Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2023) 47: 1288 - 1305
© TÜBİTAK

Energy decay and blow-up of solutions for a class of system of generalized nonlinear Klein-Gordon equations with source and damping terms

Zeynep Sümeyye ÇELİK ${ }^{1, *}{ }^{(1)}$, Şevket GÜR ${ }^{1}$ © ${ }^{\text {(}}$, Erhan PİŞKİN ${ }^{2}$ ©
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Sakarya University, Sakarya, Turkey
${ }^{2}$ Department of Mathematics, Dicle University, Diyarbakır, Turkey

| Received: 23.11 .2022 | Accepted/Published Online: $31.03 .2023 \quad$ • Final Version: 16.05 .2023 |
| :--- | :--- | :--- | :--- |

Abstract

In this work, we investigate generalized coupled nonlinear Klein-Gordon equations with nonlinear damping and source terms and initial-boundary value conditions, in a bounded domain. We obtain decay of solutions by use of Nakao inequality. The blow up of solutions with negative initial energy is also established.

Key words: Decay,blow up, generalized Klein-Gordon equation

1. Introduction

In this paper, we study the initial-boundary value problem for the following coupled nonlinear generalized Klein-Gordon equations with nonlinear damping terms and source terms

$$
\begin{gather*}
u_{t t}-\operatorname{div}\left(|\nabla u|^{\alpha-1} \nabla u\right)+m_{1}^{2} u+\left|u_{t}\right|^{p-1} u_{t}=g_{1}(u, v), \quad(x, t) \in \Omega \times(0, T), \tag{1.1}\\
v_{t t}-\operatorname{div}\left(|\nabla v|^{\alpha-1} \nabla v\right)+m_{2}^{2} v+\left|v_{t}\right|^{q-1} v_{t}=g_{2}(u, v), \quad(x, t) \in \Omega \times(0, T) \tag{1.2}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{1.3}\\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega \tag{1.4}\\
u(x, t)=v(x, t)=0, \quad x \in \partial \Omega \tag{1.5}
\end{gather*}
$$

where Ω is a bounded domain of $R^{n}(n=1,2,3)$, with smooth boundary $\partial \Omega, p, q \geq 1, \alpha \geq 1$ and $m_{1}, m_{2}>0$ are real numbers.

There are many results on the Cauchy problem for a class of the system Klein-Gordon equations [10, 11, $13,17]$. For instance, Segal[14] first proposed the following nonlinear system of Klein-Gordon equations

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+m_{1}^{2} u+g_{1} u^{2} v=0 \tag{1.6}\\
v_{t t}-\Delta v+m_{2}^{2} v+g_{2} u v^{2}=0
\end{array}\right.
$$

[^0]where m_{1} and m_{2} are nonzero constants, which define the movement of charged mesons in an electromagnetic field. I. Segal discussed the problem (1.6) of the global existence of the Cauchy problem with $g_{1}>0, g_{2}>0$. Blow up of solutions of (1.6) with $g_{1}<0, g_{2}<0$ was first established in [6, 7].

In the case of $\alpha=1$, the problem (1.1)-(1.5) becomes to the following form

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+m_{1}^{2} u+\left|u_{t}\right|^{p-1} u_{t}=g_{1}(u, v), \tag{1.7}\\
v_{t t}-\Delta v+m_{2}^{2} v+\left|v_{t}\right|^{q-1} v_{t}=g_{2}(u, v) .
\end{array}\right.
$$

Piskin [13] proved the uniform decay of solutions by using Nakao's inequality and blow-up solutions in finite time with negative initial energy of the system (1.7). In addition, Ye [17] proved the global existence by using the potential well method and asymptotic stability by use of Komornik's lemma [5] of the system (1.7) with $p=q . \mathrm{Wu}[15]$ also discussed the blow-up of global solutions under some conditions for a system of (1.7).

When $p=q=1, \mathrm{Wu}[16]$ studied the global existence, nonexistence, and asymptotic behavior of solutions for the system (1.7). When $m_{1}=m_{2}=0$, Agre and Rammaha [2] proved the global existence and the nonexistence of solutions for the system (1.7) by applying the same techniques as in [3].

In this paper, the global existence of solution of the problem (1.1)-(1.5) was proved, and decay rates of energy which decays exponentially for $p=q=1$ and polynomially for $p, q>1$, were established by the use of Nakao's inequality [9]. The blow-up result for solutions with negative initial energy was established for $r>\max \{p, q\}$ by applying the technique of [3].

2. Preliminaries

In this section, we present some assumptions and lemmas, in the proof of our main result. We shall write $\|$. and $\|\cdot\|_{p}$ to define the usual $L^{2}(\Omega)$ norm and $L^{p}(\Omega)$ norm, respectively. There exists a function $G(u, v)$ such that $\frac{\partial G}{\partial u}=g_{1}(u, v), \frac{\partial G}{\partial v}=g_{2}(u, v)$.

Concerning the functions $g_{1}(u, v)$ and $g_{2}(u, v)$, we take

$$
\begin{aligned}
& g_{1}(u, v)=(r+1)\left[a|u+v|^{r-1}(u+v)+b|u|^{\frac{r-3}{2}} u|v|^{\frac{r+1}{2}}\right], \\
& g_{2}(u, v)=(r+1)\left[a|u+v|^{r-1}(u+v)+b|u|^{\frac{r+1}{2}}|v|^{\frac{r-3}{2}} v\right],
\end{aligned}
$$

where $a, b>0$ real numbers and r satisfies

$$
\begin{cases}1<r, & n \leq 2 \tag{2.1}\\ 1<r \leq \frac{(n+2}{(n-2}, & n>2\end{cases}
$$

In accordance with the above equalities, it can easily verify that

$$
\begin{gather*}
u g_{1}(u, v)+v g_{2}(u, v)=(r+1) G(u, v), \quad \forall(u, v) \in R^{2}, \tag{2.2}\\
G(u, v)=\left[a|u+v|^{r+1}+2 b|u v|^{\frac{r+1}{2}}\right] . \tag{2.3}
\end{gather*}
$$

Lemma 2.1 [8] There exist two positive constants c_{0} and c_{1} such that

$$
\begin{equation*}
c_{0}\left(|u|^{r+1}+|v|^{r+1}\right) \leq G(u, v) \leq c_{1}\left(|u|^{r+1}+|v|^{r+1}\right) \tag{2.4}
\end{equation*}
$$

is satisfied.
We consider the following functionals

$$
\begin{equation*}
J(t)=\frac{1}{2}\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)-\int_{\Omega} G(u, v) d x \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
I(t)=\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}-(r+1) \int_{\Omega} G(u, v) d x \tag{2.6}
\end{equation*}
$$

We define the total energy functional associated with (1.1)-(1.5) as follows:

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)-\int_{\Omega} G(u, v) d x \tag{2.7}
\end{equation*}
$$

We also denote

$$
\begin{equation*}
W=\left\{(u, v):(u, v) \in W_{0}^{1, \alpha+1}(\Omega) \times W_{0}^{1, \alpha+1}(\Omega), I(u, v)>0\right\} \cup\{0,0\} \tag{2.8}
\end{equation*}
$$

Lemma $2.2 E(t)$ is a nonincreasing function for $t \geq 0$ and

$$
\begin{equation*}
E^{\prime}(t)=-\left(\left\|u_{t}\right\|_{p+1}^{p+1}+\left\|v_{t}\right\|_{q+1}^{q+1}\right) \leq 0 \tag{2.9}
\end{equation*}
$$

Proof Multiplying equation (1.1) by u_{t} and equation (1.2) by v_{t}, and integrating over Ω, using integrating by parts and summing up the product results, we obtain

$$
\begin{equation*}
E(t)-E(0)=-\int_{0}^{t}\left(\left\|u_{\tau}\right\|_{p+1}^{p+1}+\left\|v_{\tau}\right\|_{q+1}^{q+1}\right) d \tau \quad \text { for } \quad t \geq 0 \tag{2.10}
\end{equation*}
$$

Lemma 2.3 (Sobolev-Poincare Inequality) [1] Let p be a real number with $2 \leq p<\infty(n=1,2)$ and $2 \leq p \leq \frac{2 n}{n-2}(n \geq 3)$, thus there is a constant $C_{*}=C_{*}(\Omega, p)$ such that

$$
\|u\|_{p} \leq C_{*}\|\nabla u\|, \quad \forall u \in H_{0}^{1}(\Omega)
$$

Lemma 2.4 (Nakao Inequality) [9] Let $\varphi(t)$ be nonnegative and nonincreasing function defined on $[0, T], T>1$ and suppose that there are constants $w_{0}>0$ and $m \geq 0$ such that

$$
\varphi^{1+m}(t) \leq w_{0}(\varphi(t)-\varphi(t+1)), \quad t \in[0, T]
$$

Thus we obtain for all $t \in[0, T]$,

$$
\begin{cases}\varphi(t) \leq \varphi(0) e^{-w_{1}[t-1]^{+}}, & m=0 \tag{2.11}\\ \varphi(t) \leq\left(\varphi(0)^{-m}+w_{0}^{-1} m[t-1]^{+}\right)^{\frac{-1}{m}}, & m>0\end{cases}
$$

where $[t-1]^{+}=\max \{t-1,0\}$ and $w_{1}=\ln \left(\frac{w_{0}}{w_{0}-1}\right)$.
Now, we specify the local existence theorem that can be established by combination arguments of $[2,3,12]$.
Theorem 2.5 (Local Existence) Assume that (2.1) holds. Thus, there exist p,q satisfying

$$
\begin{cases}1 \leq p, q, & n \leq 2 \\ 1 \leq p, q \leq \frac{n+2}{n-2}, & n>2\end{cases}
$$

and further $\left(u_{0}, v_{0}\right) \in W_{0}^{1, \alpha+1}(\Omega) \cap L^{r+1}(\Omega),\left(u_{1}, v_{1}\right) \in L^{2}(\Omega) \cap L^{2}(\Omega)$. Thus, problem (1.1)-(1.5) has a unique local solution

$$
u, v \in\left(C[0, T) ; W_{0}^{1, \alpha+1}(\Omega) \cap L^{r+1}(\Omega)\right),
$$

$u_{t} \in C\left([0, T) ; L^{2}(\Omega)\right) \cap L^{p+1}(\Omega \times[0, T))$ and $v_{t} \in C\left([0, T) ; L^{2}(\Omega)\right) \cap L^{q+1}(\Omega \times[0, T))$.
Moreover, at least one of the following statements holds true:
(i) $T=\infty$,
(ii) $\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2} \rightarrow \infty$ as $t \rightarrow T^{-}$.

3. Global existence and decay of solutions

Lemma 3.1 Assume that (2.1) holds and $\alpha>1$ and $r>\alpha$ satisfy

$$
\begin{equation*}
r+1 \leq \frac{n(\alpha+1)}{n-(\alpha+1)}, \quad \alpha+1<n . \tag{3.1}
\end{equation*}
$$

Let $\left(u_{0}, v_{0}\right) \in W$ and $\left(u_{1}, v_{1}\right) \in L^{2}(\Omega) \times L^{2}(\Omega)$ such that

$$
\begin{equation*}
\beta=\frac{c_{1} C_{*}^{r+1}(r+1)(\alpha+1)}{2}\left[\frac{(r+1)(\alpha+1)}{r-1} E(0)\right]^{\frac{r-\alpha}{\alpha+1}}<1, \tag{3.2}
\end{equation*}
$$

then $(u, v) \in W$, for all $t \geq 0$.
Proof Suppose not. Then for some $T_{m}>0,\left(u\left(T_{m}\right), v\left(T_{m}\right)\right) \notin W$. Since $(u(0), v(0)) \in W$ and $I(0)>0$, then by continuity of $u(t)$ and $v(t)$ that

$$
\begin{equation*}
I(t)>0, \tag{3.3}
\end{equation*}
$$

for some interval near $t=0$. Let $T_{m}>0$ be a maximal time, when (3.3) holds on [$\left.0, T_{m}\right]$. So, for $\forall t \in\left[0, T_{m}\right]$,

$$
I\left(T_{m}\right)=0
$$

and

$$
I(t)>0, \quad \forall 0 \leq t \leq T_{m}
$$

According to (2.5) and (2.6), we obtain

$$
\begin{align*}
J(t) & =\frac{1}{r+1} I(t)+\frac{r-1}{2(r+1)}\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
& \geq \frac{r-1}{2(r+1)}\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \tag{3.4}
\end{align*}
$$

By using (3.4), (2.9) and definition of $E(t)$, we have

$$
\begin{equation*}
\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1} \leq \frac{2(r+1)}{r-1} J(t) \leq \frac{2(r+1)}{r-1} E(t) \leq \frac{2(r+1)}{r-1} E(0) \tag{3.5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\|\nabla u\|_{\alpha+1}+\|\nabla v\|_{\alpha+1} \leq\left(\frac{(r+1)(\alpha+1)}{r-1} E(0)\right)^{\frac{1}{\alpha+1}} \tag{3.6}
\end{equation*}
$$

According to Sobolev embedding inequality, we have

$$
\begin{equation*}
\|u\|_{r+1}^{r+1} \leq C_{*}^{r+1}\|\nabla u\|_{\alpha+1}^{r+1}=C_{*}^{r+1}\|\nabla u\|_{\alpha+1}^{r-\alpha}\|\nabla u\|_{\alpha+1}^{\alpha+1} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|v\|_{r+1}^{r+1} \leq C_{*}^{r+1}\|\nabla v\|_{\alpha+1}^{r+1}=C_{*}^{r+1}\|\nabla v\|_{\alpha+1}^{r-\alpha}\|\nabla v\|_{\alpha+1}^{\alpha+1} \tag{3.8}
\end{equation*}
$$

Combining (3.7) and (3.8) with (3.6) implies $\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1} \leq C_{*}^{r+1}\left(\frac{(r+1)(\alpha+1)}{r-1} E(0)\right)^{\frac{r-\alpha}{\alpha+1}}\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right)$. Applying (3.2) to above inequality with (2.4), we get $I\left(T_{m}\right)>0$

$$
\begin{align*}
(r+1) \int_{\Omega} G(u, v) d x & \leq c_{1}(r+1)\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right) \\
& \leq \beta \frac{2}{\alpha+1}\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right) \\
& <\frac{2}{\alpha+1}\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right) . \tag{3.9}
\end{align*}
$$

Consequently, by using (2.6), we deduce that $I(t)>0$ for all $t \in\left[0, T_{m}\right]$, which contradicts $I(t)=0$. The lemma's proof is complete.

Lemma 3.2 Let the assumptions of Lemma 3.1 hold. Thus, there exists $\eta_{1}=1-\beta$ so that

$$
(r+1) \int_{\Omega} G(u, v) d x \leq\left(1-\eta_{1}\right)\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)
$$

Proof From (3.9), we obtain

$$
\begin{aligned}
(r+1) \int_{\Omega} G(u, v) d x & \leq \beta\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}\right) \\
& \leq \beta\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)
\end{aligned}
$$

Let $\beta=1-\eta_{1}$, then we have the result.

Remark 3.3 Hence, we can deduce from Lemma 3.2

$$
\begin{equation*}
\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2} \leq \frac{1}{\eta_{1}} I(t) \tag{3.10}
\end{equation*}
$$

Theorem 3.4 Assume that (2.1) holds. Let $\left(u_{0}, v_{0}\right) \in W$ satisfying (2.8). Thus, the solution of problem (1.1)-(1.5) is global.

Proof It suffices to show that $\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}$ is bounded independently of t. To indicate this, using (2.6) and (2.7) we have

$$
\begin{aligned}
E(0) \geq & E(t)=\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\frac{1}{2}\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}\right. \\
& \left.+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)-\int_{\Omega} G(u, v) d x \\
= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+J(t) \\
= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\frac{1}{r+1} I(t) \\
& +\frac{r-1}{2(r+1)}\left(\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
\geq & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right) \\
& +\frac{r-1}{2(r+1)}\left(\frac{2}{\alpha+1}\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right)+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)
\end{aligned}
$$

because $I(t) \geq 0$. Therefore,

$$
\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\frac{2}{\alpha+1}\|\nabla u\|_{\alpha+1}^{\alpha+1}+\frac{2}{\alpha+1}\|\nabla v\|_{\alpha+1}^{\alpha+1}+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2} \leq C E(0)
$$

where $C=\frac{2(r+1)}{r-1}$. Thus by Theorem 2.5 , we get the result of global existence.

Theorem 3.5 Assume that (2.1) and (2.8) hold, and further $\left(u_{0}, v_{0}\right) \in W$. Then, we obtain the following decay estimates:

$$
E(t) \leq\left\{\begin{array}{l}
E(0) e^{-w_{1}[t-1]^{+}}, \quad p=q=1 \\
\left(E(0)^{-m}+C_{9}^{-1} m[t-1]^{+}\right)^{\frac{-1}{m}}, \quad p, q>1
\end{array}\right.
$$

where w_{1}, m, and C_{9} are positive constants.
Now, we shall derive the decay estimate of the solution in Theorem 3.5 by using Nakao inequality.
Proof By integration of (2.9) over $[t, t+1], t>0$, we obtain

$$
\begin{equation*}
E(t)-E(t+1)=\int_{t}^{t+1}\left(\left\|u_{\tau}(\tau)\right\|_{p+1}^{p+1}+\left\|v_{\tau}(\tau)\right\|_{q+1}^{q+1}\right) d \tau=D_{1}^{p+1}(t)+D_{2}^{q+1}(t) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}^{p+1}(t)=\int_{t}^{t+1}\left(\left\|u_{\tau}(\tau)\right\|_{p+1}^{p+1}\right) d \tau \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}^{q+1}(t)=\int_{t}^{t+1}\left(\left\|v_{\tau}(\tau)\right\|_{q+1}^{q+1}\right) d \tau \tag{3.13}
\end{equation*}
$$

Hölder inequality and by virtue of (3.12), we observe that

$$
\begin{equation*}
\int_{t}^{t+1} \int_{\Omega}\left|u_{t}\right|^{2} d x d t \leq \int_{t}^{t+1}|\Omega|^{\frac{p-1}{p+1}}\left\|u_{t}\right\|_{p+1}^{2} d t=|\Omega|^{\frac{p-1}{p+1}} D_{1}^{2}(t)=C D_{1}^{2}(t) \tag{3.14}
\end{equation*}
$$

Similarly, Hölder inequality and due to (3.13), we obtain

$$
\begin{equation*}
\int_{t}^{t+1} \int_{\Omega}\left|v_{t}\right|^{2} d x d t \leq|\Omega|^{\frac{q-1}{q+1}} D_{2}^{2}(t)=C D_{2}^{2}(t) \tag{3.15}
\end{equation*}
$$

Hence, from (3.14) and (3.15), there exist $t_{1} \in\left[t, t+\frac{1}{4}\right]$ and $t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\begin{equation*}
\left\|u_{t}\left(t_{i}\right)\right\| \leq C D_{1}(t), \quad i=1,2 \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v_{t}\left(t_{i}\right)\right\| \leq C D_{2}(t), \quad i=1,2 \tag{3.17}
\end{equation*}
$$

By multiplying (1.1) and (1.2) by u and v, respectively, and integrating it over $\Omega \times\left[t_{1}, t_{2}\right]$, we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} I(t) d t \leq & -\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[u u_{t t}+v v_{t t}\right] d x d t \\
& -\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|u_{t}\right|^{p-1} u_{t} u\right] d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|v_{t}\right|^{q-1} v_{t} v\right] d x d t \tag{3.18}
\end{align*}
$$

To estimate of the first term of the right-hand side of (3.18), by using (1.1)-(1.5), integrating by parts and Cauchy-Schwarz inequality, we get

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} I(t) d t \leq & \left\|u_{t}\left(t_{1}\right)\right\|\left\|u\left(t_{1}\right)\right\|+\left\|u_{t}\left(t_{2}\right)\right\|\left\|u\left(t_{2}\right)\right\| \\
& +\left\|v_{t}\left(t_{1}\right)\right\|\left\|v\left(t_{1}\right)\right\|+\left\|v_{t}\left(t_{2}\right)\right\|\left\|v\left(t_{2}\right)\right\| \\
& +\int_{t_{1}}^{t_{2}}\left\|u_{t}\right\|^{2} d t+\int_{t_{1}}^{t_{2}}\left\|v_{t}\right\|^{2} d t \\
& -\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|u_{t}\right|^{p-1} u_{t} u\right] d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|v_{t}\right|^{q-1} v_{t} v\right] d x d t \tag{3.19}
\end{align*}
$$

Now, our purpose is to estimate the right hand side of the inequality. First, we will estimate the last two terms in the right-hand side of inequality (3.19). By applying Hölder inequality, we get

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|u_{t}\right|^{p-1} u_{t} u\right] d x d t \leq \int_{t_{1}}^{t_{2}}\left[\left\|u_{t}(t)\right\|_{p+1}^{p}\|u(t)\|_{p+1}\right] d t \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{\Omega}\left[\left|v_{t}\right|^{q-1} v_{t} v\right] d x d t \leq \int_{t_{1}}^{t_{2}}\left[\left\|v_{t}(t)\right\|_{q+1}^{q}\|v(t)\|_{q+1}\right] d t \tag{3.21}
\end{equation*}
$$

According to (3.5) and Sobolev-Poincare inequality, we obtain for $p \geq 1$

$$
\begin{align*}
\int_{t_{1}}^{t_{2}}\left[\left\|u_{t}(t)\right\|_{p+1}^{p}\|u(t)\|_{p+1}\right] d t & \leq C_{*} \int_{t_{1}}^{t_{2}}\left[\left\|u_{t}(t)\right\|_{p+1}^{p}\|\nabla u\|\right] d t \\
& \leq C_{*}\left(\frac{2(r+1)}{r-1}\right)^{\frac{1}{2}} \int_{t_{1}}^{t_{2}}\left[\left\|u_{t}(t)\right\|_{p+1}^{p} E^{\frac{1}{2}}(s)\right] d t \\
& \leq C_{*}\left(\frac{2(r+1)}{r-1}\right)^{\frac{1}{2}} \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s) \int_{t_{1}}^{t_{2}}\left[\left\|u_{t}\right\|_{p+1}^{p}\right] d t \\
& \leq C_{*} \sqrt{\frac{2(r+1)}{r-1}} \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s) D_{1}^{p}(t) . \tag{3.22}
\end{align*}
$$

Similarly, we obtain for $q \geq 1$

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left[\left\|v_{t}(t)\right\|_{q+1}^{q}\|v(t)\|_{q+1}\right] d t \leq C_{*} \sqrt{\frac{2(r+1)}{r-1}} \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s) D_{2}^{q}(t) \tag{3.23}
\end{equation*}
$$

Now, from (3.5), (3.16), and Sobolev-Poincare inequality, we get

$$
\begin{equation*}
\left\|u_{t}\left(t_{i}\right)\right\|\left\|u\left(t_{i}\right)\right\| \leq C_{1} D_{1}(t) \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s), \tag{3.24}
\end{equation*}
$$

where $C_{1}=2 C_{*} \sqrt{\frac{2(r+1)}{r-1}} C$. Similary, from (3.5), (3.17), and Sobolev-Poincare inequality, we obtain

$$
\begin{equation*}
\left\|v_{t}\left(t_{i}\right)\right\|\left\|v\left(t_{i}\right)\right\| \leq C_{2} D_{2}(t) \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s), \tag{3.25}
\end{equation*}
$$

where $C_{2}=2 C_{*} \sqrt{\frac{2(r+1)}{r-1}} C$. Substitute (3.20)-(3.25) into (3.19) by (3.14) and (3.15), we obtain

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} I(t) d t \leq & C_{3}\left\{\sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s)\left(D_{1}(t)+D_{2}(t)\right)+D_{1}^{2}(t)+D_{2}^{2}(t)\right. \\
& \left.+C_{*} \sqrt{\frac{2(r+1)}{r-1)}} \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s)\left(D_{1}^{p}(t)+D_{2}^{q}(t)\right)\right\} \tag{3.26}
\end{align*}
$$

where $C_{3}=\max \left\{C_{1}, C_{2}, C, 1\right\}$. Morever, from definition of $E(t), I(t)$ and Remark 3.3, we get

$$
\begin{equation*}
E(t) \leq \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+C_{4} I(t) \tag{3.27}
\end{equation*}
$$

where $C_{4}=\frac{1}{\eta_{1}} \frac{r-1}{2(r+1)}+\frac{1}{r+1}$. By integrating (3.27) over $\left[t_{1}, t_{2}\right]$, we get

$$
\int_{t_{1}}^{t_{2}} E(t) d t \leq \frac{1}{2} \int_{t_{1}}^{t_{2}}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right) d t+C_{4} \int_{t_{1}}^{t_{2}} I(t) d t
$$

Hence, by (3.14), (3.15), and (3.26), we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} E(t) d t \leq & \frac{1}{2} C\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right) \\
& +C_{4} C_{3}\left\{\sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s)\left(D_{1}(t)+D_{2}(t)\right)+D_{1}^{2}(t)+D_{2}^{2}(t)\right. \\
& \left.+C_{*} \sqrt{\frac{2(r+1)}{r-1}} \sup _{t_{1} \leq s \leq t_{2}} E^{\frac{1}{2}}(s)\left(D_{1}^{p}(t)+D_{2}^{q}(t)\right)\right\} \tag{3.28}
\end{align*}
$$

Now, by integrating $\frac{d}{d t} E(t)$ over $\left[t, t_{2}\right]$, we have

$$
\begin{equation*}
E(t)=E\left(t_{2}\right)+\int_{t}^{t_{2}}\left(\left\|u_{\tau}(\tau)\right\|_{p+1}^{p+1}+\left\|v_{\tau}(\tau)\right\|_{q+1}^{q+1}\right) d \tau \tag{3.29}
\end{equation*}
$$

Therefore, since $t_{2}-t_{1} \geq \frac{1}{2}$, we deduce that

$$
\int_{t_{1}}^{t_{2}} E(t) d t \geq\left(t_{2}-t_{1}\right) E\left(t_{2}\right) \geq \frac{1}{2} E\left(t_{2}\right)
$$

That is,

$$
\begin{equation*}
E\left(t_{2}\right) \leq 2 \int_{t_{1}}^{t_{2}} E(t) d t \tag{3.30}
\end{equation*}
$$

Therefore, exploiting (3.11), (3.29), (3.30) and because $t_{1}, t_{2} \in[t, t+1]$, we obtain

$$
\begin{align*}
E(t) & \leq 2 \int_{t_{1}}^{t_{2}} E(t) d t+\int_{t}^{t+1}\left(\left\|u_{\tau}(\tau)\right\|_{p+1}^{p+1}+\left\|v_{\tau}(\tau)\right\|_{q+1}^{q+1}\right) d \tau \\
& =2 \int_{t_{1}}^{t_{2}} E(t) d t+D_{1}^{p+1}(t)+D_{2}^{q+1}(t) \tag{3.31}
\end{align*}
$$

Then, from (3.28), we obtain

$$
\begin{align*}
E(t) \leq & \left(C+2 C_{4} C_{3}\right)\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right)+D_{1}^{p+1}(t)+D_{2}^{q+1}(t) \\
& +C_{5} E^{\frac{1}{2}}(t)\left(D_{1}(t)+D_{2}(t)+D_{1}^{p}(t)+D_{2}^{q}(t)\right) \tag{3.32}
\end{align*}
$$

where $C_{5}=2 C_{4} C_{3} \max \left(1, C_{*} \sqrt{\frac{2(r+1)}{r-1}}\right)$.
Hence, by arithmetic-geometric mean inequality, we deduce that

$$
\begin{equation*}
E(t) \leq C_{6}\left[D_{1}^{2}(t)+D_{2}^{2}(t)+D_{1}^{p+1}(t)+D_{2}^{q+1}(t)+D_{1}^{2 p}(t)+D_{2}^{2 q}(t)\right] \tag{3.33}
\end{equation*}
$$

where $C_{6}=\max \left(2 C+4 C_{4} C_{3}+C_{5}^{2}, 2, C_{5}^{2}\right)$. Now we distinguish two cases.
Case 1: When $p=q=1$, we get from (3.33)

$$
\begin{equation*}
E(t) \leq 3 C_{6}\left[D_{1}^{2}(t)+D_{2}^{2}(t)\right]=3 C_{6}[E(t)-E(t+1)] \tag{3.34}
\end{equation*}
$$

By Lemma 2.4, we have

$$
\begin{equation*}
E(t) \leq E(0) e^{-w_{1}[t-1]^{+}}, \tag{3.35}
\end{equation*}
$$

where $[t-1]^{+}=\max \{t-1,0\}$ and $w_{1}=\ln \left(\frac{3 C_{6}}{3 C_{6}-1}\right)$.
Case 2: When $p, q>1$, we get from (3.33)

$$
\begin{align*}
E(t) & \leq C_{6} D_{1}^{2}(t)\left[1+D_{1}^{p-1}(t)+D_{1}^{2(p-1)}(t)\right]+C_{6} D_{2}^{2}(t)\left[1+D_{2}^{q-1}(t)+D_{2}^{2(q-1)}(t)\right] \\
& \leq C_{6}\left[1+D_{1}^{p-1}(t)+D_{1}^{2(p-1)}(t)+D_{2}^{q-1}(t)+D_{2}^{2(q-1)}(t)\right]\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right) \tag{3.36}
\end{align*}
$$

Thus since $E(t) \leq E(0)$ for $\forall t \geq 0$, we obtain from (3.11)

$$
\begin{align*}
E(t) & \leq C_{6}\left[1+D_{1}^{p-1}(t)+D_{1}^{2(p-1)}(t)+D_{2}^{q-1}(t)+D_{2}^{2(q-1)}(t)\right]\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right) \\
& \leq C_{6}\left[1+E^{\frac{p-1}{p+1}}(0)+E^{\frac{q-1}{q+1}}(0)+E^{\frac{2(p-1)}{p+1}}(0)+E^{\frac{2(q-1)}{q+1}}(0)\right]\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right) \\
& \leq C_{7}\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right), \quad t \geq 0 \tag{3.37}
\end{align*}
$$

where $C_{7}=C_{6}\left[1+E^{\frac{p-1}{p+1}}(0)+E^{\frac{q-1}{q+1}}(0)+E^{\frac{2(p-1)}{p+1}}(0)+E^{\frac{2(q-1)}{q+1}}(0)\right]$. When we take $m=\max \left\{\frac{p-1}{2}, \frac{q-1}{2}\right\}$; then we get

$$
\begin{align*}
E(t)^{1+m} & \leq\left[C_{7}\left(D_{1}^{2}(t)+D_{2}^{2}(t)\right)\right]^{1+m} \\
& =C_{7}^{1+m}\left(D_{1}^{2+2 m}(t)+D_{2}^{2+2 m}(t)\right) \\
& =C_{8}\left(D_{1}^{2+2 m}(t)+D_{2}^{2+2 m}(t)\right) \tag{3.38}
\end{align*}
$$

where $C_{8}=C_{7}^{1+m}$. Consequently, (3.38) is equal to

$$
\begin{align*}
E(t)^{1+m} & \leq C_{8}\left(D_{1}^{p+1}(t) D_{1}^{2 m-p+1}(t)+D_{2}^{q+1}(t) D_{2}^{2 m-q+1}(t)\right) \\
& \leq C_{8}\left(D_{1}^{p+1}(t) E^{\frac{2 m-p+1}{p+1}}(0)+D_{2}^{q+1}(t) E^{\frac{2 m-q+1}{q+1}}(0)\right) \\
& \leq C_{9}\left(D_{1}^{p+1}(t)+D_{2}^{q+1}(t)\right) \\
& =C_{9}(E(t)-E(t+1)), \tag{3.39}
\end{align*}
$$

where $C_{9}=C_{8} \max \left\{E^{\frac{2 m-p+1}{p+1}}(0), E^{\frac{2 m-q+1}{q+1}}(0)\right\}$.
Thus, from Lemma 2.4 ve (3.39), we have for $t \in[0, T]$ and $m>0$

$$
E(t) \leq\left(E(0)^{-m}+C_{9}^{-1} m[t-1]^{+}\right)^{\frac{-1}{m}}
$$

This completes the proof of Theorem 12.

4. Blow up of solutions

Theorem 4.1 Suppose that $r+1>\max \{p+1, q+1\}$, the initial energy $E(0)<0$ and $\alpha<r$. If so, the solution for this system blows up in finite time T^{*} where $T^{*} \leq \frac{1-\sigma}{\xi \sigma \psi^{\frac{\sigma}{1-\sigma}}(0)} \cdot \psi(t)$ and σ are given (4.1) and (4.2), respectively.

Proof We assume that the solution exists for all the time, we arrive at a contradiction. Define $H(t)=-E(t)$, $E(0)<0$ and (2.9) gives $0<H(0) \leq H(t)$. Denote

$$
\begin{equation*}
\psi(t)=H^{1-\sigma}(t)+\varepsilon\left(\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right) \tag{4.1}
\end{equation*}
$$

where ε is a positive and small constant to be determined, and

$$
\begin{equation*}
0<\sigma \leq \min \left\{\frac{r-p}{(r+1) p}, \frac{r-q}{(r+1) q}, \frac{r-1}{2(r+1)}\right\} \tag{4.2}
\end{equation*}
$$

Our aim is to show that $\psi(t)$ satisfies a differential inequality of the following form

$$
\psi^{\prime}(t) \geq \xi \psi^{\zeta}(t), \quad \zeta>1
$$

This will result in a blow up in finite time. By differentiation of (4.1), we have

$$
\begin{gather*}
\psi^{\prime}(t)=(1-\sigma) H^{-\sigma}(t) H^{\prime}(t) \\
+\varepsilon\left(\int_{\Omega} u_{t} u_{t} d x+\int_{\Omega} v_{t} v_{t} d x\right)+\varepsilon\left(\int_{\Omega} u u_{t t} d x+\int_{\Omega} v v_{t t} d x\right) \tag{4.3}
\end{gather*}
$$

By multiplying (1.1) by u and (1.2) by v, respectively, and integrating it over $\Omega \times\left[t_{1}, t_{2}\right]$, by (2.2) and (4.3), we obtain

$$
\begin{align*}
\psi^{\prime}(t)= & (1-\sigma) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)-\varepsilon\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right) \\
& -\varepsilon\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)-\varepsilon\left(\int_{\Omega} u u_{t}\left|u_{t}\right|^{p-1} d x+\int_{\Omega} v v_{t}\left|v_{t}\right|^{q-1} d x\right) \\
& +\varepsilon(r+1) \int_{\Omega} G(u, v) d x . \tag{4.4}
\end{align*}
$$

From definition of $H(t)$, we obtain

$$
\begin{align*}
-\varepsilon\left(\|\nabla u\|_{\alpha+1}^{\alpha+1}+\|\nabla v\|_{\alpha+1}^{\alpha+1}\right)= & \varepsilon(\alpha+1) H(t)-\varepsilon(\alpha+1) \int_{\Omega} G(u, v) d x \\
& +\varepsilon\left(\frac{\alpha+1}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\varepsilon\left(\frac{\alpha+1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \tag{4.5}
\end{align*}
$$

Substitute (4.5) into (4.4) to get

$$
\begin{align*}
\psi^{\prime}(t)= & (1-\sigma) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{\alpha+3}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\varepsilon(\alpha+1) H(t) \\
& +\varepsilon(r-\alpha) \int_{\Omega} G(u, v) d x+\varepsilon\left(\frac{\alpha-1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
& -\varepsilon\left(\int_{\Omega} u u_{t}\left|u_{t}\right|^{p-1} d x+\int_{\Omega} v v_{t}\left|v_{t}\right|^{q-1} d x\right) \tag{4.6}
\end{align*}
$$

Now, we use of the following Young's inequality to estimate the last term in (4.6)

$$
x y \leq \frac{\delta^{j} x^{j}}{j}+\frac{\delta^{-k} y^{k}}{k}
$$

where $x, y \geq 0, \delta>0, j, k \in R^{+}$such that $\frac{1}{j}+\frac{1}{k}=1$. Therefore, applying the previous inequality and from $H^{\prime}(t)=\left\|u_{t}\right\|_{p+1}^{p+1}+\left\|v_{t}\right\|_{q+1}^{q+1}$, we have

$$
\begin{aligned}
\int_{\Omega} u u_{t}\left|u_{t}\right|^{p-1} d x & \leq \frac{\delta_{1}^{p+1}}{p+1}\|u\|_{p+1}^{p+1}+\frac{p \delta_{1}^{-\frac{p+1}{p}}}{p+1}\left\|u_{t}\right\|_{p+1}^{p+1} \\
& \leq \frac{\delta_{1}^{p+1}}{p+1}\|u\|_{p+1}^{p+1}+\frac{p \delta_{1}^{-\frac{p+1}{p}}}{p+1} H^{\prime}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega} v v_{t}\left|v_{t}\right|^{q-1} d x & \leq \frac{\delta_{2}^{q+1}}{q+1}\|v\|_{q+1}^{q+1}+\frac{q \delta_{2}^{-\frac{q+1}{q}}}{q+1}\left\|v_{t}\right\|_{q+1}^{q+1} \\
& \leq \frac{\delta_{2}^{q+1}}{q+1}\|v\|_{q+1}^{q+1}+\frac{q \delta_{2}^{-\frac{q+1}{q}}}{q+1} H^{\prime}(t)
\end{aligned}
$$

where δ_{1} and δ_{2} are real numbers depending on the time t. Consequently, we obtain from (4.6)

$$
\begin{align*}
\psi^{\prime}(t) \geq & (1-\sigma) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{\alpha+3}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\varepsilon(\alpha+1) H(t) \\
& +\varepsilon(r-\alpha) \int_{\Omega} G(u, v) d x+\varepsilon\left(\frac{\alpha-1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
& -\varepsilon\left(\frac{\delta_{1}^{p+1}}{p+1}\|u\|_{p+1}^{p+1}+\frac{\delta_{2}^{q+1}}{q+1}\|v\|_{q+1}^{q+1}\right)-\varepsilon\left(\frac{p \delta_{1}^{-\frac{p+1}{p}}}{p+1}+\frac{q \delta_{2}^{-\frac{q+1}{q}}}{q+1}\right) H^{\prime}(t) \tag{4.7}
\end{align*}
$$

Therefore, by taking δ_{1} and δ_{2} so that $\delta_{1}^{-\frac{p+1}{p}}=n_{1} H^{-\sigma}(t), \delta_{2}^{-\frac{q+1}{q}}=n_{2} H^{-\sigma}(t)$, where $n_{1}, n_{2}>0$ are specified later, we have

$$
\begin{equation*}
\delta_{1}^{p+1}=n_{1}^{-p} H^{\sigma p}(t) \leq n_{1}^{-p} c_{1}^{\sigma p}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma p} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2}^{q+1}=n_{2}^{-q} H^{\sigma q}(t) \leq n_{2}^{-q} c_{1}^{\sigma q}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma q}, \tag{4.9}
\end{equation*}
$$

because $H(t)=-E(t) \leq \int_{\Omega} G(u, v) d x \leq c_{1}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)$. Substituting (4.8) and (4.9) into (4.7), we get

$$
\begin{align*}
\psi^{\prime}(t) \geq & \left(1-\sigma-\frac{\varepsilon p n_{1}}{p+1}-\frac{\varepsilon q n_{2}}{q+1}\right) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{\alpha+3}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right) \\
& +\varepsilon(\alpha+1) H(t)+\varepsilon(r-\alpha) \int_{\Omega} G(u, v) d x+\varepsilon\left(\frac{\alpha-1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
& -\varepsilon\left(\frac{n_{1}-p c_{1} \sigma p}{p+1}\right)\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma p}\|u\|_{p+1}^{p+1} \\
& -\varepsilon\left(\frac{n_{2}-q c_{1} \sigma q}{q+1}\right)\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma q}\|v\|_{q+1}^{q+1} . \tag{4.10}
\end{align*}
$$

Since $L^{r+1}(\Omega) \hookrightarrow L^{p+1}(\Omega), L^{r+1}(\Omega) \hookrightarrow L^{q+1}(\Omega)$, we have

$$
\|u\|_{p+1}^{p+1} \leq C\|u\|_{r+1}^{p+1}, \quad\|v\|_{q+1}^{q+1} \leq C\|v\|_{r+1}^{q+1} .
$$

Thus

$$
\begin{equation*}
\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma p}\|u\|_{p+1}^{p+1} \leq C_{10}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma p+\frac{p+1}{r+1}} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma q}\|v\|_{q+1}^{q+1} \leq C_{11}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma q+\frac{q+1}{r+1}} . \tag{4.12}
\end{equation*}
$$

Using (4.2) and the following inequality[4]:
$z^{v} \leq z+1 \leq\left(1+\frac{1}{\omega}\right)(z+\omega), \forall z \geq 0,0<v \leq 1, \omega>0$, we obtain, for $t \geq 0$,

$$
\begin{align*}
\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma p+\frac{p+1}{r+1}} & \leq d\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}+H(0)\right) \\
& \leq d\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}+H(t)\right) \tag{4.13}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)^{\sigma q+\frac{q+1}{r+1}} \leq d\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}+H(t)\right) \tag{4.14}
\end{equation*}
$$

ÇELİK et al./Turk J Math

for $\omega=H(0)$ and $d=1+\frac{1}{H(0)}$. Substituting (4.11)-(4.14) into (4.10), by (2.4) we have

$$
\begin{align*}
& \psi^{\prime}(t) \geq\left(1-\sigma-\frac{\varepsilon p n_{1}}{p+1}-\frac{\varepsilon q n_{2}}{q+1}\right) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{\alpha+3}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right) \\
&+\varepsilon\left(\alpha+1-\frac{n_{1}-p c_{1}{ }^{\sigma p} C_{10} d}{p+1}-\frac{n_{2}{ }^{-q} c_{1}{ }^{\sigma q} C_{11} d}{q+1}\right) H(t)+\varepsilon\left(\frac{\alpha-1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right) \\
&+\varepsilon\left(c_{0}(r-\alpha)-\frac{n_{1}{ }^{-p} c_{1}{ }^{\sigma p} C_{10} d}{p+1}-\frac{n_{2}{ }^{-q} c_{1} \sigma q}{q+1} C_{11} d\right. \tag{4.15}\\
& q+1
\end{align*}\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right) .
$$

We choose n_{1}, n_{2} large enough so that

$$
c_{0}(r-\alpha)-\frac{n_{1}^{-p} c_{1}{ }^{\sigma p} C_{10} d}{p+1}-\frac{n_{2}^{-q} c_{1}{ }^{\sigma q} C_{11} d}{q+1} \geq \frac{c_{0}(r-\alpha)}{2}
$$

and

$$
\alpha+1-\frac{n_{1}{ }^{-p} c_{1}{ }^{\sigma p} C_{10} d}{p+1}-\frac{n_{2}{ }^{-q} c_{1}{ }^{\sigma q} C_{11} d}{q+1} \geq \frac{\alpha+1}{2} .
$$

Choose ε small enough so that $1-\sigma-\frac{\varepsilon p n_{1}}{p+1}-\frac{\varepsilon q n_{2}}{q+1} \geq 0$. Then we get

$$
\begin{align*}
\psi^{\prime}(t) \geq & \varepsilon\left(\frac{\alpha+3}{2}\right)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\varepsilon\left(\frac{\alpha+1}{2}\right) H(t) \\
& +\varepsilon\left(\frac{\alpha-1}{2}\right)\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}\right)+\varepsilon\left(\frac{c_{0}(r-\alpha)}{2}\right)\left(\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right) \\
\geq & \eta\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+H(t)+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}+\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right), \tag{4.16}
\end{align*}
$$

where $\eta=\min \left\{\varepsilon \frac{(\alpha+3)}{2}, \varepsilon \frac{(\alpha+1)}{2}, \varepsilon \frac{(\alpha-1)}{2}, \varepsilon \frac{c_{0}(r-\alpha)}{2}\right\}$. Consequently, we have

$$
\begin{equation*}
\psi(t) \geq \psi(0)=H^{1-\sigma}(0)+\varepsilon\left(\int_{\Omega} u_{0} u_{1} d x+\int_{\Omega} v_{0} v_{1} d x\right)>0, \quad \forall t \geq 0 \tag{4.17}
\end{equation*}
$$

Next we estimate $\psi^{\frac{1}{1-\sigma}}(t)$. We have

$$
\begin{align*}
\psi^{\frac{1}{1-\sigma}}(t) & =\left[H^{1-\sigma}(t)+\varepsilon\left(\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right)\right]^{\frac{1}{1-\sigma}} \\
& \leq 2^{\frac{\sigma}{1-\sigma}}\left[H(t)+\varepsilon^{\frac{1}{1-\sigma}}\left(\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right)^{\frac{1}{1-\sigma}}\right] \tag{4.18}
\end{align*}
$$

ÇELİK et al./Turk J Math

By Hölder's inequality, the Sobolev embedding theorem $L^{r+1}(\Omega) \hookrightarrow L^{2}(\Omega)$, and Young's inequality, we have

$$
\begin{align*}
\left|\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right|^{\frac{1}{1-\sigma}} & \leq C\left(\|u\|^{\frac{1}{1-\sigma}}\left\|u_{t}\right\|^{\frac{1}{1-\sigma}}+\|v\|^{\frac{1}{1-\sigma}}\left\|v_{t}\right\|^{\frac{1}{1-\sigma}}\right) \\
& \leq C\left(\|u\|_{r+1}^{\frac{1}{1-\sigma}}\left\|u_{t}\right\|^{\frac{1}{1-\sigma}}+\|v\|_{(r+1)}^{\frac{1}{1-\sigma}}\left\|v_{t}\right\|^{\frac{1}{1-\sigma}}\right) \\
& \leq C\left(\|u\|_{r+1}^{\frac{\mu}{1-\sigma}}\left\|u_{t}\right\|^{\frac{\lambda}{1-\sigma}}+\|v\|_{r+1}^{\frac{\mu}{1-\sigma}}\left\|v_{t}\right\|^{\frac{\lambda}{1-\sigma}}\right) \tag{4.19}
\end{align*}
$$

where $\frac{1}{\mu}+\frac{1}{\lambda}=1$. We get $\lambda=2(1-\sigma)$, to obtain $\mu=\frac{2(1-\sigma)}{1-2 \sigma} \leq r+1$ by (4.2). Hence, (4.19) comes

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right|^{\frac{1}{1-\sigma}} \leq C\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\|u\|_{r+1}^{\frac{2}{1-2 \sigma}}+\|v\|_{r+1}^{\frac{2}{1-2 \sigma}}\right) \tag{4.20}
\end{equation*}
$$

From (4.2), since $\frac{2}{1-2 \sigma} \leq r+1$, furthermore, we have

$$
\begin{gathered}
\|u\|_{r+1}^{\frac{2}{1-2 \sigma}}=\left(\|u\|_{r+1}^{r+1}\right)^{\frac{2}{(1-2 \sigma)(r+1)}} \leq d\left(\|u\|_{r+1}^{r+1}+H(t)\right) \\
\|v\|_{r+1}^{\frac{2}{1-2 \sigma}}=\left(\|v\|_{r+1}^{r+1}\right)^{\frac{2}{(1-2 \sigma)(r+1)}} \leq d\left(\|v\|_{r+1}^{r+1}+H(t)\right)
\end{gathered}
$$

and

$$
\begin{align*}
\left|\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right|^{\frac{1}{1-\sigma}} & \leq C\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}+H(t)\right) \\
& \leq C\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+H(t)+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}+\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right) \tag{4.21}
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
\psi^{\frac{1}{1-\sigma}}(t) \leq & 2^{\frac{\sigma}{1-\sigma}}\left[H(t)+\varepsilon^{\frac{1}{1-\sigma}} C\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+H(t)\right)\right. \\
& \left.+\varepsilon^{\frac{1}{1-\sigma}} C\left(m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}+\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right)\right] \\
\leq & C_{*}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+H(t)+m_{1}^{2}\|u\|^{2}+m_{2}^{2}\|v\|^{2}+\|u\|_{r+1}^{r+1}+\|v\|_{r+1}^{r+1}\right) \tag{4.22}
\end{align*}
$$

where $C_{*}=2^{\frac{\sigma}{1-\sigma}}\left(1+\varepsilon^{\frac{1}{1-\sigma}} C\right)$.
A combination of (4.16) and (4.22), we conclude that

$$
\begin{equation*}
\psi^{\prime}(t) \geq \xi \psi^{\frac{1}{1-\sigma}}(t), \quad \frac{1}{1-\sigma}>1 \tag{4.23}
\end{equation*}
$$

where ξ is some positive constant. A simple integration of (4.23) yields

$$
\psi^{\frac{\sigma}{1-\sigma}}(t) \geq \frac{1}{\psi^{-\frac{\sigma}{1-\sigma}}(0)-\frac{\xi \sigma t}{1-\sigma}} .
$$

Thus the solution of $H(t)$ blows up in a finite time T^{*}, with

$$
T^{*} \leq \frac{1-\sigma}{\xi \sigma \psi^{\frac{\sigma}{1-\sigma}}(0)} .
$$

References

[1] Adams RA. J.J.F. Fournier. Sobolev Spaces. Academic Press: New York, 2003.
[2] Agre K, Rammaha MA. Systems of nonlinear wave equations with damping and source terms. Differential of Integral Equations 2006; 19 (11): 1235-1270.
[3] Georgiev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms. Journal of Differential Equations 1994; 109 (2): 295-308.
[4] Hao J, Niu S, Meng H. Global nonexistence of solutions for nonlinear coupled viscoelastic wave equations with damping and source terms. Boundary Value Problems 2014; 2014 (250): 1-11. https://doi.org/10.1186/s13661-014-0250-z
[5] Komornik V. Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics, Masson, Paris, France, 1994.
[6] Levine HA. Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=$ $-A u+F(u)$, Transactions of the American Mathematical Society 1974; 192: 1-21.
[7] Lions JL. Control of distributed singular systems, Gauthier-Villars, Paris, 1985.
[8] Messaoudi SA, Houari BS. Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Journal of Mathematical Analysis Applications 2010; 365 (1): 277-287.
[9] Nakao M. Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term. Journal of Mathematical Analysis and Applications 1977; 58 (2): 336-343. https://doi.org/10.1016/0022-247X(77)90211-6
[10] Pişkin E. Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms. Mathematical Sciences Letters 2014; 3 (3): 189-191. https://doi.org/10.12785/msl/030309
[11] Pişkin E. Lower bounds for blow-up time of coupled nonlinear Klein-Gordon equations. Gulf Journal of Mathematics 2017; 5 (2): 56-61.
[12] Pişkin E, Polat N. Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms. Turkish Journal of Mathematics 2013; 37 (4): 633-651. https://doi.org/10.3906/mat-1110-48
[13] Pişkin E. Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms. Mathematical Methods in the Applied Sciences 2014; 37 (18): 3036-3047. https://doi.org/10.1002/mma. 3042
[14] Segal I. Nonlinear partial differential equations in quantum field theory. Proceedings of Symposia in Applied Mathematics, American Mathematical Society, Providence, RI, 1965; 17: 210-226.
[15] Wu ST. Blow-up of solutions for a system of nonlinear wave equations with nonlinear damping. Electronic Journal of Differential Equations 2009; 2009 (105): 1-11.
[16] Wu ST. Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear Klein-Gordon equations with damping terms. Acta Applicandae Mathematicae 2012; 119: 75-95. https://doi.org/10.1007/s10440-011-9662-2
[17] Ye Y. Global existence and asymptotic stability for coupled nonlinear Klein-Gordon equations with nonlinear damping terms. Dynamical Systems 2013; 28 (2): 287-298. https://doi.org/10.1080/14689367.2013.792330

[^0]: *Correspondence: zeynep.celik10@ogr.sakarya.edu.tr 2010 AMS Mathematics Subject Classification:

