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Abstract: The geometry of nearly trans-Sasakian manifolds is researched in this paper. The complete group of structural
equations and the components of the Lee vector on the space of the associated G -structure are obtained for such
manifolds. Conditions are found under which a nearly trans-Sasakian structure is a trans-Sasakian, a cosymplectic, a
closely cosymplectic, a Sasakian structure or a Kenmotsu structure. The conditions are obtained when the nearly trans-
Sasakian structure is a special generalized Kenmotsu structure of the second kind. A complete classification of nearly
trans-Sasakian manifolds is obtained, i.e. it is proved that a nearly trans-Sasakian manifold is either a trans-Sasakian
manifold or has a closed contact form. It is proved that the nearly trans-Sasakian structure with a nonclosed contact
form is homothetic to the Sasakian structure. The criterion of ownership of a nearly trans-Sasakian structure is obtained.
It is proved that the class of nearly trans-Sasakian manifolds with a closed contact form and a closed Lee form coincides
with the class of almost contact metric manifolds with a closed contact form, which are locally conformal to the closely
cosymplectic manifolds. Examples of such manifolds are given. The necessary and sufficient conditions for the complete
integrability of the first fundamental distribution of a nearly trans-Sasakian manifold are obtained. It is proved that a
nearly Kähler structure on the leaves of the first fundamental distribution of a nearly trans-Sasakian manifold is induced.

Key words: Trans-Sasakian structure, nearly trans-Sasakian manifold, closely cosymplectic structure, linear extension
of almost Hermitian structure, Lee form

1. Introduction
The geometric properties of almost Hermitian and almost contact metric structures have a number of peculiar
interconnections. For example, it is well known [23, 24, 32, 34] that if M is an almost contact metric manifold
then on the manifold M ×R an almost Hermitian structure is canonically induced (it is called linear extension
of the original almost contact metric structure [16]). The question of the connection between these structures
was studied many times. The classical result in the field is the famous result of Nakayama [26], which declares
that an almost contact metric structure is normal if and only if its linear extension is a Hermitian structure.
On the other hand, Gray and Hervella [9] have naturally in a certain way singled out the complete system
containing 16 classes of almost Hermitian structures. That motivated us to classify almost contact metric
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structures corresponding to the classification of their linear extensions. This problem was considered by such
researchers as Nakayama [26], Kanemaki [10], Chinea, Gonzalez [6]. They have formulated a classification of
almost contact metric structures. On this way Oubiña [28] singled out the classes of trans-Sasakian and almost
trans-Sasakian structures, linear extensions of which belong to the classes W4 and W2⊕W4 of almost Hermitian
structures in Gray-Hervella classification [9] correspondingly. Kirichenko and Rodina in [16] got a number of
insightful results related to the geometry of trans-Sasakian and almost trans-Sasakian manifolds. This paper
encouraged us to describe the geometry of almost contact metric manifolds, whose linear extension falls in the
Gray-Hervella class W1 ⊕ W4 . Such structures are called nearly trans-Sasakian structures [20]. Also, we use
the methods of [16] in this research.

In [33] a nearly trans-Sasakian manifold was defined as an almost contact metric manifold, satisfying
some identity, the normality properties of such manifolds was studied. Note that the nearly trans-Sasakian
manifolds defined in [33] are a special case of the nearly trans-Sasakian manifolds we have defined.

The semiinvariant submanifolds of a nearly trans-Sasakian manifold are researched; the Nijenhuis tensor of
a nearly trans-Sasakian manifold is calculated in [3, 7, 12, 13]. The integrability conditions of some distributions
on an invariant submanifold of a nearly trans-Sasakian manifold are researched. The articles also deal with
totally umbilical, totally contact umbilical, totally geodesic and totally contact geodesic submanifolds. It is
supposed that the considered spaces, i.e. their connection is smooth sufficiently enough, otherwise, for geodesic,
there exists geodesic bifurcation when at a certain point in a given direction geodesic splits into two, see [25, 29–
31]. There is a classification of totally umbilical semiinvariant submanifolds of a nearly trans-Sasakian manifold
in [12].

This paper has the following structure. Section 2 describes the method of associated G -structure and
presents the general information necessary for the following research. In Section 3, we recall the definition
of the nearly trans-Sasakian structure and characterize Sasakian, closely cosymplectic and special generalized
Kenmotsu [1, 2]. Section 4 deals with the contact distribution of nearly trans-Sasakian manifolds.

2. Research methods
We recall that an almost contact metric (AC - for short) structure on the manifold M is a quadruple (ξ, η,Φ, g =

⟨·, ·⟩) of tensor fields on M , where ξ is a vector field, which is called characteristic, η is a differential 1-form
called a contact form, Φ is an endomorphism of module X (M) of smooth vector fields on M and it is called a
structural endomorphism, g = ⟨·, ·⟩ – Riemannian metric. In addition,

1) η(ξ) = 1; 2) Φ(ξ) = 0; 3) η ◦ Φ = 0; 4) Φ2 = −id+ ξ ⊗ η;

5) ⟨ΦX,ΦY ⟩ = ⟨X,Y ⟩ − η(X)η(Y );X,Y ∈ X (M).

Such structures naturally appear on hypersurfaces of almost Hermitian manifolds [8], on the spaces of
main T 1 -bundles on symplectic manifolds with an even-dimensional fundamental forms (Boothby-Wang bundle
[22]) and generally on almost Hermitian manifolds [17] and are natural generalizations of the so-called contact
metric manifolds appearing on odd-dimensional manifolds with a fixed 1-form of the maximal rank (a contact
structure).

It is well known that a manifold admitting an AC -structure is odd-dimensional and orientable. In
C∞(M) -module X (M) of smooth vector fields on such manifold there are two internally determined mutually
complementing projections l = id −m = −Φ2 and m = ξ ⊗ η . These are the projections to the distributions

1145



RUSTANOV et al./Turk J Math

L = ImΦ = kerη and M = kerΦ , correspondingly, which we will name the first and the second fundamental
distributions of an AC -structure. Therefore, for module X (M) of smooth vector fields it is correct that
X (M) = M⊕L , where dimL = 2n , and dimM = 1 . More than that in case of introducing X (M)C is the

complexification of the module X (M) , then X (M)C = D
√
−1

Φ ⊕ D−
√
−1

Φ ⊕ D0
Φ , where D

√
−1

Φ , D−
√
−1

Φ , D0
Φ

are eigen distributions of the structural endomorphism Φ corresponding to their own values
√
−1 , −

√
−1 and

0. Moreover the projections on the addends of this direct sum are endomorphisms π = − 1
2 (Φ

2 +
√
−1Φ) ,

π = 1
2 (−Φ2 +

√
−1Φ) , m = η ⊗ ξ correspondingly [19].

The assignment of an AC -structure on the manifold M2n+1 is equivalent to assigning G -structure G
on M with the structural group G = U(n) × {1} . The total space elements of this G -structure are complex
frames of manifold M of the form p = (p, ξp, ϵ1, , ϵn, ϵ1̂, , ϵn̂) . These frames are characterized by the fact that
the matrices of tensors Φ and g in them are as follows:

(Φj
i ) =

 0 0 0
0

√
−1In 0

0 0 −
√
−1In

 , (gij) =

 1 0 0
0 0 In
0 In 0

 ,

correspondingly, where In is an identity matrix of the order n . Here and subsequently throughout the paper
indexes i, j, k, . . . run from 0 to 2n , and indexes a, b, c, d, . . . run from 1 to n . Let â = a+ n .

It is well known [19] that the first group of structural equations of the G -structure G is as follows:

dθa = −θab ∧ θb + Cab
cθ

c ∧ θb + Cabcθb ∧ θc + Ca
bθ

b ∧ θ + Cabθb ∧ θ;

dθa = θba ∧ θb + Cab
cθc ∧ θb + Cabcθ

b ∧ θc + Ca
bθb ∧ θ + Cabθ

b ∧ θ;

dθ = Dabθ
a ∧ θb +Dabθa ∧ θb +Db

aθ
a ∧ θb +Daθ ∧ θa +Daθ ∧ θa, (2.1)

where
{
θij
}

are the components of the Riemannian connection ∇ form of metrics g ,
{
θi
}

are the components
of the solder form, θ = θ0 = π∗η , π is a natural projection of the G -structure total space to the manifold M

and

Φa
b,k = 0, Φâ

b̂,k
= 0, Φ0

0,k = 0, Cabc =
√
−1
2 Φa

[b̂,ĉ]
, Cabc = −

√
−1
2 Φâ

[b,c],

Cab
c = −

√
−1
2 Φa

b̂,c
, Cab

c =
√
−1
2 Φâ

b,ĉ, Cab =
√
−1( 12Φ

a
b̂,0

− Φa
0,b̂

),

Ca
b = −

√
−1Φa

0,b, Cab = −
√
−1( 12Φ

â
b,0 − Φâ

0,b), Ca
b =

√
−1Φâ

0,b̂
,

Dab =
√
−1Φ0

[â,b̂]
, Dab = −

√
−1Φ0

[a,b], Db
a = −

√
−1(Φ0

a,b̂
+Φ0

b̂,a
),

Da = −
√
−1Φ0

â,0, Da =
√
−1Φ0

a,0. (2.2)

In addition Cabc = −Cacb , Cab
c = −Cba

c ; Dab = −Dba ; Cabc = −Cacb; Cab
c = Cba

c ; Dab = −Dba ;
Db

a = Ca
b − Cb

a .
We remind that an almost Hermitian structure (AH - for short) on the manifold M is a couple (J, g =

⟨·, ·⟩) of tensor fields on M , where J is an almost complex structure, J2 = −id , g is a Riemannian metric such
that ⟨JX, JY ⟩ = ⟨X,Y ⟩ ; X,Y ∈ X (M) .
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The assignment of an AH -structure on M2n is equivalent to the assignment of a G -structure on M with
a structural group U(n) . The total space elements of this G -structure are complex frames of the manifold M ,
characterized by the fact that, the matrices of tensors J and g are as follows:

(Jj
i ) =

( √
−1In 0
0 −

√
−1In

)
, (gij) =

(
0 In
In 0

)
,

correspondingly.
It is well known that the first group of structural equations of this G -structure is as follows [4]:

dωa = −ωa
b ∧ ωb +Bab

cω
c ∧ ωb +Babcωb ∧ ωc; (2.3)

dωa = ωb
a ∧ ωb +Bab

cωc ∧ ωb +Babcω
b ∧ ωc. (2.4)

Here
{
ωi
j

}
are the components of the Riemannian connection form of metrics g ,

{
ωi
}

are the components

of the solder form, Babc = Babc and Bab
c = Bab

c are the components of the so-called structural and virtual
tensors in the space of the associated G-structure. With that: Babc = −Bacb , Babc = −Bacb , Bab

c = −Bba
c ,

Bab
c = −Bba

c (for example, see [4]).
We remind [9], that an AH -structure of class W1 ⊕ W4 in Gray-Hervella classification (Vaisman-

Gray structure) on the manifold M2n is defined by the identity ∇X(Ψ)(X,Y ) = − 1
2(n−1){⟨X,X⟩ δΨ(Y ) −

⟨X,Y ⟩ δΨ(X) − ⟨JX, Y ⟩ δΨ(JX)} , where Ψ(X,Y ) = ⟨X, JY ⟩ is the fundamental form of the AH -structure,
δ is the codifferentiation operator. Direct calculation proves that this identity is equivalent to the following

relation in the space of the associated G -structure: B[abc] = Babc ; Bab
c = β[aδ

b]
c ; B[abc] = Babc ; Bab

c = β[aδ
c
b] ,

where {βi} are functions in the space of the associated G -structure, which are the components of the so-called
Lee form (see Definition 2.1).

We will briefly remind the linear extension construction of the AC -manifold M (or its AC -structure
linear extension, which is the same). It should be noted that on the manifold M × R the two-dimensional
distribution ∆ is internally determined such that ∆(p,t) = Mp ⊕ R . It is obvious, that this distribution is
provided with a canonical almost Hermitian structure (J0, g0) , where J0 is an operator of rotation by π

2 angle in
the positive direction. It is also obvious that the couple (J, g̃) is an almost Hermitian structure on the manifold
M × R , where J(p,t) = Φ|Lp

⊕ J0 , g̃ is a metric of Cartesian product. We will notice that the distribution
∆⊥ is invariant in relation to the endomorphism J . The triple (M × R, J, g̃) is called the linear extension of
the initial AC -manifold [16]. On the manifold (M × R) there is the internal definition of the vector field ν ,
generated by the unit vector of the number axis R , the closed 1-form ζ , dual to it and determining the Pfaffian
completely integrable equation ζ = 0 , the maximal integral manifolds of which are naturally identified with the
manifold M , and the vector field ξ and the covector field η , correspondingly, with the eigen vector and the
contact form of the manifold M . Due to them the frames of the type p = (p, ξp, ϵ1, . . . , ϵn, ϵ1̂, . . . , ϵn̂) of the
manifold M are naturally complemented up to the frames of the type p̃ = (p, ξp, ϵ1, . . . , ϵn, νp, ϵ1̂, . . . , ϵn̂) of the
manifold (M × R) . This manifold is naturally associated with the G -structure G with the structural group
G = U(n)× U(1) , whose first group structural equations is as follows:

dωα = −ωα
β ∧ ωβ +Bαβ

γ ωγ ∧ ωβ +Bαβγωβ ∧ ωγ ;

dωα = ωβ
α ∧ ωβ +Bγ

αβωγ ∧ ωβ +Bαβγω
β ∧ ωγ
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(indexes α , β , γ , ... run from 0 to n). The elements of the total space of this G -structure are the complex frames
of the type r = (p, ϵ0, ϵ1, , ϵn, ϵ0̂, . . . , ϵn̂) , where ϵp = 1√

2

(
ξp −

√
−1νp

)
; ϵp̂ = 1√

2

(
ξp +

√
−1νp

)
. Completing

the system (2.1) with the equations dθ0 = 0 , where θ0 = π∗ζ , and the transition matrix from frame p̃ to frame
r , it is easy to determine the fundamental connection between the structural objects of G -structure G and G :

1. Bab
c = Cab

c; 2. Bab
0 = 1√

2

(
Dab − C [ab]

)
; 3. Ba0

b =
1√
2
Ca

b;

4. Ba0
0 = 1

2D
a; 5. Babc = Cabc; 6. Bab0 = 1

2
√
2
Cab;

7. B0ab = 1√
2
Dab; 8. B00a = − 1

4D
a (2.5)

and the complex conjugate formulae. Let M be a (2n+1) -dimensional almost contact metric manifold, provided
with the AC -structure {Φ, ξ, η, g = ⟨·, ·⟩} . We will denote by Ω(X,Y ) = ⟨X,ΦY ⟩ the structure fundamental
form; Ω(X,Y ) = −Ω(Y,X) . We remind [5], that an AC -structure is called contact metric or almost Sasakian,
if dη = Ω , normal, if 2N + dη ⊗ ξ = 0 , where N(X,Y ) = 1

4

{
Φ2[X,Y ] + [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ]

}
is a structure operator Nijenhuis tensor. We remind [19] that an AC -structure is normal if and only if in the
space of the associated G -structure one has

Cabc = Cab
c = Cab = Dab = Da = 0;

Cabc = Cab
c = Cab = Dab = Da = 0. (2.6)

A normal contact metric structure is called Sasakian.
We remind, that an AC -structure is called almost cosymplectic, if its contact and fundamental forms

are closed. A normal almost cosymplectic structure is called cosymplectic. An AC -structure, for which
∇X(Φ)Y +∇Y (Φ)X = 0 , is called nearly cosymplectic. A nearly cosymplectic structure with a closed contact
form is called closely cosymplectic. It is known [14] that any closely cosymplectic manifold is locally equivalent
to the product of the nearly Kähler manifold by the real straight line.

Definition 2.1 The Lee form of the almost Hermitian structure (J, g̃) on the manifold M2n+2 is the form
α = 1

nδΨ ◦ J , where Ψ(X,Y ) = g̃(X, JY ) is a fundamental structure form, δ is the codifferentiation operator.
Vector β dual to the Lee form is called the Lee vector.

By AC -structures Lee form in this article we mean the Lee form of its linear extension.
It is easy to verify, that in the space of the associated G -structure G Lee vector (or form) components

are found from the formula βα = 2
nB

αγ
γ or considering (2.5): βa = 2

nC
ah

h + 1
nD

a ; β0 = −
√
2

n Ch
h ;

βa = 2
nCah

h + 1
nDa ; β0 = −

√
2

n Ch
h .

3. The definition of a nearly trans-Sasakian structure and its structural equations

Definition 3.1 [20]. An AC-structure is called nearly trans-Sasakian (NTS - for short) structure if its linear
extension belongs to the class W1 ⊕ W4 of almost Hermitian structures in Gray-Hervella classification. An
AC-manifold, provided with an NTS -structure, is called an NTS -manifold.

The following theorem is valid.
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Theorem 3.2 An AC-structure is an NTS-structure if and only if in the space of the associated G-structure
one has:

1) Cab
c = Cab = Dab = Da = 0; 2) Ca

b = − 1√
2
β0δab ;

3) Cab
c = Cab = Dab = Da = 0; 4) Ca

b = − 1√
2
β0δ

b
a;

5) Da
b = 1√

2

(
β0 − β0

)
δab ; 6) C [abc] = Cabc; 7) C[abc] = Cabc. (3.1)

Proof Let M be an NTS -manifold. According to the definition it means that the linear extension of its
AC -structure belongs to the Gray-Hervella class W1 ⊕W4 . As it has been mentioned, it matches the relations:

Bαβ
γ = β[αδ

β]
γ ; B[αβγ] = Bαβγ ; Bαβ

γ = β[αδ
γ
β] ; B[αβγ] = Bαβγ . Describing (2.5) while considering these

relations we get:

1) Bab
c = β[aδ

b]
c , i.e. Cab

c = β[aδ
b]
c ;

2) Bab
0 = β[aδ

b]
0 = 0 , i.e. C [ab] = Dab ;

3) Ba0
b = β[aδ

0]
b , i.e. Ca

b = − 1√
2
β0δab ;

4) Ba0
0 = β[aδ

0]
0 = 1

2β
a , i.e. βa = Da ;

5) B[abc] = Babc , i.e. C [abc] = Cabc ;
6) Bab0 = −Bba0 , i.e. Cab = −Cba , and it means that Dab = Cab ;
7) Bab0 = B0ab , i.e. Cab = 2Dab , and it means that Cab = Dab = 0 ;
8) B00a = 0 , i.e. Da = 0 , and it means that βa = 0 , Cab

c = 0 .
Finally, Da

b = Cb
a − Ca

b =
1√
2

(
β0 − β0

)
δab . The remaining relations are verified in the same way. 2

Corollary 3.3 The first group of structural equations of an NTS -structure in the space of the associated
G-structure is as follows:

1) dθa = −θab ∧ θb + Cabcθb ∧ θc +
β0

√
2
θ ∧ θa;

2) dθa = θba ∧ θb + Cabcθ
b ∧ θc + β0√

2
θ ∧ θa;

3) dθ = 1√
2

(
β0 − β0

)
δbaθ

a ∧ θb, (3.2)

where C [abc] = Cabc , C[abc] = Cabc .

Corollary 3.4 The Lee vector (or form) components are as follows: βa = βa = 0 ; β0 = −
√
2

n Ch
h ; β0 =

−
√
2

n Ch
h for an NTS -structure in the space of the associated G-structure.

Corollary 3.5 For the covariant differential components of the structural endomorphism of an NTS-structure
in the space of the associated G-structure we have:

1) Φa
0,b =

1√
2

√
−1β0δab ; 2) Φâ

0,b̂
= − 1√

2

√
−1β0δ

b
a;

3) Φ0
â,b = − 1√

2

√
−1β0δab ; 4) Φ0

a,b̂
= 1√

2

√
−1β0δ

b
a;

5) Φĉ
a,b = −Φĉ

b,a; 6)Φc
â,b̂

= −Φc
b̂,â

.
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Corollary 3.6 An NTS-structure is a trans-Sasakian structure if and only if in the space of the associated
G-structure one has Cabc = Cabc = 0 . In addition, it is: Sasakian ⇔ β0 = −β0 =

√
−2 ; cosymplectic ⇔

β0 = β0 = 0 ; Kenmotsu ⇔ β0 = β0 =
√
2 .

Corollary 3.7 An NTS-structure is a closely cosymplectic structure if and only if in the space of the associated
G-structure one has β0 = β0 = 0 .

Corollary 3.8 An NTS-structure is a special generalized Kenmotsu structure of the second kind if and only if
in the space of the associated G-structure one has β0 = β0 .

The standard procedure of a differential extension of relations (3.2) allows to get the second group of
structural equations of an NTS -structure:

dθab + θac ∧ θcb =
(
Aad

bc − 2CadhChbc

)
θc ∧ θd, (3.3)

where {Aad
bc } is a class of functions in the field of the associated G -structure, serving as the components of the

so-called curvature tensor of the associated Q -algebra [2], or the structural tensor of the second type, besides

1) Aad
[bc] =

1
2β

0
(
β0 − β0

)
δa[bδ

d
c];

2) A
[bd]
ac = − 1

2β0

(
β0 − β0

)
δ
[b
a δ

d]
c ;

3) Aad
bc = Abc

ad. (3.4)

Moreover,

1) dCabc + Cdbcθad + Cadcθbd + Cabdθcd = Cabcdθd +
1√
2
β0Cabcθ;

2) dCabc − Cdbcθ
d
a − Cadcθ

d
b − Cabdθ

d
c = Cabcdθ

d + 1√
2
β0Cabcθ;

3) dβ0 = β00θ; 4) dβ0 = β00θ, (3.5)

where Cabcd , Cabcd , Cabc
d , Cabc

d , β00 , β00 are suitable functions in the field of the associated G -structure,
besides

1)
(
β0 − β0

)
Cabc = 0; 2)

(
β0 − β0

)
Cabc = 0;

3)
(
β00 − β00

)
= 1√

2

{(
β0

)2 − (β0)
2
}
;

4) Ca[bcd] = 0; 5) Ca[bcd] = 0. (3.6)

Theorem 3.9 An NTS-manifold is either a trans-Sasakian manifold, or it has a closed contact form.

Proof It follows from the identity (3.6:1), that β0 = β0 or Cabc = 0 . In the first case an NTS -manifold has
a closed contact form. In the second case an NTS -manifold, according to Corollary 3.6 of the Theorem 3.2, is
a trans-Sasakian manifold. 2
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Definition 3.10 [16, 25]. A transformation (ξ, η,Φ, g) →
(
f−1ξ, fη,Φ, f2g

)
is called a conformal transfor-

mation of an AC-structure, here f is a positive function. The function σ = − ln f is called the determining
function of the conformal transformation. If f = const , the conformal transformation is called a homothety
with the coefficient f .

Definition 3.11 [16] A point of an AC -manifold is called nonspecial, if the 2-form dθ in this point is other
than zero. An open submanifold of an AC -manifold, which consists of nonspecial points, is called a nonspecial
submanifold.

Theorem 3.12 An NTS-structure on M2n+1 (n > 1) with a nonclosed contact form is homothetic to a
Sasakian structure.

Proof Let Ω(X,Y ) = ⟨X,ΦY ⟩ ; X,Y ∈ X (M) be a fundamental form of an AC -structure. It is obvious that
in the space of the associated G -structure one has

π∗Ω = −2
√
−1θa ∧ θa . (3.7)

Therefore, the relation (3.2:3) could be put in the form dθ =
√
− 1

8

(
β0 − β0

)
π∗Ω . Let us call

√
− 1

8

(
β0 − β0

)
=

f and differentiate the relation dθ = f(π∗Ω) externally taking into account relations (3.2) and (3.7), supposing
df = faθ

a + faθa + f0θ . Comparing coefficients of the similar terms, because of the linear independence of the
basic forms we get:

1) δa[bfc] = 0; 2) δ
[a
b f c] = 0; 3) fCabc = 0;

4) fCabc = 0; 5) f0 = − f√
2

(
β0 + β0

)
. (3.8)

Convoluting the first two relations over the indexes a and b , we get that, if n > 1 fa = fa = 0 , it means that,
df = f0θ . Let us differentiate this identity externally: df0 ∧ θ − 2

√
−1f0fθ

a ∧ θa = 0 . If at any point f ̸= 0 ,
then at this point one has f0 = 0 , because of the linear independence of basic forms. It means that on the
nonspecial submanifold M0 ⊂ M we have: df = 0 , i.e. f = const . Among other facts, submanifold M0 ⊂ M

is open-closed, and it means that if M is connected, then either M0 = M or M0 = ∅ .
In the first case replacing, as necessary, η with −η , and ξ with −ξ , we can consider, that f > 0 .

According to (3.8), in this case one has Cabc = Cabc = 0 , and, because of (3.1), an AC -structure is normal.
Moreover, in this case we get π∗ (dη) = d (π∗η) = dθ = fπ∗Ω = π∗ (fΩ) . That is why, performing a homothetic
transformation of the structure (obviously without interfering with its normality) with a coefficient f , we get
contact metric and therefore a Sasakian structure. Indeed, in this case η̃ = fη , Ω̃ = f2Ω , which means, η = 1

f η̃ ,

Ω = 1
f2 Ω̃ , and because dη = Ω , then dη̃ = Ω̃ . Hence in the first case an NTS -structure is homothetic to a

Sasakian one. 2

In the second case, when M0 = ∅ , dη = 0 , meaning, β0 = β0 . In this case π∗α = βiθ
i = β0θ

0 + β0θ0 =

β0
(
θ0 + θ0

)
=

√
2β0θ =

√
2β0π∗η . It means that ∃β̃0 ∈ C∞(M) and β0 = π∗β̃0 . Let us assume that

χ = − 1√
2
β̃0 . Then, because

α =
√
2β̃0η, α = −2χη, (3.9)
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and the first group of structural equations will have the form:

1) dθa = −θab ∧ θb + Cabcθb ∧ θc + χθa ∧ θ;

2) dθa = θba ∧ θb + Cabcθ
b ∧ θc + χθa ∧ θ; 3)dθ = 0.

Considering Theorem 3.12 it is natural to assume.

Definition 3.13 [20] An NTS-structure with a closed contact form is called an eigen NTS-structure.

Theorem 3.14 An AC-structure with a closed contact form on the manifold M is an eigen NTS-structure if
and only if the following identity is true

∇X(Φ)Y +∇Y (Φ)X = χ {η(X)ΦY + η(Y )ΦX} , X, Y ∈ X (M). (3.10)

Proof It is obvious that the identity (3.10) is equivalent to the following identities in the bundle of frames
space above the manifold M :

Φi
j,k +Φi

k,j = χ
{
δ0kΦ

i
j + δ0jΦ

i
k

}
. (3.11)

Describing the restriction of these identities in the space of the associated G -structure, we get: Φa
0,b + Φa

b,0 =

χ
(
δ00Φ

a
b + δ0bΦ

a
0

)
= χ

√
−1δab , which leads to, considering (2.2),

Ca
b = χδab and, similarly, Ca

b = χδba. (3.12)

In the similar way it is verified that Cabc = −Cacb , Cabc = −Cacb , i.e. C [abc] = Cabc , C[abc] = Cabc , and also

Cab
c = Cab

c = 0, (3.13)

and, considering the closed nature of the contact form, we have

Cab = 0, Dab = 0, Da
b = Cb

a − Ca
b = 0, Da = 0, Cab = 0, Dab = 0, Da = 0. (3.14)

But according to (3.1), identities (3.12)–(3.14) are just characteristic identities of the eigen NTS -structure. 2

Remark 3.15 By putting χ = 1 in 3.10, one obtains the defining condition of the NTS -manifold introduced
by Shukla in [33].

Theorem 3.16 The class of NTS-manifolds with a closed contact form and a closed Lee form coincides with the
class of AC-manifolds, with a closed contact form, which are locally conformal to closely cosymplectic manifolds.

Proof Let σ ∈ C∞(M) . Let us have a conformal transformation of the eigen NTS -structure with a defining
function σ : g̃ = e−2σg ; η̃ = e−ση ; ξ̃ = eσξ .

Let ∇̃ be a Riemannian connection of the transformed structure. Then, as it is well known (see [9],
for example), tensor T of the affine deformation from connection ∇ to connection ∇̃ has the following form:
T (X,Y ) = ⟨X,Y ⟩ ζ − dσ(X)Y − dσ(Y )X , X,Y ∈ X (M) , where ζ = gradσ . Thus, ∇̃XY = ∇XY + ⟨X,Y ⟩ ζ −

dσ(X)Y − dσ(Y )X , and it means that ∇̃X(Φ)Y = ∇̃X(ΦY )−Φ(∇̃XY ) = ∇X(ΦY )+ ⟨X,ΦY ⟩ ζ − dσ(X)ΦY −
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dσ(ΦY )X −Φ(∇XY )− ⟨X,Y ⟩Φζ + dσ(X)ΦY + dσ(Y )ΦX = ∇X(Φ)Y + ⟨X,ΦY ⟩ ζ − dσ(ΦY )X − ⟨X,Y ⟩Φζ +
dσ(Y )ΦX , i.e.

∇̃X(Φ)Y = ∇X(Φ)Y + ⟨X,ΦY ⟩ ζ − dσ(ΦY )X − ⟨X,Y ⟩Φζ + dσ(Y )ΦX. (3.15)

In particular, considering (3.10)

∇̃X(Φ)X = ∇X(Φ)X − dσ(ΦX)X − ∥X∥2 Φζ + dσ(X)ΦX =

= χη(X)ΦX − dσ(ΦX)X + dσ(X)ΦX − ∥X∥2 Φζ. (3.16)

If the function σ may be chosen so that
dσ = −χη, (3.17)

then, obviously, ζ = −χξ , and considering the axiom of an AC -structure, ∇̃X(Φ)X = 0 . Moreover, in this
case, because of the closed nature of the contact form η , dη̃ = d(e−ση) = −e−σdσ ∧ η = e−σχη ∧ η = 0 , i.e.
the transformed structure is closely cosymplectic, and the manifold M is conformal to the closely cosymplectic
manifold.

Conversely, let M be an AC -manifold with a closed contact form η , conformal to the closely cosymplectic
manifold, and let σ be the determining function of the corresponding conformal transformation of its AC -
structure (ξ, η,Φ, g) → (ξ̃, η̃,Φ, g̃) . Then η̃ = e−ση , 0 = dη̃ = −e−σdσ ∧ η , and it means that, dσ ∧ η = 0 .
Thus, ∃χ ∈ C∞(M) and dσ = −χη . In accordance, for vector ξ , dual to the form dσ , we have: ⟨ζ,X⟩ =

dσ(X) = −χη(X) = −χ ⟨ξ,X⟩ , and because of the nonsingular metric, ζ = −χξ . Consequently, considering
(3.16), 0 = ∇̃X(Φ)X = ∇X(Φ)X − dσ(ΦX)X −∥X∥2 Φζ + dσ(X)ΦX = ∇X(Φ)X −χη(X)ΦX . Polarizing this
identity, we get the identity (3.10). Due to Theorem 3.14, the initial structure is an eigen NTS -structure. 2

We notice that the integrability condition of (3.17) is equivalent to the closeness of Lee form of the linear
extension. By (3.9) it follows that the function σ is the half of the Lee form integral.

Thus, combining Theorems 3.14 and 3.5 we formulate the following theorem.

Theorem 3.17 The class of (2n+1)-dimensional (n > 1) NTS-manifolds with a nonclosed contact form
coincides with the class of AC-manifolds, homothetic to the Sasakian manifolds. The class of NTS-manifolds
with a closed contact form and a closed Lee form coincides with the class of AC-manifolds, with a closed contact
form which are locally conformal to closely cosymplectic manifolds.

Example 3.18 An important example of an eigen NTS-manifold with a closed contact form and a closed Lee
form is the Kenmotsu manifold, i.e. the AC-manifold, characterized by the identity ∇X(Φ)Y = ⟨ΦX,Y ⟩ ξ −
η(Y )ΦX ; X,Y ∈ X (M) , and the following identity ∇X(η)Y = ⟨X,Y ⟩ − η(X)η(Y ) ; X,Y ∈ X (M) . It follows
directly from Theorem 3.14, assuming that in (3.10) χ = −1 , and thus, α = 2η , and because of the last identity
dη = 0 . The Kenmotsu manifolds were introduced in 1972 [11] and have a number of extraordinary qualities.
Kenmotsu structures, for example, are defined on odd-dimensional Lobachevsky spaces with curvature 1 . The
complete description of Kenmotsu structures is given in papers [18, 27].

Another important example of an eigen NTS -manifold with a closed contact form and a closed Lee form
is the special generalized Kenmotsu manifold of the second kind [1].
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4. The contact distribution of a nearly trans-Sasakian manifold

Let us consider the differential 1-form ω = η ◦π∗ , where π is a natural projection in the principal frame bundle
above manifold M , π∗ is a dragging of the connected vector fields on manifold M generated by the form π .
Obviously, this form is a Pfaffian form of the first fundamental distribution, i.e. the basis of codistribution
associated with the first fundamental distribution L [15].

According to the classical Frobenius theorem total integrability of the first fundamental distribution is
equivalent to the existence condition of such form θ , that dω = θ ∧ ω , i.e. the exterior differential of form ω

must belong to the ideal of Grassmann algebra of manifold M [35].
Let us consider the first group of the structural equations of the NTS -structure in the space of the

associated G -structure:

1) dθa = −θab ∧ θb + Cabcθb ∧ θc +
β0

√
2
θ ∧ θa;

2) dθa = θba ∧ θb + Cabcθ
b ∧ θc + β0

√
2
θ ∧ θa;

3) dθ = 1√
2

(
β0 − β0

)
δbaθ

a ∧ θb. (4.1)

The right part of this third equation is inconsistent with the form: dω = θ ∧ ω . Then the first fundamental
distribution L is totally integrable if and only if β0 = β0 . In this case an NTS -structure has a closed contact
form, i.e. is an eigen NTS -structure.

Because an eigen NTS -manifold has a totally integrable first fundamental distribution, we have the
following theorem.

Theorem 4.1 The first fundamental distribution of an NTS-manifold is totally integrable if and only if the
NTS-manifold is eigen.

Theorem 4.2 The almost Hermitian structure induced on the leaves of the first fundamental distribution of an
NTS-manifold is a nearly Kählerian structure.

Proof Let M be an NTS -manifold with a totally integrable first fundamental distribution L . From the
above we get the first group of the structural equations of this manifold:

1)dθa = −θab ∧ θb + Cabcθb ∧ θc +
β0

√
2
θ ∧ θa;

2) dθa = θba ∧ θb + Cabcθ
b ∧ θc + β0

√
2
θ ∧ θa;

3) dθ = 0.

Let N ⊂ M be an integral manifold of maximal dimension of the first fundamental distribution of the manifold
M . Then on it almost Hermitian structure ⟨J, g̃⟩ is canonically inspired, where J = Φ|L , g̃ = g|L . Because
form ω is a Pfaffian form of the first fundamental distribution, the first group of the structural equations of the
almost Hermitian structure on N has the form:

1) dωa = −θab ∧ ωb +Babcωb ∧ ωc;

2) dωa = θba ∧ ωb +Babcω
b ∧ ωc; 3) dω = 0. (4.2)
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Keeping in view the Gray-Hervella classification of almost Hermitian structures, presented as a table ([21], page
450), we get that the almost Hermitian structure, inspired on the integral submanifolds of manifold M , is nearly
Kählerian. Thus, the theorem is proved. 2

5. Conclusion
In this paper, we have defined the class of nearly trans-Sasakian manifolds. The complete group of its structural
equations on the space of the associated G -structure is obtained; also the components of the Lee vector are
calculated. Examples of nearly trans-Sasakian manifolds are trans-Sasakian, cosymplectic, closely cosymplectic,
Sasakian, Kenmotsu and a special generalized Kenmotsu manifolds of the second kind. A classification of nearly
trans-Sasakian manifolds is obtained, more precisely it is proved that a nearly trans-Sasakian manifold is either
a trans-Sasakian manifold or has a closed contact form. It is proved that the nearly trans-Sasakian structure
with a non closed contact form is homothetic to the Sasakian structure. The criterion of ownership of a nearly
trans-Sasakian structure is obtained. It is proved that the class of nearly trans-Sasakian manifolds with a closed
contact form and a closed Lee form coincides with the class of almost contact metric manifolds with a closed
contact form, which are locally conformal to closely cosymplectic manifolds. Examples of such manifolds are
given. The necessary and sufficient conditions for the complete integrability of the first fundamental distribution
of a nearly trans-Sasakian manifold are obtained. It is proved that the almost Hermitian structure induced on
the leaves of the first fundamental distribution of an NTS -manifold is a nearly Kählerian structure.
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