIUIITL) ; (4.22)
where C, = 2777 (1 +5ﬁC).
A combination of (4.16) and (4.22), we conclude that

/ 1 1

V)2 (), > 1L (4.23)
-0
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where £ is some positive constant. A simple integration of (4.23) yields

1]
2]

3]

[9]

[10]

[11]

[12]

1304

ﬁt >O'—'
T s

Thus the solution of H(t) blows up in a finite time T, with
l1-0

o7 (0)
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