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Abstract: In this paper, we investigate several identities of k-generalized Lucas numbers with k-generalized Fibonacci
numbers. We also establish a link between generalized s-Lucas triangle and bi® nomial coefficients given by the coefficients

of the development of a power of (14 = + 2%+ --- 4+ z*), with s € N.
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1. Introduction

Let {G,} be a sequence defined by second-order linear recurrence relation G, = AG,,_1 + BG,,_2, n > 2
where A, B, Gy and G, are given numbers. Assume that the sequence {H,} is defined by the same recurrence
relation of {G,} with Hy = 2G; — AGy and Hy; = AG; + 2BGy. {H,} is called the associate sequence of
{Gnr} (see [18]). Table 1 presents several well-known sequences with their associate sequences and A-numbers

in Sloane’s Encyclopedia of Integer Sequences!.

Table 1. second-order well-known sequences

B | Gy | G1 | Hy | H1 | Sequence Associate sequence | A-numbers

1 Fibonacci | Lucas A000045, A000032
1 Pell Pell-Lucas A000129, A002203
2

Jacobsthal | Jacobsthal-Lucas A001045, A014551
Balancing | Balancing-Lucas A001109, A003499
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There are several generalizations of the Fibonacci sequence. One of the generalizations relating to order

is k-generalized Fibonacci sequence. For k > 2, k—generalized Fibonacci sequence {Fék)} is defined by the
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following recurrence relation

0, = —1,... —k+1;
FT(Lk): 1, if n =0;
FO 4 r® 4 4 R ifn>1.

For the few values of k, we give in Table 2 of these numbers containing the A-number, according to the On-Line

Encyclopedia of Integer Sequences (OEIS)*.

Table 2. k-order well-known sequences

k | Sequence name | Terms of the sequence | A — numbers
2 | Fibonacci 1,1,2,3,5,8,13,... A000045
3 | Tribonacci 1,1,2,4,7,13,24, ... A000073
4 | Tetranacci 1,2,4,8,15,29,56,... | A000078
5 | Pentanacci 1,1,2,4,8,16,31,... A001591

The Binet form of the k-generalized Fibonacci sequence is given by Dresden and Du [13] as follows

Theorem 1.1 For FT(Lk) the n'" k-generalized Fibonacci number, then

k
-1
F(k) — @i n—1
n 224’_(]{_’_1)(0[2_2)0[2

i=1

for ay,as, ..., ap the roots of ¥ —xF~1 —... —1=0.

There are also many other ways to represent the terms of k-generalized Fibonacci numbers (see [16], [14],
[15], [17]).
By the motivation of the definition "associate sequence”, we give the definition of the associate sequence

of {F,Ek)}n which we call it as k-order Lucas sequence {L;"’)}n.

Definition 1.2 Let k > 2 is an integer. The k-generalized Lucas sequence {LSZ“)},L by the following recurrence

relation
O =IO k1, ks 8
with the initials L(()k) =k, Lgk) =1, L;k) =3, .. Ll(ck—)l =2t 1.

The explicit formulas of the k-generalized Fibonacci and Lucas sequences are given by Belbachir and Bencherif

[7] as follows:

Pk — Z (j1+j2+~~+jk>

J1+2j2+-+kjr=n T332+ 5 Jk

tSloane NJA, The Online Encyclopedia of Integer Sequences. Available online at http://oeis.org/.
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and

Lglk) = AoYn—k+1 + MYn—k+2 + -+ Ag—1Yn,

with A; = —Zi:jj Lgk) for 0<j<k-—j,and y, =) j1+j2+”'+jk) for n > —k.

J1+2j2+-+kjk=n ( J1,J2, 5Jk

We note that the case k = 2 gives Lucas numbers and the case k = 3 gives Tribonacci-Lucas numbers
(see [20]). There are two parts in the present paper; the first one gives combinatorial identities for k-generalized
Lucas numbers and extends identities between Fibonacci and Lucas numbers. In the second part, we give several

relations between k-generalized Lucas numbers and bi®nomial coefficients.

2. Connections with k-generalized Fibonacci and Lucas numbers

Before giving our results of this section, we recall that the Binet formula of k-generalized Lucas numbers is
given by the following result

Lemma 2.1 Let oy, o, ...,qp are the distinct roots of x* — x#~1 —... —1 =0. Then, we have
LE =af +af +---+af.
This result is well-known. We give the proof for convenience.
Proof It is known that the term L;’“) can be written by
L) = Ajo? + Ayl 4+ -+ + Apa}

where A; are real numbers. Our aim to find the numbers A; for ¢ = 1,2,..., k. To find these values, we get

the following system of equations

L = A +As+ -+ 4
LY = A+ Asas + -+ Agay,
L% = Aj0? 4+ Aya + -+ Apdl
szk_)l = Ao+ Agagfl + - Akazfl.
By using the Cramer’s rule, we obtain A1 = Ay =--- = A, = 1. O

From now on, we generalize several well-known identities between Fibonacci and Lucas numbers. To
prove these identities, we will use the Binet type formulas for k-generalized Fibonacci and Lucas numbers. We
know that the following identity is given by Ramirez and Sirvent [19]. Here, we give its proof by using Binet

formulas.

Theorem 2.2 Let k and n nonnegative integers with k > 2, then we have
k
Z iF:i)z‘H = L’E’Lk)' (2.1)
i=1
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Proof By using the Binet Formula of k-generalized Fibonacci numbers, we get

k
SUiE® L = FY 4280 43, 4 kED,
=1

(a; — Do (i — 1aj—? (@i — Dap~*
2 (D —2) T 2% (kT D)(ar —2) e T D) —2)

I
'M?’

2

(o = Do~ [k + (k = Do + (k= 2)af + -+ 207 + o]
2+ (k+1)(o; — 2)

|

N
Il
—

(e +afF a2 4 k)

I

s
Il
-

After using the facts of =o' +af 2 4. 41 and of + o 02 ... 4o, —k =20 —1 -k, we have

aflef+ai  +ai ot — k)
aF[(k + 1)a; — 2]

-

s
Il
_

a(2af —1—k)
(k+1)af+(1—k)ar-1-k

I
B

i=1

at = Lk,

n

|

i=1

For k = 2,

F,+2F,_1=0L,.

O
We have also the following identity.
Theorem 2.3 Let k and n be nonnegative integers with k > 2, then we have
k-2
LY+ L), = 2kFP + 37 (3 — b+ 20)F,. (2.2)
i=0
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Proof Together with the Binet Formula for k-generalized Fibonacci number, we get the followings

k—2
2kFM + 573 — k+20)FY,

=0

= k+3)FP +6-RFEP + -k FY, + -+ (k=3 FY, ,+ (k- 1EY, .,

(k+3)(a; —Da ' (5-k)(a; — a2 (T—Fk)(ay — 1)al™?
24+ ( k—i—l(az—Q) 24+ (k+1)(o; —2) 24+ (k+1)(o; — 2)

I
Mw

=1

(]C — 3)(0[2 — 1)a;(lfk+2 (k _ 1)(ai _ 1)a;@7k+1

TPkt Dl —2) 5+ (k+ D —2)

Z (k+3)a? +(2—2k)al ™ + 222 + 20772 4 427 F2 4 (1 — K)ol F !

k
Pl (I{J + 1)0(1‘ — 2k
k

Z R P 20k 2 Lok Lokt )[R+ 1)ag — 2K]

k
- Zo‘?_kﬂ(af_l+20¢f_2+af_3+af_4+~--+ai+1)
=1

k
= Yartart =1 Ll

O
This generalizes the identity
Ly, 1+ Ly, 1=5F,.
Since one can prove the following theorem as before, we do not give the proof.
Theorem 2.4 Assume that k and n are nonnegative integers, with k > 2, we have
k-1
k k
Liﬂik 2= kF7§+)k 1 ZZFT(L-‘:-)’L i) (2.3)
i=1
k k k)
L'(n ) (Qk - 1>F7(L )1 +k 2 + Z nJr)z 1 (24)

These generalize the identities L,, = 2F,, — F,,_1 and L,_o =3F,_1 — F,.

3. The generalized s-Lucas triangle

In this section, we propose a generalization of Lucas and Tribonacci-Lucas triangles, such that the sum of
elements located along the direction (1,1) (see [8] for the details about the notion of direction) in the generalized

s-Lucas triangle gives the terms of (s+1)-generalized Lucas sequence, the explicit formula is given. We establish
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a link between generalized s-Lucas triangle and bi®nomial coefficients. We also give the recurrence relation for
the sum of elements lying over the finite direction of the generalized s-Lucas triangle.

Alladi and Hoggat [1] have defined the Tribonacci triangle, (this triangle is a generalization of Pascal
triangle) and proved that the sum of elements lying over the principal diagonal rays in the Tribonacci triangle
gives the Tribonacci sequence

Thi1=T,+Th_1+ T2,
with T = 0,77 = 1,715 = 1.

Denote by (Z) the element in the n'” row and k** column of the Tribonacci triangle, the triangle is produced

(1), =), (o), God)
kg ko Jg \k=1)g \k=1/py

where (g) 2= (n) o = 1. We use the convention (Z)

2]
by the recurrence relation,

o = 0 for k ¢ {0,...,n}. We present several values of

n

(”) 2 in Table 3.

Table 3. Tribonacci triangle.

nk |01 ]2 [3 [4 [5 |6 [7 [8 ]9
0 |1

1 |11

2 [1]3

3 [1]5 |5

4 [1]7 |13 |7

5 [1]9 [25 [25 [9 |1

6 |1]11]41 |63 [41 [11 |1

7 [1]13]61 [129]120]61 [13 |1

8 |[1|15|85 [231 32123185 [15 |1
9 |1 |17|113]377 681|681 377 ]113]17]1

Moreover, Barry [6] has shown that for 0 < k < n these coefficients satisfy the relation

(Z> o ngjo G) <n23> (31)

we recall that the binomial coefficient (2) = ﬁlk), and we use the convention (Z) =0for k>n, k<0 or

n < 0.
Recently, Yilmaz and Taskara [20] have defined the Tribonacci-Lucas triangle which is a generalization of Lucas
triangle and they have shown that the sum of elements lying over the principal diagonal rays in this triangle

gives the Tribonacci-Lucas sequence.

Kn = anl + Kn72 + Kn737

with Ko :3,K1 = 1,K2 =3.

Denote by [Z] the element in the n'* row and k** column of the Tribonacci-Lucas triangle, the triangle is

(2]
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produced by the recurrence relation

P P T
k] g kol =1y k=1

where [J] o = 3 H p = 1 and "], =2 for n > 1. We use the convention [}] ., =0 for k ¢ {0,...,n}.

2] (2]

Table 4 shows the values of [Z] for special cases k and n.

(2]

Table 4. Tribonacci-Lucas triangle.

k|01 [2 [3 |4 5 6 |7 [8 |9
0o |3

1 |1

2 |1 2

3 |1 10 |2

4 |1]10]24 |14 |2

5 | 11242 |48 |18 |2

6 |1|14]64 [114]80 |22 |2

7 11690 |220]242 [120 |26 |2

8 118120374576 |442 | 168 |30 |2

9 | 1|20 154|584 [ 1170 | 1260 | 730 | 224 | 34 | 2

The explicit formula of the coefficients of the Tribonacci-Lucas triangle is given by, see [20], for n > 1,

i 0005

=0

3.1. The s-Pascal triangle

The bi®nomial coefficient (2)5 is the element in the n** row and k" column of s-Pascal triangle. The s-Pascal

triangle is constructed by the following recurrence relation, see [3, 5, 10],

() = (50 (o) e (12D -

Using the classical binomial coefficient, one has

W)= = (e (33)

1ot tis=k

Some other readily well known established properties are:

(Z>S::(m;ik)s’ (3.4)
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the diagonal recurrence relation

m s ([ ) (3.5)
<k> S i—=0 <j> <I€ _-7 S—l’
and de Moivre’s expression (see [11, 12])

(), =2 (O as

Jj=0

For s = 2, we have bitrinomial triangle illustrated in Table 5, see Sloane as A0279075.

Table 5. Bitrinomial triangle (s = 2).

mk |[0]1[2 |3 |4 |5 6 7 8 |9 | 10|11 | 12
0 1

1 1)1

2 112 2

3 113 7T 16 |3 1

4 114101619 |16 |10 |4 1

5 1151530 |45|51 |45 |30 [15]5 1

6 116 (21 |50|90 126 | 141 | 126 | 90 | 50 | 21 | 6 1

4. Quasi s-Pascal triangle
Recently, Amrouche and Belbachir [2-4] have defined a generalization of Pascal and Delannoy triangles, called

th

quasi s-Pascal triangle. They denoted by (Z) the coefficient in the n** row and k" column of this triangle

[s]

k

(), =), G, r Gos) o G (1
Bl Nk )y \E=1) gy \k=1/ k=1) '

The following result gives the explicit formula of the coefficients of the quasi s-Pascal triangle in terms of

such that the coefficient (") (5] satisfies,

binomial coefficients.

Theorem 4.1 [3] The quasi-bi® nomial coefficient (:) satisfies

(s]
(), =2 ()C) - ()5 @

The sum of elements located along the direction (1,1) in the quasi s-Pascal triangle gives the terms of (s+1)-
generalized Fibonacci sequence.

Let (T}, 5)n be the terms of the (s + 1)-generalized Fibonacci sequence, for n > 0

Tn—i—l,s = Z (n ; k) [S]a

k

§Sloane NJA, The Online Encyclopedia of Integer Sequences. Available online at http://oeis.org/.
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with TO,s =0.

Theorem 4.2 [3] For n >0, (T, ). satisfies the following recurrence relation
Tn+1,s = Tn,s + Tnfl,s +---+ Tnfs,sa

with Ty s =1,T; s =0 fori € {0,-1,...,—(s —1)}.

Amrouche and Belbachir [3] have extended the last result, they considered the sum of elements located
along the finite direction (a,7) (r4+a >0, r €N, 0<p<r and o € Z) in the quasi s-Pascal triangle, (for

the details about the direction in arithmetic triangles one can see [2, 4, 8, 9]).

Let Té?‘s"ﬁ ™ be the terms of the sequence obtained by this sum, for n >0

(: 7ﬁ7r) Tk 3 (: ’B’T)
T = W th T = 0
n+1,s Ek <6 k’) [S]a 1 0,s

Theorem 4.3 [3] For n > as+r, (Té%’ﬁm))n satisfies the following linear recurrence relation
a(s—1)

«
if & «,p,T « a,pB,T
S (N)rer = (5) . (13)
i — s—1

i=0

5. The quasi s-Lucas triangle

We propose an extension of Lucas and Tribonacci-Lucas triangle called quasi s-Lucas triangle such that the

sum of elements located along the direction (1,1) gives the terms of (s + 1)-generalized Lucas sequence.

Definition 5.1 Let [Z] (5] the element of the n'" line and k' column of s-generalized Lucas triangle

n n n—1 n—2 n—s
— 2) 5.1
I P VY B iy R V) =

with [g] ;= s+1.

Theorem 5.2

i,

=2 ()0 0o 0T s

Ji J2 Js—1
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Proof By the relation (5.1) and (4.2), we have

i ()6) G )
rex (560G
SR (GG

vz R (G]G0 )

“FRE()0) @ﬁ@ﬂ'“ﬁf““?
)6 ) )

o 0 10 o o | G

Jj1 J2 Js—2Js—1

|
aen () G )

Js—27Js—1

DO

Jji o J2 Js—27Js—1

HZZ Z];<h_1><;é:1>..,<j;z_l1>(nj;...ki:;fjsl1>
HEE ZZQAXZDm&tDC%‘JﬁFﬂ“W
o) () )

=22 () 0) - (o) ()

o0 ] U [ B v | GRS
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i’ J2 Js—2Js—1
1

£33

N ./ .
J1 J2 Js—2

J1 Jg

Je—2ds_1

then we obtain

F B 6

J1 o J2

ZZ ji—1 [ ds—2 n—jy == ez = jao1— 1
.7 _1 j2 js—l k-1

-1y
J2 =

Jji o Jj2

+ZZ

Js—2Js—1

KD R 3 ol ) [
Sy TS () (7))
ey (3) () (0 f)(“
-2 ()0

k n—ji —
+ZZ'“Z<£)(31> j j><n g1 —

Jji o J2 Js—1
k(75 Js—2\ [n—71
+ “ee i i P .

Sy (E! gi=1Y (a2 (n—jdi— = ez —ja1—1
. “ ji—l J2 Js—1 k—1

—1\(n—j1— = jus
1 k-1
Gi=1\ [\ (n—ji— - —jia—je1—1

Ja—1 Jeo1 — 1 k—1 ’

— a1 — 1)

- js—Z

- js—1>

"7_7‘5727].37171
k—1

Js—2—1\(n—ji——Js—2—Js—1—1
jsfl k-1
i [ Lt e A
]S ;=1 k—1
c— Js—2 — Js—
k
7]5 27_75 1 k
k n_jl_"'_js—Q_js—l

cer—Js—2 — Js—1 J1—J2
k n—j1—- " —Js—2 — Js—1

T js—2 - js—l

— = fe—g — et (s =2)(js—2 — Js—1)
k n—j—
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k 1 js—2\ (M —J1— — Js—2 — Js—1 s—1)js—1
+§:Z:”2:Q)<L>m<14>< . )n—ﬁ£~~zquh1

Jji o J2 Js—1

:ZZZ k() ([Js—2 n— Y1 i n+k
— £ \ j1 ) \ jo Js—1 k n—ji—-—js—1
Ji1  J2 Js—1

For s =1 and s = 2, we obtain the Lucas and Tribonacci-Lucas triangles respectively.

The sum of elements located along the direction (1,1) in the generalized s-Lucas triangle gives the (s + 1)-
generalized Lucas sequence {LS)}"ZO )

Let the sequence {Lgf)}nzo given by
Lo =%" n—ki (5.2)
" k
k [s]
We present the following theorem in Theorem 2.2. Here, we give another proof of the theorem by using (5.2).

Theorem 5.3 The sequence {Lsf)}nzo satisfies the following recurrence relation
LD = plAD f pOAD L opth) g gpt D), (5.3)

Proof From (5.1) and (5.2) we have

(s+1) _ n—=k n—k—1 n—k—2
Ln _Z< k ) +Z< k—1 = k—1 o
k [s] k [s] k [s]
n—k—s
k [s]
n—=k n—k —2 n—k —3
—Z( f ) +Z< ¥ > +22< Y > 4.
k [s] [s] K [s]

= P 4 FUD opt) o B

5.1. Link between generalized s-Lucas triangle and bi®nomial coefficients

The following result establishes the relation between the generalized s-Lucas triangle and s-Pascal triangle.

Theorem 5.4 For fixed nonnegative integers n,k and s, we have

i,-= 000, 5=
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Proof We have

{Z] [s] - ZZ - Z (Jki) <2) (ﬁf) (n ) 2]:“7;:11 ]1> n—ji 74.—./.{_]'571'

Jj1 o Jo Js—1

Considering the summations by blocks j; + jo + -+ + js—1 = 7, we get

FFE LG = S SR O3 [ B G D oI G [ =

? Jitiettis—1=1 i

5.2. Recurrence relations

Consider the sum of elements located along the direction («,7), with r+a >0, r€N, 0<p<r and a € Z

in the generalized s-Lucas triangle.

Let (Lﬁf‘f ’T))n be the sequence obtain by this sum

—rk
(eBr) . E n—r )
s k {5 + ak (5]

Theorem 5.5 For n > as+r, (Liﬁ_’fz))n satisfies the following linear recurrence relation

a(s—1)

= (@ (a8 o By
S (§)ee = X () He (5.4

=0

Proof

> () e

Ser()s,

S (S (), e () (),

i=0 =0
= o n—rk—1i—2 = o n—rk—i—s
+2;(_1) (’)%:( f+ak—1 >[3]+'”+Si_0(_1) (z)?( f+ak—1 )[s]‘
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By Theorem 4.3 we obtain

1=0
a%”(a) Z(n—rk—i—r—a) +a(s_1)<a> Z(n—rk—i—r—a—l)
i\t B+ ak (] i\ Btak—1 (]
WS S S ) ()
-1 B+ak—1 (5] = \i) 14 B+ak—1 [S]'
Finally by the relation (5.1) we get the result. O

Corollary 5.6 The sum of elements located along the direction (r,a) in the Lucas and Tribonacci-Lucas

triangles are given respectively by

S (-1 ( )LS? B = @) (5.5)

> () eieis =3 () et 55)

=0

Example 5.7 The sum of elements located along the direction (3,2) in the Tribonacci-Lucas triangle (s = 2,

r=3, a=2 and B =0) satisfies the following recurrence relation

2,0,3 2,0,3 2,0,3 2,0,3 2,0,3 20 2,0,3 2,0,3
Lg 2 )= 3L( 1 2) - 3L$L—2,2) + ng—3,2) +L ) +3L! ) + 3L$L 7, 2) + ng—&Q)’

n—>5,2 n—6,2

with LG =3, L% = 1, L&Y = 1, 18" = 1,137 = 1,150 = 3, LY = 15, 13" = 49.
The first terms of this sequence are (3,1,1,1,1,3,15,49,115,221,377,611,1027,1935,...)
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