

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2023) 47: 1129 – 1143 © TÜBİTAK

doi:10.55730/1300-0098.3416

On k-generalized Lucas sequence with its triangle

Abdullah AÇIKEL¹®, Said AMROUCHE²®, Hacène BELBACHIR²,³®, Nurettin IRMAK⁴,*®

¹Hassa Vocational School, Hatay Mustafa Kemal University, Hatay, Turkey

²RECITS Laboratory, Faculty of Mathematics, USTHB, Po. Box 32, El Alia, Bab Ezzouar Algiers, Algeria

³Scientific and Technical Information Research Center, Ben Aknoun, Algiers, Algeria

⁴Department of Engineering Basic Science, Engineering and Natural Science Faculty,

Konya Technical University, Konya, Turkey

Received: 26.06.2021 • Accepted/Published Online: 03.02.2023 • Final Version: 16.05.2023

Abstract: In this paper, we investigate several identities of k-generalized Lucas numbers with k-generalized Fibonacci numbers. We also establish a link between generalized s-Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of $(1 + x + x^2 + \cdots + x^s)$, with $s \in \mathbb{N}$.

Key words: k-generalized Lucas sequence, arithmetic triangle, recurrence relation, bi^s nomial coefficient

1. Introduction

Let $\{G_n\}$ be a sequence defined by second-order linear recurrence relation $G_n = AG_{n-1} + BG_{n-2}$, $n \geq 2$ where A, B, G_0 and G_1 are given numbers. Assume that the sequence $\{H_n\}$ is defined by the same recurrence relation of $\{G_n\}$ with $H_0 = 2G_1 - AG_0$ and $H_1 = AG_1 + 2BG_0$. $\{H_n\}$ is called the associate sequence of $\{G_n\}$ (see [18]). Table 1 presents several well-known sequences with their associate sequences and A-numbers in Sloane's Encyclopedia of Integer Sequences[†].

Table 1. second-order well-known sequences

A	B	G_0	G_1	H_0	H_1	Sequence	Associate sequence	A-numbers		
1	1	0	1	2	1	Fibonacci	Lucas	A000045, A000032		
2	1	0	1	2	2	Pell	Pell-Lucas	A000129, A002203		
1	2	0	1	2	1	Jacobsthal	Jacobsthal-Lucas	A001045, A014551		
6	-1	0	1	2	6	Balancing	Balancing-Lucas	A001109, A003499		

There are several generalizations of the Fibonacci sequence. One of the generalizations relating to order is k-generalized Fibonacci sequence. For $k \geq 2, k$ -generalized Fibonacci sequence $\left\{F_n^{(k)}\right\}$ is defined by the

[†]Sloane NJA, The Online Encyclopedia of Integer Sequences. Available online at http://oeis.org/.

^{*}Corresponding author: irmaknurettin@gmail.com, nirmak@ktun.edu.tr 2010 AMS Mathematics Subject Classification: 05A10, 11B65, 11B39.

following recurrence relation

$$F_n^{(k)} = \begin{cases} 0, & \text{if } n = -1, \dots, -k+1; \\ 1, & \text{if } n = 0; \\ F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)} & \text{if } n > 1. \end{cases}$$

For the few values of k, we give in Table 2 of these numbers containing the A-number, according to the On-Line Encyclopedia of Integer Sequences (OEIS)[‡].

k	Sequence name	Terms of the sequence	A-numbers
2	Fibonacci	$1, 1, 2, 3, 5, 8, 13, \dots$	A000045
3	Tribonacci	$1, 1, 2, 4, 7, 13, 24, \dots$	A000073
4	Tetranacci	$1, 2, 4, 8, 15, 29, 56, \dots$	A000078
5	Pentanacci	$1, 1, 2, 4, 8, 16, 31, \dots$	A001591

Table 2. k-order well-known sequences

The Binet form of the k-generalized Fibonacci sequence is given by Dresden and Du [13] as follows

Theorem 1.1 For $F_n^{(k)}$ the n^{th} k-generalized Fibonacci number, then

$$F_n^{(k)} = \sum_{i=1}^k \frac{\alpha_i - 1}{2 + (k+1)(\alpha_i - 2)} \alpha_i^{n-1}$$

for $\alpha_1, \alpha_2, \dots, \alpha_k$ the roots of $x^k - x^{k-1} - \dots - 1 = 0$.

There are also many other ways to represent the terms of k-generalized Fibonacci numbers (see [16], [14], [15], [17]).

By the motivation of the definition "associate sequence", we give the definition of the associate sequence of $\{F_n^{(k)}\}_n$ which we call it as k-order Lucas sequence $\{L_n^{(k)}\}_n$.

Definition 1.2 Let $k \geq 2$ is an integer. The k-generalized Lucas sequence $\{L_n^{(k)}\}_n$ by the following recurrence relation

$$L_n^{(k)} = L_{n-1}^{(k)} + L_{n-2}^{(k)} + \dots + L_{n-k}^{(k)} , \qquad (n \ge -k + 2)$$
(1.1)

with the initials $L_0^{(k)}=k$, $L_1^{(k)}=1$, $L_2^{(k)}=3$, ..., $L_{k-1}^{(k)}=2^{k-1}-1$.

The explicit formulas of the k-generalized Fibonacci and Lucas sequences are given by Belbachir and Bencherif [7] as follows:

$$F_n^{(k)} = \sum_{j_1 + 2j_2 + \dots + kj_k = n} {j_1 + j_2 + \dots + j_k \choose j_1, j_2, \dots, j_k}$$

[‡]Sloane NJA, The Online Encyclopedia of Integer Sequences. Available online at http://oeis.org/.

and

$$L_n^{(k)} = \lambda_0 y_{n-k+1} + \lambda_1 y_{n-k+2} + \dots + \lambda_{k-1} y_n$$

with
$$\lambda_j = -\sum_{i=j}^{k-j} L_j^{(k)}$$
 for $0 \le j \le k-j$, and $y_n = \sum_{j_1+2j_2+\cdots+kj_k=n} {j_1,j_2,\cdots,j_k \choose j_1,j_2,\cdots,j_k}$ for $n > -k$.

We note that the case k=2 gives Lucas numbers and the case k=3 gives Tribonacci-Lucas numbers (see [20]). There are two parts in the present paper; the first one gives combinatorial identities for k-generalized Lucas numbers and extends identities between Fibonacci and Lucas numbers. In the second part, we give several relations between k-generalized Lucas numbers and bi^s nomial coefficients.

2. Connections with k-generalized Fibonacci and Lucas numbers

Before giving our results of this section, we recall that the Binet formula of k-generalized Lucas numbers is given by the following result

Lemma 2.1 Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ are the distinct roots of $x^k - x^{k-1} - \cdots - 1 = 0$. Then, we have

$$L_n^{(k)} = \alpha_1^n + \alpha_2^n + \dots + \alpha_k^n.$$

This result is well-known. We give the proof for convenience.

Proof It is known that the term $L_n^{(k)}$ can be written by

$$L_n^{(k)} = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_k \alpha_k^n$$

where A_i are real numbers. Our aim to find the numbers A_i for i = 1, 2, ..., k. To find these values, we get the following system of equations

$$L_0^{(k)} = A_1 + A_2 + \dots + A_k$$

$$L_1^{(k)} = A_1\alpha_1 + A_2\alpha_2 + \dots + A_k\alpha_k$$

$$L_2^{(k)} = A_1\alpha_1^2 + A_2\alpha_2^2 + \dots + A_k\alpha_k^2$$

$$\vdots$$

$$L_{n-1}^{(k)} = A_1\alpha_1^{n-1} + A_2\alpha_2^{n-1} + \dots + A_k\alpha_k^{n-1}.$$

By using the Cramer's rule, we obtain $A_1 = A_2 = \cdots = A_k = 1$.

From now on, we generalize several well-known identities between Fibonacci and Lucas numbers. To prove these identities, we will use the Binet type formulas for k-generalized Fibonacci and Lucas numbers. We know that the following identity is given by Ramirez and Sirvent [19]. Here, we give its proof by using Binet formulas.

Theorem 2.2 Let k and n nonnegative integers with $k \geq 2$, then we have

$$\sum_{i=1}^{k} i F_{n-i+1}^{(k)} = L_n^{(k)}. \tag{2.1}$$

Proof By using the Binet Formula of k-generalized Fibonacci numbers, we get

$$\begin{split} &\sum_{i=1}^{k} i F_{n-i+1}^{(k)} = F_{n}^{(k)} + 2 F_{n-1}^{(k)} + 3 F_{n-2}^{(k)} + \dots + k F_{n-k+1}^{(k)} \\ &= \sum_{i=1}^{k} \frac{(\alpha_{i} - 1)\alpha_{i}^{n-1}}{2 + (k+1)(\alpha_{i} - 2)} + 2 \frac{(\alpha_{i} - 1)\alpha_{i}^{n-2}}{2 + (k+1)(\alpha_{i} - 2)} + \dots + k \frac{(\alpha_{i} - 1)\alpha_{i}^{n-k}}{2 + (k+1)(\alpha_{i} - 2)} \\ &= \sum_{i=1}^{k} \frac{(\alpha_{i} - 1)\alpha_{i}^{n-k}[k + (k-1)\alpha_{i} + (k-2)\alpha_{i}^{2} + \dots + 2\alpha_{i}^{k-2} + \alpha_{i}^{k-1}]}{2 + (k+1)(\alpha_{i} - 2)} \\ &= \sum_{i=1}^{k} \frac{\alpha_{i}^{n}(\alpha_{i}^{k} + \alpha_{i}^{k-1} + \alpha_{i}^{k-2} + \dots + \alpha_{i} - k)}{\alpha_{i}^{k}[(k+1)\alpha_{i} - 2k]} \end{split}$$

After using the facts $\alpha_i^k = \alpha_i^{k-1} + \alpha_i^{k-2} + \dots + 1$ and $\alpha_i^k + \alpha_i^{k-1} + \alpha_i^{k-2} + \dots + \alpha_i - k = 2\alpha^k - 1 - k$, we have

$$\sum_{i=1}^{k} \frac{\alpha_i^n (\alpha_i^k + \alpha_i^{k-1} + \alpha_i^{k-2} + \dots + \alpha_i - k)}{\alpha_i^k [(k+1)\alpha_i - 2k]}$$

$$= \sum_{i=1}^{k} \frac{\alpha_i^n (2\alpha_i^k - 1 - k)}{(k+1)\alpha_i^k + (1-k)\alpha_i^k - 1 - k}$$

$$= \sum_{i=1}^{k} \alpha_i^n = L_n^{(k)}.$$

For k=2,

$$F_n + 2F_{n-1} = L_n.$$

We have also the following identity.

Theorem 2.3 Let k and n be nonnegative integers with $k \geq 2$, then we have

$$L_{n-1}^{(k)} + L_{n+1}^{(k)} = 2kF_n^{(k)} + \sum_{i=0}^{k-2} (3 - k + 2i)F_{n-i}^{(k)}.$$
 (2.2)

Proof Together with the Binet Formula for k-generalized Fibonacci number, we get the followings

$$\begin{split} 2kF_n^{(k)} + \sum_{i=0}^{k-2} (3-k+2i)F_{n-i}^{(k)} \\ &= (k+3)F_n^{(k)} + (5-k)F_{n-1}^{(k)} + (7-k)F_{n-2}^{(k)} + \dots + (k-3)F_{n-k+3}^{(k)} + (k-1)F_{n-k+2}^{(k)} \\ &= \sum_{i=1}^k \frac{(k+3)(\alpha_i-1)\alpha_i^{n-1}}{2+(k+1)(\alpha_i-2)} + \frac{(5-k)(\alpha_i-1)\alpha_i^{n-2}}{2+(k+1)(\alpha_i-2)} + \frac{(7-k)(\alpha_i-1)\alpha_i^{n-3}}{2+(k+1)(\alpha_i-2)} + \\ & \dots + \frac{(k-3)(\alpha_i-1)\alpha_i^{n-k+2}}{2+(k+1)(\alpha_i-2)} + \frac{(k-1)(\alpha_i-1)\alpha_i^{n-k+1}}{2+(k+1)(\alpha_i-2)} \\ &= \sum_{i=1}^k \frac{(k+3)\alpha_i^n + (2-2k)\alpha_i^{n-1} + 2\alpha_i^{n-2} + 2\alpha_i^{n-3} + \dots + 2\alpha_i^{n-k+2} + (1-k)\alpha_i^{n-k+1}}{(k+1)\alpha_i-2k} \\ &= \sum_{i=1}^k \frac{\alpha_i^{n-k+1}(\alpha_i^{k-1} + 2\alpha_i^{k-2} + \alpha_i^{k-3} + \alpha_i^{k-4} + \dots + \alpha_i + 1)[(k+1)\alpha_i-2k]}{(k+1)\alpha_i-2k} \\ &= \sum_{i=1}^k \alpha_i^{n-k+1}(\alpha_i^{k-1} + 2\alpha_i^{k-2} + \alpha_i^{k-3} + \alpha_i^{k-4} + \dots + \alpha_i + 1) \\ &= \sum_{i=1}^k \alpha_i^{n-k+1}(\alpha_i^{k-1} + 2\alpha_i^{k-2} + \alpha_i^{k-3} + \alpha_i^{k-4} + \dots + \alpha_i + 1) \\ &= \sum_{i=1}^k \alpha_i^{n+1} + \alpha_i^{n-1} = L_{n+1}^{(k)} + L_{n-1}^{(k)}. \end{split}$$

This generalizes the identity

$$L_{n-1} + L_{n-1} = 5F_n$$
.

Since one can prove the following theorem as before, we do not give the proof.

Theorem 2.4 Assume that k and n are nonnegative integers, with $k \geq 2$, we have

$$L_{n+k-2}^{(k)} = kF_{n+k-1}^{(k)} - \sum_{i=1}^{k-1} iF_{n+i-1}^{(k)},$$
(2.3)

$$L_{n-2}^{(k)} = (2k-1)F_{n-1}^{(k)} - F_{n+k-2}^{(k)} + \sum_{i=1}^{k-3} (k-i-2)F_{n+i-1}^{(k)}.$$
(2.4)

These generalize the identities $L_n = 2F_n - F_{n-1}$ and $L_{n-2} = 3F_{n-1} - F_n$.

3. The generalized s-Lucas triangle

In this section, we propose a generalization of Lucas and Tribonacci-Lucas triangles, such that the sum of elements located along the direction (1,1) (see [8] for the details about the notion of direction) in the generalized s-Lucas triangle gives the terms of (s+1)-generalized Lucas sequence, the explicit formula is given. We establish

a link between generalized s-Lucas triangle and bi s nomial coefficients. We also give the recurrence relation for the sum of elements lying over the finite direction of the generalized s-Lucas triangle.

Alladi and Hoggat [1] have defined the Tribonacci triangle, (this triangle is a generalization of Pascal triangle) and proved that the sum of elements lying over the principal diagonal rays in the Tribonacci triangle gives the Tribonacci sequence

$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$

with $T_0 = 0, T_1 = 1, T_2 = 1$.

Denote by $\binom{n}{k}_{[2]}$ the element in the n^{th} row and k^{th} column of the Tribonacci triangle, the triangle is produced by the recurrence relation,

$$\binom{n}{k}_{[2]} = \binom{n-1}{k}_{[2]} + \binom{n-1}{k-1}_{[2]} + \binom{n-2}{k-1}_{[2]},$$

where $\binom{n}{0}_{[2]} = \binom{n}{n}_{[2]} = 1$. We use the convention $\binom{n}{k}_{[2]} = 0$ for $k \notin \{0, \dots, n\}$. We present several values of $\binom{n}{n}_{[2]}$ in Table 3.

$\mathbf{n} \backslash \mathbf{k}$	0	1	2	3	4	5	6	7	8	9
0	1									
1	1	1								
2	1	3	1							
3	1	5	5	1						
4	1	7	13	7	1					
5	1	9	25	25	9	1				
6	1	11	41	63	41	11	1			
7	1	13	61	129	129	61	13	1		
8	1	15	85	231	321	231	85	15	1	
9	1	17	113	377	681	681	377	113	17	1

Table 3. Tribonacci triangle.

Moreover, Barry [6] has shown that for $0 \le k \le n$ these coefficients satisfy the relation

$$\binom{n}{k}_{[2]} = \sum_{j=0}^{k} \binom{k}{j} \binom{n-j}{k},\tag{3.1}$$

we recall that the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and we use the convention $\binom{n}{k} = 0$ for k > n, k < 0 or n < 0.

Recently, Yilmaz and Taskara [20] have defined the Tribonacci-Lucas triangle which is a generalization of Lucas triangle and they have shown that the sum of elements lying over the principal diagonal rays in this triangle gives the Tribonacci-Lucas sequence.

$$K_n = K_{n-1} + K_{n-2} + K_{n-3},$$

with $K_0 = 3, K_1 = 1, K_2 = 3$.

Denote by $\begin{bmatrix} n \\ k \end{bmatrix}_{[2]}$ the element in the n^{th} row and k^{th} column of the Tribonacci-Lucas triangle, the triangle is

produced by the recurrence relation

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[2]} = \begin{bmatrix} n-1 \\ k \end{bmatrix}_{[2]} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_{[2]} + \begin{bmatrix} n-2 \\ k-1 \end{bmatrix}_{[2]},$$

where $\begin{bmatrix} 0 \\ 0 \end{bmatrix}_{[2]} = 3$, $\begin{bmatrix} n \\ 0 \end{bmatrix}_{[2]} = 1$ and $\begin{bmatrix} n \\ n \end{bmatrix}_{[2]} = 2$ for $n \ge 1$. We use the convention $\begin{bmatrix} n \\ k \end{bmatrix}_{[2]} = 0$ for $k \notin \{0, \dots, n\}$. Table 4 shows the values of $\begin{bmatrix} n \\ k \end{bmatrix}_{[2]}$ for special cases k and n.

$\mathbf{n} \backslash \mathbf{k}$	0	1	2	3	4	5	6	7	8	9
0	3									
1	1	2								
2	1	6	2							
3	1	8	10	2						
4	1	10	24	14	2					
5	1	12	42	48	18	2				
6	1	14	64	114	80	22	2			
7	1	16	90	220	242	120	26	2		
8	1	18	120	374	576	442	168	30	2	
9	1	20	154	584	1170	1260	730	224	34	2

Table 4. Tribonacci-Lucas triangle.

The explicit formula of the coefficients of the Tribonacci-Lucas triangle is given by, see [20], for $n \ge 1$,

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[2]} = \sum_{j=0}^{k} {k \choose j} {n-j \choose k} \frac{n+k}{n-j}.$$

3.1. The s-Pascal triangle

The bi^s nomial coefficient $\binom{n}{k}_s$ is the element in the n^{th} row and k^{th} column of s-Pascal triangle. The s-Pascal triangle is constructed by the following recurrence relation, see [3, 5, 10],

$$\binom{n}{k}_s = \binom{n-1}{k}_s + \binom{n-1}{k-1}_s + \dots + \binom{n-1}{k-s}_s. \tag{3.2}$$

Using the classical binomial coefficient, one has

$$\binom{n}{k}_s = \sum_{j_1+j_2+\dots+j_s=k} \binom{n}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-1}}{j_s}.$$
 (3.3)

Some other readily well known established properties are: the symmetry relation

$$\binom{n}{k}_{s} = \binom{n}{sn-k}_{s},\tag{3.4}$$

the diagonal recurrence relation

$$\binom{n}{k}_s = \sum_{j=0}^n \binom{n}{j} \binom{j}{k-j}_{s-1},\tag{3.5}$$

and de Moivre's expression (see [11, 12])

$$\binom{n}{k}_{s} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \binom{k-j(s+1)+n-1}{n-1}.$$
(3.6)

For s=2, we have bitrinomial triangle illustrated in Table 5, see Sloane as $A027907^{\$}$.

$\mathbf{n} \setminus \mathbf{k}$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1												
1	1	1	1										
2	1	2	3	2	1								
3	1	3	6	7	6	3	1						
4	1	4	10	16	19	16	10	4	1				
5	1	5	15	30	45	51	45	30	15	5	1		
6	1	6	21	50	90	126	141	126	90	50	21	6	1

Table 5. Bitrinomial triangle (s = 2).

4. Quasi s-Pascal triangle

Recently, Amrouche and Belbachir [2–4] have defined a generalization of Pascal and Delannoy triangles, called quasi s-Pascal triangle. They denoted by $\binom{n}{k}_{[s]}$ the coefficient in the n^{th} row and k^{th} column of this triangle such that the coefficient $\binom{n}{k}_{[s]}$ satisfies,

$$\binom{n}{k}_{[s]} = \binom{n-1}{k}_{[s]} + \binom{n-1}{k-1}_{[s]} + \binom{n-2}{k-1}_{[s]} + \dots + \binom{n-s}{k-1}_{[s]}.$$
 (4.1)

The following result gives the explicit formula of the coefficients of the quasi s-Pascal triangle in terms of binomial coefficients.

Theorem 4.1 [3] The quasi-bis nomial coefficient $\binom{n}{k}_{[s]}$ satisfies

$$\binom{n}{k}_{[s]} = \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} \binom{n - \sum_{i=1}^{s-1} j_i}{k}. \tag{4.2}$$

The sum of elements located along the direction (1,1) in the quasi s-Pascal triangle gives the terms of (s+1)-generalized Fibonacci sequence.

Let $(T_{n,s})_n$ be the terms of the (s+1)-generalized Fibonacci sequence, for $n \geq 0$

$$T_{n+1,s} := \sum_{k} \binom{n-k}{k}_{[s]},$$

[§]Sloane NJA, The Online Encyclopedia of Integer Sequences. Available online at http://oeis.org/.

with $T_{0,s} = 0$.

Theorem 4.2 [3] For $n \geq 0$, $(T_{n,s})_n$ satisfies the following recurrence relation

$$T_{n+1,s} = T_{n,s} + T_{n-1,s} + \dots + T_{n-s,s},$$

with
$$T_{1,s} = 1, T_{i,s} = 0$$
 for $i \in \{0, -1, \dots, -(s-1)\}$.

Amrouche and Belbachir [3] have extended the last result, they considered the sum of elements located along the finite direction (α, r) $(r + \alpha > 0, r \in \mathbb{N}, 0 \le p < r \text{ and } \alpha \in \mathbb{Z})$ in the quasi s-Pascal triangle, (for the details about the direction in arithmetic triangles one can see [2, 4, 8, 9]).

Let $T_{n,s}^{(\alpha,\beta,r)}$ be the terms of the sequence obtained by this sum, for $n \geq 0$

$$T_{n+1,s}^{(\alpha,\beta,r)}:=\sum_{k}\binom{n-rk}{\beta+\alpha k}_{[s]}, \text{ with } T_{0,s}^{(\alpha,\beta,r)}=0.$$

Theorem 4.3 [3] For $n \ge \alpha s + r$, $(T_{n,s}^{(\alpha,\beta,r)})_n$ satisfies the following linear recurrence relation

$$\sum_{i=0}^{\alpha} (-1)^i {\alpha \choose i} T_{n-i,s}^{(\alpha,\beta,r)} = \sum_{i=0}^{\alpha(s-1)} {\alpha \choose i}_{s-1} T_{n-\alpha-r-i,s}^{(\alpha,\beta,r)}. \tag{4.3}$$

5. The quasi s-Lucas triangle

We propose an extension of Lucas and Tribonacci-Lucas triangle called quasi s-Lucas triangle such that the sum of elements located along the direction (1,1) gives the terms of (s+1)-generalized Lucas sequence.

Definition 5.1 Let $\begin{bmatrix} n \\ k \end{bmatrix}_{[s]}$ the element of the n^{th} line and k^{th} column of s-generalized Lucas triangle

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \binom{n}{k}_{[s]} + \binom{n-1}{k-1}_{[s]} + 2\binom{n-2}{k-1}_{[s]} + \dots + s\binom{n-s}{k-1}_{[s]},$$
(5.1)

with $\begin{bmatrix} 0 \\ 0 \end{bmatrix}_{[s]} = s + 1$.

Theorem 5.2

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \sum_{j_1, j_2, \dots, j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n - \sum_{i=1}^{s-1} j_i}{k} \frac{n+k}{n - j_1 - \dots - j_{s-1}}.$$

Proof By the relation (5.1) and (4.2), we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}}{k-1}$$

$$+ \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-1}} \binom{k-1}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ 2 \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-1}} \binom{k-1}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-2}{k-1}$$

$$\vdots$$

$$+ (s-1) \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-1}} \binom{k-1}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-(s-1)}{k-1}$$

$$+ s \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-1}} \binom{k-1}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-s}{k-1}$$

$$= \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1} \binom{j_1}{j_2} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ 2 \sum_{j_1'} \sum_{j_2'} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'} \dots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1'-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$\vdots$$

$$+ (s-1) \sum_{j_1'} \sum_{j_2'} \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \dots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1'-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ s \sum_{j_1'} \sum_{j_2'} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \dots \binom{j_{s-2}'-1}{j_{s-1}-1} \binom{n-j_1'-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ s \sum_{j_1'} \sum_{j_2'} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \dots \binom{j_{s-2}'-1}{j_{s-1}'-1} \binom{n-j_1'-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$+ s \sum_{j_1'} \sum_{j_2'} \dots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \dots \binom{j_{s-2}'-1}{j_{s-1}'-1} \binom{n-j_1'-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$= \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-2}} \binom{k-1}{j_1'} \binom{j_1}{j_2} \dots \binom{j_{s-2}'-1}{j_{s-1}'} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$= \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-2}} \binom{k-1}{j_1'} \binom{j_1'}{j_2'} \dots \binom{j_{s-2}'-1}{j_{s-1}'} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$= \sum_{j_1} \sum_{j_2} \dots \sum_{j_{s-2}} \binom{k-1}{j_1'} \binom{j_1'}{j_2'} \dots \binom{j_{s-2}'-1}{j_{s-1}'} \binom{n-j_1-\dots-j_{s-2}-j_{s-1}-1}{k-1}$$

$$= \sum_{j_1} \sum_{j_2} \dots \sum_{j_3} \binom{k-1}{j_3'} \binom{j_3'}{j_3'} \dots \binom{j_{s-2}'-1}{j_{$$

$$\begin{split} &+ \sum_{j_1'} \sum_{j_2} \cdots \sum_{j_{s-2}} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &\vdots \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}-1} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}-1} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ (s-2) \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}-1} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &+ (s-1) \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-2}'} \sum_{j_{s-1}'} \binom{k-1}{j_1'-1} \binom{j_1'-1}{j_2'-1} \cdots \binom{j_{s-2}'-1}{j_{s-1}-1} \binom{n-j_1'-\cdots-j_{s-2}-j_{s-1}-1}{k-1} \\ &= \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1'}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1'}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1'}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1'} \binom{j_1'}{j_2'} \cdots \binom{j_{s-2}'-1}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k-1} \\ &+ \sum_{j_1'} \sum_{j_2'} \cdots \sum_{j_{s-1}} \binom{k}{j_1'} \binom{j_1'}{j_2'} \cdots \binom{j_{s-2}'-1}$$

$$+ \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} \binom{n-j_1-\cdots-j_{s-2}-j_{s-1}}{k} \frac{(s-1)j_{s-1}}{n-j_1-\cdots-j_{s-2}-j_{s-1}}$$

$$= \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} \binom{n-\sum_{i=1}^{s-1} j_i}{k} \frac{n+k}{n-j_1-\cdots-j_{s-1}}.$$

For s=1 and s=2, we obtain the Lucas and Tribonacci-Lucas triangles respectively.

The sum of elements located along the direction (1,1) in the generalized s-Lucas triangle gives the (s+1)-generalized Lucas sequence $\{L_n^{(s)}\}_{n>0}$.

Let the sequence $\{L_n^{(s)}\}_{n>0}$ given by

$$L_n^{(s+1)} = \sum_k {n-k \brack k}_{[s]}.$$
 (5.2)

We present the following theorem in Theorem 2.2. Here, we give another proof of the theorem by using (5.2).

Theorem 5.3 The sequence $\{L_n^{(s)}\}_{n>0}$ satisfies the following recurrence relation

$$L_n^{(s+1)} = F_{n+1}^{(s+1)} + F_{n-1}^{(s+1)} + 2F_{n-2}^{(s+1)} + \dots + sF_{n-s}^{(s+1)}.$$
 (5.3)

Proof From (5.1) and (5.2) we have

$$L_{n}^{(s+1)} = \sum_{k} \binom{n-k}{k}_{[s]} + \sum_{k} \binom{n-k-1}{k-1}_{[s]} + 2\sum_{k} \binom{n-k-2}{k-1}_{[s]} + \cdots$$

$$\cdots + s \sum_{k} \binom{n-k-s}{k-1}_{[s]}$$

$$= \sum_{k} \binom{n-k}{k}_{[s]} + \sum_{k'} \binom{n-k'-2}{k'}_{[s]} + 2\sum_{k'} \binom{n-k'-3}{k'}_{[s]} + \cdots$$

$$\cdots + s \sum_{k'} \binom{n-k'-s-1}{k'}_{[s]}$$

$$= F_{n+1}^{(s+1)} + F_{n-1}^{(s+1)} + 2F_{n-2}^{(s+1)} + \cdots + F_{n-s}^{(s+1)}.$$

5.1. Link between generalized s-Lucas triangle and bis nomial coefficients

The following result establishes the relation between the generalized s-Lucas triangle and s-Pascal triangle.

Theorem 5.4 For fixed nonnegative integers n, k and s, we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \sum_{i} \binom{n-i}{k} \binom{k}{i}_{s-1} \frac{n+k}{n-i}.$$

Proof We have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \sum_{j_1} \sum_{j_2} \cdots \sum_{j_{s-1}} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} \binom{n - \sum_{i=1}^{s-1} j_i}{k} \frac{n+k}{n - j_1 - \dots - j_{s-1}}.$$

Considering the summations by blocks $j_1 + j_2 + \cdots + j_{s-1} = i$, we get

$$\begin{bmatrix} n \\ k \end{bmatrix}_{[s]} = \sum_{i} \binom{n-i}{k} \frac{n+k}{n-i} \sum_{j_1+j_2+\dots+j_{s-1}=i} \binom{k}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-2}}{j_{s-1}} = \sum_{i} \binom{n-i}{k} \binom{k}{i}_{s-1} \frac{n+k}{n-i}.$$

5.2. Recurrence relations

Consider the sum of elements located along the direction (α, r) , with $r + \alpha > 0$, $r \in \mathbb{N}$, $0 \le p < r$ and $\alpha \in \mathbb{Z}$ in the generalized s-Lucas triangle.

Let $(L_{n,s}^{(\alpha,\beta,r)})_n$ be the sequence obtain by this sum

$$L_{n,s}^{(\alpha,\beta,r)} := \sum_{k} \begin{bmatrix} n - rk \\ \beta + \alpha k \end{bmatrix}_{[s]}.$$

Theorem 5.5 For $n \ge \alpha s + r$, $(L_{n+1,s}^{(\alpha,\beta,r)})_n$ satisfies the following linear recurrence relation

$$\sum_{i=0}^{\alpha} (-1)^i {\alpha \choose i} L_{n-i,s}^{(\alpha,\beta,r)} = \sum_{i=0}^{\alpha(s-1)} {\alpha \choose i}_{s-1} L_{n-\alpha-r-i,s}^{(\alpha,\beta,r)}.$$

$$(5.4)$$

Proof

$$\begin{split} &\sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} L_{n-i,s}^{(\alpha,\beta,r)} \\ &= \sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} \sum_{k} \binom{n-rk-i}{\beta+\alpha k}_{[s]} \\ &= \sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} \sum_{k} \binom{n-rk-i}{\beta+\alpha k}_{[s]} + \sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} \sum_{k} \binom{n-rk-i-1}{\beta+\alpha k-1}_{[s]} \\ &+ 2 \sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} \sum_{k} \binom{n-rk-i-2}{\beta+\alpha k-1}_{[s]} + \dots + s \sum_{i=0}^{\alpha} (-1)^{i} \binom{\alpha}{i} \sum_{k} \binom{n-rk-i-s}{\beta+\alpha k-1}_{[s]}. \end{split}$$

By Theorem 4.3 we obtain

$$\begin{split} \sum_{i=0}^{\alpha} (-1)^i \binom{\alpha}{i} L_{n-i,s}^{(\alpha,\beta,r)} \\ &= \sum_{i=0}^{\alpha(s-1)} \binom{\alpha}{i} \sum_{s-1} \sum_{k} \binom{n-rk-i-r-\alpha}{\beta+\alpha k} \Big|_{[s]} + \sum_{i=0}^{\alpha(s-1)} \binom{\alpha}{i} \sum_{s-1} \sum_{k} \binom{n-rk-i-r-\alpha-1}{\beta+\alpha k-1} \Big|_{[s]} \\ &+ 2 \sum_{i=0}^{\alpha(s-1)} \binom{\alpha}{i} \sum_{s-1} \sum_{k} \binom{n-rk-i-r-\alpha-2}{\beta+\alpha k-1} \Big|_{[s]} + \dots + s \sum_{i=0}^{\alpha(s-1)} \binom{\alpha}{i} \sum_{s-1} \sum_{k} \binom{n-rk-i-r-\alpha-s}{\beta+\alpha k-1} \Big|_{[s]}. \end{split}$$

Finally by the relation (5.1) we get the result.

Corollary 5.6 The sum of elements located along the direction (r, α) in the Lucas and Tribonacci-Lucas triangles are given respectively by

$$\sum_{i=0}^{\alpha} (-1)^{i} {\alpha \choose i} L_{n-i,1}^{(\alpha,\beta,r)} = L_{n-\alpha-r,1}^{(\alpha,\beta,r)}, \tag{5.5}$$

$$\sum_{i=0}^{\alpha} (-1)^i \binom{\alpha}{i} L_{n-i,2}^{(\alpha,\beta,r)} = \sum_{i=0}^{\alpha} \binom{\alpha}{i} L_{n-\alpha-r-i,2}^{(\alpha,\beta,r)}.$$
 (5.6)

Example 5.7 The sum of elements located along the direction (3,2) in the Tribonacci-Lucas triangle $(s=2, r=3, \alpha=2 \text{ and } \beta=0)$ satisfies the following recurrence relation

$$L_{n,2}^{(2,0,3)} = 3L_{n-1,2}^{(2,0,3)} - 3L_{n-2,2}^{(2,0,3)} + L_{n-3,2}^{(2,0,3)} + L_{n-5,2}^{(2,0,3)} + 3L_{n-6,2}^{(2,0,3)} + 3L_{n-7,2}^{(2,0,3)} + L_{n-8,2}^{(2,0,3)}, \\ L_{n-2,2}^{(2,0,3)} + L_{n-2,2}^{(2,0,3$$

with
$$L_{0,2}^{(2,0,3)} = 3$$
, $L_{1,2}^{(2,0,3)} = 1$, $L_{2,2}^{(2,0,3)} = 1$, $L_{3,2}^{(2,0,3)} = 1$, $L_{4,2}^{(2,0,3)} = 1$, $L_{5,2}^{(2,0,3)} = 3$, $L_{6,2}^{(2,0,3)} = 15$, $L_{7,2}^{(2,0,3)} = 49$.

The first terms of this sequence are $(3, 1, 1, 1, 1, 3, 15, 49, 115, 221, 377, 611, 1027, 1935, \ldots)$

Acknowledgment

The authors express their gratitude to the anonymous reviewer for the instructive suggestions.

References

- [1] Alladi K, Hoggatt VE. On Tribonacci numbers and related functions. Fibonacci Quarterly 1997; 15 (1): 42-45.
- [2] Amrouche S, Belbachir H. Unimodality and Linear Recurrences Associated with Rays in the Delannoy triangle. Turkish Journal of Mathematics 2020; 44.1: 118-130. https://doi.org/10.3906/mat-1811-109.
- [3] Amrouche S, Belbachir H. Asymmetric Extension of Pascal-Delannoy triangles. Applicable Analysis and Discrete Mathematics 2022; 16 (2): 328-349. https://doi.org/10.2298/AADM200411028A.
- [4] Amrouche S, Belbachir H, Ramirez JL. Unimodality, Linear Recurrences and Combinatorial Properties Associated to rays in the Generalized Delannoy matrix. Journal of Difference Equations and Applications 2019; 25 (8): 1200-1215. https://doi.org/10.1080/10236198.2019.1662413.
- [5] Andrews G, Baxter J. Lattice Gas Generalization of the Hard Hexagon Model III q-trinomials coefficients. Journal of Statistical Physics 1987; 47: 297-330. https://doi.org/10.1007/BF01007513

AÇIKEL et al./Turk J Math

- [6] Barry P, On integer-Sequence-Based Constructions of Generalized Pascal triangles. Journal of Integer Sequences 2006; 9: Article 06.2.4.
- [7] Belbachir H, Bencherif F, Linear Recurrence Sequences and Powers of Square matrix. Integers 2006; 6 (12): 1-17.
- [8] Belbachir H, Komatsu T, Szalay L. Linear Recurrences Associated to rays in Pascal's Triangle and Combinatorial Identities. Mathematica Slovaca 2014; 64 (2): 287-300. https://doi.org/10.2478/s12175-014-0203-0.
- [9] Belbachir H, Szalav L, On the Arithmetic Triangles. Siauliai Mathematics Seminars 2014; 9 (17): 15-26.
- [10] Bollinger R, A note on Pascal T-triangles, Multinomial coefficients and Pascal pyramids. Fibonacci Quarterly 1986;24: 140-144.
- [11] de Moivre A, The doctrine of chances, Third edition 1756 (first ed. 1718 and second ed. 1738), reprinted by Chelsea, N. Y., 1967.
- [12] de Moivre A, Miscellanca Analytica de Scrichus et Quadraturis, London, 1731.
- [13] Dresden GP, Du Z. A Simplified Binet Formula for k-generalized Fibonacci numbers. Journal of Integer Sequence 2014; 17: Article 14.4.7.
- [14] Ferguson DE. An expression for generalized Fibonacci numbers. Fibonacci Quarterly 1966; 4: 270-273.
- [15] Flores I. Direct calculation of k-generalized Fibonacci numbers. Fibonacci Quarterly 1967; 5: 259-266.
- [16] Gabai H. Generalized Fibonacci k-sequences. Fibonacci Quarterly 1970; 8: 31-38.
- [17] Lee GY, Lee SG. Jin-Soo Kim, and Hang-Kyun Shin. The Binet formula and representations of k-generalized Fibonacci numbers. Fibonacci Quarterly 2001; 39: 158-164.
- [18] Liptai K, Panda GK, Szalay L. A balancing problem on a binary recurrence and its associate. Fibonacci Quarterly 2016; 54 (3): 235-240.
- [19] Ramirez JL, Sirvent VF. A Generalization of the k-bonacci Sequence from Riordan Arrays. The electronic Journal of Combinatorics 2015; 22 (1): 1-38. https://doi.org/10.37236/4618.
- [20] Yilmaz N, Taskara N. Incomplete Tribonacci-Lucas Numbers and Polynomials. Advances in Applied Clifford Algebras 2015; 25 (3): 741-753. https://doi.org/10.1007/s00006-014-0523-8.