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Abstract: The results on I'-hypersemigroups are obtained either as corollaries of corresponding results on Ve or poe-
semigroups or on the line of the corresponding results on le-semigroups. It has come to our attention that Theorem
3.22 in [4] cannot be obtained as corollary to Theorem 2.2 of the same paper as for a I'-hypersemigroup, (P*(M),I",C)
is a Ve-semigroup and not an le-semigroup. Also on p. 1850, 1. 12 in [4], the “le-semigroup” should be changed to
“Ve-semigroup”. In the present paper we prove Theorems 3.26 and 3.28 stated without proof in [4]. On this occasion,
some further results are given to emphasize what we say. The results on I'-hypersemigroups are obtained from the more

abstract structure of the poe-semigroups. Further investigation on poe-semigroups and le-semigroups is interesting.
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1. Introduction
We use the term I'-hypersemigroup instead of I'-semihypergroup; hypersemigroup instead of semihypergroup.

The results on I'-hypersemigroups are obtained from poe-semigroups, Ve-semigroups or from the le-
semigroups (lattice ordered semigroups). On the other hand, according to the introduction of [1], a T'-
semihypergroup is a generalization of semigroup, I'-semigroup and semihypergroup and the investigation on
this structure is very important. This is from the introduction of [1]: “Some motivations for the study of hy-
persemigroups comes mainly from inside mathematics, computer sciences, biological inheritance, cryptography,
theoretical physics, physical phenomenon as the nuclear fission, chemical reactions and redox reactions and a
lot of other fields. This wide range of applications in various fields had led to the expansion and generalization
of hyperstructures in recent decades, such as H,-structures and I'-hyperstructures. A lot of work has been
done in general on the theory of I'-hyperstructures, in particular, I'-semihypergroups by many algebraists,
preparing the mathematical background for further applications. Hyperideal theory is important not only for
the intrinsic interest and purity of its logical structure but because it is necessary tool in many branches of
mathematics and its applications. Several related results have been obtained in I'-semihypergroups. However,
the very fundamental results of I'-hyperideals in different important classes of I'-semihypergroups remained
yet untouched.”

Detailed information about the definition of a I'-semigroup has been given in [3].

We will give some results on poe-semigroups and le-semigroups and their analogous for I'-hypersemigroups

that can be obtained either as corollaries or on the line of the proof of the le-semigroups. Besides, if we want
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to check if a result on a I'-hypersemigroup is true or not, then we always check it for a poe or le-semigroup.
This paper is a continuation of [4]. For any definition not given in the present paper we refer to [4].

We also refer to the introduction of [4].

2. Main results
The operation I' in [4, Definition 3.3] is well defined. Indeed: If (A, B) € P*(M) x P*(M) then, by [4, Remark

3.4], ATB = U avb. For every a € A, b€ B, v €T, by [4, Definition 3.1(1)], we have ayb € P*(M),
a€AbEB,yET

thus we get ATB € P*(M). If (A,B),(C,D) € P*(M) x P*(M) such that (A,B) = (C,D) then, by [4,

Remark 3.4], we have AT'B = U ayb = U ayb=CI'D.
a€AbeB,yeT acC,beD ~ell

The operation 7 in [4, Definition 3.2] is well defined. Indeed: If (A,B) € P*(M) x P*(M) then, by [4,

Definition 3.2], AAB= |J avb. Forevery a € A, b € B, by [4, Definition 3.1], we have ayb € P*(M), thus
acA,beB

A¥B € P*(M). If (A, B),(C,D) € P*(M) x P*(M) such that (A, B) = (C,D), then AAB= |J ayb=
acA,beB

U ayb=CHD.
acC,beD

Definition 2.1 [4, Definition 3.25] A T -hypersemigroup M is called intra-regular if for every a € M there
erist x,y € M and v,u,p €' such that

a € (zya)(apy).

Theorem 2.2 [/, Theorem 3.26] A T -hypersemigroup M is intra-regular if and only if, for every right ideal A
and every left ideal B of M, we have AN B C BT'A.

To prove this theorem, we need the following proposition.
We write, for short, aI'M instead of {a}I'M, MTa instead of MT'{a}, etc.

Proposition 2.3 Let M be a T -hypersemigroup. The following are equivalent:
(1) M is intra-regular.
(2) For any nonempty subset A of M, we have A C MTAT AT M .
(3) For any a € M, we have a € MT'al'al'M .

Proof (1) = (2). Let 0 # A C M and a € A. Since M is intra-regular, there exist z,y € M
and 7y, u,p € T' such that a € (zya)i(apy). Since v € M, v € T, a € A, by [4, Lemma 3.7(2)], we
have zya C MTA; since a € A, p € T, y € M, we have apy C ATM. By [4, Lemma 3.6], we have
(xya)@(apy) C (MTA)E(ATM). By [4, Definition 3.3], we have (MTA)@(AT'M) C (MTA)I'(AT'M). By [4,
Proposition 3.17], we have (MTA)['(AT'M) = MTATAT'M and so a € MTATATM .

The implication (2) = (3) is obvious.

(3) = (1). Let a € M. By hypothesis, we have a € (MTa)['(aI'M). By [4, Lemma 3.7(1)], we have a € upv
for some v € MTl'a, pel', veal'M, u € zya for some x € M, y€Tl', v € apy for some pe ', y € M. By
[4, Lemmas 3.5 and 3.6], a € upv = {u}n{v} C (xya)i(apy). Then we have a € (xya)i(apy), where z,y € M
and v,u,p € I' and so M is intra-regular. O
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Proof of Theorem 2.2:

—>. Let A be a right ideal and B a left ideal of M. By [4, Proposition 3.12], the set AN B is nonempty.
Since M is intra-regular and AN B # @), by Proposition 2.3, we have ANB C MT(ANB)I'(ANB)I'M. Since
AN B C A, B, by [4, Proposition 3.8], we have MT' (AN B)I'(AN B)I'M C (MI'B)I'(AT'M) C BT'A and so
ANBC BTA.

<=. Let a € M. By hypothesis, we have

a € R(a)NL(a) = L(a)T'R(a) = (aUMTa)'(aUal'M) (by [4, Proposition 3.21])
= al'aUMTal'aUal'al' M U MTal'al'M (by [4, Proposition 3.13]).

If a € al'a, then a € al'a C (al'a)T(al'a) C MTal'al'M (by [4, Lemma 3.8 and Proposition 3.17]).

If a € MTal'a, then a € MT'al'a C MT'(MTal'a)l'a = (MTM)I'(al'al'a) C MT'(al'al’'M) = MT'al'al' M .
If a € al'al’' M, in a similar way we get a € MT'al'al'M .

In each case, we have a € MT'al'al' M . By Proposition 2.3(3) = (1), M is intra-regular.

Definition 2.4 [/, Definition 3.27] A T -hypersemigroup M is called right (resp. left) reqular if for every a € M
there exist x € M and v,u € ' such that

a € (aya)i{a} (resp. a € {2}7(apa)).

Theorem 2.5 [/, Theorem 3.28] A T -hypersemigroup M is right (resp. left) reqular and right (resp. left) duo
if and only if for every right (resp. left) ideals A, B of M we have AN B = AT'B (resp. ANB = BTA).

To prove this theorem we need the following proposition.

Proposition 2.6 Let M be T -hypersemigroup. The following are equivalent:
(1) M is right (resp. left) reqular.
(2) For every nonempty subset A of M, we have A C ATATM (resp. A C MTATA ).
(3) For every a € M, we have a € al'al' M (resp. a € MT'al'a ).

Proof (1) = (2). Let 0 # AC M and a € A. Since M is right regular, there exist x € M and vy,u € T
such that a € (aya)i{z}. By [4, Definition 3.3], (aya)fi{z} C (aya)I'{z}. By [4, Lemma 3.7(2)], aya C al'a.
By [4, Lemma 3.8 and Proposition 3.17], (aya)I'{z} C (ATA)T'M = ATAT'M and so a € ATATM.

The implication (2) = (3) is obvious.

(3) = (1). Let a € M. By hypothesis and [4, Proposition 3.17], we have a € al'al'M = (al'a)TM . By [4,
Lemma 3.7(1)], a € upx for some v € al'a, p € T', v € M and u € aya for some v € I'. By [4, Lemmas 3.5
and 3.6], we have a € upz = {u}i{z} C (aya)i{z}. We have a € (aya)a{z}, where © € M and v, € I’ and
so M is right regular. O

Proof of Theorem 2.5:
=—. Let M be a right regular and right duo and A, B be right ideals of M. Then AI'B C A'M C A; since

M is right duo, B is a right ideal of M as well and so AT'B C MT'B C B. Thus we have AT'B C AN B. Since
A is a right ideal and B a left ideal of M, by [4, Proposition 3.12], AN B # (. Since M is right regular and
AN B # 0, by Proposition 2.6, ANB C (ANB)I'(ANB)I'M. Since ANB C A, B, by [4, Lemma 3.8], we
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have (ANB)ITM C ATM NBI'M C AN B. Then we have ANB C (ANB)['(ANB) C AT'B.
<. Let A be a right ideal of M. Since M is a right ideal of M, by hypothesis, we have A= ANM = MTA
and so A is a left ideal of M and M is right duo. Let now a € M. By hypothesis, we have

a€ R(@)NR(a) = R(aT'R(a)=(aUal'M)I'(aUal'M) (by [4, Proposition 3.21])
= al'eUal’'MT'aUal'al' M U al'MTal' M.

If a € al'a, then a € al'a C al'al’'a C al’'al’'M .

If a € a’'MTa, then a € aI'MT'(aI'MTa) = al' MT'(aI'M)Ta (by [4, Proposition 3.17]). The set aI'M is a
right ideal of M (as (aI'M)I'M = aI'(MT'M) C oI'M). Since M is right duo, al'M is a left ideal of M as
well i.e. MT(aI'M) C al'M . Thus we have a € al'(aI'M)l'a = al'al'(MTa) C al'al'(MTM) C al'al'M .

Let a € al’MTal'M . Then a € (aI'M)T'(aT'M). Since aI'M is a right ideal of M and M is right duo, aI'M
is a left ideal of M as well and so MT'(aI'M) C aI'M . Then we have a € al' MT'(aT'M) C al'al'M .

Thus we have a € al'al'M for every a € M and, by Proposition 2.6(3) = (1), M is right regular.

Proposition 2.7 If (M,T") is a I'-hypersemigroup, then (P*(M),I';C) is a Ve-semigroup and a poe-

semigroup.

Proof By [4, Corollary 3.18], (P*(M),T') is a semigroup. The inclusion relation “C” is clearly an order on
P*(M) and, for any A, B € P*(M), the set AU B is the supremum of A and B. Moreover, by [4, Proposition
3.13], for any A,B,C € P*(M), we have (AU B)I'C = AT'C U BI'C and ATI'(BUC) = ATBU AT'C. Thus
(P*(M),T,C) is a Ve-semigroup. Moreover, every Ve-semigroup if a poe-semigroup. Indeed: Let (5,-, <) bea

Ve-semigroup and a, b, ¢ € S such that a < b. Then ac < acVbe = (aVb)e = be and ca < caVeb = c¢(aVb) = cb.
O

Definition 2.8 A poe-semigroup S is called completely regular if it is reqular, right regular and left reqular.

A T -hypersemigroup M is called completely reqular if it is reqular, right reqular and left regular.
Proposition 2.9 A poe-semigroup (S,-,<) is completely regular if and only if a < a*ea® for every a € S.

Proof =—. Let a € S. Since S is completely regular, we have a < aea, a < a?e and a < ea?, thus we have
a < aea < (a%e)e(ea?) < a’ea®.

2

<. Let a € S. By hypothesis, we have a < a?ea® < aea, a’e, ea? and so S is completely regular. O

Proposition 2.10 A I'-hypersemigroup M is completely reqular if and only if, for any nonempty subset A of
M, we have A C ATAI'MT AT'A.

Proof (on the line of Proposition 2.9).

=>. Let A be a nonempty subset of S. Since M is regular and A # @, by [4, Proposition 3.20], we have
A C ATMTA. Since M is right regular and left regular and A # (), by Proposition 2.6, we have A C ATATM
and A C MTAT'A. Thus we have

A

N

ATMT A C (ATATM)TMT(MTATA) (by [4, Lemma 3.8])
ATAT(MTMTM)TAT A (by [4, Proposition 3.17])
C ATATMTATA (since M'MT'M = MT'(MTM) C MT'M C M).
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Thus we have A C ATATMT AT A.
<. Let ) # A C M. By hypothesis, we have
AC ATATMTATA C AT(MTMTM)TAC ATMTA,
A C ATATMTATA C ATAT(MTATM) C ATAT(MTMTM) C ATATM ,
A C ATATMTATA C (MTMI'M)TATA C MTATA,
and so M is completely regular.
Second Proof (as corollary to Proposition 2.9).
M is a completely regular I'-hypersemigroup if and only if (P*(M),T’, C) is a completely regular poe-semigroup
if and only if A C ATATMT AT'A for every A € P*(M) (by Proposition 2.9) if and only if A C ATATMTAT'A
for every ) £ A C M.

Proposition 2.11 A poe-semigroup S is reqular and right (resp. left) reqular if and only if a < a®ea (resp.

a < aea®) for every a € S.

Proof =—-. If S is regular and right regular, then a < aea and a < a?e for every a € S, thus a < aea <
(a%e)ea = a*e?a < a?ea for every a € S.
<. If a < a®ea for every a € S, then a < aea and a < a’e for every a € S and so S is regular and right

regular. O

Corollary 2.12 A T -hypersemigroup is both reqular and right (resp. left) regular if and only if, for any
nonempty subset A of M, we have A C ATATMTA (resp. A C ATMTATA).

An element b of a poe-semigroup S is called a bi-ideal element of S if beb < b. A nonempty subset B of
a I'-hypersemigroup M is called bi-ideal of M if BTMT B C B; that is, if x € uyb for some w € BITM, y €T,
be B and u € cus for some c € B, p €', s € M, then x € B. An element a of a po-groupoid S is called
semiprime if for any ¢ € S such that t2 < a, we have t < a. A nonempty subset A of a I'-hypersemigroup M
is called semiprime if for any nonempty subset T" of M such that TT'T C A, we have T'C A.

Theorem 2.13 A poe-semigroup S is completely regqular if and only if the bi-ideal elements of S are semiprime.

Proof =. Let b be a bi-ideal element of S and a € S such that a? < b. Since S is completely regular, by
Proposition 2.9, we have a < a?ea® < beb < b and so a < b.
<. Let a € S. The element a?ea? is a bi-ideal element of S as (a%ea?)e(a?ea?) < a’ea®. Since (a)? = a® =

2 2

a?a*a? < a®ea? and a%ea? is semiprime, we have a* < a?ed?, a® < a%ea® and a < a’ea®. By Proposition 2.9,

S is completely regular. O

Corollary 2.14 A T -hypersemigroup M is completely reqular if and only if the bi-ideals of M are semiprime.

Proposition 2.15 Let S be an intra-regular poe-semigroup, i € S and j an ideal element of S such that
i2<j. Then i <j.

Proof Since S is intra-regular and i € S, we have i < ei%e < eje = (ej)e < je < j and so i < j. O
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Corollary 2.16 (see [1, Theorem 3.5]) Let M be an intra-regular T -hypersemigroup, I a nonempty subset of
M and J an ideal of M such that ITI C J. Then I C J.

According to [1, Theorem 3.5] in the above corollary the set I should be an ideal. Proposition 2.15 shows
that I is not only an ideal but, more generally, a nonempty subset of S'.

An element a of a po-groupoid S is called idempotent if a> = a. A nonempty subset A of a I'-
hypersemigroup M is called idempotent if AT'A = A; that is, x € A if and only if there exist a,b € A and
v € I' such that = € avyb.

Proposition 2.17 If Sis a reqular poe -semigroup then, for any a € S, the elements ae and ea are idempotent.

In particular, if S is a regular Ve-semigroup then, for every a € S, we have
r(a) = ae = r(ae) and l(a) = ea = l(ea).

Proof Let a € S. Since S is regular, we have a < aea. Then
ae < (aea)e = (ae)(ae) = a(eae) < ae and ea < e(aca) = (ea)(ea) = (eae)a < ea
and so ae and ea are idempotent. Let now S be a regular Ve-semigroup and a € S. Since S is regular, we
have
r(a) =aVae < aeaVae=ae <r(a), l(a) =aVea<aeaVea=ea<l(a)
and so r(a) = ae and I(a) = ea. In addition,

r(ae) = ae V (ae)e = ae = r(a) and l(ea) = ea V e(ea) = ea = l(a). O

Corollary 2.18 If M is a regular T -hypersemigroup then, for any nonempty subset A of M, the sets AUM and
MT A are idempotent and we have

R(A) = ATM = R(ATM) and L(A) = MTA = L(MTA).

Theorem 2.19 Let S be poe-semigroup. If a is a right ideal element of S and b € S (or a € S and b a left
ideal element of S), then the element ab is a bi-ideal element of S. In particular, if S is a regular Ve-semigroup

and x is a bi-ideal element of S, then there exists a right ideal element a and a left ideal element b of S such
that x = ab.

Proof = . If a is a right ideal element of S and b € S, then (ab)e(ab) = a(bea)b < (ae)b < ab. If a € §
and b is a left ideal element of S, then (ab)e(ab) = a(bea)b < a(eb) < ab.
<. Let S be a regular Ve-semigroup and x a bi-ideal element of S. We have
r(x)l(z) = (v Vae)(x Ver) =22 Vrex V (ve)(ex) = 22 V wex.
Since S is regular, and z is a bi-ideal element of S, we have 2 = xew, then 2% = (vex)r = z(ex)r < zex.

Thus we have r(x)l(z) = zex = x, where r(x) is a right ideal element and I(z) is a left ideal element of S. O

Corollary 2.20 Let M be a regular T -hypersemigroup. Then X is a bi-ideal of M if and only if there exists a
right ideal A and a left ideal B of M such that X = AT'B.

A po-groupoid S is called right (resp. left) duo if the right (resp. left) ideal elements of S are left (resp.
right) ideal elements of S as well (that is, ideal elements of S). A T'-hypersemigroup M is said to be right
(resp. left) duo if every right (resp. left) ideal of M is an ideal of M [4].
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Proposition 2.21 If S is a Ve-semigroup regular and right (resp. left) duo, then every bi-ideal element of S
is a left (resp. right) ideal element of S.

Proof Let S be regular and right duo and = be a bi-ideal element of S. Since S is regular, by Theorem 2.19,
there exists a right ideal element a and a left ideal element b of S such that x = ab. Since S is a duo, a is a

left ideal element of S as well. Then ex = e(ab) = (ea)b < ab =z and so x is a left ideal element of S. O

Corollary 2.22 If M is a I'-hypesemigroup reqular and right (resp. left) duo, then every bi-ideal of M is a left
(resp. right) ideal of M.

A right (resp. left) ideal element a of a po-groupoid S is called minimal if there is no right (resp. left)
ideal element b of S such that b < a. That is, if b is a right (resp. left) ideal element of S such that b < a,
then b = a. A bi-ideal element a of a poe-semigroup S is called minimal if there is no bi-ideal element b of
S such that b < a. That is, if b is a bi-ideal element of S such that b < a, then b = a. A right ideal A of a
I'-hypersemigroup M is called minimal if there is no right ideal B of M such that B C A; that is if B is a
right ideal of M such that B C A, then B = A. The same if we replace the word “right” by “left” or “bi-ideal”.

Theorem 2.23 Let S be a poe-semigroup. If = is a minimal bi-ideal element of S, then there exists a minimal

right ideal element a and a minimal left ideal element b of S such that x = ab.

Proof Let z be a minimal bi-ideal element of S. The element ze (resp. ex) is a right (resp. left) ideal
element of S. Let z be a right ideal element of S such that z < xe. Then z = xe. Indeed: zx is a bi-ideal
element of S (see also Theorem 2.19). Since zz < (ze)x < z and z is a minimal bi-ideal element of S, we have
zx = x. Then we have ze = (zz)e < ze < z, then z = ze and so ze is a minimal right ideal element of S. Let
now t be a left ideal element of S such that ¢t < ex. Then at is a bi-ideal element of S and zt < z(ex) < z.
Since x is a minimal bi-ideal element of S, we have zt = z. Then ex = e(xt) < et < ¢, then ¢t = ex and so ex
is a minimal left ideal element of S. We have x = (ze)(ex). Indeed: Since ze is a right ideal element of S,
by Theorem 2.19, (ze)(ex) is a bi-ideal element of S. Since (ze)(ex) < zexr < z and z is a minimal bi-ideal

element of S, we have z = (ze)(ex). O

Corollary 2.24 If M is T'-hypersemigroup and X a minimal bi-ideal of M , then the set BI'M is a minimal
right ideal of M, the set MT'B is a minimal left ideal of M, and we have X = (BT M)I'(MTB).

An element a of a po-groupoid S is called subidempotent if a? < a. A nonempty subset A of a I'-
hypersemigroup M is called subidempotent if AT'A C A; that is, if = € ayb for some a,b € A, v € T', then
x € A. A poe-groupoid S is called right (resp. left) simple if the element e is the only right (resp. left) ideal
element of S; that is if a is a right (resp. left) ideal element of S, then a = e. A TI'-hypersemigroup M is
called right (resp. left) simple if M is the only right (resp. left) ideal of M.

Proposition 2.25 Let S be a Ve-semigroup. If S is right (resp. left) simple, then every subidempotent bi-ideal
element of S is a left (resp. right) ideal element of S.

Proof Let S be right simple and b a subidempotent bi-ideal element of S. Since S is right simple and r(b)
is a right ideal element of S, we have r(b) = e. Then eb = 7(b)b = (bV be)b = b> V beb < b and so b is a left
ideal element of S. O
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Corollary 2.26 If M is a right (resp. left) simple T -hypersemigroup, then every subidempotent bi-ideal of M
is a left (resp. right) ideal of M.

Proposition 2.27 If S is an intra-regular poe-semigroup, then every ideal element of S is idempotent.

Proof Let a be an ideal element of S. Then a2

2

is an ideal element of S as well. Indeed, a?ec = a(ae) < a?
and ea? = (ea)a < a?. Since S is intra-regular, we have a < ea?e = (ea?)e < a?e < a? < ea < a and so

a® =a. O
Corollary 2.28 If M is an intra-reqular T'-hypersemigroup, then every ideal of M is idempotent.

Theorem 2.29 Let S be a poe-semigroup. If S is reqular and intra-regqular, then the bi-ideal elements of S are
idempotent. Conversely, if S is an le-semigroup and the bi-ideal elements of S are idempotent, then S is reqular

and intra-reqular.

Proof =—. Let b be a bi-ideal element of S. Since S is regular, we have b < beb and so b = beb. Then
b% = (beb)b = b(eb)b < beb = b and so b2 < b. Since S is intra-regular, we have b < eb?e. Thus we have

b = beb = be(beb) = bebeb < be(eb’e)eb = (be?b)(be®b) < (beb)(beb) = b2,

then b < b? and so b = b2.

<=. Let now S be an le-semigroup, a be a right ideal element and b a left ideal element of S. Then
a A'b is a bi-ideal of S. Indeed, (a Ab)e(a Ab) < a(eb) < ab < ae Aeb < a Ab. By hypothesis, we have
aNb=(aAb)? = (aAb)(aAb) <ab,ba. Since a Ab< ab, by [4, Theorem 2.2], S is regular. Since a A b < ba,
by [4, Theorem 2.4], S is intra-regular. O

According to Theorem 2.29, the following holds.

Theorem 2.30 Let M be a T -hypersemigroup. Then M is regular and intra-reqular if and only if the bi-ideals
of M are idempotent.

Proof The =-part can be obtained as a corollary to the first part of Theorem 2.29.
<=. On the line of the proof of Theorem 2.29 : Let A be a right ideal and B a left ideal of M. Then AN B
is a bi-ideal of M. Indeed, by [4, Proposition 3.12], we have AN B # §); moreover

(ANB)TMT(ANB) C AT(MTB) C ATBC ATM N MTBC ANB.
By hypothesis, we have AN B = (AN B)I' (AN B) C ATB,BT'A. Since AN B C AT'B, by [4, Theorem 3.22],
M is regular. Since AN B C BI'A, by Theorem 2.2, M is intra-regular. O

An element ¢ of a poe-semigroup S is called quasi-ideal element of S if ge A eq exists in S and we
have ge A eq < q. A nonempty subset @@ of a I'-hypersemigroup M is said to be a quasi-ideal of M if
QM NMTQ C Q; that is, if x € g ymy for some ¢ € Q, vy €T, m; € M and x € mougy for some mo € M|
peTl, gge@,then z €Q.

Proposition 2.31 In a poe-semigroup, every quasi-ideal element (if it exists) is a bi-ideal element. In a reqular

le -semigroup, the concepts of bi-ideal elements and quasi-ideal elements are the same.
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Proof If S is a poe-semigroup and ¢ a quasi-ideal element of S, then geq < ge Aeq < g and so ¢ is a
bi-ideal element of S. Let now S be a regular le-semigroup and = a bi-ideal element of S. The element
xe (resp. ex) is a right (resp. left) ideal element of S. Since S is regular, by [4, Theorem 2.2], we have

re A ex = (ve)(ex) = wex < zex <z and so z is a quasi-ideal element of S. O

According to Proposition 2.31, we have the following proposition. Let us give its proof to be able to

compare it with the proof of Proposition 2.31 to see that both are the same.

Proposition 2.32 In a reqular I -hypersemigroup M, the concepts of bi-ideals and quasi-ideals coincide.

Proof If Q is a quasi-ideal of M, then

QTMTQ = QT(MTQ)N (QTM)T'Q (by [4, Proposition 3.17])
C  QU(MTM)N (MIM)DQ (by [4, Lemma 3.8])
C QUM N MTQ (as MTM C M)
c Q,

and so @ is a bi-ideal of M. Let now M be a regular I'-hypersemigroup and X a bi-ideal of M. The set
XTM is a right ideal of M (as (XTM)I'M = XT'(MTM) C XI'M ) and MTX is a left ideal of M. Since M
is regular, by [4, Theorem 3.22], we have

XTMNMTX = (XIM)I(MTX)=XI(MTM)TX (by [4, Proposition 3.17])
C XTMTX CX,

and so X is a quasi-ideal of M . O
This is Theorem 3.8 in [1]: In a I'-hypersemigroup S the following statements are equivalent:
(1) S is intra-regular.
(2) For any left ideal I and any bi-ideal B of S, we have I N B C ITBT'S.
(3) For any left ideal I and any quasi-ideal @ of S, we have INQ C ITQI'S.
(4) For any right ideal J and any bi-ideal B of S, we have JN B CI'BTJ.
(5) For any right ideal J and any quasi-ideal @ of S, we have JNQ C STQTJ.

To check its validity, we prove it for a poe-semigroup. The following proposition holds.

2
3

Proposition 2.33 Let S be an le-semigroup. Then S is intra-regular if and only if, for any a,b € S, we have
a/Nb<eabe.

Proof =. Let a,b € S. Since S is intra-regular, we have a Ab < e(a Ab)(a A b)e < eabe.
<. Let a € S. By hypothesis, we have a = a A a < ea®e and so S is intra-regular. O

According to Proposition 2.33, the implication (1) = (2) in [1, Theorem 3.8] holds for any nonempty
subsets I, B of S.

Proposition 2.34 Let S be a poe-semigroup at the same time semilattice under A. If S is both reqular and
intra-reqular then, for every right ideal element z, every left ideal element y and every bi-ideal element b of S,

we have t Ab Ay < ybx.
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Proof We have

cAbAYy < (zAbAy)e(x AbAy) (since S is regular)
< (e(x AbAyY)(x AbA y)e) e(e(w AbAY) (@ AbA y)e) (since S is intra-regular)
= e(@AbAY)(ADAY)E (@ AbAY) (@ AbAY)e
< e(m/\b/\y)((w/\b/\y)e(m/\b/\y))(x/\b/\y)e
< ey(beb)(we) < yba.

From Proposition 2.34, we have the following proposition.

Proposition 2.35 [1, Proposition 4.7]: If M is a T -hypersemigroup both reqular and intra-regular, X a right
ideal, Y a left ideal and B a bi-ideal of M, then XN BNY CYI'BTX.

This is the main part of theorem 4.12 in [1] (as the equivalence of the other properties are obvious):
In a I'-hypersemigroup S the following statements are equivalent:

(1) S is both regular and intra-regular.

(2) For any bi-ideals A,B of S, ANB C (AI'B)N (BTA).

(3) For any quasi-ideals A,B of S, ANB C (AI'B) N (BT'A).

To check if it is true or not, we prove it for a poe-semigroup. We have the following:

Theorem 2.36 Let S be a poe-semigroup at the same time semilattice under A\. The following are equivalent:
(1) S is both regular and intra-regular.
(2) aANb<abAba for any bi-ideal elements a,b of S.
(3) aAb<abAba for any quasi-ideal elements a,b of S.

Then (1) = 2 = (3). In particular, if S is an le-semigroup then the three properties are equivalent:

Proof (1) = (2). Let a,b be bi-ideal elements of S. Then we have

anb < (aAble(and) < ((a Ab)e(a A b))e(a A b) (since S is regular)
= (anble(aNnble(aNDd)
< (an b)e(e(a Ab)(a A b)e)e(a A b) (since S is intra-regular)

< (anble(and)(aAb)e(aNb) < (aea)(beb) < ab.

By symmetry, we have b A a < ba and so a Ab < ab A ba.

(2) = (3). Let a,b be quasi-ideal elements of S. Then a,b are bi-ideal elements of S as well. By (2), we
have a Ab < ab A ba.

(3) = (1). Suppose now that S is an le-semigroup. Let a be a right ideal element and b a left ideal element
of S. Then a and b are quasi-ideal elements of S. By (3), we have a Ab < abAba < ab,ba. Since a Ab < ab,
by [4, Theorem 2.2], S is regular. Since a A b < ba, by [4, Theorem 2.4], S is intra-regular. O
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Remark 2.37 If S is an le-semigroup both regular and intra-regular then, by [4, Theorem 2.2], we have
aAb < ab and, by [4, Theorem 2.4], we have a Ab < ba and so a Ab < ab A ba and the implication (1) = (2)
of Theorem 2.36 is satisfied.

Theorem 2.38 (see also [2]) Let S be a poe-semigroup at the same time semilattice under A. If S is regular

then, for every right ideal element x, every bi-ideal element b and every left ideal element y of S, we have
rAbAy < zby. (2.1)
Conversely, every le-semigroup having the property (2.1) is reqular.

Proof = . Let z be a right ideal element, b a bi-ideal element and y a left ideal element of S. Since S is
regular, we have

cAbAy < (zAbAye(zAbAY) < ((x/\b/\y)e(w/\b/\y))e((az/\b/\y)e(w/\b/\y))

(a:/\b/\y)e((x/\b/\y)e(x/\b/\y))e(x/\b/\y)

IN

(ze)(beb)ey < xby.

<. Let z € S. Since r(z) (resp. l(z)) is a right (resp. left) ideal element and e is a bi-ideal element of S,
by hypothesis, we have

x<r(@)ANl(z) = rx)AeAl(z) <r(x)el(z) = (xVae)e(zVex)
= gexVzelrVzedr = rex.

Thus we have x < zex for every x € S, and S is regular.

As a modification of the proof of Theorem 2.38 the following theorem holds. Let us prove it to be able

to compare its proof with the proof of Theorem 2.38 to see that they are the same.

Theorem 2.39 A T -hypersemigroup M is reqular if and only if for every right ideal X, every left ideal Y and
every bi-ideal B of M, we have X N BNY C XT'BT'Y .

Proof =—. If XN BNY =0, then this clearly holds. If X N BNY # () then, since M is regular, by [4,

Proposition 3.20], we have

XNBNY C (XNnBnY)TMIXNBNY)

c ((X NBNY)TMI(XNBN Y))er((X NBNY)TMI(XNBN Y))

(XNBNY)TMT ((X NBNY)TMI(XNBN Y))FMF(X NBNY) (by [4, Proposition 3.17])

N

(XTM)T'(BLCMTB)I(MTY) (by [4, Lemma 3.8])
XTBTY.

N

<. Let ) # X C M. Since R(X) is a right ideal, L(X) a left ideal and M a bi-ideal of M , by hypothesis,
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we have

X C R(X)NL(X)=R(X)NMnL(X) = R(X)TMI'L(X)
= (XUXTM)I'MT(X UMTIX) (by [4, Proposition 3.21])
= XTMTXUXTMTIMTX UXTMTMTMTX (by [4, Proposition 3.13])
— XTIMTX UXD(MDM)DX UXT(MTMTM)DX (by [4, Proposition 3.17])
= XI'MTX (as MT'M C M and MTMTM C M).

Thus we have X C XI'MT'X for every () # X C M and by [4, Proposition 3.20], M is regular. O

Note: We have casually seen that Example 3.5 in [1] is not correct as {a}a(bfc) = {a}@{a} = aaa = {a,b}
while (aab)B{c} = {b}B{c} = bBc = {a} that is a further indication that the definition of the I'-hypersemigroup

should be corrected.

Note: Similar results obtained from poe, Ve or le-semigroups for an hypersemigroup also hold. It is enough
to replace the “I'” by “x”.
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